
Copyright

by

John Francis Croix

2002

The Dissertation Committee for John Francis Croix
certifies that this is the approved version of the following dissertation:

Cell and Interconnect Timing Analysis

Using Waveforms

Committee:

Martin Wong, Supervisor

Jacob Abraham

Donald Fussell

Farid Najm

Baxter Womack

Cell and Interconnect Timing Analysis

Using Waveforms

by

John Francis Croix, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2002

UMI Number: 3099442

__
UMI Microform 3099442

Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

__

ProQuest Information and Learning Company
300 North Zeeb Road

PO Box 1346
Ann Arbor, MI 48106-1346

Dedicated to those people in my life whose sacrifice and

support made this possible.

Acknowledgments

This dissertation would not be possible were it not for the support and en-

couragement of my research advisor, Professor Martin Wong. Even during those

inevitable lulls in which progress was measured in weeks or months, Professor

Wong’s unwavering confidence in my ability to complete this dissertation success-

fully gave me the incentive to continue.

Professor Farid Najm of the University of Toronto deserves special recog-

nition. While I knew what I wanted to relate in this dissertation, I was not always

able to do so in a concise and clear manner. Professor Najm provided invaluable

guidance to make sure that my ideas were expressed completely and articulately

and contributed greatly to the quality of this dissertation.

Next I would like to thank Professor Larry Pileggi. Professor Pileggi was

my advisor at UT prior to his appointment at Carnegie Mellon University. I

originally met Professor Pileggi while I was working at Texas Instruments and

decided to pursue my Ph.D. at UT as a direct result of our interaction and his

encouragement.

Curtis Ratzlaff and Guru Rao have been a constant source of support,

friendship, and encouragement. They represent that rare breed of person that

tends to blur the line between friend and family.

My mother, sister, aunts, and uncles continue to be a source of support

and inspiration for me. My children, Nicholas, Joshua, and Brandon, constantly

v

remind me not to take myself too seriously. This was especially true during those

periods when I was deep in “dissertation mode” and had little ability to focus on

anything other than “just getting that next result down on paper.”

Friends and colleagues at Silicon Metrics Corporation deserve special men-

tion. Notably I wish to thank Bill Wood, Stephen Strauss, Jim Clardy, Callan

Carpenter, Vess Johnson, Scott Yore, Frank Childers, Robert Gonzalez, Tamara

Cryar, and Brian Allgyer.

Finally I would like to thank Hannah Gourgey. Having completed her

own Ph.D. at UT recently, she encouraged me to work past obstacles of my own

creation toward a successful conclusion.

vi

Cell and Interconnect Timing Analysis

Using Waveforms

Publication No.

John Francis Croix, Ph.D.

The University of Texas at Austin, 2002

Supervisor: Martin Wong

Advancements in the fabrication of integrated circuits have led to the dom-

inance of interconnect delay in overall path delay – the total delay between two

sequential elements in a circuit. As a result, great improvements in high-accuracy,

rapid interconnect analysis algorithms have been made. While interconnect can

be modeled efficiently at near-SPICE accuracy now, archaic standard cell models

remain a limiting factor in timing analysis as out-dated cell modeling technology

has not kept pace with nanometer effects exhibited in digital ICs today.

This dissertation presents improvements in the accuracy of existing cell

models for the front end of the IC design flow through a process called over

sampling and data reduction. For the back end, where accuracy with respect to

silicon is critical, Blade, a new cell model and accompanying runtime engine, is

presented. The Blade environment brings SPICE accuracy to timing verification

flows at speeds tens of thousands of times faster than SPICE. Finally, a rapid

vii

interconnect timing system, Razor, is presented which works in conjunction with

Blade to obtain SPICE-accurate stage delay analysis capability.

Together Blade and Razor provide sophisticated timing analysis not

previously available outside the domain of transistor-level timing analysis engines:

production and consumption of arbitrary voltage waveforms, near-SPICE accu-

racy, and unparalleled runtimes. When used in conjunction with front-end models

created through over sampling and data reduction, model consistency throughout

the entire design flow is achieved.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

