lostream

Istream, ostream classes

cin, cout, cerr: object instances
manipulators, state bits

files: fstream

random access

Istrstream , ostrstream

streams

e We've already been doing “casual” i/o. Let's now see how it works,
and how we can do more powerful things.

In C++, all i/o uses the concept of a stream. A stream is simply a

flow of bytes to/from a console, file, etc.

A stream is an object — it can be constructed, inherited, etc.

To help us, when main is called, the constructors for the iostream

objects: cin, cout, cerr have already been called.

All iostream objects need the iostream.h header file (and sometimes
others.

cerr

Very often, we send the output of one program into a file, or another

program with redirection or pipes.
It is then useful to separate “normal” output from “abnormal” output.

This is done with the pre-defined output stream object cerr.

e the cout stream can be redirected

e the cerr stream is never redirected

#include <iostream.h> // cerr.cc

int main() {
cout << "This line can be redirected" << endl;
cerr << "This one cannot." << endl;

return 0O;

First run this program in the normal way, then run it redirecting its output
to a file:

% ./cerr

% ./cerr > foo.tmp

streams as objects

e Since cout etc. are objects, they can (and do) have member
functions. Take a look at iostream.h to see some of them.

For instance, sometimes we want to write a “new line” character in a
for loop, then flush the buffer once we're done. The new line
character is \n.

We use the f1ush() member function.

If we are writing to a file, flushing can be expensive, so this is not so
silly.

We will see more member functions later.

#include <iostream.h> // cout.flush.cc

int main() {
for (int i=0; i<10; i++) {
cout << "i, 172, 173: " KK i1 <K<K ", " KL 1*%]

<K M) MK dxixi << "\n";
}
cout.flush();

return O;

Other “escape” characters

For completeness, here are other “escape” characters that can be used for

beautifying your output.

char meaning char meaning
\a bell \\ backslash

\Db backspace \7? question mark

\f formfeed \’ single quote
\n newline \" double quote
\r carriage return octal number OO

\t horizontal tab hex number HH

\v vertical tab

Manipulators and i/o Flags

e Eventually, we need to do more fancy footwork formatting the output.
C++ allows us to do this with stream manipulators.
e The only hard part is there is more than one way to do it.

A stream member function returns a stream — so we can simply put

the function in our cout statement.
We distinguish 2 kinds of operation:

1. Operations that change the state of a stream.
This is done with setiosflags and reset (to the default) with

resetiosflags.

2. Operations that change the next item. They are:

manipulator purpose

setbase sets the base
setfill sets the fill character
setprecision sets the precision

setw sets the field width

These manipulators affect the next item only. They can get confusing.

The best thing is to “suck it and see”.

(re)setiosflags

The gory details can be
found by poking through
iomanip.h, iostream.h,
and maybe libio.h, and
streambuf .h.

Some of the flags (which
can be OR'd together) are:

flag

purpose

skipws
left

right

dec

oct

hex
showbase
showpoint
uppercase
showpos

scientific

fixed

skip white space
left justify

right justify
decimal

octal

hexadecimal

show the base
show decimal point
write uppercase
show positive sign
scientific notation

fixed notation

It can get mighty confusing. To see how they work, let's “Just Do It".

#include <iostream.h> // setiosflags.cc

#include <iomanip.h>

int main() A

const int i=14;

const double ¢c=2.99792458e8;

cout << ¢ << " " <K< j << endl;

cout << setiosflags(ios::uppercase) << "foo "
<< hex < ¢ <K " " KK j << endl;
<< setiosflags(ios::fixed) << resetiosflags(ios
< ¢ <K " " K i <K< endl;

cout setiosflags(ios::scientific | ios:: showpos)
<K ¢ <" "KL i << endl;

return 0;

: tuppercase)

<< oct

manipulators

#include <iostream.h> // manipulators.cc
#include <iomanip.h>
int main() A
const int i=14;
const double ¢=2.99792458e8;
cout << ¢ << " " <K< j << endl;
cout << setiosflags(ios::scientific)<<setw(20)<<setprecision(3)
<K ¢ <" "KL j << endl;
<< ¢ <K " " K i << endl;
<< setw(20) << setprecision(10) << ¢ << " " << i << endl;
<< setiosflags(ios::fixed | ios::showpoint)
<< setw(20) << setprecision(12) << ¢ << " " << i << endl;
cout << setfill(’#’) << ¢ << " " << setw(B) << i << endl;
cout << setiosflags(ios::left) << ¢ << " "<<setw(6)<<i<< endl;

return 0;

state bits

After an i/o operation, the stream objects set state bits, that can be used
to examine the state of the last operation.

The easiest way is simply to test the stream itself:

#include <iostream.h> // state.cc

#include <iomanip.h>

int main() A
int 1i;
cout << setiosflags(ios::uppercase);
while (cin>>i)
cout << dec << i << " = 0x" << hex << i << endl;

return O;

This works, because when EOF (D) is reached, cin returns “false”.

