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Prologue

Let’s begin with the picture on the front cover. You may have observed
that the portrait of Alan Turing is constructed from a number of pictures
(“tiles”) of great computer scientists and mathematicians.

Suppose you were asked in an interview to design a program that
takes an image and a collection of s× s-sized tiles and produce a mosaic
from the tiles that resembles the image. A good way to begin may be to
partition the image into s × s-sized squares, compute the average color
of each such image square, and then find the tile that is closest to it in
the color space. Here distance in color space can be L2-norm over Red-
Green-Blue (RGB) intensities for the color. As you look more carefully at
the problem, you might conclude that it would be better to match each
tile with an image square that has a similar structure. One way could
be to perform a coarse pixelization (2 × 2 or 3 × 3) of each image square
and finding the tile that is “closest” to the image square under a distance

Figure 1. Evolution of a computer scientist
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function defined over all pixel colors (for example, L2-norm over RGB
values for each pixel). Depending on how you represent the tiles, you
end up with the problem of finding the closest point from a set of points
in a k-dimensional space.

If there are m tiles and the image is partitioned into n squares, then
a brute-force approach would have O(m · n) time complexity. You could
improve on this by first indexing the tiles using an appropriate search
tree. A more detailed discussion on this approach is presented in Prob-
lem 8.1 and its solution.

If in a 45-60 minute interview, you can work through the above ideas,
write some pseudocode for your algorithm, and analyze its complex-
ity, you would have had a fairly successful interview. In particular, you
would have demonstrated to your interviewer that you possess several
key skills:

− The ability to rigorously formulate real-world problems.
− The skills to solve problems and design algorithms.
− The tools to go from an algorithm to a working program.
− The analytical techniques required to determine the computational

complexity of your solution.

Book Overview

Algorithms for Interviews (AFI) aims to help engineers interviewing for
software development positions. The primary focus of AFI is algorithm
design. The entire book is presented through problems interspersed with
discussions. The problems cover key concepts and are well-motivated,
challenging, and fun to solve.

We do not emphasize platforms and programming languages since
they differ across jobs, and can be acquired fairly easily. Interviews at
most large software companies focus more on algorithms, problem solv-
ing, and design skills than on specific domain knowledge. Also, plat-
forms and programming languages can change quickly as requirements
change but the qualities mentioned above will always be fundamental to
any successful software endeavor.

The questions we present should all be solvable within a one hour
interview and in many cases, take substantially less time. A question
may take more or less time to complete, depending on the amount of
coding that is asked for.

Our solutions vary in terms of detail—for some problems we present
detailed implementations in Java/C++/Python; for others, we simply
sketch solutions. Some use fairly technical machinery, e.g., max-flow,
randomized analysis, etc. You will encounter such problems only if you
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claim specialized knowledge, e.g., graph algorithms, complexity theory,
etc.

Interviewing is about more than being able to design algorithms
quickly. You also need to know how to present yourself, how to ask for
help when you are stuck, how to come across as being excited about the
company, and knowing what you can do for them. We discuss the non-
technical aspects of interviewing in Chapter 12. You can practice with
friends or by yourself; in either case, be sure to time yourself. Interview
at as many places as you can without it taking away from your job or
classes. The experience will help you and you may discover you like
companies that you did not know much about.

Although an interviewer may occasionally ask a question directly
from AFI, you should not base your preparation on memorizing solu-
tions from AFI. We sincerely hope that reading this book will be enjoy-
able and improve your algorithm design skills. The end goal is to make
you a better engineer as well as better prepared for software interviews.

Level and Prerequisites

Most of AFI requires its readers to have basic familiarity with algorithms
taught in a typical undergraduate-level algorithms class. The chapters
on meta-algorithms, graphs, and intractability use more advanced ma-
chinery and may require additional review.

Each chapter begins with a review of key concepts. This review is not
meant to be comprehensive and if you are not familiar with the material,
you should first study the corresponding chapter in an algorithms text-
book. There are dozens of such texts and our preference is to master one
or two good books rather than superficially sample many. We like Algo-
rithms by Dasgupta, Papadimitriou, and Vazirani because it is succinct
and beautifully written; Introduction to Algorithms by Cormen, Leiserson,
Rivest, and Stein is more detailed and serves as a good reference.

Since our focus is on problems that can be solved in an interview rel-
atively completely, there are many elegant algorithm design problems
which we do not include. Similarly, we do not have any straightforward
review-type problems; you may want to brush up on these using intro-
ductory programming and data-structures texts.

The field of algorithms is vast and there are many specialized topics,
such as computational geometry, numerical analysis, logic algorithms,
etc. Unless you claim knowledge of such topics, it is highly unlikely that
you will be asked a question which requires esoteric knowledge. While
an interview problem may seem specialized at first glance, it is invariably
the case that the basic algorithms described in this book are sufficient to
solve it.
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Problem Solving Techniques

It’s not that I’m so smart, it’s just
that I stay with problems longer.

A. Einstein.

Developing problem solving skills is like learning to play a musical
instrument—a book or a teacher can point you in the right direction, but
only your hard work will take you where you want to go. Like a musi-
cian, you need to know underlying concepts but theory is no substitute
for practice; for this reason, AFI consists primarily of problems.

Great problem solvers have skills that cannot be captured by a set of
rules. Still, when faced with a challenging algorithm design problem it is
helpful to have a small set of general principles that may be applicable.
We enumerate a collection of such principles in Table 1. Often, you may
have to use more than one of these techniques.

We will now look at some concrete examples of how these techniques
can be applied.

DIVIDE-AND-CONQUER AND GENERALIZATION

A triomino is formed by joining three unit-sized squares in an L-shape.
A mutilated chessboard (henceforth 8×8 Mboard) is made up of 64 unit-
sized squares arranged in an 8×8 square, minus the top left square. Sup-
posed you are asked to design an algorithm which computes a placement
of 21 triominos that covers the 8× 8 Mboard. (Since there are 63 squares
in the 8× 8 Mboard and we have 21 triominos, a valid placement cannot
have overlapping triominos or triominos which extend out of the 8 × 8
Mboard.)

Divide-and-conquer is a good strategy to attack this problem. Instead
of the 8× 8 Mboard, let’s consider an n× n Mboard. A 2× 2 Mboard can
be covered with 1 triomino since it is of the same exact shape. You may
hypothesize that a triomino placement for an n× n Mboard with the top
left square missing can be used to compute a placement for an n+1×n+1

5
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Technique Description
Divide-and-
conquer

Can you divide the problem into two or more
smaller independent subproblems and solve
the original problem using solutions to the
subproblems?

Recursion, dynamic
programming

If you have access to solutions for smaller in-
stances of a given problem, can you easily con-
struct a solution to the problem?

Case analysis Can you split the input/execution into a num-
ber of cases and solve each case in isolation?

Generalization Is there a problem that subsumes your prob-
lem and is easier to solve?