Chapter 2. Literature Review 5

2.1 Cell Characterization and Modeling 9

2.1.1 Overview . 10

2.1.2 Effective Capacitance . 10

2.1.3 Empirical Modeling . 14

2.1.3.1 Characterization Techniques 14

2.1.3.2 Cell Modeling . 15

2.1.3.3 The Synopsys Model 18

2.1.3.4 Other Characterization Models 19

2.1.4 Analytic Modeling . 21

2.1.4.1 Transistor Modeling 21

2.1.4.2 Cell Modeling . 23

2.1.4.3 Path Sensitization 24

2.2 Interconnect Delay Analysis . 25

2.2.1 Early Analysis . 26

2.2.2 Advances in Moment Matching 27

2.2.3 Timing Analysis . 28

2.3 Circuit Simulators . 30

2.4 Conclusion . 35

ix

Chapter 3. Model Development 37

3.1 Cell Characterization and Modeling 39

3.1.1 Auto-Ranging . 40

3.1.1.1 Capacitive Limits 41

3.1.1.2 Input Transition Time Limits 42

3.1.1.3 Input Voltage Waveforms 42

3.1.1.4 Putting It All Together 44

3.1.2 Over Sampling and Data Reduction 45

3.1.2.1 Error Calculation 47

3.1.2.2 Reduction of Characterization Tables 51

3.1.3 Conclusion . 52

3.2 Blade . 54

3.2.1 The Blade Current Model 56

3.2.2 The Blade Runtime Engine 57

3.2.2.1 The Nonlinear Solver 58

3.2.2.2 Problem Formulation 60

3.2.3 Accounting for Internal Parasitics 62

3.2.3.1 Internal Capacitance 63

3.2.3.2 Internal Cell Interconnect 66

3.2.3.3 Model Calibration 66

3.2.3.4 Conclusion . 68

3.2.4 Compound Cells . 68

3.2.5 Noisy Inputs . 72

3.2.6 Conclusion . 74

3.3 Razor: Accurate Stage Delay . 75

Chapter 4. Results 80

4.1 Over Sampling and Data Reduction 80

4.1.1 Dependent Variable Analysis 80

4.1.2 Independent Variable Analysis 82

4.1.3 Path Errors . 83

4.2 Blade . 84

4.2.1 Calibration . 86

4.2.2 Using the Models . 88

x

4.2.3 Performance . 91

4.2.4 The Noise Immunity Filter 92

4.3 Razor . 96

4.3.1 Performance Overview . 97

4.3.2 Accuracy . 98

4.4 Final Remarks . 101

Chapter 5. Conclusion 104

Bibliography 106

Vita 114

xi

List of Tables

4.1 Calibration Parameters for Sample Cells Paths 88

4.2 Blade CPU Runtime Results . 94

4.3 Razor CPU Runtime Results . 98

xii

List of Figures

2.1 Synchronous digital logic data flow 5

2.2 Cell and interconnect delay in STA 7

2.3 Cell timing measurements . 11

2.4 Voltage waveform tail . 13

2.5 Characterization table interpolation 19

2.6 Thevenin equivalent gate model 20

2.7 Recursive convolution . 30

2.8 Newton-Raphson iteration . 32

3.1 A driver cell used to create realistic inputs for characterization . . 44

3.2 Characterization table error calculation 50

3.3 Blade characterization . 56

3.4 Simple Blade evaluation . 58

3.5 Secant Iteration . 60

3.6 Companion models in the Blade runtime engine 61

3.7 Trapezoidal companion model of a capacitor 62

3.8 Modeling internal capacitances . 64

3.9 Blade current model creation for an OR gate 70

3.10 Blade OR model calibration . 71

3.11 Noise immunity filter . 73

3.12 Stage delay . 76

3.13 Recursive convolution using fixed timesteps 77

4.1 Errors in traditional characterization 81

4.2 Optimized table errors . 82

4.3 Results of data reduction . 83

4.4 Validating path timing . 85

4.5 I–V response surface . 86

4.6 Blade calibration . 87

4.7 Blade compound cell analysis 89

xiii

4.8 Blade noise analysis . 90

4.9 Blade modeling with tails . 91

4.10 Noise immunity on small AOI . 93

4.11 Large AOI noise immunity filter 95

4.12 Razor comparison to HSPICE 99

4.13 Razor noise comparison to HSPICE 100

xiv

List of Algorithms

3.1 Data reduction error table generation 48

3.2 Data reduction result generation 53

xv

Chapter 1

Introduction

In 1965, Gordon Moore, co-founder of Intel, made the observation that the

number of transistors per square inch on integrated circuits (ICs) doubled every

year since the invention of the integrated circuit. His subsequent prediction, that

this doubling would continue to occur at approximately 18-month intervals, has

become known as Moore’s Law.

While Moore’s Law typically is referred to in discussions concerning man-

ufacturing capability and integrated circuit performance, it has broad economic

implications, too. In order to create these circuit designs, the design teams also

had to double in size each 18 months. Such design team growth, however, was not

economically feasible, and, thus, the computer-aided design (CAD) industry was

born. Instead of growing the design team to increase the number of transistors

on a circuit, automation was employed to make each designer more productive.

Engineers today have a vast array of CAD applications at their disposal

to handle the complexities associated with nanometer technology requirements.

These applications are combined into an overall design flow to provide automation

from design concept through physical layout, verification, and mask generation.

Virtually all of these flows, either implicitly or explicitly, rely on the concept of

successive approximation refinement. That is to say, early in the design flow,

when the functionality of the circuit is still being defined, the data used to model

1

this functional view provides only a rough approximation of actual silicon perfor-

mance. As the designer progresses further into the flow, the closer the estimated

performance should be to actual silicon – at least in theory.

In older IC design flows consistent results were often more important than

accurate results when predicting silicon performance. In other words, as long as

all of the applications within the design flow produced results that were both

consistent with one another and “close enough” to silicon, a functional integrated

circuit could be produced. Guardband was added to the result at each stage of the

flow to mitigate the inaccuracy inherent in the data. As a result, CAD application

development focused on better and faster algorithms, leaving the application user

with the responsibility of creating data for those applications.

With the advent of transistor feature sizes of 0.25µm and below, the process

of design guardbanding became too unwieldy. If the design were guardbanded in

the same manner that produced previous generations of integrated circuits, the

design constraints would be so overwhelming as to make it impossible to meet the

design goals. The only way to create these new designs was to have a flow that was

both consistent and accurate, thus reducing the amount of required guardband.

Interconnect delay has been the primary area of focus for accuracy im-

provements in the last 13 years because it has become the dominant component

of overall path delay (the delay between two sequential elements). Consequently,

interconnect delay models have advanced significantly while cell delay models, the

other component of path delay, have advanced very little. Interconnect delay ap-

proximations can be made today with near-SPICE accuracy at speeds thousands

of times faster than SPICE. Unfortunately, this increase in accuracy provides lit-

2

tle additional benefit without similar advances in cell models due to the nonlinear

effects that are not accurately represented.

There are two ways in which interconnect model accuracy is lost with re-

spect to cell models. First, the vast majority of cell models still provide a simple

two-point (linear) ramp as input to the interconnect. In reality the output voltage

of a cell can be highly nonlinear, varying greatly across input voltage waveforms

and output loads. Second, the typical input to a cell model (the “output” of the

previous interconnect) is a two-point ramp approximation of the voltage waveform

produced during interconnect modeling. Thus, even though interconnect analy-

sis can be performed using nonlinear waveform inputs and producing nonlinear

outputs, the typical cell model is not sophisticated enough to either consume or

produce such data and, therefore, is unable to benefit fully from accurate inter-

connect modeling.

To make matters worse, cell characterization, the process of creating a cell

model, is a difficult, tedious, and time-consuming process. Attempts to create

more accurate cell models have, in the past, placed an even larger burden on

cell characterization. With typical cell library characterization times measured

in CPU months, engineers in charge of this process have been resistant to any

increase in CPU overhead. The idea that increased accuracy comes only at the

expense of increased overhead has so dominated the engineer’s mindset that many

companies have resigned themselves to the thought that their cell libraries would

never fully meet their accuracy requirements, leaving no alternative but targeted,

selective guardbanding.

This dissertation shatters these long-held preconceptions concerning cell

3

modeling and accuracy. Recognizing that simple, fast models have their place

early in the design flow, a methodology called over sampling and data reduction1 is

introduced to address the characterization and modeling of front-end cell models.

This process maximizes the accuracy of the model without increasing CPU or

engineering requirements. Unfortunately, given the current state of cell modeling,

it is these simple models that are used throughout the entire flow, not just in the

early stages of the design process. Fundamental limitations of the existing models

substantially reduce their usefulness in the later portions of the design flow where

a high correlation to silicon is required.

