Operator Overloading

Introduction

Operators and Functions

friends

e unary, binary
e +, x ++, etc.
® <<, >>

e =[]

e Just as functions can be overloaded using different signatures,
operators can be overloaded using different operands

e Operator overloading is not essential — we could do the job just as well
with functions (as we'll see).

e Operator overloading can be dangerous — C++ gives us lots of rope
with which to hang ourselves. (This is why there is nc operator
overloading in Java.)

o If we are careful, operator overloading is useful and elegant — but we
shouldn't go overboard.

Operators and Functions

The key to operator overloading is:

’operators and functions are really the same thing

E.g. consider:
c=a+b

“+" is the operator, with (a,b) the operands.

If the compiler didn't provide the “+" operator, we could live just as
happily with a plus function:

¢ = plus(a,b)
(altho we would have to do tedious bit manipulations in plus)

Let's code this in the “obvious” way:

#include <iostream.h> // operatorl.cc

int plus(int a, int b) { return a+b; }

int main() {
const int a(17);
const int b(28);
cout << "plus(" << a << "," << b << ") =" << plus(a,b) << endl;
return 0;

3

1. OK, we're still using “+" but patience!
2. We've only done this for int, but we know how to use templates

3. For objects bigger than int, we should really use references — so as
not to pass big objects on the stack.

#include <iostream.h> // operator2.cc

int plus(const int& a, const int& b) { return a+b; }

int main() {
const int a(17);
const int b(28);
cout << "plus(" << a << "," << b << ") =" << plus(a,b) << endl;

return 0;

e This plus function will now work with other objects. E.g. suppose we

want to add (in the vector sense) two Point objects. We probably
don’t want to use templates here, because different objects will likely
have different algebras.

First add a plus declaration to the header file (we've removed the
virtual functions for simplicity). If we try to do the “obvious” we’ll hit
2 problem:

class Point {
public:

Point plus(const Point& a, const Point& b);
};

e We think we want plus to be a member function of class Point. But
if this were the case, we would have to use it as part of an object:

Point c;

c.plus(a,b);

e We don't want to do this, because we want it to look like “normal”
algebra:
Point c=plus(a,b); // Point c=a+b

e plus is really a global function — it exists without an object.

e Point’s data are private, so a non-member function can't get at
them.

e We get round this by introducing a new C++ construct, the friend.

Friends

A friend is a way of letting a different object or function have

access to a class’s private data.

As with all friends, you should pick them carefully, and not be too friendly
to too many people.

Only use friends when there is no other

“clean” way

e An object has to grant friendship — a function cannot just decide it

wants to be a friend. That would break encapsulation.

e An object only grants friendship to specific classes or functions — not

just anyone who comes along.

plus

data.

In the plus example, class Point needs to grant access to function

It’s simply done with the friend keyword.

Now plus is a friend of class Point, plus can use Point's private

We are then able (finally) to implement our plus function:

#ifndef __POINT_HH // Point3.hh
#define __POINT_HH
#include <icstream.h>

class Point {
public:
Point (int initX=0, int initY=0);
void print();
int x() { return m_x; }
int y(OO { return m_y; }
int r();
void rMoveTo(const Pointé&);
void moveTo(const Point&);
friend Point plus(const Point&, const Point&);
private:
int m_x, m_y;
};
#endif // __POINT_HH

10

#include "Point3.hh" // operator3.cc

Peint plus(const Point& a, const Peint& b) {

Point tmp;
tmp.m_x = a.m_x + b.m_x;
tmp.m_y = a.m_y + b.m_y;

return tmp;

int main() {

const Point a(3,4);
const Point b(5,-2);
Point c=plus(a,b);

cout << "plus(a,b) = ";
c.print();

cout << endl;

return 0;

Pcints te note:

The return type of plus is a Point, but plus is not 2 member of

class Point
e plus returns an object, and not a reference? Why?

1. To return a reference, the object must already exist

2. A temporary object exists in plus, but that goes out of scope
when plus returns.

e But — we set out to overload “+", not write a function “plus”.