Data-structures Is there a data-structure that directly maps to
the given problem?

Iterative refinement Most problems can be solved using a brute-
force approach. Can you formalize such a so-
lution and improve upon it?

Small examples Can you find a solution to small concrete in-
stances of the problem and then build a so-
lution that can be generalized to arbitrary in-
stances?

Reduction Can you use a problem with a known solution
as a subroutine?

Graph modeling Can you describe your problem using a graph
and solve it using an existing algorithm?

Write an equation Can you express relationships in your problem
in the form of equations (or inequalities)?

Auxiliary elements Can you add some new element to your prob-
lem to get closer to a solution?

Variation Can you solve a slightly different problem and
map its solution to your problem?

Parallelism Can you decompose your problem into sub-
problems that can be solved independently on
different machines?

Caching Can you store some of your computation and
look it up later to save work?

Symmetry Is there symmetry in the input space or solu-
tion space that can be exploited?

Table 1. Common problem solving techniques.



PROBLEM SOLVING TECHNIQUES 7

Mboard. However you will quickly see that this line of reasoning does
not lead you anywhere.

Another hypothesis is that if a placement exists for an n× n Mboard,
then one also exists for a 2n × 2n Mboard. This does work: take 4 n × n
Mboards and arrange them to form a 2n × 2n square in such a way that
three of the Mboards have their missing square set towards the center
and one Mboard has its missing square outward to coincide with the
missing corner of a 2n×2nMboard. The gap in the center can be covered
with a triomino and, by hypothesis, we can cover the 4 n × n Mboards
with triominos as well. Hence a placement exists for any n that is a power
of 2. In particular, a placement exists for the 23 × 23 Mboard; the recur-
sion used in the proof can be directly coded to find the actual coverings
as well. Observe that this problem demonstrates divide-and-conquer as
well as generalization (from 8× 8 to 2n × 2n).

RECURSION AND DYNAMIC PROGRAMMING

Suppose you were to design an algorithm that takes an unparenthesized
expression containing addition and multiplication operators, and returns
the parenthesization that maximizes the value of the expression. For ex-
ample, the expression 5− 3 · 4 + 6 yields any of the following values:

−25 = 5−
(
3 · (4 + 6)

)
−13 = 5−

(
(3 · 4) + 6

)
20 = (5− 3) · (4 + 6)
−1 =

(
5− (3 · 4)

)
+ 6

14 =
(
(5− 3) · 4

)
+ 6

If we recursively compute the parenthesization for each subexpres-
sion that maximizes its value, it is easy to identify the optimum top level
parenthesization—parenthesize on each side of the operators and deter-
mine which operator maximizes the value of the total expression.

Recursive computation of the maximizing parenthesization for
subexpressions leads to repeated calls with identical arguments. Dy-
namic programming avoids these repeated computations; refer to Prob-
lem 3.11 for a detailed exposition.

CASE ANALYSIS

You are given a set S of 25 distinct integers and a CPU that has a special
instruction, SORT5, that can sort 5 integers in one cycle. Your task is
to identify the 3 largest integers in S using SORT5 to compare and sort
subsets of S; furthermore, you must minimize the number of calls to
SORT5.
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If all we had to compute was the largest integer in the set, the opti-
mum approach would be to form 5 disjoint subsets S1, . . . , S5 of S, sort
each subset, and then sort {maxS1, . . . ,maxS5}. This takes 6 calls to
SORT5 but leaves ambiguity about the second and third largest integers.

It may seem like many calls to SORT5 are still needed. However if
you do a careful case analysis and eliminate all x ∈ S for which there are
at least 3 integers in S larger than x, only 5 integers remain and hence
just one more call to SORT5 is needed to compute the result. Details are
given in the solution to Problem 2.5.

FIND A GOOD DATA STRUCTURE

Suppose you are given a set of files, each containing stock quote infor-
mation. Each line contains starts with a timestamp. The files are individ-
ually sorted by this value. You are to design an algorithm that combines
these quotes into a single file R containing these quotes, sorted by the
timestamps.

This problem can be solved by a multistage merge process, but there
is a trivial solution using a min-heap data structure, where quotes are
ordered by timestamp. First build the min-heap with the first quote from
each file; then iteratively extract the minimum entry e from the min-heap,
write it to R, and add in the next entry in the file corresponding to e.
Details are given in Problem 2.10.

ITERATIVE REFINEMENT OF BRUTE-FORCE SOLUTION

Consider the problem of string search (cf. Problem 5.1): given two strings
s (search string) and T (text), find all occurrences of s in T . Since s can
occur at any offset in T , the brute-force solution is to test for a match at
every offset. This algorithm is perfectly correct; its time complexity is
O(n ·m), where n and m are the lengths of s and T .

After trying some examples, you may see that there are several ways
in which to improve the time complexity of the brute-force algorithm.
For example, if the character T [i] is not present in s you can suitably ad-
vance the matching. Furthermore, this skipping works better if we match
the search string from its end and work backwards. These refinements
will make the algorithm very fast (linear-time) on random text and search
strings; however, the worst case complexity remains O(n ·m).

You can make the additional observation that a partial match of s
which does not result in a full match implies other offsets which cannot
lead to full matches. For example, if s = abdabcabc and if, starting back-
wards, we have a partial match up to abcabc that does not result in a full
match, we know that the next possible matching offset has to be at least
3 positions ahead (where we can match the second abc from the partial
match).
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By putting together these refinements you will have arrived at the
famous Boyer-Moore string search algorithm—its worst-case time com-
plexity isO(n+m) (which is the best possible from a theoretical perspec-
tive); it is also one of the fastest string search algorithms in practice.

SMALL EXAMPLES

Problems that seem difficult to solve in the abstract, can become much
more tractable when you examine small concrete instances. For instance,
consider the following problem: there are 500 closed doors along a corri-
dor, numbered from 1 to 500. A person walks through the corridor and
opens each door. Another person walks through the corridor and closes
every alternate door. Continuing in this manner, the i-th person comes
and toggles the position of every i-th door starting from door i. You are
to determine exactly how many doors are open after the 500-th person
has walked through the corridor.

It is very difficult to solve this problem using abstract variables. How-
ever if you try the problem for 1, 2, 3, 4, 10, and 20 doors, it takes under
a minute to see that the doors that remain open are 1, 4, 9, 16 . . ., regard-
less of the total number of doors. The pattern is obvious—the doors that
remain open are those numbered by perfect squares. Once you make
this connection, it is easy to prove it for the general case. Hence the total
number of open doors is b

√
500c = 22. Refer to Problem 9.4 for a detailed

solution.

REDUCTION

Consider the problem of finding if one string is a rotation of the other,
e.g., “car” and “arc” are rotations of each other A natural approach may
be to rotate the first string by every possible offset and then compare it
with the second string. This algorithm would have quadratic time com-
plexity.

