
Synthesizing Interconnect-Efficient Low Density
Parity Check Codes

Marghoob Mohiyuddin
The University of Texas at Austin

Amit Prakash
The University of Texas at Austin

Adnan Aziz
The University of Texas at Austin

Wayne Wolf
Princeton University

ABSTRACT
Error correcting codes are widely used in communication
and storage applications. Codec complexity has usually
been measured with a software implementation in mind.
A recent hardware implementation of a Low Density Par-
ity Check code (LDPC) indicates that interconnect com-
plexity dominates the VLSI cost. We describe a heuris-
tic interconnect-aware synthesis algorithm which generates
LDPC codes that use an order of magnitude less wiring with
little or no loss of coding efficiency.

Categories and Subject Descriptors: B.6.3 Automatic
Synthesis, E.4 Error Control Codes, G.2.2 Graph Algorithms.

General Terms: Algorithms, Performance, Design.

Keywords: Error correcting codes, low-density parity-check
codes, routing congestion.

1. INTRODUCTION
Error correcting codes are widely used in communication

and storage applications, e.g., Turbo codes in 802.16a and
Reed-Solomon codes in DVDs. Information theorists have
studies these codes for decades. However, their measure of
codec complexity has been more appropriate for software im-
plementation than hardware implementation, e.g., the num-
ber of states in the FSM performing decoding, rather than
the gate count, or wire length.

It is becoming clearer that there are significant advantages
to using custom hardware for codecs. One benefit naturally
is raw performance. More subtle, however, is the benefit in
reduced power. This is particularly true for coding schemes
which can use the parallelism offered by hardware: by us-
ing more devices, we can reduce frequency, and therefore
scale voltage, thereby achieving the same throughput for
less power [4].

Turbo codes [2] and Low Density Parity Check codes (LD-
PCs) [5] are two leading families of error correcting codes—
both come very close to achieving the bounds predicted by
Shannon theory. Of these two families, Turbo codes are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004,June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

hard to parallelize [10], and hence, benefit less from hard-
ware implementation. LDPCs however have recently begun
to gain attention because they are parallelizable, and VLSI
technology has gotten to the point where LDPCs over fairly
large code word sizes can be implemented in hardware.

With the selection of LDPC codes for the satellite digital
broadcasting standard (DVB-S2), efficient VLSI implemen-
tation of these codes has become all the more important.
Existing algorithms for building such codes do not take into
account the VLSI cost [9], specially the wiring complexity
of the decoder. In a recently published implementation of
an LDPC decoder hardware, interconnect completely dom-
inates the layout [1].

2. LDPC CODE IMPLEMENTATION
Low Density Parity Check codes were introduced by Gal-

lager [5]. They are a natural extension of the parity bit
commonly used for single bit error detection. Given m mes-
sage bits, an LDPC encoder constructs a code word of length
c (> m) bits. The coding scheme is associated with p possi-
bly overlapping subsets of the code bits such that the parity
of each subset in any codeword is 0. These subsets are de-
scribed by a p× c matrix H = [hij], such that hij = 1 iff the
i-th subset has bit j in it. The H matrix is called the parity
check matrix of the code; it is sparse, hence the name ‘low
density’.

The H matrix defines the set of possible codewords. If all
messages are equally likely, then the error correction capa-
bility of a code is only dependent on the set of codewords;
specifically it is independent of the actual mapping of mes-
sages to codewords. Hence the parity check matrix defines
the error correcting capability of an LDPC code.

The parity check matrix can be visualized as representing
a bipartite graph G = (V,E), referred to as the Tanner
graph of the code, with p + c vertices V = {1, 2, ..., p, p +
1, ..., p+ c} . The first p vertices ({1, 2, ..., p}) correspond to
p parity checks and are called check nodes. The remaining
c vertices ({p+ 1, ..., p+ c}) are called code nodes (they can
be thought of as representing the c bits of the codeword
that was transmitted). A code node is connected to a check
node if the bit corresponding to it participates in the parity
check corresponding to the check node. We shall refer to the
Tanner graph of an LDPC code simply as an LDPC graph.

