C++ Basics

e basic i/o: cout, cin

e comments

e variables: const, types, strong typing, casting
e operators: unary, binary

e Boolean expressions

e conditional: if, else, 7:

e loops: for, while

e arrays

e functions, call by value, prototypes, header files

basic i/o: cout

We start by learning the essential, non-Object Oriented features of C++.

No programming course is complete without the “Hello World" program:

#include <icstream.h> // HelloWorld.cc

int main() {
cout << "Hello World" << endl;

return 0;

Anatomy of the program HelloWorld.cc:

1. #include <iostream.h>

(2) #include is a C pre-processor directive (more on those later) to
“include” the file iostream.h

(b) the brackets <...> say that the file is in the “standard” include
directory.

(c) iostream.h (much more on that later) contains the standard
C++ i/o class declarations and function prototypes (much more
on that later).

2. int main() {

(a) all C++ programs must have a main
(b) main is actually a function (more on that later) of type int

(c) main has no arguments (more on that later). Actually, main can
have arguments — more on that later.

(d) The body of main (and every function) is contained within { }.

(e) C++ is written out free-form.
How we write the code is a matter of style.

For space reasons con the slides, I will of-
ten break style guidelines.

3. cout << "Hello World" << endl;

(a

~—

cout is a pre-defined instance of the stream ostream — much 4. return O;

more on that later. It is used for writing output to tty.
(2) since main is of type int, it must return an int to the program that

(b) << is the insertion operator: it inserts what follows into the stream called it (the shell).

cout.
(b) a return value of ‘0’ signifies successful completion (that's Unix, not

C++).

5}

finally, we mark the end of the main code block.

(c) "Hello World" is the string we want to output.
(d) endl does 2 things:

i. it writes a <CR>
ii. it flushes the output buffer

(e) all statements in C++ must end with *;’

We compile and link HelloWorld.cc with the command:

% gt++ —o HelloWorld HelloWorld.cc

and run it with the command: 3. What is the name of the executable file if we omit “~o HelloWorld”?

% ./Hellolorld 4. From now on, we will always use the compiler switch “-Wall"

Notes: (= -Warnings all) to print all compiler warnings

1. C++ files can have many extensions, e.g: 5. We are compiling and linking together — we could do separately

.cc, .C, .cpp, .cxx

6. Soon we will use “make” files — which are particularly useful for more

and probably others. Some are part of the standard, some are . o
. . . L. complicated compilations.
expected by certain compilers. We will use . cc, which is both

standard, and works with g++. 7. For security, it is good to leave the current (working) directory out of

2. The C++ version of gec is invoked with “g++". Since g++ and gcc are the path — then we need to precede the executable name with “./

really the same beast, look at the zillions of command line options:

% man gcc

more i/o: cin

e C++ is symmetric between output — with cout, and input — with cin.
e Before using cin, we have to jump ahead to variables.
— All variables are strongly typed — a variable must be declared
before it can be defined, or used.

— C++ supports several built-in types: the number of bits used for
each variable is implementation dependent. Since we've already
seen int with main, we'll stay with int. On a 32-bit machine, int
is usually a 32-bit signed integer.

e Let's write a program that reads in 2 number from the keyboard:

#include <icstream.h> // ReadNumber.cc

int main() {
cout << "Enter a number: " << ends;
int i;
cin >> i;
cout << "You typed " << i << endl;

return O;

1. cout << "Enter a number: " << ends;

we don't want to use a <CR>, but we do need te flush the output
buffer. This is done with ends.

2. int i;
before we can use the integer i, we must declare it. The
declaration can go anywhere in the same scope before i is used.

3. cin >> i

(a) the pre-defined input stream object is cin

(c

(d) when we type the <CR>, we automatically fiush the stream.

(b) the extraction operator is >>.
) we extract the integer from the stream cin into the integer i.

4. cout << "You typed " << i << endl;

we can use arbitrarily many << (or >>) on the same line.

10

Comments

11

C++ supports 2 types of comment syntax:

1. A single line comment with: // (which can be anywhere on the line.
E.g:
// now we’re going to type a message
cout << "Enter a number: " << ends;

int i; // i is an integer

2. The C-style “block” comment, /* a comment */
This is useful for temporarily “commenting out” a block of code.

be careful using the 2 together, because
// can comment out the /* or */.