You may notice that this problem is quite similar to string search
which can be done in linear time, albeit using a somewhat complex al-
gorithm. So it would be natural to try to reduce this problem to string
search. Indeed, if we concatenate the second string with itself and search
for the first string in the resulting string, we will find a match iff the two
original strings are rotations of each other. This reduction yields a linear-
time algorithm for our problem; details are given in Problem 5.4.

Usually you try to reduce your problem to an easier problem. But
sometimes, you need to reduce a problem known to be difficult to your
given problem to show that your problem is difficult. Such problems are
described in Chapter 6.
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GRAPH MODELING

Drawing pictures is a great way to brainstorm for a potential solution. If
the relationships in a given problem can be represented using a graph,
quite often the problem can be reduced to a well-known graph problem.
For example, suppose you are given a set of barter rates between com-
modities and you are supposed to find out if an arbitrage exists, i.e., there
is a way by which you can start with a units of some commodity C and
perform a series of barters which results in having more than a units of
C.

We can model the problem with a graph where commodities corre-
spond to vertices, barters correspond to edges, and the edge weight is
set to the logarithm of the barter rate. If we can find a cycle in the graph
with a positive weight, we would have found such a series of exchanges.
Such a cycle can be solved using the Bellman-Ford algorithm (cf. Prob-
lem 4.19).

WRITE AN EQUATION

Some problems can be solved by expressing them in the language of
mathematics. For example, suppose you were asked to write an algo-
rithm that computed binomial coefficients,

(
n
k

)
= n!

k!(n−k)! .
The problem with computing the binomial coefficient directly from

the definition is that the factorial function grows very quickly and can
overflow an integer variable. If we use floating point representations
for numbers, we lose precision and the problem of overflow does not go
away. These problems potentially exist even if the final value of

(
n
k

)
is

small. One can try to factor the numerator and denominator and try and
cancel out common terms but factorization is itself a hard problem.

The binomial coefficients satisfy the addition formula:(
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
.

This identity leads to a straightforward recursion for computing
(
n
k

)
which avoids the problems mentioned above. Dynamic programming
has to be used to achieve good time complexity—details are in Prob-
lem 9.1.

AUXILIARY ELEMENTS

Consider an 8×8 square board in which two squares on diagonally oppo-
site corners are removed. You are given a set of thirty-one 2×1 dominoes
and are asked to cover the board with them.
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After some (or a lot) of trial-and-error, you may begin to wonder if
a such a configuration exists. Proving an impossibility result may seem
hard. However if you think of the 8 × 8 square board as a chessboard,
you will observe that the removed corners are of the same color. Hence
the board consists of either 30 white squares and 32 black squares or vice
versa. Since a domino will always cover two adjacent squares, any ar-
rangement of dominoes must cover the same number of black and white
squares. Hence no such configuration exists.

The original problem did not talk about the colors of the squares.
Adding these colors to the squares makes it easy to prove impossibility,
illustrating the strategy of adding auxiliary elements.

VARIATION

Suppose we were asked to design an algorithm which takes as input an
undirected graph and produces as output a black or white coloring of the
vertices such that for every vertex, at least half of its neighbors differ in
color from it.

We could try to solve this problem by assigning arbitrary colors to
vertices and then flipping colors wherever constraints are not met. How-
ever this approach does not converge on all examples.

It turns out we can define a slightly different problem whose solution
will yield the coloring we are looking for. Define an edge to be diverse if
its ends have different colors. It is easy to verify that a color assignment
that maximizes the number of diverse edges also satisfies the constraint
of the original problem. The number of diverse edges can be maximized
greedily flipping the colors of vertices that would lead to a higher num-
ber of diverse edges; details are given in Problem 4.11.

PARALLELISM

In the context of interview questions, parallelism is useful when dealing
with scale, i.e., when the problem is so large that it is impossible to solve
it on a single machine or it would take a very long time. The key insight
you need to display is how to decompose the problem such that (1.) each
subproblem can be solved relatively independently and (2.) constructing
the solution to the original problem from solutions to the subproblems is
not expensive in terms of CPU time, main memory, and network usage.

Consider the problem of sorting a petascale integer array. If we know
the distribution of the numbers, the best approach would be to define
equal-sized ranges of integers and send one range to one machine for
sorting. The sorted numbers would just need to be concatenated in the
correct order. If the distribution is not known then we can send equal-
sized arbitrary subsets to each machine and then merge the sorted results
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using a min-heap. For details on petascale sorting, please refer to Prob-
lem 2.2.

CACHING

Caching is a great tool whenever there is a possibility of repeating com-
putations. For example, the central idea behind dynamic programming
is caching results from intermediate computations. Caching becomes ex-
tremely useful in another setting where requests come to a service in
an online fashion and a small number of requests take up a significant
amount of compute power. Workloads on web services exhibit this prop-
erty; Problem 7.1 describes one such problem.

SYMMETRY

While symmetry is a simple concept it can be used to solve very difficult
problems, sometimes in less than intuitive ways. Consider a 2-player
game in which players alternately take bites from a chocolate bar. The
chocolate bar is an n ×m rectangle; a bite must remove a square and all
squares above and to the right in the chocolate bar. The first player to eat
the lower leftmost square loses (think of it as being poisoned).

Suppose we are asked whether we would prefer to play first or sec-
ond. One approach is to make the observation that the game is sym-
metrical for Player 1 and Player 2, except for their starting state. If we
assume that there is no winning strategy for Player 1, then there must be
a way for Player 2 to win if Player 1 bites the top right square in his first
move. Whatever move Player 2 makes after that can always be made by
Player 1 as his first move. Hence Player 1 can always win. For a detailed
discussion, refer to the Problem 9.13.

CONCLUSION

In addition to developing intuition for which technique may apply to
which problem, it is also important to know when your technique is not
working and quickly move to your next best guess. In an interview set-
ting, even if you do not end up solving the problem entirely, you will
get credit for applying these techniques in a systematic way and clearly
communicating your approach to the problem. We cover nontechnical
aspects of problem solving in Chapter 12.



Chapter 1

Searching

Searching is a basic tool that every
programmer should keep in mind
for use in a wide variety of
situations.

“The Art of Computer
Programming, Volume 3 - Sorting

and Searching,” D. Knuth, 1973

Given an arbitrary collection of n keys, the only way to determine if a
search key is present is by examining each element which yields Θ(n)
complexity. If the collection is “organized”, searching can be sped up
dramatically. Of course, inserts and deletes have to preserve the organi-
zation; there are several ways of achieving this.

Binary Search

Binary search is at the heart of more interview questions than any other
single algorithm. Fundamentally, binary search is a natural divide-and-
conquer strategy for searching. The idea is to eliminate half the keys from
consideration by keeping the keys in a sorted array. If the search key is
not equal to the middle element of the array, one of the two sets of keys
to the left and to the right of the middle element can be eliminated from
further consideration.