To address the nonlinear effects inherent in today’s nanometer designs,

a new modeling paradigm is necessary. The second portion of this dissertation

introduces a new cell model and evaluation engine (Blade) that is able to both

produce and consume nonlinear waveforms with near-SPICE accuracy at speeds

tens of thousands of times faster than SPICE. Generation of the Blade cell

model requires fewer computing resources than traditional cell characterization

methodologies require today. Additionally, the Blade engine is a lightweight,

nonlinear solver than can be embedded within CAD applications easily.

Finally, as cell models and interconnect models must be able to interact

with one another, a stage delay model (unified cell and interconnect delay model)

is presented that marries these two technologies. This stage delay model, Razor,

maintains SPICE accuracy while exhibiting runtimes between five and six orders

of magnitude faster than SPICE.

1Over sampling and data reduction is a single process, not two independent processes. For
that reason, this term is used with singular verbs throughout the dissertation.

4

Chapter 2

Literature Review

In modern synchronous, digital integrated circuit designs, data signals tra-

verse from one sequential element to another within a time period. That time

period is defined by the clock signal(s) gating the two sequential elements as

illustrated in Figure 2.1.

Element

Data

Clock 1

Sequential
Element

Clock 2

Sequential

Figure 2.1: Signals traverse from one sequential element, through the cells and
interconnect implementing the logic function, to another sequential element. This
must be accomplished between arrival of the clock signal at the first sequential
element and the arrival of the clock signal at the second.

Prior to the advent of static timing analysis (STA) [22], timing verification

of such digital logic often involved the creation of test patterns that were used to

drive simulation programs [12]. Some programs, such as SPICE [40], performed

analysis at the transistor level to obtain maximum accuracy when compared to

silicon. Other types of simulators, such as cycle-based simulators [39], ignored

5

timing and propagated only logic values between sequential elements to perform

functional verification. These simulations required a substantial amount of CPU

time and produced results that were valid only for the given test pattern. To

obtain a high degree of confidence that a design met its timing and functional

requirements, many such simulations using different patterns had to be made in

an attempt to exercise a statistically sufficient set of logic paths.

This dissertation does not address the problem of functional verification.

Once a design has met its functional requirements, timing verification still must

be performed to guarantee that the specific logic implementation used meets the

timing constraints. While the exact implementation does directly impact the

timing, verification of functionality and timing correctness can be performed in-

dependently.

With the use of static timing analysis, timing correctness can be determined

by independently analyzing the timing through individual logic functions and

interconnect. The worst delays and signal slews are propagated from one cell to

another across the interconnect. The worst-case signal arrival times at a sequential

element are compared against the timing constraints and a determination is made

as to whether the circuit meets its timing requirements. Cell models are used

to rapidly calculate both the timing from the input pin of a logic function to its

output pin and to determine the rate that the output signal transitions (low-to-

high or high-to-low). Interconnect analysis algorithms use the output transition

times of the cells to determine the delay to the next cell as well as the input

transition time to that cell.

In modern static timing, two-point linear approximations of the waveform

6

Figure 2.2: Rising and falling waveforms at the inputs of each cell are used to
calculate intrinsic delays and output transitions times. Only two transition times
are propagated through the interconnect to the next cell: one rising and one falling
transition. Waveforms are approximated by linear ramps.

driving a cell’s input pins are used in conjunction with the interconnect load to

calculate intrinsic delay and output transition time. Often the interconnect load

is simply represented by a single capacitor, though more sophisticated models

have been proposed. The transition times of signals driving the interconnect are

also modeled as two-point linear ramps. In worst-case analysis, illustrated in Fig-

ure 2.2, only the slowest rising and falling output transition times are propagated

through the interconnect to the cell inputs of the next level.

Characterization is the process of empirically gathering electrical informa-

tion about a cell, such as timing, and creating an abstract model to represent that

data for a variety of expected operating conditions. Characterization is usually

performed by simulating the cell with a highly accurate simulator, such as SPICE.

Such data gathering processes are highly CPU intensive, taking days, weeks, or

7

even months of CPU time for a large cell library. However, the repeated evaluation

of the resultant model during timing verification occurs rapidly, thus justifying

the one-time cost of accurate cell characterization.

To obtain accurate cell models, characterization must occur over the ex-

pected operating range of the cell. Differences between the expected environment

used during characterization and the actual environment that the cell is used

within can be a source of large discrepancies between the predicted behavior and

the actual behavior and may result in operational failures of an integrated circuit.

Timing models produced through characterization can be highly useful in

the early portion of the design flow as model accuracy is often less important than

raw evaluation speed. A 10% to 20% estimation error in cell and interconnect de-

lay is not as critical early in the design process as in the later stages. During the

early portion of the design flow, many different implementations are constantly

being evaluated in an attempt to meet functionality requirements. Once the func-

tionality has stabilized, timing verification and accuracy become more important.

It is during these latter stages of design that the simplifying assumptions made

during cell characterization are often violated and more accurate models required.

This is not to say that the accuracy of front-end cell models is not impor-

tant. These same cell models often are used by various programs during the back

end of the design flow, when accuracy is critical. Even when different models are

used, consistency between the front-end and back-end models remains important.

If a program in the front end of the design flow specifies an implementation using

models that are inconsistent with the models in the back end, the specification

defined by the front-end programs may not be realizable in the back end. This

8

type of situation leaves the designer in a quandary as he/she cannot iterate back

through the front-end programs because those programs were the very ones to

specify the implementation. When these inconsistencies arise, the only solution is

to tighten constraints on the system, potentially introducing new implementation

difficulties in portions of the logic that, in reality, are not critical. By maintaining

accuracy in front-end models, consistency with back-end models is guaranteed as a

byproduct, reducing unnecessary iterations and improving designer productivity.

This chapter reviews the development of cell and interconnect models used

in the integrated circuit design flow. It traces the evolution of these models and

algorithms from their early development through to the present day. Only by

understanding both the design flow and the strengths and weaknesses of existing

cell and interconnect models can the power of the Blade and Razor models be

fully appreciated.

Timing systems are also reviewed. In order to be effective, the Blade and

Razor models require an accompanying application program that can evaluate

them. Existing systems consume cell and interconnect models to produce stage

and path delay approximations. A similar system was developed for the Blade

and Razor models so that accurate stage delay approximation can occur.

2.1 Cell Characterization and Modeling

Cell models fall into one of two categories: those created from empirical

data and those that are analytically created [57]. Analytic models predict a cell’s

electrical performance as a function of the fabrication technology and the size

and topology of the transistors that compose the cell. Empirical models, on the

9

other hand, are created by simulating the cell, using some electrical simulator

such as SPICE, measuring the results, and fitting the measured data to the model

format. Characterization, by definition, is the process of empirically gathering

data to create a model.