12

Twe comments about comments:

Use comments liberally to document
your ccde.

There are 2 reasons:

(a) so you can understand your own code 24 hours later

(b) so someone else (partner, TA, boss, successor) can understand it

2. Having said that, well-written C++ should be self-documenting.

13

e At least put a2 comment block at the beginning of each module, saying

what that module does, who wrote it, etc.
e Document assumptions about parameters, validity, etc.

e Document the interfaces

// Comments.cc
1117711117777711777777771777717111777777777111111111717117777
//

// Copyright (c) Michael Ogg, 1996

// Author: M. Ogg, oggQ@ece.utexas.edu
// Date: Aug 21, 1996

// Version: 1.0

// Updated: Aug 21, 1996

//

// Purpose:

// This code does absolutely nothing.
// But it’s well documented
//

II1111077177771717177171771717711177111717117111171111711777

14

15

variables: types, strong typing, casting

The built-in types, and the minimum number of bits for a 32-bit
architecture are:

type bits description

char 8 character
short 16 integer

int 32 integer

long 64 integer
float 32 floating point
double 64 fioating point

All but f1loat and double can be modified by unsigned

16

A variable must be declared before it is defined — but they can be done
together. A variable can also be initialized with its declaration:

int i;
i=1;
int j=i;
int k=2;

Variable Names:
® case sensitive
e alphanumeric, _

e begin with letter or _

operators: unary, binary

17

C++ supports the usual binary operators:
+, -, %, /
(binary, because there are two operands).

float a=2.0;
float b=5.0;
float c=6.0;
float arg2 = b*b - 4.0*a*c;

Operator precedence follows the usual BODMAS rules — when in doubt,
use parentheses. C++ requires streng typing.

Some operators are used so frequently, there is a convenient shorthand:

Operator Meaning

a+=b a=at+b

a-=>b a=a-b

a *=>b a=a*b
b

a=a/b

18

19

Other miscellaneous binary operators:

Operator Meaning
a%hb modulus of a/b
a&b bit-wise AND
alb bit-wise OR
a”b bit-wise X-OR

20

C++ supports unary operators too — there is only one operand.

Operator Meaning Comment
at+ a=at+l postfix
++a a=at+l prefix
a—- a=a-1 postfix
--a a=a-1 prefix
>>a bit-wise Right shift
<<a bit-wise Left shift
“a 1's complement
21

#include <iostream.h> // Unary.cc

int main() {

int i=4;
cout << "i = " << i << ", i4+ = " << i++ << endl;
cout << "i = " << i << ", ++i = " << ++i << endl;
return O;

Casting

22

e Casting means converting one type to another. C++ does not enforce
strong casting

e an expression with mixed types will cast one type to another —
sometimes with unanticipated results.

e The unary operator (type) acting on a variable converts the variable
to type type.

e When in doubt, use an explicit cast.

23

#include <icstream.h> // Cast.cc

int main() {

int i=4;

int j=b;

cout << "i/j = " << i/j << endl;

cout << "i/(float)j = " << i/(float)j << endl;
return 0;

24

const

e In C++, we use const, which creates a run time constant.

e A const cannot be altered once it is declared — so initialization

(definition) must take place with declaration:

#include <iostream.h> // Const.cc

int main() {
const int i=42;
const float pi=3.14159;

// also M_PI in math.h

Boolean expressions

e A Boolean expression evaluates to either “true” (if any bit is set), or
“false” (if all bits are zero).