Questions based on binary search are ideal from the interviewers per-
spective: it is a basic technique that every reasonable candidate is sup-
posed to know and it can be implemented in a few lines of code. On the
other hand, binary search is much trickier to implement correctly than it
appears—you should implement it as well as write corner case tests to
ensure you understand it properly.

14
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Many published implementations are incorrect in subtle and not-so-
subtle ways—a study reported that it is correctly implemented in only
five out of twenty textbooks. Jon Bentley, in his book Programming Pearls
reported that he assigned binary search in a course for professional pro-
grammers and found that 90% percent failed to code it correctly despite
having ample time. (Bentley’s students would have been gratified to
know that his own published implementation of binary search, in a chap-
ter titled “Writing Correct Programs”, contained a bug that remained un-
detected for over twenty years.)

Binary search can be written in many ways—recursive, iterative, dif-
ferent idioms for conditionals, etc. Here is an iterative implementation
adapted from Bentley’s book, which includes his bug.

1 public c l a s s BinSearch {
2 s t a t i c i n t search ( i n t [ ] A, i n t K ) {
3 i n t l = 0 ;
4 i n t u = A. length −1;
5 i n t m;
6 while ( l <= u ) {
7 m = ( l +u ) /2;
8 i f (A[m] < K) {
9 l = m + 1 ;

10 } e lse i f (A[m] == K) {
11 return m;
12 } e lse {
13 u = m−1;
14 }
15 }
16 return −1;
17 }
18 }

The error is in the assignment m = (l+u)/2; it can lead to overflow
and should be replaced by m = l + (u-l)/2.

The time complexity of binary search is given by B(n) = c+B(n/2).
This solves to B(n) = O(logn), which is far superior to the O(n) ap-
proach needed when the keys are unsorted. A disadvantage of bi-
nary search is that it requires a sorted array and sorting an array takes
O(n logn) time. However if there are many searches to perform, the time
taken to sort is not an issue.

We begin with a problem that on the face of it has nothing to do with
binary search.

1.1 COMPUTING SQUARE ROOTS

Square root computations can be implemented using sophisticated nu-
merical techniques involving iterative methods and logarithms. How-
ever if you were asked to implement a square root function, you would
not be expected to know these techniques.
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Problem 1.1 : Implement a fast integer square root function that takes
in a 32-bit unsigned integer and returns another 32-bit unsigned integer
that is the floor of the square root of the input.

There are many variants of searching a sorted array that require a little
more thinking and create opportunities for missing corner cases. For the
following problems, A is a sorted array of integers.

1.2 SEARCH A SORTED ARRAY FOR k

Write a method that takes a sorted array A of integers and a key k and
returns the index of first occurrence of k in A. Return −1 if k does not
appear in A. Write tests to verify your code.

1.3 SEARCH A SORTED ARRAY FOR THE FIRST ELEMENT LARGER
THAN k

Design an efficient algorithm that finds the index of the first occurrence
an element larger than a specified key k; return −1 if every element is
less than or equal to k.

1.4 SEARCH A SORTED ARRAY FOR A[i] = i

Suppose that in addition to being sorted, the entries of A are distinct
integers. Design an efficient algorithm for finding an index i such that
A[i] = i or indicating that no such index exists.

1.5 SEARCH AN ARRAY OF UNKNOWN LENGTH

Suppose you do not know the length of A in advance; accessing A[i] for
i beyond the end of the array throws an exception.

Problem 1.5 : Find the index of the first occurrence in A of a specified
key k; return −1 if k does not appear in A.

1.6 MISSING ELEMENT, LIMITED RESOURCES

The storage capacity of hard drives dwarfs that of RAM. This can lead to
interesting time-space tradeoffs.

Problem 1.6 : Given a file containing roughly 300 million social security
numbers (9-digit numbers), find a 9-digit number that is not in the file.
You have unlimited drive space but only 2 megabytes of RAM at your
disposal.



2.6. LEAST DISTANCE SORTING 25

not change—if A beats B in one time-trial and B beats C in another time-
trial, then A is guaranteed to beat C if they are in the same time-trial.

Problem 2.5 : What is the minimum number of time-trials needed to de-
termine who to send to the Olympics?

2.6 LEAST DISTANCE SORTING

You come across a collection of 20 stone statues in a line. You want to
sort them by height, with the shortest statue on the left. The statues are
very heavy and you want to move them the least possible distance.

Problem 2.6 : Design a sorting algorithm that minimizes the total dis-
tance that the statues are moved.

Figure 2. “Premature optimization is the root of all evil”—D. Knuth

2.7 PRIVACY AND ANONYMIZATION

The Massachusetts Group Insurance Commission had a bright idea back
in the mid 1990s—it decided to release “anonymized” data on state em-



3.1. LONGEST NONDECREASING SUBSEQUENCE 31

3.1 LONGEST NONDECREASING SUBSEQUENCE

In genomics, given two gene sequences, we try to find if parts of one
gene are the same as the other. Thus it is important to find the longest
common subsequence of the two sequences. One way to solve this prob-
lem is to construct a new sequence where for each literal in one sequence,
we insert its position into the other sequence and then find the longest
nondecreasing subsequence of this new subsequence. For example, if
the two sequences are 〈1, 3, 5, 2, 7〉 and 〈1, 2, 3, 5, 7〉, we would construct
a new sequence where for each position in the first sequence, we would
list its position in the second sequence like so, 〈1, 3, 4, 2, 5〉. Then we find
the longest nondecreasing sequence which is 〈1, 3, 4, 5〉. Now, if we use
the numbers of the new sequence as indices into the second sequence,
we get 〈1, 3, 5, 7〉which is our longest common subsequence.

Problem 3.1 : Given an array of integers A of length n, find the longest
sequence 〈i1, . . . ik〉 such that ij < ij+1 and A[ij ] ≤ A[ij+1] for any j ∈
[1, k − 1].

3.2 FROG CROSSING

Figure 3. “Be fearful when others are greedy”—W. Buffett
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DP is often used to compute a plan for performing a task that consists
of a series of actions in an optimum way. Here is an example with an
interesting twist.

Problem 3.2 : There is a river that is n meters wide. At every meter from
the edge, there may or may not be a stone. A frog needs to cross the river.
However the frog has the limitation that if it has just jumped x meters,
then its next jump must be between x − 1 and x + 1 meters, inclusive.
Assume the first jump can be of only 1 meter. Given the position of the
stones, how would you determine whether the frog can make it to the
other end or not? Analyze the runtime of your algorithm.

3.3 CUTTING PAPER

We now consider an optimum planning problem in two dimensions. You
are given an L ×W rectangular piece of kite-paper, where L and W are
positive integers and a list of n kinds of kites that can be made using
the paper. The i-th kite design, i ∈ [1, n] requires an li × wi rectangle
of kite-paper; this kite sells for pi. Assume li, wi, pi are positive integers.
You have a machine that can cut rectangular pieces of kite-paper either
horizontally or vertically.