All we have to do is define (with the right syntax) our operator:

11

12

#ifndef __POINT_HH // Point4.hh
#define __POINT_HH
#include <iostream.h>

class Point {
public:
Point (int initX=0, int initY=0);
void print();
int x() { return m_x; }
int y(OO { return m_y; }
int r();
void rMoveTc(const Pecint&) ;
void moveTo(const Point&);
friend Point operator+(const Point&, const Point&);
private:
int m_x, m_y;
};
#endif // __POINT_HH

13

#include "Point4.hh" // operator4.cc

Peint operator+(const Point& a, const Peint& b) {
Peoint tmp;
tmp.m_x = a.m_x + b.m_x;
tmp.m_y = a.m_y + b.m_y;

return tmp;

int main() {
const Point a(3,4);
const Point b(5,-2);
Point ¢ = a + b;
cout << "atb = ";
c.print();
cout << endl;

return O;

e Now we can use “+” with Point objects.

e It looks like the operator is really just a function, called operator+.
Is it? — Yes!

e We could equally well do:
Point ¢ = operator+(a,b);
Of course, having gone to the trouble of defining “+" we wouldn't -
but it shows the equivalence of operators and functions.

e Even tho plus is not @ member of Point, it's probably sensible to
keep the implementaticn code in Point.cc

e We are using the = operator for class Point — see later.

14

15

Member or friend?

Now we’'re starting to feel secure, let's do it a different way. C++ gives us
yet more rope with which to hang ourselves.

This can get really confusing. Fasten your
seat belts.

In the function signature, we know that the signature is specified by:

1. the argument types
2. the function name

3. theclass. i.e. A::£() is different from B::£().

16

e Usually, this match is done with code such as:

A a;
a.fQ;

e To maintain (a kind of) symmetry, the match can also be done with
the first operand of an overloaded operator.

e So we have another way of defining an overloaded operator — this time
as a true member function.

class Point {

public:

Point operator+(const Point&) const;

1

e But wait 2 minute — what'’s that final const?

e We want our operator to take const operands, but usually a member
function can modify the current (this) object. We not only don’t
want that — we will also get a compilation error.

A member function cannot change the
this object if it is declared const.

e So now - finally — we can implement our member function overloaded
operator:

17

18

#include "Point5.hh" // operatorb.cc

Peint Point::operator+(const Point& a) const {
Point tmp;
tmp.m_x = m_x + a.m_X;
tmp.m_y = m_y + a.m_y;

return tmp;

int main() {
const Point a(3,4);
const Point b(5,-2);
Point ¢ = a + b;
cout << "atb = ";
c.print();
cout << endl;

return 0;

e So which should we use? Friend or member?

e Other things being equal, it's probably best to stick with member
functions, rather than friends.

e But that's not always possible:

Suppose we overload the “x" operator, to scale a Point. We could do it
just as for +

class Point {
public:

Point operator*(const int&) const;
I

and implement in the obvious way:

19

20

#include "Point6.hh" // operator6.cc

Peint Point::operator*(const int& a) const {
Point tmp;
tmp.m_x = a*m_Xx;
tmp.m_y = a*m_y;

return tmp;

int main() {
const Point a(3,4);
const int scale(3);
Point b = a*scale;
cout << "a*" << scale << " = ";
b.print();
cout << endl;

return 0;

e But there's a problem: we'd like scalar multiplication to commute:
Peint b = a*scale; and Point ¢ = scalex*a;
should do the same thing.

e But they don’t and they can’t: for a member function (operator), the
first operand is the object itself, so Point b = a*scale; works.

e However, for Point ¢ = scale*a; we'd have to write a member
function for class int — and there is no such class. It's a built-in type.

e |t would be ugly to have one operator a member, and the other global.

e In this case, we should make them both global, and define them both
accordingly.

21

22

class Point {

public:

friend Point operator*(const Point&, const int&);
friend Point operator*(const int&, const Point&);

};

once we've defined Point*int we can define int*Point in terms of

Point*int, rather than all cver again.