Message passing [5] is an iterative decoding algorithm for
decoding LDPC codes. Messages are passed between code
nodes and check nodes along the edges connecting them.
These messages are an estimate of the transmitted code bit
and a measure of reliability of these estimates.

Until recently, the major focus of research had been the
software implementation of LDPC decoders. With the in-
creasing demand for high throughput decoders, the complex-
ity of hardware implementation of LDPC encoder/decoder
has been gaining attention.

In the first published implementation of a practical LDPC
decoder hardware, Blanskby et al. [1] describe a high through-
put LDPC decoder implementation. Each node in the LDPC
graph is implemented as a separate functional unit. The in-
terconnects between the units describe the connectivity of
the nodes. They report that routing congestion was the de-
termining factor in the area of the chip (50% utilization).
Furthermore, they also mention that because of the large
number of long nets, most of the power dissipation is due to
the switching activity of the wires.

It becomes important to consider the issues related to
hardware implementation when designing LDPC codes, to
make them practical. Current approaches to handling hard-
ware related issues have been limited to generating LDPC
codes from special families of graphs (e.g., Ramanujam graphs)
[6, 7] which imposes constraints on the code parameters.
Another approach uses simulated annealing [8] to generate
LDPC graphs satisfying certain conditions.

Campeliot et al. [3] describe the bit-filling method to gen-
erate LDPC graphs given constraints on the degree of the
nodes and the girth (length of the smallest cycle in a bipar-
tite graph).

Our main contribution is an algorithm to generate LDPC
codes with a bound on the ‘height’ of the VLSI layout of the
decoder for the code. This limits routing congestion with
little or no loss in the effectiveness of the code. We com-
pare the performance of the generated codes with different
constraints on the ‘height’ of the decoder and examine the
performance-area tradeoffs in the code design. In this con-
text, we also compare the performance of the codes designed
using the bit-filling algorithm [3] with the ones generated by
our algorithm.

3. ALGORITHM AND ANALYSIS

3.1 Minimizing Cuts
We introduce the notion of a cut for the Tanner graph of

an LDPC code.
Consider the example shown in Figure 1(a). The layout

in Figure 1(b) represents a routing channel with nets to be
routed between the terminals on both sides of the channel.
The objective is to minimize the vertical height of the chan-
nel (which is the number of horizontal tracks required). A
vertical line defines a cut (we shall refer to this as a verti-
cal cut) on the edges of the graph. The maximum number
of edges crossing any vertical cut (dashed vertical lines in
Figure 1(b)) is a lower bound on the height of the channel,
since the different edges crossing any cut have to be routed
on different horizontal tracks. For the example shown in
Figure 1(b), the maximum vertical cut-size is 9, hence a fea-
sible layout would require at least 9 horizontal tracks. The
layout shown uses exactly 9 horizontal tracks.

For the Tanner graph of an arbitrary LDPC code with e
edges, the expected size of the maximum cut would be at
least e

2
, since the edge connectivities are not constrained.

Thus, the height of the channel and, consequently, the area
of the layout is expected to be large. A larger height means
longer wires and therefore, greater interconnect capacitance,

(a)

4 5 7 8 89 8 7

1
2
3
4
5
6
7
8
9

Cut of size 4

(b)

Figure 1: A Tanner graph and its layout.

implying more power consumption. Therefore, congestion
becomes an important issue as the block size of the code in-
creases.These are exactly the problems with the VLSI design
of Blanksby et al. [1].

In summary, VLSI layout issues need to be incorporated in
the design of the code. Our algorithm addresses this issue
by generating codes with a constraint on their maximum
cut-size.

3.2 Our Algorithm: Intuition
It has been shown in [5] that the girth of an LDPC graph

affects its error correcting properties. A larger girth is desir-
able for a better performance. Therefore, it is important to
incorporate the girth constraints into the LDPC code gen-
eration process.