2.1.1 Overview

The timing characterization of a cell is performed by driving the input port

of a cell with a rising or falling voltage waveform, placing a load on the output

port (usually a capacitive load, Cl), and setting secondary pins to VDD or VSS

to obtain a rising or falling response on the output pin. Measurements are then

taken of the propagation delay (Td) between the voltage waveforms at the input

pin and the output pin, the input transition time (Tin), and the output transition

time (Tout). Td is usually measured at the 50% point of VDD between the two pins.

Tin and Tout are measured along the more linear region of the voltage transition,

usually between the 10% and 90% points or the 20% and 80% points of VDD. This

is depicted in Figure 2.3.

To obtain comprehensive characterization data, a range of input transition

times and capacitive loads is applied to each input/output pin pair. This process

occurs for every input/output pin pair combination of the cell using both rising

and falling input transitions.

2.1.2 Effective Capacitance

Cell characterization using simple input transition times and capacitive

loads requires a large investment of CPU time. While purely capacitive loads

are poor approximations for the highly resistive and tightly coupled interconnect

10

out

Input Pin

T

T

T

in

d

out

T

T

T

in

d

Output Pin

Figure 2.3: Measurements that are made on the rising and falling inputs and
outputs of a cell are shown: intrinsic delay (Td), input transition time (Tin), and
output transition time (Tout).

seen in today’s designs, increasing the complexity of the interconnect model to

something as simple as a π-model1 would result in a huge increase in these CPU

requirements.

In order to more accurately predict a cell’s behavior while maintaining

the simplicity of a capacitive load, the concept of an effective capacitance, Ceff,

was introduced in [51] and refined in [48] and [13]. The resistive shielding of the

interconnect prevents the current from quickly reaching the furthest capacitances.

1The term π-model is used to describe a capacitor–resistor–capacitor series. The graphical
representation of this series looks like the letter π.

11

This results in a more rapid rise in the voltage at the output pin than would

be seen by a single capacitor with a value that is the total capacitance of the

interconnect, Ctot. Calculation of Ceff is done by equating the mean current into

the interconnect with the mean current into a single capacitor over the transition

period.

Most timing verification systems that use empirical models require the

calculation of Ceff at model evaluation time as the cell’s characterized performance

is often measured when the cell is simulated using only a simple capacitive load.

Analytic models may also utilize Ceff, but this is a function of the form and runtime

requirements placed on the model. Due to the widespread use of empirical cell

models, Ceff has become a fixture in timing verification systems.

Unfortunately, the utility of Ceff is rapidly diminishing in today’s nanome-

ter designs. Because Ceff is based on mean current flow, the cell’s intrinsic delay

(often measured at the 50% point of the output voltage waveform) can be roughly

approximated using a capacitive load of Ceff. However, as the output voltage

waveform seen when modeling the cell and interconnect in SPICE may exhibit

a distinct “tail” due to resistive shielding (see Figure 2.4), the output transition

times cannot be accurately approximated with a simple capacitive load.

More accurate models of the interconnect can be created for use in charac-

terization [42, 45]. These models can be used later in the design flow to perform

in situ characterization for each specific cell instance. However, in the front end

of the design flow, Ceff will continue to be used.

12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2e-10 4e-10 6e-10 8e-10 1e-09 1.2e-09 1.4e-09

V
ol

ta
ge

 (
V

)

Time (sec)

Voltages With Long Tails

INV Output

Ramp Input
Inverter Output
20%-80% Tout

Figure 2.4: The voltage output waveform of an inverter exhibits a distinct tail
when driving a load with high resistive shielding. A linear approximation of the
output transition time can lead to significant errors during timing verification.
The 20% to 80% Tout approximations are shown as straight lines across the tails.

13

2.1.3 Empirical Modeling

Cell characterization is the process of empirically measuring the electrical

performance of a cell. Cell modeling is the process of abstracting this data into

a model for rapid evaluation by an application in the design and/or verification

flow [36]. Most papers and books that discuss cells and their models omit the

process of characterization. However, without accurate characterization, the em-

pirical data used to derive the model may not approximate the cell’s behavior in

a circuit with sufficient accuracy or consistency.

2.1.3.1 Characterization Techniques

Little literature exists concerning the actual process of characterization.

While various researchers have written papers concerning the form and benefits

of different cell models, the process of empirically gathering the data to create the

model has largely been left as an exercise for the reader. What little information

exists can be found by searching the U.S. patent database and by examining the

characterization methodologies used by commercial products as well as internal

tools in integrated circuit companies.

Early characterization systems were developed internally by large inte-

grated circuit design companies. These companies had their own fabrication fa-

cility with proprietary cell models and transistor models tailored to their design

process. Characterization occurred internally and the resultant proprietary mod-

els were delivered to the IC designers (both internal design groups and external

customers). Many of these characterization systems simply used input provided

by the characterization engineer (also known as the librarian) to determine which

14

data points should be extracted. This raw measured data was then used to per-

form a curve fit to create the cell’s electrical model.

Later systems automated the process of specifying the environment under

which data should be gathered. Instead of exactly specifying every capacitive load

and input transition time to be simulated, the librarian specified the minimum

and maximum bounds, and the characterization system distributed its runs across

these bounds.

Eventually, as design features continued to shrink, the response surface2

of these measured values began to exhibit distinct nonlinear regions. Predicting

where these nonlinear regions occurred prior to simulation was nearly impossible

in large cell libraries. Thus, in some characterization systems, Monte Carlo simu-

lation was employed to verify the models created from these measurements against

the SPICE measurements under those same conditions. Regions exhibiting large

interpolation errors could then be identified and the points used for data extrac-

tion in subsequent runs could be selected to reduce or eliminate these errors. This

was successfully employed in [19] to automatically determine where additional

points should be measured by recharacterizing in the areas that exhibited errors

greater than some user-defined tolerance.

2.1.3.2 Cell Modeling

Characterization data, once empirically measured, is used to create the

cell model. Empirical models used in production IC design flows tend to fall

2The term response surface refers to measured intrinsic delays or output transition times.
When plotted against the input transition time and output load, a 3-D surface is formed as
shown in Figure 4.3.

15

into one of two categories: characteristic equations and characterization tables.

A characteristic equation is a monolithic equation used to represent the cell’s

behavior across one or more variables. The characterization table uses a multitude

of equations, stored in a table, only one of which is applicable for a specific range

of input variables.