Problem 3.3 : Design an algorithm that computes a profit maximizing
strategy for cutting the kite-paper. You can make as many instances of a
given kite as you want. There is no cost to cutting kite-paper.

3.4 WORD BREAKING

Suppose you are designing a search engine. In addition to getting key-
words from a page’s content, you would like to get keywords from URLs.
For example, bedbathandbeyond.com should be associated with “bed
bath and beyond” (in this version of the problem we also allow “bed bat
hand beyond” to be associated with it).

Problem 3.4 : Given a dictionary that can tell you whether a string is
a valid word or not in constant time and given a string s of length n,
provide an efficient algorithm that can tell whether s can be reconstituted
as a sequence of valid words. In the event that the string is valid, your
algorithm should output the corresponding sequence of words.

The next three problems have a very similar structure. Given a set of
objects of different sizes, you need to partition them in various ways. The
solutions also have the same common theme that you need to explore all
possible partitions in a way that you can take advantage of overlapping
subproblems.
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Figure 4. The power of obscure proofs

is called the root, an ordered tree is a rooted tree in which each vertex has
an ordering on its children, etc.

Graph Search

Computing vertices which are reachable from other vertices is a fun-
damental operation. There are two basic algorithms—Depth First Search
(DFS) and Breadth First Search (BFS). Both are linear-time—O(|V |+ |E|).
They differ from each other in terms of the additional information they
provide, e.g., BFS can be used to compute distances from the start vertex
and DFS can be used to check for the presence of cycles.

4.1 SEARCHING A MAZE

It is natural to apply graph models and algorithms to spatial problems.
Consider a black and white digitized image of a maze—white pixels rep-
resent open areas and black spaces are walls. There are two special pixels:
one is designated the entrance and the other is the exit.
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Problem 5.5 : Implement a function which takes a URL as input and per-
forms the following transformations on it: (1.) make hostname and pro-
tocol lowercase, (2.) if it ends in index.html or default.html, remove the
filename, (3.) if protocol field is missing, add “http://” at the beginning,
and (4.) replace consecutive ’/’ characters by a single ’/’ in the “path”
segment of the URL.

5.6 LONGEST PALINDROME SUBSEQUENCE

A palindrome is a string which is equal to itself when reversed. For ex-
ample, the human Y-chromosome contains a gene with the amino acid se-
quence 〈C,A,C,A,A, T, T, C,C,C,A, T,G,G,G, T, T,G, T,G,G,A,G〉,
which includes the palindromic subsequences 〈T,G,G,G, T 〉 and
〈T,G, T 〉. Palindromic subsequences in DNA are significant because they
influence the ability of the strand to loop back on itself.

Problem 5.6 : Devise an efficient algorithm that takes a DNA sequence
D[1, . . . , n] and returns the length of the longest palindromic subse-
quence.

5.7 PRETTY PRINTING

Consider the problem of arranging a piece of text in a fixed width font
(i.e., each character has the same width) in a rectangular space. Breaking
words across line boundaries is visually displeasing. If we avoid word
breaking, then we may frequently be left with many spaces at the end of
lines (since the next word will not fit in the remaining space). However
if we are clever about where we break the lines, we can reduce this effect.

Problem 5.7 : Given a long piece of text, decompose it into lines such
that no word spans across two lines and the total wasted space at the
end of each line is minimized.

5.8 EDIT DISTANCES

Spell checkers make suggestions for misspelled words. Given a mis-
spelled string s, a spell checker should return words in the dictionary
which are close to s.

One definition of closeness is the number of “edits” it would take to
transform the misspelled word into a correct word, where a single edit is
the deletion or insertion of a single character.

Problem 5.8 : Given two strings A and B, compute the minimum num-
ber of edits needed to transform A into B.
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6.4 COMPUTING xn

A straight-line program for computing xn is a finite sequence

x 7→ xi1 7→ xi2 7→ · · · 7→ xn

constructed as follows: the first element is x; each succeeding element is
either the square of some previously computed element or the product
of any two previously computed elements. The number of multiplica-
tions to evaluate xn is the number of terms in the shortest such program
sequence minus one. No efficient method is known for the problem of
determining the minimum number of multiplications needed to evalu-
ate xn; the problem for multiple exponents is known to be NP-complete.

Problem 6.4 : How would you determine the minimum number of mul-
tiplications to evaluate x30?

6.5 CNF-SAT

The CNF-SAT problem was defined in Problem 4.24. In that problem, we
asked for a linear-time algorithm for the special case where each clause
had exactly two literals.

Problem 6.5 : Design an algorithm for CNF-SAT. Your algorithm should
use branch-and-bound to prune partial assignments that can easily be
shown to be unsatisfiable.

The following problems illustrate the use of heuristic search and
pruning principles.

6.6 SCHEDULING

We need to schedule N lectures in M classrooms. Some of those lectures
are prerequisites for others.

Problem 6.6 : How would you choose when and where to hold the lec-
tures in order to finish all the lectures as soon as possible?

6.7 HARDY-RAMANUJAN NUMBER

The mathematician G. H. Hardy was on his way to visit his collaborator
S. Ramanujan who was in the hospital. Hardy remarked to Ramanujan
that he traveled in taxi cab number 1729 which seemed a dull one and he
hoped it was not a bad omen. To this, Ramanujan replied that 1729 was a
very interesting number—it was the smallest number expressible as the
sum of cubes of two numbers in two different ways. Indeed, 103 + 93 =
123 + 13 = 1729.
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7.2 THREAD POOLS

The following class, SimpleWebServer, implements part of a simple
HTTP server:

1 public c l a s s SimpleWebServer {
2 f i n a l s t a t i c i n t PORT = 8080 ;
3 public s t a t i c void main ( S t r i n g [ ] args ) throws IOException

{
4 ServerSocket serversock = new ServerSocket (PORT) ;
5 for ( ; ; ) {
6 Socket sock = serversock . accept ( ) ;
7 ProcessReq ( sock ) ;
8 }
9 }

10 }

Problem 7.2 : Suppose you find that SimpleWebServer has poor perfor-
mance because processReq frequently blocks on IO. What steps could
you take to improve SimpleWebServer’s performance?

7.3 ASYNCHRONOUS CALLBACKS

It is common in a distributed computing environment for the responses
to not return in the same order as the requests were made. One way
to handle this is through an “asynchronous callback”—a method to be
invoked on response.

Problem 7.3 : Implement a Requestor class. The class has to implement
a Dispatch method which takes a Requestor object. The Requestor
object includes a request string, a ProcessResponse(string
response) method, and an Execute method that takes a string and
returns a string.

Dispatch is to create a new thread which invokes Execute
on request. When Execute returns, Dispatch invokes the
ProcessResponse method on the response.

The Execute method may take an indeterminate amount of time to
return; it may never return. You need to have a time-out mechanism for
this: assume the Requestor objects have an Error method that you can
invoke.