The bit-filling algorithm [3] assumes a given number of
check nodes. Code nodes and the corresponding edges are
added to the graph until some (e.g., girth) constraints are
violated. All the edges of a code node are added one after
another during the algorithm. Our algorithm assumes a
given number of code nodes and check nodes. At a high
level, it consists of multiple passes. In a single pass, at most
a single edge is added to a check node. Intuitively, since we
want all the cut-sizes to be constrained the same way, all
the nodes should be treated in the same way. Therefore, we
proceed in a breadth first manner instead of the depth first
manner of bit-filling. Edges are added between a code node
and a check node only if the constraints are not violated.
Thus, in a single pass, at most p edges would be added (with
at most 1 edge added to a code node or check node). A single
pass can be thought of generating a 1-1 mapping from the
check nodes to the code nodes. The mapping generated in
a single pass is constrained by the maximum cut-size. The
number of passes is determined by the maximum degree of
the check nodes or the average degree of the check nodes.
In our implementation, the number of passes is governed by
the average degree of the check nodes.

3.3 Our Algorithm Formalized

3.3.1 Objective
Generate an LDPC graph with the following parameters:

number of code nodes c, number of (parity) check nodes
p, average degree of (parity) check nodes davg, minimum
girth of the graph g, and maximum cut-size of the mapping
generated in a single pass is cutmax.

3.3.2 Preliminaries

1. U = {u1, u2, . . . , up} is the set of check nodes.
V = {v1, v2, . . . , vc} is the set of code nodes.

2. posu denotes the column number of node u.

3. dist(u, v) denotes the number of edges in the shortest
path from node u to node v.

4. For u ∈ U , Checksu is the set of nodes adjacent to u.

5. For v ∈ V , we denote by Nv the set of code nodes
which are at distance exactly 2 from v.

6. As in [3], for a check node u,

N i
u =

{
Checksu (i = 1);⋃
v∈N i−1

u
Nv (i > 1).

N 2
u is the set of code nodes at distance 2 from some

code node in Checksu. N 3
u is the set of code nodes

at distance 2 from some code node in N 2
u , hence at

distance 4 from some code node in Checksu. By a
similar argument, N i

u is the set of nodes at distance
2i− 2 from some code node in Checksu. Hence N i

u is
the set of nodes at distance 2i− 1 from check node u.

7. For u ∈ U , Iu is the largest continuous block of column
numbers, such that posu ∈ Iu and cuti < cut (for a
given value of cut) for all i ∈ Iu.

3.3.3 Main Algorithm
We recall the ideas in the bit-filling algorithm [3]. If

the current graph does not violate the girth constraints,
then edge (u, v) can be added, without violating the girth
constraint of g, if and only if dist(u, v) ≥ g − 1. Since
dist(u, v) ≥ g − 1, the edge (u, v) would create a cycle of
length at least g (or no cycle if there was no path from u to
v previously).

The set N i
u contains code nodes at distance 2i − 1 from

check node u. Therefore, the set of code nodes at distance

at most g − 2 from u would be N ∗u =
⋃ g−1

2
i=1 N

i
u.

We maintain N ∗u for each check node u, and Nv for each
code node v.

We have assumed that the layout consists of c columns,
with one code node per column (vi placed on column i). The
check nodes are placed uniformly on the c columns (assume
ui placed on column d ic

p
e).

Consider a single pass of the algorithm. During a sin-
gle pass, the cut-size for each column is maintained. The
cut-sizes during a pass are initialized to 0. The cut-size
constraint cut is initialized to initcut. Each check node is
considered one by one. A check node u of minimum de-
gree is selected randomly (Step 6). If the girth constraint is
not considered, then an edge (u, v) can be added if it does

1: N ∗u ← ∅, u ∈ U , Nv ← ∅, v ∈ V ,
e← p · davg , num edges← 0

2: while num edges < e and numiter < max iter do
3: A← U , cuti ← 0, 1 ≤ i ≤ c
4: cut← initcut
5: while A 6= ∅ do
6: Select u ∈ A {using some heuristic}
7: A← A− {u}
8: if N ∗u 6= V then
9: Compute Iu, S = {v ∈ V | posv ∈ Iu}