C++ supports a Boolean type, with values true and false.
e Boolean expressions are formed with Boolean operators:

e Parentheses should be used to resolve ambiguities in operator
precedence.

cout << "i = " << i << ", pi = " << pi << endl;
return 0;
}
25
Operator Meaning
&& logical AND
[logical OR
! logical NOT
== equality
1= inequality
> greater than
< less than
>= greater than or equal to
<= less than or equal to

26

27

#include <icstream.h> // Boolean.cc

int main() {

int i=42;

int 3=137;

cout << "i==j " << (i==j) << endl;

cout << "(i>3) [l 1 " << ((i>3) || 1) << endl;
return O;

28

conditional: if, else, 7:

Armed with the ability to form logical expressicns, we can now do
conditional execution.

i.e. execution conditional upon the truth of a Boolean variable or
expression

29

#include <icstream.h> // If.cc
#include <math.h>

int main() {
cout << "Enter 3 numbers: " << ends;
float a, b, c;
cin >> a >> b >> c;
float arg2 = b¥b - 4.0%a*c;
if ((arg2>0.0) && (a!=0.0)) {
float arg = sqrt(arg2);
cout << "Roots are: " << (-b + arg)/(2.0%a)
<< " and " << (-b - arg)/(2.0%a) << endl;
}

return O;

Pcints te note:

1. #include <math.h> is used for math functions. We've sneakily
introduced functions — more on them later.

2. if { } conditional expression. The Boolean expression is evaluated. If
it resolves to true, the statements inside { } are executed.

3. since C++ is written free form, statements can be written across
several lines.

4. if only one statement follows the if, the { } are not necessary (tho
recommended)

Very often, we not only want to execute statements after the if, but do
something else if the Boolean is not true. This is done with else.

30

31

#include <icstream.h> // IfElse.cc
#include <math.h>

int main() {
cout << "Enter 3 numbers: " << ends;
flcat a, b, c;
cin >> a >> b >> c;
float arg2 = bxb - 4.0%a*c;
if ((arg2>0.0) && (a!=0.0)) {
float arg = sqrt(arg2);
cout << "Roots are: " << (-b + arg)/(2.0%a)
<< " and " << (-b - arg)/(2.0%a) << endl;
}
else
cout << "I can’t evaluate these rcots" << endl;

return O;

32

Finally, the statement after an else can be another if:

#include <iostream.h> // IfElself.cc

int main() {

cout << "Enter a number: " << ends;
int i;

cin >> i;

if (i<0)

cout << "number is < 0" << endl;
else if (i==0)

cout << '"mumber is == 0" << endl;
else

cout << "number is > 0" << endl;

return O;

33

The construction:

if (condition) do something

else do something else

is used so often to evaluate an expression, that there is a shorthand
operator:

a = (condition) ? b : c;
The cendition is first evaluated.
e If it is true, a is set equal to the value of the expression b

e If it is false, a is set equal to the value of the expression ¢

#include <iostream.h> // MinMax.cc

int main() {
cout << "Enter 2 numbers: " << ends;
float a,b;
cin >> a >> b;
cout << "the larger number is " << ((a>b) ? a : b) << endl;

return O;

34

loops: for, while

35

To execute a block of code a number of times, or while some condition
holds true. C++ provides the for and while loops.

#include <iostream.h> // For.cc

int main() {

cout << "Enter how many times to run lcop: " << ends;
int n;
cin >> n;
for (int i=0; i<n; i++) {

cout << "i, i*i = " << i << ", " << ixi << endl;
¥
return O;

36

Points te Note:

1. The for expression has 3 parts, separated by ‘;'s
(a) setting an initial value (int i=0).
(b) a termination condition (i<n).
(c) an action at the end of each iteration (i++).

Any or all of these parts may be omitted, but the ;" is still necessary.

2. The code block to be executed is contained within { }. If there is only
1 statement, the { } can be omitted — but shouldn't be.

3. The for loop parameter, 1, is valid only within the scope of the loop —
within { }

37

Sometimes, we want to execute a block of code while a condition holds
true. This is done with a while loop.

#include <icstream.h> // While.cc
#include <math.h>

int main() {
float a=0.0;
while (a>=0.0) {
cout << "sqrt(" << a << ") = " << sqrt(a) << endl;
cout << "Enter a +ve number; -ve to end: " << ends;
cin >> aj;
}

return O;

We could even have an endless loop (which is often useful). We might
break out of the locop with ~C.

#include <iostream.h> // Endless.cc

int main() {

long i=0;

while (1)
cout << "This is the " << i++ << "’th iteration" << endl;

return O;

Note that since “1” has one bit set, it always evaluates to TRUE.