Characteristic equations are determined by fitting the empirical data to the

equation. Typically they are quite complex and contain square and logarithmic

terms in order to model the inherent nonlinearities exhibited by the measured

intrinsic delay and output transition time response surfaces. Equation 2.1 is an

example 21-term characteristic equation, used in the early 1990s, to calculate a

cell’s response as a function of voltage, temperature, fabrication process, input

transition time, and capacitive load. Some characteristic equations in use today

for nanometer designs contain over 100 terms.

f(V, T, P, tin, Cl) = a1V + a2T + a3P + a4tin + a5Cl + a6V T + a7V P +

a8V tin + a9V Cl + a10TP + a11Ttin + a12TCl +

a13Ptin + a14PCl + a15tinCl + a16 ln (V) + a17 ln (T) +

a18 ln (P) + a19 ln (tin) + a20 ln (Cl) + a21 (2.1)

Characterization tables have become more popular in recent years as it has

become more and more difficult to create a single equation that adequately repre-

sents all measured values. Just as a complex curve can be approximated using a

series of connected line segments, a cell’s response surface can approximated using

an array of simple characteristic equations. As the equations used in characteri-

zation tables tend to be nearly linear, the selection of the boundary points (the

16

points that define the region for which a given equation is valid) becomes critical.

The selection of two points on opposite sides of a very nonlinear region will result

in large interpolation errors when the model is evaluated.

The creation of characterization tables is complicated by the fact that

the actual response surface being approximated is unknown. The data points

used to create the characterization tables might not be good representatives of

the overall response surface. It is not possible to know whether they are indeed

good representatives a priori. While programs such as SPICE can provide the

response of a circuit at a very specific input transition time and output capacitive

load, the true response surface is not known in advance over all input transitions

and output loads. Thus simply picking a random sampling of input transition

times and output loads to measure at and store in a characterization table does

not guarantee accuracy when interpolation is used to determine the response at

points not actually measured.

Measuring at a greater number of data points and storing larger tables

to represent the cell can minimize large interpolation errors. However, for a cell

library of hundreds or thousands of cells and tens of thousands of tables, the

memory consumption becomes prohibitive. Furthermore, larger tables require

more CPU time to search through and interpolate across when randomly accessed.

The combination of the two makes smaller tables much more desirable than larger

tables.

In [29] a new model is proposed that reduces runtime characterization data

memory requirements and CPU time for evaluation by treating input to output

paths through a cell as an edge in a graph. These edges are combined to produce a

17

substantially smaller graph while maintaining the delay accuracy. Unfortunately,

this model, which the authors refer to as the concise delay network, represents

delay as a single value instead of an equation or table and, thus, does not provide

the accuracy required for nanometer designs.

2.1.3.3 The Synopsys Model

Consider the characteristic equation used by Synopsys [56] in its charac-

terization tables of the following form:

r = f(Tin, Cl) = a1 ∗ Tin + a2 ∗ Cl + a3 ∗ Tin ∗ Cl + a4 (2.2)

The circuit response, r (intrinsic delay or output transition time), is a

function of the input transition time, Tin, and the capacitive load on the output

port, Cl. To determine the response of the circuit at a specific input transition

time and capacitive load, the two transition time indices of the table, t−r and t+r ,

that tightly bound the input transition time of the response to be solved for are

located. The same operation is performed for the capacitive load (C−
r and C+

r).

C−
r ≤ Cl ≤ C+

r (2.3)

t−r ≤ Tin ≤ t+r (2.4)

These four bounding values determine four entries in the characterization table.

r−− = table(t−r , C−
r)

r+− = table(t+r , C−
r)

r−+ = table(t−r , C+
r)

r++ = table(t+r , C+
r)

Using the table values, the coefficients a1, a2, a3, and a4 can be determined

18

for the characteristic equation that spans these four points [47].

t−r C−
r t−r ∗ C−

r 1
t+r C−

r t+r ∗ C−
r 1

t−r C+
r t−r ∗ C+

r 1
t+r C+

r t+r ∗ C+
r 1

a1

a2

a3

a4

 =

r−−

r+−

r−+

r++

 (2.5)

Once the characteristic equation has been determined, the interpolated response

at the desired input transition time and capacitive load can be calculated. In

Figure 2.5, “X” indicates the interpolated value of the response surface defined

by these bounding points.

Load

Response
Time

Input
Transition
Time

Capacitive

r

r

r
− C r

+

r−− r−+

r+−

r++

t +

−

X

C

t

Figure 2.5: The response at point X is interpolated using the equation that spans
the points in the table that bound it.

2.1.3.4 Other Characterization Models

While characterization tables and characteristic equations represent the

bulk of the gate models used in IC design flows, they are by no means the only

models or the most accurate for arbitrary loads. In [13] the authors present a

19

simulation model that is evaluated using transient analysis to create a waveform

from which intrinsic delay and output transition time can be determined. This

model consists of a linear time-varying voltage source in series with a fixed resis-

tance to model a gate. Figure 2.6(a) shows the model. The characteristics for

the voltage supply (t0 and ∆t) and driver resistance (Rd) are obtained through

characterization as described previously using various input transition times and

capacitive loads. This model was later refined in [3], as shown in 2.6(b), to account

for nonlinear effects, such as voltage tails, seen in today’s nanometer designs.

(b)

R d

C eff

t0 ∆t 1 ∆t 2 ∆t 3

C eff

R d

∆tt0

(a)

Figure 2.6: The original Thevenin model presented in [13] used a fixed slew rate
for the voltage supply is shown in (a). In [3] the idea was extended to a multi-point
voltage supply, shown in (b), to obtain better accuracy with respect to SPICE.

The Thevenin equivalent model of [13] is further extended in [15]. The

20%, 50%, and 90% points of the output waveform are measured with respect to

the midpoint of the input waveform. The purpose of breaking the single model

into two models is to handle situations in which the output voltage exhibits non-

linear tails that could not otherwise be measured. This model attempts to match

the output voltage at three points but is unable to predict the waveform shape be-

20

tween these points, making the calculation of output transition time and voltage

thresholds difficult.

In [8] the authors develop a new cell model for use when multiple input

pins are switching simultaneously. A more extensive characterization system is

required that varies transition times and arrival times of signals at multiple input

pins simultaneously. This data is then fit to a characteristic equation governing

the behavior of the cell. A new static timing analysis application is required to

take advantage of this model because cell delay and output transition time cannot

be computed prior to all signals arriving at the input pins of the cell. It should be

noted that the authors do not address the problem associated with the additional

CPU resources required to perform this more exhaustive characterization.