7.4 TIMER

Consider a web-based calendar in which the server hosting the calendar
has to perform a task when the next calendar event takes place. (The task
could be sending an email or an SMS.) Your job is to design a facility that
manages the execution of such tasks.
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Design Problems

We have described a simple but
very powerful and flexible
protocol which provides for
variation in individual network
packet sizes, transmission
failures, sequencing, flow
control, and the creation and
destruction of process-
to-process associations.

“A Protocol for Packet Network
Intercommunication,” V. Cerf

and R. Kahn, 1974

This chapter is concerned with system design problems. Each ques-
tion can be a large open-ended software project. During the interview,
you should provide a high level sketch of such a system with thoughts
on various design choices, the tradeoffs, key algorithms, and the data-
structures involved.

8.1 MOSAIC

One popular form of computer art is photomosaics where you are given
a collection of images called “tiles”. Then given a target image, you want
to build another image which closely approximates the target image but
is actually built by juxtaposing the tiles. Here the quality of approxima-
tion is mostly defined by human perception. It is often the case that with
a given set of tiles, a user may want to build several mosaics.

Problem 8.1 : How would you design a software that produces high
quality mosaics with minimal compute time?

67
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is dropped from any floor X or higher but will remain intact if dropped
from a floor below X .

Problem 9.5 : Given K balls and N floors, what is the minimum number
of ball drops that are required to determine X in the worst-case?

9.6 BETTING ON CARD COLORS

A deck of 52 playing cards is shuffled. The deck is placed face-down on a
table. You can place a bet on the color of the top card at even odds. After
you have placed your bet, the card is revealed to you and discarded.
Betting continues till the deck is exhausted. On any card, you can bet
any amount from 0 to all the money you have and the odds are always
even.

Problem 9.6 : You begin with one dollar. It is known that if you can
bet arbitrary fractions of the money you have, the maximum amount of
money that you guarantee you can win, regardless of the order in which
the cards appear, is 252/

(52
26
)
≈ 9.08132955. However you are allowed to

bet only in penny increments. Write a program to compute a tight lower
bound on the amount you can win under this restriction.

Invariants

The following problem was popular at interviews in the early 1990s: you
are given a chessboard with two squares at the opposite ends of a diag-
onal removed, leaving 62 squares. You are given 31 rectangular domi-
noes. Each can cover exactly two squares. How would you cover all the
62 squares with the dominoes?

It is easy to spend hours trying unsuccessfully to find such a cover-
ing. This will teach you that a problem may be intentionally worded to
mislead you into following a futile path.

There is a simple argument that no covering exists—the two squares
removed will always have the same color, so there will be either 30 black
and 32 white squares to be covered or 32 black and 30 white squares to
be covered. Each domino will cover one black and one white square, so
the number of black and white squares covered as you successively put
down the dominoes is equal. Hence it is impossible to cover the given
chessboard.

This proof of impossibility is an example of invariant analysis. An in-
variant is a function of the state of a system being analyzed that remains
constant in the presence of (possibly restricted) updates to the state. In-
variant analysis is particularly powerful at proving impossibility results
as we just saw with the chessboard tiling problem. The challenge is find-
ing a simple invariant.
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of the inter-arrival time of requests. Now, in your load test you want to
generate requests for your server such that the inter-arrival times come
from the same distribution that you have seen in your data. How would
you generate these inter-arrival times?

Problem 10.10 : Given the probability distribution of a discrete random
variable X and a uniform [0, 1] random number generator, how would
you generate instances of X that follow the given distribution?

Figure 6. FINANCIAL ENGINEERING: an oxymoron widely used circa 2008.

10.11 EXPECTED NUMBER OF DICE ROLLS

Bob repeatedly rolls an unbiased 6-sided dice. He stops when he has
rolled all the six numbers on the dice. How many rolls will it take, on an
average, for Bob to see all the six numbers?

Option pricing

A call option gives the owner the right to buy something—a share, a
barrel of oil, an ounce of gold—at a predetermined price at a predeter-
mined time in the future. If the option is not priced fairly, an arbitrageur
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can either buy or sell the option in conjunction with other transactions
and come up with a scheme of making money in a guaranteed fashion.
A fair price for an option would be a price such that no arbitrage scheme
can be designed around it.

We now consider problems related to determining the fair price for an
option for a stock, given the distribution of the stock price for a period of
time.

10.12 OPTION PRICING—DISCRETE CASE

Consider an option to buy a stock S that currently trades at $100. The
option is to buy the stock at $100 in 100 days.

Suppose we know there are only two possible outcomes—S will go
to $120 or to $70.

An arbitrage is a situation where you can start with a portfolio (xs
shares and xo options) which has negative value (since you are allowed
to short shares and sell options, both xs and xo may be negative) and
regardless of the movement in the share price, the portfolio has positive
value.

For example, if the option is priced at $26, we can make money by
buying one share for $100 and selling four options—the initial outlay on
the portfolio is 100 − 4 × 26 = −4. If the stock goes up, our portfolio is
worth 120−20×−4 = $80. If the stock goes down, the portfolio is worth
$70. In either case, we make money with no initial investment, i.e., the
option price allows for an arbitrage.

Problem 10.12 : For what option price(s), are there no opportunities for
arbitrage?

10.13 OPTION PRICING WITH INTEREST

Consider the same problem as Problem 10.12, with the existence of a
third asset class, a bond. A $1 bond pays $1.02 in 100 days. You can
borrow money at this rate or lend it at this rate.

Problem 10.13 : Show there is a unique arbitrage-free price for the option
and compute this price.

10.14 OPTION PRICING—CONTINUOUS CASE

Problem 10.14 : Suppose the price of Jingle stock 100 days in the future
is a normal random variable with mean $300 and deviation $20. What
would be the fair price of an option to buy a single share of Jingle at $300
in 100 days worth today? (Ignore the impact of interest rates.)
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11.13 BEST PRACTICES

Our favorite best practices book is Effective Java by Bloch—it covers many
topics: object-oriented programming, design patterns, code organiza-
tion, concurrency, and generics are just a few examples. Effective C++ by
Meyer is highly thought of for C++. Design Patterns: Elements of Reusable
Object-Oriented Software by Gamma et al. is a very popular introduction
to patterns.

− Give an example of a problem you solved where you made good
use of object-oriented programming.

− What is the factory pattern? What is the publish-subscribe model?
− Give an example of how inheritance violates encapsulation.
− What do Java bounded wildcards buy you?
− Why should you always override the equals and hash function

methods for Java classes?

11.14 PROGRAMMING LANGUAGE IMPLEMENTATION

We recommend Programming Languages Pragmatics by Scott—it covers
both theory and practice of programming languages and is very up-to-
date.

− Give an example of a language which cannot be parsed by any com-
puter.

− What problems does dynamic linkage solve? What problems does
it introduce?

− What is a functional language?
− What is a virtual function?
− How is method dispatch implemented in Java?
− What is automatic garbage collection and how is it implemented?
− What is a type-safe language?
− What is the difference between a lexer and a parser?
− Give an example of a language which cannot be recognized by a

lexer.
− Give an example of a language which cannot be parsed by a parser.