38

39

Sometimes we want a clean way of either skipping an iteration, or breaking
out of a loop when some condition is met. This is done with the continue
and break statements.

This smells awfully like goto, so should
be avoided where possible

#include <iostream.h> // ForContinue.cc

int main() {
int n=50;
for (int i=0; i<m; i++) {
if ('(i%7)) continue;
cout << "i, i*¥i = " << i << " " << i*i << endl;
¥

return O;

40

#include <iostream.h> // EndlessBreak.cc
#include <time.h>

int main() {
long i=0;
while (1) {
cout << "This is the " << i++ << "’th iteration" << endl;
if (clock()>10) break;
}

return 0;

In this last example, we keep going indefinitely, until the used CPU time
exceeds a certain number of ticks.

Clearly, there is no unique way to do what we want to do: the combination
of for, while, continue, break is a matter of style.

arrays

Now that we can use loops, we can also use arrays.

#include <icstream.h> // Array.cc
#include "stdlib.h" // to fix Sun0S
int main() {

const kArraySize=10;

float a[kArraySize], blkArraySize];

for (int i=0; i<kArraySize; i++) {

a[il = rand()/(float)RAND_MAX;

bl[i] = rand()/(float)RAND_MAX;
}
for (int i=0; i<kArraySize; i++) {

cout << "element " << i << ": a, b, a*b "

<< afi] << ", " << b[i] << ", " << a[il*b[i] << endl;

¥
return 0;

41

42

Notes:

1. To generate random numbers:

(2) the header file stdlib.h is needed.
(b) rand() is the random number generator that returns an int.

(c) to convert to a fioat, in the range 0 < z < 1, divide by RAND_MAX,
using a cast.

2. a const is used for the array size. Its value is known at compile time,
but it becomes a run time variable.

3. the operator [] is used to declare and access elements of the array.
4. the array’s first element is array [0]

5. the index i is only valid within the scope of the for loop, so it can be
“recycled” in subsequent loops.

multi-dimensional arrays

With the correct use of data structures, we actually use them much less
than we'd think. But for some applications (e.g. matrices) they are still
useful.

A multi-dimensional array is really an array of arrays:

float matrix([4][7]; // matrix[row] [column]
i.e. matrix is an array of columns — the rightmost subscript changes the
fastest.

43

44

functions, call by value, prototypes

We have sneakily used a few functions already.

e A function has a type:
— void - noc type
— a built-in type, int, float, long etc.

— a user-defined type (see later)
e A function returns a value, unless the function is of type void.
e A function can take zero, 1 or several arguments.

e The function arguments are passed by value from the calling program
to the function. This means the function has its own copy of the
parameters, and does not change the calling program’s variables.

45

e The parameter names are only valid within the scope of the function
(except for global parameters — avoid, but see later).

e Each function has a unique signature composed of:

— the function’'s name
— the function's class — see later
— the function’s argument types

The function’s return type is not part of the signature (see later for
function overloading).

e A function must be:

1. first declared (or prototyped)
2. then defined (or implemented) — this can be done with declaration

3. then invoked in the body of the code

#include <iostream.h> // Functionl.cc

void printMe(float x) {
cout << "Number is: " << x << endl;

int main() {
float a;
while (1) {
cout << "Enter a number: " << ends;
cin >> a;
printMe(a);
}

return O;

46

47

Pcints te note:

1. The function printMe must be declared before its use.

2. The function can be defined at declaration time (but it doesn't have
to be).

3. The parameter type(s) must be specified in the declaration. Note that
X is a dummy parameter — any name would do, since it is local to
printMe.

4. The function printMe is of type void.
5. Since it is void, there is no return value.
6. The argument passed to the function is a.

7. Since printMe is void, it is not used in an assignment statement.

48

What happens if printme is passed some variable that is not a fioat?

#include <iostream.h> // Function2.cc
#include <stdlib.h>

void printMe(float x) {
cout << "Number is: " << x << endl;

int main() {
while (1) printMe(rand());
return 0;

The absence of strong casting is a double-edged sword: it allows this to
work, but may not always give the result we intended. (See later for
function overloading and template functions).