2.1.4 Analytic Modeling

Analytic models for cells fall into one of two categories. In the first, analytic

models of the transistors forming the cell are created and evaluated at runtime.

In the second, a cell model is created directly. Both models are described below.

2.1.4.1 Transistor Modeling

Circuit simulation programs such as SPICE use detailed transistor models

that can be globally applied against transistors of all sizes and characteristics.

While this degree of flexibility is required for a general-purpose analysis program,

simplified models can be generated once the exact transistor characteristics have

been determined for a specific logic function implementation.

Consider the case of a two-input NAND gate. Once a physical imple-

21

mentation of the NAND gate has been created, certain portions of the transistor

model that would be used to evaluate a transistor in that gate can be replaced

with constants, thus improving circuit simulation time in specialized simulators.

Additionally, certain simplifying assumptions can be made once the operating

conditions of a design are known. Of course there is usually a tradeoff between

the degree of simplification and the attendant loss of accuracy.

In [25] the authors propose an interpolation scheme that can be used to re-

place explicit evaluations required for traditional BSIM3 transistor models in use

today [9]. This interpolation mechanism results in a unified expression across all

regions of the transistor. BSIM3 models used in SPICE have multiple equations to

represent the behavior of the transistor. The relevant equation used is a function

of the voltages at the nodes of the transistor. Application of this interpolating

transistor model in a nonlinear SPICE-like application results in near-SPICE ac-

curacy while improving overall throughput.

Because most timing analysis applications assume that only a single input

will switch at a time, simple single-stage logic (for example, NANDs, NORs, and

AOIs) can be treated as inverters. This simplification is used in [21] to create

two transistor models, one NMOS and one PMOS transistor model, which form

an inverter to represent the cell. These transistor models are used in conjunction

with a simplified π-model representation of the interconnect to simulate the cell’s

response to input waveforms. The authors report error margins of up to 11%

when compared to SPICE. These errors tend to increase for compound cell logic

(such as OR and AND gates).

A similar approach is taken in [5]. NAND and NOR gates are replaced

22

by equivalent inverters with transistors that are modeled analytically. Complex

gates are reduced to NAND/NOR combinations that are then further reduced

into inverters. The proposed model exhibits errors of up to 6% while improving

runtimes 12× to 15× over SPICE.

In [49] PMOS and NMOS transistors are replaced with current-source mod-

els. The values associated with the models are analytically determined. Four

different current-source models are created for a transistor, one for each region of

activity based on the gate voltage. The current used to drive the interconnect is

the difference between the current flowing in the PMOS and NMOS transistors.

The motivation for this methodology was to easily drive AWE-based [45] inter-

connect models to obtain accurate interconnect delay information. The authors

tested their model using an inverter and obtained results showing speedups of

100× over SPICE.

2.1.4.2 Cell Modeling

Unlike transistor models, analytic cell models treat the cell as a single

entity. While some characterization may take place to create the analytic model,

it is not the traditional characterization methodology used to create empirical

models. Empirical models measure delay values directly while analytic models

measure electrical parameters (typically current) from which timing information

can be calculated.

In [20], the authors present a current model for a CMOS inverter driving

a π-model for the interconnect. The current supply approximates the inverter

for the time in which the transistors are in saturation. The π-model is used to

23

compute a single effective capacitive load against which the current model is run

to calculate cell delay. This model exhibited errors of up to 8% when compared

to HSPICE, but it was able to run two to three orders of magnitude faster. The

model was not extended by the authors to handle circuits more complex than an

inverter.

Yet another current-source model is described in [31]. A single current

source replaces the cell and is used to drive a π-model representing the inter-

connect. The parameters for the current source are analytically determined. The

authors report that their models do not accurately model the tails exhibited when

driving interconnect with high resistive shielding. Results run typically within 5%

to 11% of HSPICE for the more linear regions of the output voltage waveform.

The authors only model an inverter, so it is unclear as to the general applicability

of the equations governing a cell’s behavior.

2.1.4.3 Path Sensitization

For cells with a large number of input pins, exhaustive cell characterization

is impractical due to the number of different state-dependent delays possible. For

example, characterizing all input pin to output pin delays in an eight-bit adder is

combinatorially explosive due to the number of different pin settings possible on

the secondary input pins not being characterized. Path sensitization is in itself

a large problem with a separate body of research surrounding it. This section

discusses a few representative essays.

In [38] the authors describe a symbolic solution to the problem of pin sen-

sitization that uses Elmore delay estimates to weight the delay values associated

24

with transistor switching times. Using this approach, specific paths through the

cell can be uniformly described as exhibiting approximately the same delay and

a representative path can be characterized using a more accurate simulator to

obtain the eventual timing model.

A second approach is presented in [55]. In this methodology the authors

attempt to find both the longest and shortest data-dependent delays between

two pins through a combination of topological sorting and delay approximation

through individual gates that the larger circuit is composed of. Once the paths

have been identified, more traditional characterization can occur on those paths.

2.2 Interconnect Delay Analysis

As feature sizes decrease, the gate delay decreases while the effective con-

tribution of interconnect delay increases. Interconnect delay has become the dom-

inant factor in determining circuit performance. The point at which interconnect

began to dominate overall delay occurred at approximately 0.8 µm [27].

As interconnect delay importance grew, focus shifted away from cell de-

lay models to interconnect models. Many of the early interconnect analysis ap-

proaches used step or linear input transitions to calculate delay and transition

times through the interconnect. With today’s nanometer designs exhibiting highly

nonlinear waveforms at the cells’ output pins, these simplifications are no longer

valid.

This section discusses interconnect delay analysis and its use in timing

verification systems. Razor, presented in the next chapter, builds upon existing

interconnect analysis methods to produce a fast, highly accurate approach that

25

models any arbitrary waveform used to drive the interconnect.

2.2.1 Early Analysis

In 1948, Elmore [18] created a simple delay model for wideband amplifiers.

For a (linearized) amplifier circuit that has a monotonic step response, its im-

pulse response, or transfer function, h(t), is non-negative and can be treated as a

probability distribution function.