10: C = S −N ∗u
11: if C 6= ∅ then
12: Select v ∈ C {using some heuristic}
13: Update N ∗u , Checksu, Nv
14: Update, for all v′ ∈ V , Nv′
15: num edges← num edges+ 1
16: Update cuti for all i
17: else if cut < cutmax then
18: cut← min(2cut, cutmax)
19: Repeat Steps 9-16
20: end if
21: end if
22: end while
23: end while

Algorithm 1: LDPC Code Generation

not increase the cut-size of the columns that the edge tra-
verses. Edge (u, v) would violate the cut-size constraint if
posv /∈ Iu (since Iu is maximum, cutj = cut for a column j
on the boundary of Iu). Therefore, the set S of code nodes
which can be made neighbors of u (without considering the
girth constraint) is S = {v ∈ V | posv ∈ Iu}. The set of
code nodes that can be added as neighbors of u, without
violating the girth and the cut constraints, would then be
C = S−N ∗u . Choose a code node v of minimum degree ran-
domly from C (Step 13) and add the edge (u, v). Update
the cut-sizes, N ∗u , Nv′ for all v′ ∈ Checksu, and Nv. If C
turns out to be empty because of the cut constraint, then
the cut-size constraint cut is increased (until cutmax), and
S and C are recomputed. If no edges can be added to u in
the current pass, due to the maximum cut constraint or the
girth constraint, it is not considered further in the current
pass.

Updating the set Nv is easy since v now shares check node
u with code nodes in Checksu. Hence, Nv = Nv

⋃
Checksu.

Similarly, for all v′ in Checksu, Nv′ = Nv′
⋃
{v}.

Update the set N ∗u by first computing the setM∗ of code
nodes at distance at most g − 2 from v (set M1 as {v} and

then compute Mi =
⋃
v′∈Mi−1 Nv′ , let M∗ =

⋃ g−1
2

i=1 M
i,

this is exactly similar to the definition of N i
u). Change N ∗u

to N ∗u
⋃
M∗.

The number of passes is determined by the total number
of edges to be added. So, the objective is to generate an
LDPC graph with e = davg · p edges.

For Steps 6 and 13, we select a node of minimum de-
gree randomly. This can be extended to the node selection
heuristic in the bit-filling algorithm [3].

3.3.4 Complexity Analysis
Steps 3-4 take O(c) time. Steps 9-10 take O(c) time.

For Steps 13-16, M∗ can be computed in O(c) time; other
updates also take O(c) time. Steps 17-19 are a repetition
of Steps 9-16, they require O(c) time. Inner loop runs p
times. Outer loop runs ≤ max iter times. Time complexity
is, therefore, O(max iter · p · c). For our implementation,

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5

B
lo

ck
 E

rr
or

 R
at

e

Eb/N0(dB)

Randomized Bit-filling Final=2063
Max=1024 Final=1635
Max=256 Final=1659
Max=128 Final=1044

Max=64 Final=605
Max=32 Final=352
Max=16 Final=176

Figure 2: A comparison of LDPC codes with pa-
rameters c=1024, p=512, g=6, davg=8. Max is the
maximum cut-size constraint for each pass. Final is
the maximum cut-size of the generated graph. In
randomized bit-filling, nodes are picked at random
from the set of candidate nodes.

max iter = O(davg), therefore time taken = O(davgpc) =
O(ep) = O(p2) (since e = O(p)).

4. RESULTS
Message passing decoding was used with 64 iterations of

decoding for each block. BPSK mapping was used for trans-
mitting codewords (0 → +1, 1 → −1). LDPC codes being
linear codes, we only need to transmit the all zeros codeword
and try decoding it for simulation studies. This is because
the Gaussian noise added to the transmitted codeword is in-
dependent of the transmitted codeword. The best codes out
of 5 randomly generated codes, were used for the results.

For comparison with Blanksby et al.’s [1] code, we gener-
ated rate-1/2 codes with c=1024, p=512, g=6 and davg=6.5
and 8. Higher values of g have been mentioned in the figures,
whenever increasing g resulted in an improvement. The sim-
ulations were done for an additive white Gaussian channel
with varying signal-to-noise ratio (SNR), where the SNR is
defined as the ratio of the signal power (which is normalized
to 1) to the variance of the Gaussian noise.