#include "Point7.hh" // operator7.cc

Point operator*(const Point& a, const int& s) {
Point tmp;
tmp.m_x = s*a.m_X; tmp.m_y = s*a.m_y;
return tmp;

}

Point operator*(const int& s, const Point& a) { return axs; }

int main() {
const Point a(3,4);
Point b(a*6);
cout << "a*6 = "; b.print(); cout << endl;
b = 3*a;
cout << "3%a

"; b.print(); cout << endl;

return O;

23

24

Unary and Binary Operators #include "Point8.hh" // operator8.cc

Point operator-(const Point& a) {

e The “+" operator is called a binary operator — because it has 2 Point tmp;
operands. tmp.m_x = -a.m_xX;
tmp.m_y = -a.m_y;

e Operators can also be unary — with just 1 operand. return tmp;

}

e Let's write a operator to change the sign of a Point object. Again,

we have the choeice of friend or member. Let’s do it first with a friend: . .
int main() {

const Point a(3,4);

Point b(-a);
class Point { cout << "-a = "
public: b.print();
cout << endl;
friend Point operator-(const Point&); return 0;
s }
25 26

#include "Pecint9.hh" // operator9.cc

Point Point::operator-() const {

That was easy! Point tmp;

. tmp.m_x = -m_X;
Now we can do it as 2 member: since the first operand is the object itself — . P
.) R mp.m_y = -m_.y;
and there is only one operand, we don't give operator-() any arguments. return tmp;

class Point { int main() {

const Point a(3,4);

Point b(-a);
Point operator-() const; cout << "-a =

public:

}; b.print();
cout << endl;

return O;

27 28

operator-() is a prefir operator — the operator comes before the
operand.

Most unary operators are prefix, but ++ and -- can be either prefix or

postfix. How will that work?

The normal operator rules apply to prefiz
operators.

If we want a prefix operator, we don’t have to do anything differently.

Let's do the ++ operator.
If p is 2 Point, let ++p increment p's (z,y) coordinates.

We know how to do this — let’s use a friend.

29

#include "Pointl1l.hh" // operatorill.cc

Point operator++(Point& a) {
++a.m_x;
++a.m_y;

return a;

int main() {
Point a(3,4);
Point b = ++a;
cout << "++a = ";
b.print();
cout << endl;

return 0;

How do we do the postfix ++ operator?

There is no obvious way: C++ gives us a rule and a trick:

If a default operator is unary (binary) the
@ overlocaded operator must also be unary

(binary).

Since ++ starts out unary, it must always be unary.

The trick is if we provide a second (dummy) operand, C++ knows
that there can't be 2 operands, so interprets this as a postfiz operator
— ignering the second cperand.

But it can't be any old operand:

The second (dummy) operand of a unary
operator must be an int

30

31

Now we can do the postfix ++ cperator:

class Point {

public:

friend Point operator++(Point&);
friend Point operator++(Point&, int);

}s

// prefix
// postfix

32

#include "Point12.hh" // operatori2.cc

Peint operator++(Point& a) {
++a.m_x; ++a.m_y;
return a;

}

Point operator++(Point& a, int) {
Point tmp=a;
++a;
return tmp;

}

int main() {
Point a(3,4);
cout << "a++ = ";
a++.print () ;
a.print(); cout << endl;

return O;

33

Note:

1. we define the postfix in terms of the prefix

2. for the postfix, we have toc make a local copy to return before we
increment

For this second reason, postfix operators are always more expensive — this
can be important.

We will return to this when we cover STL.

Can we do the same using a member function?

Yes — by using the this pointer:

34

class Point {

public:
Point operator++(); // prefix
Point operator++(int); // postfix
I

We'll be using this a lot.

35

#include "Point13.hh" // operatori3.cc

Point Point::operator++() {
+HM_X; H+m_y;
return *this;

}

Point Point::operator++(int) {
Point tmp=*this;
++xthis;
return tmp;

}

int main() {
Point a(3,4);
cout << 'at+ ="
at++.print();
a.print(); cout << endl;

return 0;

36

Overloading iostream operators

We now overload the iostream extraction/insertion operators, >> and <<.
Let’s remind ourselves how they are used:

cout << foo;

The operand to the right of << is inserted into the stream

The return type of << is the stream itself — which has been modified

e The returned stream is not a new stream, but the stream on the LHS
of the operator.

There's an extra subtlety — but we'll hold off for a while

To declare <<, we add to Point.hh

class Point {

public:

friend ostream& operator<<(ostream& os, const Point& p);

}s

e The first argument of << is the ostream (or istream) instance.
<< and >> can never be member functions.

e iostream.h defines << and >> as member functions for all the
built-in types.