Given a distribution h(t), the nth moment of the distribution is as follows:

∫ ∞

−∞
tnh(t)dt (2.6)

If h(t) has an area of 1, equation 2.7 defines moment 0. The first moment is then

the mean of h(t). ∫ ∞

−∞
h(t)dt = 1 (2.7)

To approximate the 50% delay response, Td, of the interconnect, the median

can be calculated. The 50% delay due to a unit step voltage into this system

corresponds to the median point of h(t):

∫ Td

0

h(t)dt =

∫ ∞

Td

h(t)dt =
1

2
(2.8)

Elmore proposed that the median of h(t) could be approximated by the mean of

h(t) if h(t) is nearly symmetric.

In [52] the Elmore delay, as it was called, was used to analyze a certain

class of RC3 circuits that approximated digital gate and interconnect delays. The

3The term RC refers to circuits composed only of resistors and capacitors.

26

authors proved that the impulse response of a tree or mesh of resistors and capac-

itors is non-negative, thus validating that h(t) could be treated as a probability

distribution function.

2.2.2 Advances in Moment Matching

Asymptotic Waveform Evaluation, or AWE [45], uses the moments of the

step response to approximate the dominant poles of a linear interconnect circuit.

In order to create a qth-order approximation of a circuit, 2q moments are computed

where q is less than the actual order of the circuit. The calculation of poles and

residues from moments relies upon a form of Padé approximation. Once the poles

and residues are known, the response of the circuit can be computed as a sum of

exponentials.

The development of AWE represents a milestone in interconnect delay

analysis as only a few moments are required to approximate signal propagation

through interconnect consisting of linear elements. AWE can be used to calculate

both driving-point impedance models as well as the response to a voltage input at

a node within the interconnect network, even for large networks that challenge the

capacity of simulation engines such as SPICE. Furthermore, the creation and eval-

uation of these models can occur thousands of times faster than SPICE analysis

as evidenced by the RICE software described in [50].

While AWE can produce single-input/single-output low-order model ap-

proximations for an interconnect network, other moment-matching techniques [43,

54] have since been created to produce multiple-input/multiple-output low-order

model approximations. In [43] the authors introduce Passive Reduced-Order In-

27

terconnect Macromodeling Algorithm, or PRIMA, to create stable and passive4

models of the interconnect. Its advantage over the block Arnoldi approach of [54]

is the guarantee of passivity.

2.2.3 Timing Analysis

Once a low-order model of the interconnect has been created, it must be

used in a system to analyze timing through the interconnect. Most existing em-

pirical models use a linear ramp to approximate the output voltage of a cell. This

saturated ramp5 can be applied to the low-order interconnect model to quickly

obtain time/voltage values for nodes within the interconnect network.

A linear approximation for the voltage waveform at a cell’s output pin

is only valid if the ramp closely approximates the actual voltage through the

important regions of interest. Output transition times, in the late 1980’s, were

measured between the 10% and 90% points of VDD. As feature sizes shrank, so,

too, did the linear portion of the output voltage waveform. By the early 1990’s,

the output transition time was typically measured between the 20% and 80%

points. Today it is not uncommon to see these measurements taken at the 30%

and 70% points because of the nonlinearities associated with nanometer design.

Approximating the output transition time by this continuously narrowing

linear voltage region is both impractical and inaccurate. The shape of the wave-

form outside of this window can be very important to the performance of a gate

being driven. With the greater emergence of nonlinear waveforms, a solution must

4A passive system is one that cannot generate energy.
5A normalized input voltage that swings from zero to one with some slope and then remains

constant afterwards is referred to as a saturated ramp.

28

be found that both comprehends and propagates a better waveform specification.

Little literature exists that describes the simulation of an arbitrary voltage

waveform through interconnect. It can be argued that such efficient simulation

techniques have not previously been required due to the lack of cell models that can

produce or consume such waveforms. The approximation of nonlinear waveforms

with a linear ramp has recently become a large source of error, however, and it is

believed that this source of error must be addressed for accurate timing verification

in nanometer designs.

Recursive convolution [4] was introduced in 1992. In this approach, a

voltage waveform can be described using a series of line segments as shown in

Figure 2.7. The slopes of these ramps can be used as multipliers to solve the gen-

eralized system. The overall response can be determined by summing the multiple

zero-state ramp responses of each segment up to the point in time targeted for

analysis6. Recursive convolution, as described in [4] is highly accurate but, for

a large number of line segments, also can be highly complex requiring a large

number of floating-point calculations at each time point.

FTD [34] is another approach to the propagation of piecewise linear rep-

resentations of a voltage waveform through interconnect. It directly solves the

exact solution at a time point tk by using the solution at time tk−1 and assuming

a linear response for a reasonably small timestep ∆t.

6Recursive convolution will be described in more detail in the next chapter with the intro-
duction of Razor.

29

−A

1

∆τ 1 ∆τ 3 ∆τ 4∆τ 2

Voltage

Time

A

A

A

2

3

4
4

A

Figure 2.7: A series of ramps and their respective time offsets can be used to fully
describe a voltage waveform.

2.3 Circuit Simulators

This section describes some of the better-known circuit simulators. These

simulators are designed to evaluate entire blocks of logic including gates and in-

terconnect. This list is not meant to be exhaustive but is meant to provide an

overview of the technology used to simulate large digital systems as cell and in-

terconnect models are only as good as the systems that consume them.

SPICE [40] is the reference platform against which all other simulators

compare themselves. Since its introduction into the IC design flow, SPICE has

become the final arbiter with respect to the electrical behavior of a design. Entire

30

software industries have developed around SPICE engines as well as the creation

of models used by SPICE during simulation.

SPICE reads a netlist7 of the circuit and builds a matrix representing

the electrical connections and components within that system. Elements like

transistors and diodes are replaced by simplified models (companion models) that,

themselves, may in turn be further simplified with their companion models (like

the capacitor). Complex differential equations govern the behavior and values

associated with these companion models. In order to guarantee system stability,

implicit integration techniques such as trapezoidal integration are used [37].

At each time point, the matrix representing the circuit is built and values

stored within it. Newton-Raphson iteration (Figure 2.8) is used to converge upon a

set of nodal voltages and element currents. These voltages and currents are stored

and analysis begins anew at the next time point using the previous solution as

the initial value for the next simulation.

Though SPICE is highly accurate, the generation and inversion of matrices

during each Newton-Raphson iteration greatly impacts its execution time and

memory consumption. Additionally, the complexities of the equations governing

element behavior noticeably impact the simulation time. For example, there are

often many different models for a NMOS or PMOS transistor, the selection of

which is determined by characteristics specified in the netlist for that transistor

instance. Furthermore, there may be well over 100 different variables governing the

behavior of each transistor model. Many of the high speed and/or high capacity

7A netlist is a description of electrical components, such as resistors and capacitors, and the
way that they connect to one another to form a circuit.