Figure 2 illustrates the change in performance of codes
generated as cutmax is varied. Observe that except for very
small cutmax (in this case – 16 and 32) the performance
of codes degrades only marginally as cutmax is decreased.
Therefore, our algorithm is able to find good LDPC codes
with small maximum cut-size. Note that the code with final
maximum cut-size = 605 (generated by our algorithm) has
performance same as that of the code with final maximum
cut-size = 2063, about 75% reduction in the maximum cut-
size (without loss in performance). The height of the layout
as well as the area is directly proportional to the cut-size.

Figure 3 compares the performance of codes generated
with different parameters. We used the data points for
Blanksby et al.’s code [1]. For the same block error rate,
the difference in SNR is less than 0.7 db. This means that
using our codes, the increase in transmitter power would be
less than 17%, while the area of the decoder reduces to a
quarter, which is desirable in many applications.

We did interconnect layout for the decoder of the gen-

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5

B
lo

ck
 E

rr
or

 R
at

e

Eb/N0(dB)

Max=256 Final=1640
Max=128 Final=847
Max=64 Final=586
Max=32 Final=259

Bit-fill code degree=3 Girth=10 Final=1572
Bit-fill code degree=3 Girth=8 Final=1543

Blanksby et al.

Figure 3: A comparison of LDPC codes with pa-
rameters c=1024, p=512, davg=6.5. Unless stated
otherwise, g=6.

erated codes in 0.18µ technology. For two codes with c =
1024, p = 512, g = 6, davg = 8, and varying cutmax we com-
puted the height and width of the channel layout (assuming
single bit messages). With cutmax = 256, the width, height
and area are 3.56 mm, 1.31 mm and 4.66 mm2 respectively.
For cutmax = 64, the width, height and area are 3.56 mm,
0.36mm and 1.27mm2 respectively. This is a 75% reduction
in channel layout area with little performance degradation.
Furthermore, reducing the wire lengths would decrease the
power consumption of the chip.

Blanksby et al.’s [1] approach to building codes is based
more on extensive simulations for a large number of ran-
domly generated LDPC codes. Our algorithm, in compar-
ison, adopts a constructive approach to generating layout-
aware LDPC codes.

5. REFERENCES
[1] A. J. Blanksby and C. J. Howland. A 690-mW 1-Gb/s

1024-b, Rate-1/2 Low-Density Parity-Check Decoder. IEEE
J. Solid-State Circuits, 37:404–412, Mar. 2002.

[2] M. Bossert. Channel Coding for Telecommunications. John
Wiley and Sons, Aug. 1999.

[3] J. Campeliot, D. S. Modha, and S. Rajagopalan. Designing
LDPC Codes Using Bit-Filling. In IEEE Int. Conf.
Communications, pages 55–59, June 2001.

[4] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen.
Low-Power CMOS Digital Design. IEEE J. Solid-State
Circuits, 27:473–484, Apr. 1992.

[5] R. G. Gallager. Low-Density Parity-Check Codes. PhD
thesis, MIT, Cambridge, MA, 1962.

[6] M. Mansour and N. Shanbhag. Architecture-Aware
Low-Density Parity-Check codes. IEEE Int. Symp. Circuits
and Systems, May 2003.

[7] M. Mansour and N. Shanbhag. A Novel Design
Methodology for High Performance Programmable Decoder
Cores for AA-LDPC Codes. IEEE Workshop on Signal
Processing Systems, Aug. 2003.

[8] J. Thorpe. Design of LDPC Graphs for Hardware
Implementation. In IEEE Int. Symp. Inform. Theory, page
483, Lausanne, Switzerland, June 2002.

[9] E. Yeo, B. Nikolic, and V. Anantharam. Iterative Decoder
Architectures. IEEE Communications Magazine, Aug.
2003.

[10] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam. VLSI
Architectures for Iterative Decoders in Magnetic Recording
Channels. IEEE Trans. Magnetics, 37:748–755, Jan. 2001.

