Object Oriented Programming

e We've now seen the non Object Oriented features of C++

e We need them to be able to use the Object Oriented features.

class: data members, member functions

e The basic unit of C++ is the class.

e A class is a grouping of data and functions into one unit. Usually the
functions (member functions) operate on the data.

e Only some of the member functions (the interface) are available from
outside the class — usually none of the data members are accessible
from outside the class.

e An instance of a class is called an object.

Example:
Use a class to specify a graphics (z,y) point. We first declare the class:

#ifndef _ _POINT HH // Pointl.hh
#define __POINT_HH

#include <iostream.h>

class Point {
public:
Point () ;
private:
int m_x, m_y;

};

#endif // __POINT_HH

Point is now a new data type (just as int, float etc.) We next have to

complete the definition (or implement) the Point class:

#include "Pointl.hh" // Pointl.cc

Point::Point() {
m_x = 0;
m_y = O;

}

Finally, we can use the class Point in our program:

#include "Pointl.hh" // Point-1.cc

int main() {
Point p;
+

Points to note:

1. The class Point has 2 blocks — one labeled public:, the other

private:

e class members in the public: section can be accessed from
outside the class.

e class members in the private: section can only be accessed from
inside the class.

2. There is a member function with the same name as the class, and no
return type. This is the class constructor.

. Since the data are in the private: section of Point, they cannot be
accessed from outside the class. This is called data encapsulation.

. In the implementation, the constructor function name is written
Point::Point (). :: is the scope resolution operator. The

constructor does not have a type (not even void).

. An instance of the Point class, the object p, is declared in the same
way as for any other type.

. There is a problem: this object does nothing! Since the data are
private they are not accessible, and there are no member functions

(apart from the constructor), so we can't do anything with p.

. Moreover, since p is declared but not used, we will get a compiler

warning.

. We can fix this by adding a public member function.

#ifndef __POINT_HH
#define __POINT_HH

#include <iostream.h>
class Point {

public:
Point () ;

void print();

private:
int m_x, m_y;

};

#endif // __POINT_HH

// Point2.hh

we have added the (public) member function, void print () which we

must now implement.

#include "Point2.hh" // Point2.cc

Point::Point() {
m_x = 0;
m_y 0;

+

void Point::print() A
cout << "(" << m_x << noon L m_y << n)n;

#include "Point2.hh" // Point-2.cc

int main() {

Point p;

p.print();
cout << endl;

1. In Point::print (), we have not added an endl, because we may
want to print other things. We will then have to flush the buffer.

2. Point::print() is a member of class Point, so it can access

Point's private data.

3. p's print function, which accesses p's data, is invoked with the

operator.

This is progress, but still doesn’t allow us to do very much. What about

instantiating Point with other values?

To do this, we need a different constructor. But wait! We can use function
overloading to define a constructor with a different signature.

#ifndef __POINT_HH
##tdefine __POINT_HH

#include <iostream.h>

class Point {
public:
Point () ;

Point (int, int);

void print();

private:
int m_x, m_y;

};

#endif // __POINT_HH

// Point3.hh

#include "Point3.hh" // Point3.cc

Point::Point() {
m_x = 0;
m_y = O;

}

Point: :Point(int initX, int initY) {
m_x = initX;
m_y = initY;

}

void Point::print() A{
cout << "(" << m_x << ", n o« m_y << Il)ll;

#include "Point3.hh" // Point-3.cc

int main() {

Point p;

p.print();

cout << endl;
Point q(10,15);
q.print();

cout << endl;

Notes:

1. Since the signatures are different, the overloaded constructor functions

really are 2 different functions.

. In the print () method, p's print () accesses p’'s data, and q's

print () accesses q's data.

. Using member functions to hide the member data is called “Data
Encapsulation”, and is an important feature of Object Oriented

programming. In general, the data should always be encapsulated,

and so should never be public.

. If we want to access the data (and in practice we need to less than we
think), then we should do it via access functions:

#ifndef _ _POINT HH // Point4.hh
#define __POINT_HH

#include <iostream.h>

class Point {
public:
Point () ;

Point (int, int);

void print();

int x() { return m_x;

int y() { return m_y;
private:

int m_x, m_y;

};

#endif // __POINT_HH

#include "Point4.hh" // Point-4.cc
#include <math.h>

int main() {
Point p;
p.print();
cout << endl;
Point q(10,15);
q.print();
cout << endl;

cout << "qg’s radius: " << sqrt(q.x()*q.x(O)+q.y(O*q.y()) << endl;

But why not just provide a member function to return the radius?