We can also read the state bits:

#include <iostream.h> // rdstate.cc

#include <iomanip.h>

int main() {
int io(cout.rdstate() & ios::badbit);
cout << "io state = " << io << endl;

return 0;

: :goodbit

_ _ : :eofbit
testing them against:
::failbit

: :badbit

fstream

Output so far has used the istream and ostream objects. The base class
for these is ios.
ios is also the base class for the file stream objects, istream and

ostream, defined in fstream.h.

To see how it works, let's do an example:

#include <fstream.h> // ofstreaml.cc

int main() {
ofstream out("foo.tmp"); // ofstream object "out"
out << "Hello World" << endl;
out.close();

return O;

Once we've called the of stream constructor, we use the object exactly as
we would any other stream.

The file is automatically closed when the object goes out of scope, but it

doesn’t hurt to see the close method.

We could use the constructor with other arguments:

#include <fstream.h> // ofstream?2.cc
#include <stdlib.h>
#include <time.h>

int main() A
srand (time (0)) ;
ofstream out("foo.tmp", ios::app, 0644); // append
out << "A random number: " << rand() << endl;
out.close();

return O;

Or sometimes it's convenient to modify the object after calling the

constructor:

#include <fstream.h> // ofstream3.cc

int main() A
ofstream out;
out.open("foo.tmp") ;
out << "Yowzer!" << endl;
out.close();

return O;

We can equally easily do the same for input stream objects, using

ifstream:

#include <fstream.h> // ifstreaml.cc
#include <String.h>

int main() {
String s;
ifstream in("poem.txt", ios::in);
while (in >> s)
cout << s << endl;

return 0O;

Note how the string (we have surreptitiously introduced the String class)
became “tokenized”, which is probably not what we wanted.

There are zillions of ways of reading in a file, depending what we want to
do.

#include <fstream.h> // ifstream?2.cc
#include <String.h>

int main() {

String s;

ifstream in("poem.txt", ios::in);
while (in >> s)
cout << s << endl;

return O;

or we can read the file character by character:

#include <fstream.h> // ifstream3.cc

int main() A
char c;
ifstream in("poem.txt", ios::in);
while (in.get(c))
cout << c¢;
return O;
cout.flush();

If it's a file of numbers, we might want to read in the formatted numbers:

#include <fstream.h> // ifstreamé.cc

int main() A
int 1i;
ifstream in("numbers.txt", ios::in);
while (in>>i)
cout << 1 <<« " ",
cout.flush();

return O;

Note that altho the input file has spaces and <CR>, these get swallowed up.

Unless we explicitly test for a character, all “white space” is equivalent.
White Space is any combination of:

e blank
e tab
e \n

e \O

Sometimes, we might want first to read the numbers into a string (or array

of char), and then pick the string apart, character by character.

random access

e The fstream classes also give us nice ways of doing random access by
manipulating file pointers.

e We use seekp(p) to move the stream position to p for a put, and
seekg(p) to move the stream position to p for a get.

#include <fstream.h> // ifstreamb.cc
#include <String.h>

int main() {

char c;

ifstream in("poem.txt", ios::in);

streampos p;

while (1) {
cout << "Enter an offset: " << ends;
cin >> p;
in.seekg(p);

in.get(c);
cout << "The " << p << "’th byte is: " << ¢ << endl;
}

return O;

Istrstream, ostrstream

e The final i/o group contains the istrstream, ostrstream classes.

e These are “string streams” — we can do i/o on contents of memory in

exactly the same way as on files.

e Again, let’s illustrate with an example:

#include <fstream.h> // istrstreaml.cc
#include <strstream.h>
#include <String.h>

int main() {
String s;
char c;
ifstream in("poem.txt", ios::in);

while (readline(in,s)) {

istrstream str(s.chars(), s.length());
while (str.get(c))

cout << c;
cout << endl;
}

return O;

Of course, we could also have done this by manipulating an array of char,
but that is not so OO.

We can even do something useful: suppose we want to read a file

containing arbitrary integers and reals. How do we know whether to read

an int or a double?

e Read each number as a String using ifstream

e Determine the type by searching for

e Then read the String using istrstream accordingly

Once we have met operator overloading and pointers, we can do even more
powerful things with the strstream classes.

#include <fstream.h> // istrstream2.cc
#include <strstream.h>
#include <String.h>
int main() {
String s;
int 1; double x;
ifstream in("mixed-numbers.txt", ios::in);
while (in >> s) {

istrstream str(s.chars(), s.length());

if (s.contains(’.’)) {

str >> Xx;

cout << s << " -=> Float read: " << x << endl; }
else {

str >> 1i;

cout << s << " -> Integer read: " << i << endl; }

}

return O;

lostream genealogy

lostream ifstream istrstream

PN NN

Istream ostream fstreambase Istream strstreambase

NS N
' '

_ios_fields _ilos_fields