49

We can see explicitly that the parameters really are passed by value:

#include <icstream.h> // Function3.cc
int incrementMe(int x) { return ++x; }
int main() {

int i=4;

int j=incrementMe(i);

Function Overloading

Since functions with a different signature are considered different
functions, we can use this to overload function names:

#include <iostream.h> // Function4.cc

float halveMe(float x) { returm x/2.; }
int halveMe(int x) { return x/2; }

int main() {

cout << "float halveMe: " << halveMe(5.0f) << ", "
<< "int halveMe: " << halveMe(5) << endl;

return O;

51

cout << "i,j: " << i << ", " K< j << endl;
return 0;
¥
50
Notes:

1. The functions float halveMe(float) and int halveMe(int)
really are 2 different functions. The linker decides which to use based
on the signature.

2. 5.0 without £ is 2 double, so the linker wouldn't know which
function to use. We can either specify 5.0f as a fioat, or cast 5 to a
float with: (float)5

3. The return type is not part of the signature, so cannot be used to
resolve ambiguities, since there is no strong casting.

Usually, we want to keep the function definitions in a separate file from
their use. In this case, we must still declare the function by specifying its
signature, or function prototype. This will usually be done in a header file.
We will do this from now on.

52

Notes:
1 " 3 " 3
#include Tutil.hh // Function§.ce 1. We have put the function declarations in the file util.hh (we choose

) . to use the .hh suffix to signify C++ header files).
int main() {

cout << "float halveMe: " << halveMe(5.0f) << ", " 2. Since util.hh is not a standard header file, it is enclosed in "..."
<< "int halveMe: " << halveMe(5) << endl; not <...>
return O;
¥ 3. We have chosen to put iostream.h inside util.hh — since we know

we'll always need it.

53 54

Pcints te note:

Let’s lock at util.hh 1. #ifndef __UTIL_HH
We only want to include the header file once, so we enclose it in an

#ifndef, #endif block. This is a C pre-processcr directive.
#ifndef __UTIL_HH // util.hh

#define __UTIL_HH 2. #define __UTIL_HH
And then define a compile time variable to prevent subsequent
#include <iostream.h> inclusions.
float halveMe(float); 3. float halveMe(float);
int halveMe(int); The function prototype does not need to specify the actual parameter

names — but it must specify the types. (That is the purpose).
#endif // __UTIL_HH

Since we didn't put the function definitions in the header file, we'll define
them in util.cc

55 56

#include "util.hh" // util.cc

float halveMe(float x) { returm x/2.; }
int halveMe(int x) { return x/2; }

Notes:

. We alse must include the same header file — even when it’s not

technically needed, it forces consistency between declarations and
definitions.

. Now we define the functions with the actual parameters.

. If we change the function signature, we are forced to change both the

header file and the implementation.

. To build the executable, we can either compile both files together:

% gt++ -Wall -o Functionb5 Functionb.cc util.cc
or else first compile util.cc to make an object file, and then link:

% gt++ -Wall -c util.cc
% g+t+ -Wall -o Function5 Functionb5.cc util.o

57

58

System Functions

C++ uses the standard C functions, as well as C++ ones. There are
several families of functions, with their associated header files:

e “Standard” C functions. These are documented in e.g. K&R. The

include files are usually in /usr/include or /usr/local/include.

Note that many of these are made redundant or obsolete by C++.
They are usually documented in the Unix man pages.

e “Standard” C++ functions. These are documented in e.g. E&S. The
include files are usually (for gec) in /usr/include/g++ or
/usr/local/include/g++. They will make more sense once we've
covered more C++.

“System” C functions. These are C functions specific to the Operating
System. In the case of Unix, there will be a core set of
“Posix-compliant” functions, plus additional OS specific functions.
The "Posix-compliant” functions will often be defined on non-Posix
systems, but it is not guaranteed. The include files are usually in
/usr/include or /usr/local/include. They are usually
documented in the Unix man pages.

Library functions. These are C or C++ functions provided as part of a
library. They may be used for e.g. graphics, database applications, etc.

59

60

Conclusion

You now know enough C++ to write pretty much any non Object
Oriented program.

61