37

38

The implementation appears straightforward:

#include "Pointl14.hh" // operatorié.cc

ostream& operator<<(ostream& os, const Point& p) {
0s << "(" << p.m_x << ", " << pumy << ")

return os;

int main() {
Point a(3,4);
cout << "a = " << a << endl;

return O;

But there are some traps:

e Why do we declare << type ostream&?

e Why do we return os?

Suppose we write: cout << foo << bar;
This is really shorthand for: (cout << foo) << bar;
The sequence is:

1. First do: cout << foo; and return the same stream cout

2. Then do: cout << bar;

e For this to work, not only must << return an ostream object, but it
must return a Reference to the first argument.

e Without a reference, we would have to create a new ostream object.

39

40

Now it is easy to “chain” << operations:

#include "Point15.hh" // operatorib.cc

ostream& operator<<(ostream& os, const Point& p) {
0s << "(" << p.m_x << ", " << pumy << ")y

return os;

int main() {
Point a(3,4);
cout << "a = " << a << "\n" << Point(5,12) << endl;

return O;

Overloading assignment operator

e C++ gives us certain default functions: “bare” constructor, copy
constructor, destructor

e it also gives us a default assignment operator, = which does a member
by member assignment.

#include "Point16.hh" // operatori6.cc

int main() {
Point a(3,4);
Point b=a;
cout << "a = " << a << "\mb = " << b << endl;

return 0;

41

42

e For class Point there is no problem.

e What if the class contained a pointer to data outside the class?

Let's define a class Array with a dynamically-created array. (Exercise
for the student: make Array a template class.)

e But we already know the trap: we've seen it in the copy constructor
example:
— the default = only copies the pointer, not the contents
— we already have to write a destructor and copy constructor

— we also have to provide an assignment operator

#ifndef __ARRAY_HH // Arrayl.hh
#define __ARRAY_HH
#include <icstream.h>

class Array {

public:
Array(unsigned int size=0, const int* array=0);
Array(const Array&); // copy constructor
“Array(); // destructor

Array& operator=(const Array&);

friend ostream& operator<<(ostream& os, const Array&);
private:

unsigned int m_size;

int* m_array;

};

#endif // __ARRAY_HH

43

44

Array: :operator=() needs some work and explanation:

Array& Array::operator=(const Array& a) {
if (this!=&a) {
delete [] m_array;
m_array = new int[m_size=a.m_size];
for (unsigned int i=0; i<m_size; i++) {
m_array[il=a.m_array[i];
}
}

return *this;

45

#include <stdlib.h> // operatorl7.cc
#include "Arrayl.hh"

int main() {
int x[] = { rand(), rand(), rand(), rand() };
int y[] = { rand(), rand(), rand(), rand(), rand(), rand() };
Array a(sizeof(x)/sizecf(int), x);
Array b(sizecf(y)/sizecf(int), y);
Array c(a);

Pcints to note:

e the return type for Foo: :operator=() is a Foo&

e the return object is *this

e the operand for Foo: :operator=() is a const Foo&
e operator=() first tests that the argument is not this

e operator=() then deletes the old array before allocating a new one.
This is not the constructor, so there is always a pre-existing array.

e it then does a copy of all the elements of the array

cout <<"&a, a: '"<<hex<<(unsigned long)&a<<", '"<<dec<< a<<endl;
cout <<"gb, b: "<<hex<<(unsigned long)&b<<", '"<<dec<< b<<endl;
cout <<"&c, c: "<<hex<<(unsigned long)&c<<", '"<<dec<< c<<endl;
c = b;

cout <<"&c, c: "<<hex<<(unsigned long)&c<<", '"<<dec<< c<<endl;
return 0;

T
46

47

Why return Array, rather than make Array: :operator=() void?

assignments can be chained:

This does the following:

1. first assign a to b
2. then return the result b

3. then assign this result to ¢

to do this, operator=() must return a reference to its argument cbject.

48

A Be careful tc define the whole algebra
A Be careful whenever you use new Suppose we:

e Define an overloaded operator+()

Whenever memory is allocated outside the object, you should always
e Define an overloaded operator=()

e Provide a copy constructor
What happens if we write:

e Provide a destructor
Foo a;

e Provide an assignment operator Foo b;
b += a;

Fortunately, the compiler saves us! Altho there is a default operator=(),
there is not a default operator+=().