#ifndef __POINT_HH // Point5.hh
#define __POINT_HH

#include <iostream.h>

class Point {
public:
Point () ;
Point (int, int);
void print();

int x() { return m_x; }

int y() { return m_y; }
int r();

private:

int m_x, m_y;

};

#endif // __POINT_HH

#include "Point5.hh" // Pointb5.cc
#include <math.h>

Point::Point() {
m_x = 0;
m_y = O;
}
Point: :Point(int initX, int initY) {
m_x = initX;
m_y = initV;
+
void Point::print() {
cout << "(" << m_x << ", " << m_y << ")";
}
int Point::r() {

return (int)sqrt(m_x*m_x + m_y*m_y);

}

#include "Point5.hh" // Point-5.cc

int main() A
Point p;
p.print();
cout << endl;
Point q(10,15);
q.print();
cout << endl;

cout << "g’s radius: " << g.r() << endl;

Clearly, we could proceed this way adding as many member functions as
we could think of.
In particular, we could use function overloading to add “set” functions:

void x(int);

void y(int);

These are different functions than:

int x();
int y(Q);

It is the arguments, not the return type, that makes them different.

constructors: initialization

Just as we invoke the constructor for a user-defined class with:

Classname 0Objectname(initial parameters) ;

so we can also initialize a built-in type with the same syntax:

Typename Objectname(initial value);

I.e.

int i(6); // is equivalent to: int i=6

constructors: default arguments

We often want to instantiate an object with default values. We can put
the default values in the declaration, and use them in the implementation.

class Point {
public:
Point (int initX=0, int initY¥=0);

};

Point::Point(int initX, int initY) {
m_x = 1initX;
m_y = initY;

+

e If one argument is given explicitly, we must also specify all preceding

arguments.

e There can be an ambiguity between using default arguments, and
function overloading — choose one or the other for a specific signature.

e Default arguments are useful — but don’t go overboard.

Name Conventions

There are few rules about variable and

function names — but some conventions

are useful

Begin class names with an Uppercase letter

Header files for class Foo should be called Foo.hh and Foo.cc
Begin member data names with something distinctive, e.g. m_
Begin member function names with a lowercase letter

Use descriptive names — concatenate and capitalize. E.g.

printMyValue

Don't use names differing only by case.

Begin constant data names with something distinctive, such as k. E.g.
const kArraySize. Sometimes it is useful to capitalize.

Instance variables (of small scope) can be terse

In a class declaration, list first public members, then private
members.

references

Suppose we want to add an rmoveTo (Point) method, where we specify
the new Point as an argument.

(Of course, we could easily write a rmoveTo(int,int) method, but that's
not very “Object Oriented”.)

We can do this easily enough by changing Point.hh and Point.cc

class Point {

public:

void rmoveTo(Point);

+;

void Point::rmoveTo(Point p) {
m_X += p.m_X;

m_y += p.M_V;
+

Note that although p is a different object than the current (this) object,

rmoveTo (Point) is still a Point member function, so it has access to
Point’s private data.

#include "Point6.hh" // Point-6.cc

int main() A
Point p;
Point q(10,15);
p.print();
p.rmoveTo(q) ;
p.print () ;

p.rmoveTo(Point (3,4));

p.-print();
cout << endl;

For the argument of rmoveTo, we can:

e either use an existing object, q

e or use the constructor function (since it really returns a Point object).

In this case, we don't define another object.

This is all just fine, and works — but there is a subtle but important
problem:

In C++, function arguments are passed

by value.

That is, a copy of the Point object is put on the stack, and this copy is
used by the function.

In this case, Point is not such a large object, so who cares?

In general, the object could be arbitrarily large, and this could be very

inefficient.

So C++ gives us another way of passing function arguments — by

Reference.

Instead of making a copy and putting the copy on the stack, we put an
alias name (the reference) on the stack, and access the original object.

class Point {

public:

void rmoveTo(Point&) ;

};

void Point::rmoveTo(Point& p) {
m_X += p.m_X;

m_y += p.M_V;
+

This looks almost the same as before, except for the &.

We read the declarations backwards, so rmoveTo (Point& p) means:

p is a reference to a Point object

e This solves the problem of unnecessarily copying large objects — but it
creates another problem:

e we could (accidentally or maliciously) change the contents of the

argument object, since in the rmoveTo method, we are working with
the same object, and not a copy.

void Point::rmoveTo(Point& p) {
m_X += p.m_X;

my += p.m_y;
p.m_x += 7; // accidental code

}

Sometimes we might want to do this — but when we don’t, C++ allows us

to protect us from ourselves. We can declare not a reference, but a

constant reference.

class Point {

public:

void rmoveTo(const Point&) ;

};

void Point::rmoveTo(const Point& p) {
m_X += p.m_X;

m_y += p.m_y;
}

Notes:

. void rmoveTo(const Point&); is a different signature than void
rmoveTo (Point&) ;

. in principle, we could use const Class& for all arguments — even
built-in types, but this is usually overkill:

(a) it is no more overhead to put an int on the stack

(b) with call by value, we protect the argument anyway

(c) often we might want to change the value inside the function

3. using (type&) for built-in types is a good way of changing parameters
(when using a return value is not convenient).