11.15 OPERATING SYSTEMS

Modern Operating Systems by Tanenbaum is widely used; one of its claims
to fame is that Linux was developed from the Minix OS developed in an
earlier version of this book.

− What is a system call?
− How is a system call different from a library call?
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Strategies For A Great Interview

A typical one hour interview with a single interviewer consists of five
minutes of introductions and questions about the candidate’s resumé.
This is followed by five to fifteen minutes of questioning on basic pro-
gramming concepts.

The core of the interview is one or two detailed algorithm design
questions where the candidate is expected to present a detailed solution
on a whiteboard or paper. Depending on the interviewer and the ques-
tion, the solution may be required to include syntactically correct code in
a language that the candidate is comfortable with.

The reason for asking such questions is that algorithms and associ-
ated data-structures underlie all software. They are often hidden in li-
brary calls. They can be a small part of a code base dominated by IO
and format conversion. But they are the crucial component in terms of
performance and intricacy.

The most important part of interview preparation is to know the ma-
terial and practice solving problems. However the nontechnical aspects
of interviewing cannot be underplayed either. There are a number of
things that could go wrong in an interview and it is important to have a
strategy to deal with them.

12.1 BEFORE THE INTERVIEW

One of the best ways of preparing for an interview is mock interviews.
Get a friend to ask you questions from this book (or any other source)
and have you solve the problems on a whiteboard or paper. Ask your
friend to take notes and give you detailed feedback, both positive and
negative. Also ask your friend to provide hints from the solution if you
are stuck. This will help you overcome any fear or problem areas well in
advance.

100



Chapter 1

Searching

Solution 1.1 : One of the fastest ways to invert a fast-growing mono-
tone function (such as the square function) is to do a binary search in a
precomputed table of the function. Since the square root for the largest
32-bit unsigned integer can be represented in 16 bits, we build an array
of length 216 such that i-th element in the array is i2. When we want to
compute square root for a given number n, we look for the largest num-
ber in the array that is still smaller than n. Because the square root is
relatively small, it is faster to compute it on the fly than to precompute it.

1 unsigned i n t s q r t _ s e a r c h ( unsigned i n t input ) {
2 i n t begin = 0 ;
3 i n t end = 65536 ;
4 while ( begin + 1 < end ) {
5 i n t mid = begin + ( end − begin ) / 2 ;
6 unsigned i n t mid_sqr = mid ∗ mid ;
7 i f ( mid_sqr == input ) {
8 return mid ;
9 } e lse i f ( mid_sqr > input ) {

10 end = mid ;
11 } e lse {
12 begin = mid ;
13 }
14 }
15 return begin ;
16 }

Solution 1.2 :
1 public c l a s s BinSearch {
2 s t a t i c i n t search ( i n t [ ] A, i n t K ) {
3 i n t l = 0 ;
4 i n t u = A. length −1;
5 i n t m;
6 while ( l <= u ) {

110
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7 m = ( l +u ) /2;
8 i f (A[m] < K) {
9 l = m + 1 ;

10 } e lse i f (A[m] == K) {
11 return m;
12 } e lse {
13 u = m−1;
14 }
15 }
16 return −1;
17 }
18 }

Solution 1.3 : A straightforward way to find an element larger than a
given value k is to look for k via a binary search and then, if k is found,
walk the array forward (linearly) until either the first element larger than
k is encountered or the end of the array is reached. If k is not found, a
binary search will end up pointing to either the next largest value after
K in the array, in which case no further action is required or the next
smallest value in which case the next element is the next largest value.

The worst-case runtime of this algorithm is Θ(n)—the input of all
values matching K, except for the last one (which is greater than K), is
the worst-case.

The solution to this problem is to replace the linear scan with a binary
search in the second part of the algorithm, which leads to the desired
element to be found in O(logn) time.

Solution 1.4 : Since the array contains distinct integers and is sorted,
for any i > 0, A[i] ≥ A[i − 1] + 1. Therefore B[i] = A[i] − i is also
nondecreasing. It follows that we can do a binary search for 0 in B to
find an index such that A[i] = i. (We do not need to actually create B, we
can simply use A[i]− i wherever B[i] is referenced.)

Solution 1.5 : The key idea here is to simultaneously do a binary search
for the end of the array as well as the key. We try to look for A[2k] in the
k-th step and catch exceptions for successive values of k till either we hit
an exception or we hit a number greater than or equal to b. Then we do
a binary search for b between indices 2k−1 and 2k. The runtime of the
search algorithm is O(logn). In code:

1 i n t BinarySearchInUnboundedArray ( i n t ∗ A, i n t b ) {
2 i n t k = 0 ;
3 while ( t rue ) {
4 i n t c ;
5 t r y {
6 c = A[ ( 1 << k ) −1];
7 i f ( c == b ) {
8 return (1 << k ) −1;
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we can write the following recurrence relationship:

A(p1, . . . , pk) = min
x:3≤x≤k

(
A(p3, . . . , px)

+A(px, . . . , pk, p1) + L(p1, p2) + L(p1, px) + L(p2, px)
)
.

If we tabulate the cost of triangulation of each polygon that is a result of
picking subsequent points on the original polygon, we would need to do
this for roughly n2 polygons. If we have already tabulated the value for
all smaller polygons, it will take us O(n) time for doing so. Hence we
can compute the minimum cost in O(n3) time.

Solution 3.11 : We focus on the case where all the operands are nonneg-
ative integers and the only operations are · and +.

Represent the expression v0 ◦0 v1 ◦1 · · · ◦n−2 vn−1 by arrays V =
[v0, . . . , vn−1] and ◦0, . . . , ◦n−2.

Let Max[i, j] denote the maximum value achievable by some paren-
thesization for the subexpression vi ◦i vi ◦i · · · ◦j vj , where Max[i, j] is just
V [i].

The key to solving this problem is to recognize that if operation ◦i is
performed last, the subexpressions v0 ◦0 v1 ◦1 · · · ◦i−2 vi−1 and vi+1 ◦i+1
· · · ◦n−2 vn−1 must be parenthesized to be maximized individually.

In particular, the maximum value must be achieved for some value of
i in [0, n− 2], so

Max[0, n− 1] = max
i∈[0,n−2]

Max[0, i] ◦i Max[i+ 1, n− 1].

The total number of recursive calls is O(
(
n
2
)
) and each call requires O(n)

additional computation to combine the results, leading to an O(n3) algo-
rithm.