49 50

The implementation locks simpler than operator+() Overloaéing [] operator

Array& Array::operator+=(const Array& a) {

for (unsigned int i=0; i<m_size; i++) { The subscript operator, [1 can also be overloaded.

m_array[i] += a.m_array[i];
}

return *this;
} accessed.

Why should we do this?

Let's make Array test that an index is within range when it is

We can do this by overloading [].

So maybe we should define operator+() in terms of operator+=():

class Array {
Array Array::operator+(const Array& a) const { public:
Array tmp=*this; '

tmp += a; int& operator[](int);

}s

return tmp;

}

51 52

The implementation of Array: :operator[] () is straightforward:

int& Array::operator[](int i) {
if ((i<0) || (i>=(int)m_size)) {
cout <<"index "<< i<<" out of bounds. Should be 0<=i<"
<< m_size << endl;
return m_array[0]; // no elegance here
}

return m_array[i];

as too is the use:

53

#include <stdlib.h> // operatori8.cc
#include "Array2.hh"

int main() {
int x[] = { rand(), rand(), rand(), rand(), rand(), rand() };
Array a(sizeof(x)/sizecf(int), x);

cout <<M"a: " << a <<endl;
cout << "a[-3] = " << a[-3] << endl;
cout << "a[4] = " << a[4] << endl;
cout << "a[17] = " << a[17] << endl;
return 0;

}

54

Pcints to note:

e operator[] () looks strange — the argument is between the [and]

e The return type is an int&. This allows the function to be on the LHS
of an expression.

#include "Array2.hh" // operatori9.cc

int main() {
const int kArraySize(6);
Array a(kArraySize);
for (int i=0; i<kArraySize; al[i++]=ix*i) {}
cout <<"a: " << a <<endl;

return O;

55

Whoa! The function (operator) is on the LHS of an expression?
This can be dene with a Reference.

Some terminology:

e Usually, a function, such as f(z), returns a result on the RHS of an
expression.

— This is called an rvalue
o If the result is on the LHS, as with operator[] (),

— This is called an 1value

— The return type must be a reference

e C++ prevents rvalues and lvalues getting mixed up.

56

Rules for Operator Overloading

The following operators can be overloaded:

+ - x /%W T &

- [= < > += -= *=

/= Y%= "= &= = << >> >>=
<K= == 1= <= >= & || ++

- >x -> [1 () new delete

The following operators cannot be overloaded:

¥ :: 7: sizeof

1. Only built-in C++ operators can be overloaded
2. Operators for built-in types cannot be overloaded

3. ++ and -- come in both prefix and postfix versions. Use a dummy int
argument to signify postfix.

4. Operator precedence rules cannot be changed by overloading
5. Default parameters cannot be used

6. A unary (binary) operator must also be unary (binary) when
overloaded.

7. The number of operands cannot be changed

57

58

Style Guidelines

The default constructors, destructor, and

operator= are often a source of error.

1. For class Foo, make the declarations: Foo: :Foo(const Foo&),
Foo::"Foo(), and Foo::operator=(const Foo&), private:. This
will cause a compile error if they are used.

2. Or: make them public: and define them as:
Foo::Foo(const Foo&) { assert(0); }

3. Or: define them correctly!

4. For a base class, make the destructor virtual. (The constructor cannot
be virtual). This forces the destructor for the derived class to be called.

#ifndef __FOOBASE_HH // FooBase.hh
#define __FOOBASE_HH

#include <icstream.h>

class FooBase {
public:
FooBase(int x=0) : m_x(x) {}
friend ostream& operator<<(ostream&, const FooBase&);
virtual “FooBase() { cout << "FcoBase destructor" << endl; }
private:
int m_x;

};

ostream§ operator<<(ostream& os, const FooBase& f) {
os << f.m_x; return os;

}

#endif // __FOOBASE_HH

59

60

We create 2 pointer of type FooBase* for an object of type Foox. (This is
not as silly as it seems).

#include "FooBase.hh" // FooBase.cc

class Foo : public FooBase {
public:

Foo(unsigned int i) : FooBase(i) {3}

“Foo() { cout << "Foo destructor" << emndl; }
};

int main() {
FooBase* f = new Foo(5);
cout << *f << endl;
delete f;

return 0;

61