4. we will be using references extensively. References mean that pointers
(see later) can be largely — tho not completely — avoided.

#ifndef __POINT_HH // Point7.hh
#define __POINT_HH

#include <iostream.h>

class Point {

public:
Point (int initX=0, int initY=0);
void print();

int x() { return m_x; }

int y() { return m_y; }
int r();

void rmoveTo(const Point&);

private:
int m_x, m_y;

};

#endif // __POINT_HH

#include <math.h> // Point7.cc
#include "Point7.hh"

Point::Point(int initX, int initY) {
m_x = initX;
m_y = initV;
}
void Point::print() {
cout << "(" << m_x << ", " << m_y << ")";
}
int Point::r() {

return (int)sqrt(m_x*m_x + m_y*m_y);
}

void Point::rmoveTo(const Point& p) {

m_x += p.m_X;

m_y += p.m_y;
X

#include "Point7.hh" // Point-7.cc

int main() A
Point p;
Point q(10,15);
p.print();
p.rmoveTo(q) ;
p.print () ;

p.rmoveTo(Point (3,4));

p.-print();
cout << endl;

Arrays of Objects

We can have arrays of objects, as well as arrays of built-in types. The
syntax is the same:

#include "Point.hh" // Point-Array.cc
#include <stdlib.h>
int main() A
const int kArraySize=7;
const int kRandomStep=20;
Point plkArraySize];
for (int i=0; i<kArraySize; i++) {
plil].rmoveTo(Point(rand()’%kRandomStep, rand()’%kRandomStep));
plil.printQ);
L

cout << endl;

templates

Templates are sometimes considered an advanced feature of C++, but
they are so useful, and are crucial to STL, that we introduce them now.

Suppose we have a function min, which returns the smaller of its 2
arguments:

int min(int a, int b) { return (a<b) ? a : b;}

If we want min to work for float, we would have to overload min and use
a float signature.

float min(float a, float b) { return (a<b) ? a : b;

This is not difficult — but soon gets tedious, especially when we want to

use min for user-defined classes, such as Point.

The solution is to use a function template:

#ifndef __TEMPLATE_HH // Template.hh
#define __TEMPLATE_HH

#include <iostream.h>
template<class T>

T min(T a, T b) {

return (a<b) ? a : b;

#endif // __TEMPLATE_HH

This can now be used in the “obvious” way:

#include <math.h> // Template.cc
#include "Template.hh"

int main() {
int a(9);
int b(16);
cout << "min(" << a << "," << b << ") =" << min(a,b) << endl;
cout << "min(" << M_PI << "," << M_LE <« ") ="
<< min(M_E,M_PI) << endl;

Notes:

1.

the templated function must be preceded by
template<class T>

T can be any dummy name. There can be several template arguments.

. This function is now a template for whenever a min is needed. The

compiler checks the signature, and generates the right min for that
signature.

. Each template argument must appear at least once in the signature. It

may appear in the function type, but that cannot be the only

reference (since the type alone does not generate the signature).

. The actual arguments are used inside the function as if they were of a

declared type. (Which they are, since the compiler generates them
from the template.)

. Function templates can be used inside classes, but don't have to be.

But there is a catch (or price):

e We can get code bloat, because every instance of the function has its
own code — but we might have had that anyway.

More seriously: we cannot put the function template in a header file,
and the implementation in a different file.

When the compiler comes across each function usage, it must
generate the function with the right signature, so an implementation
cannot be compiled ahead of time — it cannot know which signatures
will be needed.

1. the header files can get big
2. compilation can take longer

3. we could not hide our source code so easily

Template Classes

e Templates are also used in class definitions.

e Suppose we want to make the Point class work with types other than
int. We can make Point a template class:

#ifndef __POINT_HH // Point-Template.hh
#define __POINT_HH

#include <iostream.h>

#include <math.h>

template<class T>

class Point {

public:
Point (T initX=0, T initY=0) { m_x = initX; m_y = initVY; }
void print() { cout << "(" << m_x << ", " K< my << ")"; }

T x() { return m_x; }

T y() { return m_y; }

T r() { return (T)sqrt(m_x*m_x + m_y*m_y); }

void rmoveTo(const Point<T>& p) { m_x += p.m_x; m_y += p.m_y; }
private:

T m_x, m_y;
s
#endif // __POINT_HH

#include "Point-Template.hh" // Point-Template.cc

int main() A
Point<int> p(7,6);
p.print();
Point<float> q(3.142,2.718);
q.print();
cout << endl;

In general, templates are most useful with classes other than the built-in

types. We will revisit later.