Efficiently computing this recurrence requires that intermediate re-
sults be cached. In code:

1 public c l a s s Parens {
2
3 i n t [ ] V;
4 char [ ] Op;
5
6 i n t [ ] [ ] Max ;
7 boolean [ ] [ ] va l id ;
8
9 public Parens ( i n t [ ] V, char [ ] Op) {

10 t h i s .V = V;
11 t h i s .Op = Op;
12 }
13
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14 public i n t maxExpr ( i n t begin , i n t end ) {
15
16 i f ( va l id [ begin ] [ end ] ) {
17 return Max[ begin ] [ end ] ;
18 }
19
20 i f ( begin == end ) {
21 Max[ begin ] [ end ] = V[ begin ] ;
22 va l id [ begin ] [ end ] = t rue ;
23 return V[ begin ] ;
24 }
25
26 i f ( begin + 1 == end ) {
27 Max[ begin ] [ end ] = (Op[ begin ] == ’+ ’ ) ?
28 V[ begin ] + V[ end ] :
29 V[ begin ] ∗ V[ end ] ;
30 va l id [ begin ] [ end ] = t rue ;
31 return Max[ begin ] [ end ] ;
32 }
33
34 i n t max = I n t e g e r .MIN_VALUE;
35 i n t candidateMax = 0 ;
36 for ( i n t i = begin + 1 ; i < end ; i ++ ) {
37 i n t lMax = maxExpr ( begin , i ) ;
38 i n t rMax = maxExpr ( i +1 , end ) ;
39 i f ( Op[ i ] == ’+ ’ ) {
40 candidateMax = lMax + rMax ;
41 } e lse {
42 candidateMax = lMax ∗ rMax ;
43 }
44 max = (max < candidateMax ) ? candidateMax : max ;
45 }
46 Max[ begin ] [ end ] = max ;
47 va l id [ begin ] [ end ] = t rue ;
48 return max ;
49 }
50
51 public i n t maxExpr ( ) {
52 i n t N = V. length ;
53 Max = new i n t [N] [N] ;
54 va l id = new boolean [N] [N] ;
55 return maxExpr ( 0 ,N−1) ;
56 }
57
58 public s t a t i c void main ( S t r i n g [ ] args ) {
59
60 i n t [ ] v1 = { 1 , 2 , 3 , 3 , 2 , 1 } ;
61 char [ ] o1 = { ’+ ’ , ’∗ ’ , ’∗ ’ , ’+ ’ , ’+ ’ } ;
62
63 Parens exp1 = new Parens ( v1 , o1 ) ;
64 System . out . p r i n t l n ( "Max value of express ion i s : " + exp1 .

maxExpr ( ) ) ;
65 }
66 }



169

The problem with this approach is that we do not control the num-
ber of threads launched. A thread consumes a nontrivial amount of re-
sources by itself—there is the overhead of starting and ending down the
thread and the resources used by the thread. For a lightly-loaded server,
this may not be an issue but under load, it can result in exceptions that
are challenging, if not impossible, to handle.

The right trade-off is to use a thread pool. As the name implies, this is a
collection of threads, the size of which is bounded. Java provides thread
pools through the Executor framework.

1 c l a s s TaskExecutionWebServer {
2 private s t a t i c f i n a l i n t NTHREADS = 1 0 0 ;
3 private s t a t i c f i n a l Executor exec
4 = Executors . newFixedThreadPool (NTHREADS) ;
5
6 public s t a t i c void main ( S t r i n g [ ] args ) throws IOException {
7 ServerSocket socket = new ServerSocket ( 8 0 ) ;
8 while ( t rue ) {
9 f i n a l Socket connect ion = socket . accept ( ) ;

10 Runnable task = new Runnable ( ) {
11 public void run ( ) {
12 handleRequest ( connect ion ) ;
13 }
14 } ;
15 exec . execute ( task ) ;
16 }
17 }
18 }

Solution 7.3 : Our strategy is to launch a thread T per Requestor ob-
ject. Thread T in turn launches another thread, S, which calls execute
and ProcessResponse. The call to execute in S is wrapped in a try-
catch InterruptedException loop; if execute completes successfully,
ProcessResponse is called on the result.

After launching S, T sleeps for the timeout interval—when it wakes
up, it interrupts S. If S has completed, nothing happens; otherwise, the
try-catch InterruptedException calls error.

Code for this is given below:

1 c l a s s Requestor {
2 public S t r i n g execute ( S t r i n g req ) {
3 return " response : " + req ;
4 }
5 public S t r i n g e r r o r ( S t r i n g req ) {
6 return " response : " + req + " : " + "TIMEDOUT" ;
7 }
8 public S t r i n g execute ( S t r i n g req , long delay ) {
9 t r y {

10 Thread . s leep ( delay ) ;
11 } catch ( InterruptedExcept ion e ) {
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which means that the probability of H is given by

k

n+ 1
· 1
k
· (n+ 1− k) · 1(

n
k

) = (n+ 1− k)(n− k)!k!
(n+ 1)n!

=
(
n+ 1
k

)
,

so induction goes through for subsets including the n+ 1-th element.

Solution 10.3 : We can make use of the algorithm for problem 10.1 with
the array A initialized by A[i] = i. We do not actually need to store the
elements in A, all we need to do is store the elements as we select them,
so the storage requirement is met.

Solution 10.4 : The process does not yield all permutations with equal
probability. One way to see this is to consider the case n = 3. There are
3! = 6 permutations possible. There are a total of 33 = 27 ways in which
we can choose the elements to swap and they are all equally likely. Since
27 is not divisible by 6, some permutations correspond to more ways
than others, ergo not all permutations are equally likely.

The process can be fixed by selecting elements at random and moving
them to the end, similar to how we proceeded in Problems 10.1 and 10.3.

Solution 10.5 : Our solution to Problem 10.1 can be used with k = n.
Although the subset that is returned is unique (it will be {0, 1, . . . , n −
1}), all n! possible orderings of the elements in the set occur with equal
probability. (Note that we cannot use the trick to reduce the number of
calls to the random number generator at the end of Solution 10.1.)

Solution 10.6 : The first thing to note is that three segments can make a
triangle iff no one segment is longer than the sum of the other two: the
“only if” follows from the triangle inequality and the “if” follows from
a construction—take a segment and draw circles at the endpoints with
radius equal to the lengths of the other circles.

Since the three segment lengths add up to 1, there is a segment that is
longer than the sum of the other two iff there is a segment that is longer
than 1

2 .
Let l = min (u1, u2), m = max (u1, u2) − min (u1, u2), and u =

1 −max (u1, u2); these are the lengths of the first, second, and third seg-
ments, from left to right. If one segment is longer than 0.5, then none of
the others can be longer than 0.5; so, the events l > 0.5, m > 0.5, and
u > 0.5 are disjoint.

Observe that l > 0.5 iff both u1 and u2 are greater than 0.5; the proba-
bility of this event is 1

2 ×
1
2 because u1 and u2 are chosen independently.

Similarly m > 0.5 iff both u1 and u2 are less than 0.5, which is 1
2 ×

1
2 .

To compute the probability of m > 0.5, first we consider the case that
u1 < u2. For m > 0.5, we need u1 to be between 0 and 1 and u2 to be
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