31

Slope = f’()

0

x1

x0

x2
x3

y = f(x)

(initial guess)
x

Figure 2.8: Newton-Raphson iteration is used to calculate the solution of f(x) = 0.
The X intercept of the tangent of f(xn) is used to determine the next guess, xn+1.

simulators achieve their improvements over SPICE by simplifying the models,

the numerical integration process, matrix partitioning, or some combination of

these [30].

The matrices that SPICE builds to represent the circuit tend to be highly

sparse. In general matrix inversion is an O(n3) operation [10], and, while the

original matrices are sparse, their inverses are not. In [32] sparse matrix techniques

are described that take advantage of the characteristics of these matrices to greatly

accelerate the operations performed on them during circuit simulation. These

algorithms were incorporated into Berkeley’s SPICE3 circuit simulator.

In [41] the authors describe a method for increasing the convergence rate

of the Newton-Raphson iterations by altering the method by which the next guess

is calculated. Using a methodology called “error-function-curvature driven New-

32

ton update correction,” the number of iterations required for Newton-Raphson

convergence can be dramatically reduced and the importance of the initial guess

is minimized8. Their technique is generally applicable across a variety of different

nonlinear simulators.

Crystal [44] is a timing analysis program that replaces detailed transistor-

level analysis with fast lookup-table timing approximations. Furthermore, instead

of responding only to explicit stimulus as input from the user, Crystal performs an

analysis of the netlist to determine the worst-case timing path through the logic.

While worst-case delay values are also propagated in STA, Crystal does so only if

the path it is searching is active within the circuit. Distinguishing between true

and false paths is not normally a function of static timing analysis. Instead, the

user typically creates a list of false paths to use during a post-processing stage to

remove those paths from any list of critical paths that may have been found.

Forward Euler integration is not used in SPICE during circuit simulation

because the timestep required to guarantee system stability could be so small as

to make the total simulation time unreasonable [46]. In Adaptively Controlled

Explicit Simulation, or ACES [17], the authors use an approximation for Forward

Euler and adaptively control the timestep used during simulation to guarantee

stability. The system also exploits spatial latency by partitioning the system

(reducing matrix sizes) and omitting those portions of the system that do not

change between timesteps.

Motis [6], a timing simulator developed by AT&T Bell Laboratories, was

8The convergence rate for Newton-Raphson iteration is highly dependent upon the initial
guess used.

33

one of the first simulators to use multiple simplifications to speed transient anal-

ysis including the use of simplified models for MOS transistors and event-driven

simulation. Unlike SPICE, which used differential equations to model NMOS and

PMOS transistors, Motis used simpler table-lookup models that could be rapidly

evaluated. These transistor models were derived through precharacterization of

specific gate types. Once the individual transistor models were calculated, the

entire gate was replaced with a model consisting of two current sources: one for

the PMOS section and one for the NMOS section. Recomputation of the gate

equivalent only took place when event-driven simulation indicated a significant

change in the gate environment.

ILLIADS [53] is a circuit simulation program designed to evaluate circuits

that are too large for traditional simulators such as SPICE. In addition to in-

creasing capacity, ILLIADS exhibits dramatic runtime improvements over SPICE

through the use of analytic solutions for differential equations in the innermost

analysis loops. A new MOS circuit primitive is also used to significantly improve

ILLIADS performance without sacrificing significant accuracy.

TETA [1, 14], or Transistor-Level Engine for Timing Analysis, is a SPICE-

like simulator targeted for interconnect analysis. In modern designs, interconnect

delays account for both a large portion of the overall path delay as well as a large

portion of the memory and CPU time required during circuit simulation. TETA is

designed to efficiently analyze general circuits with dominant interconnect charac-

teristics by replacing the gates with models that are more efficient for interconnect

analysis. Individual transistors are precharacterized to create current models that

replace the transistors in the netlists. The interconnect is replaced by an N-port

34

representation derived through moment-matching techniques. Simulation occurs

in two stages. In the first stage, the interconnect is replaced by a voltage supply

and the cell state is solved for using the simplified transistor models. In the second

stage the gate is replaced by a current supply and the interconnect is modeled us-

ing the N-port representation. These two stages iterate until the system stabilizes

at which point the next timestep is made.

In [58] a timing simulator is proposed that uses functional information

about the circuit to propagate individual gate delays. Control inputs are provided

by the user and the data-dependent delays are propagated with respect to the

functional modes determined by these control inputs. While relatively high error

margins of 25% or more are possible using this technique, this algorithm can

be used as a first approximation to determine the subset of paths that must be

analyzed further using a more accurate timing verification methodology.

2.4 Conclusion

A large body of research has developed around cell and interconnect mod-

eling as well as circuit simulation. SPICE is the reference simulator against which

all models and accelerated simulators are measured. While SPICE produces highly

accurate electrical measurements, long simulation times and vector-dependent re-

sults make its use on all but the most timing-critical paths impractical.

To accelerate timing verification, cell and interconnect models and simu-

lation environments have been developed that attempt to address the capacity

and CPU time limitations of SPICE. In general, most approaches to date have

sacrificed accuracy for speed or capacity.

35

In the next chapter a new method for cell characterization is presented,

called over sampling and data reduction, that improves the accuracy of characteri-

zation tables used in timing verification systems today. Recognizing that a better

model is required in the back end of the design flow that can handle today’s

nanometer effects accurately and quickly, a new cell and stage delay modeling

system is proposed: Blade and Razor. The system is composed of both the

models and the runtime environment within which the models are used.

36

Chapter 3

Model Development

Cell timing models used in production IC design flows have not appreciably

changed in the last 15 years. While the formats vary somewhat, ranging from

characteristic equations to table models, they are fundamentally the same in terms

of their inputs and outputs. Inputs to the cell model typically include a single

capacitive load value and a single value to approximate the slope of the input

voltage. The models produce a single value for the intrinsic delay and another for

the approximate slope of the output voltage across the capacitor the cell is loaded

with.

When these models were originally developed, they provided both the eval-

uation speed and the accuracy required by integrated circuit designers. Unfortu-

nately, while these models still evaluate rapidly, they are fundamentally unable

to accurately account for nanometer effects that must be considered today. The

interconnect delay, for example, is a much larger component of overall delay and,

with the presence of high resistive shielding, the voltage waveform profiles of a

cell are no longer linear. Cell characterization methodologies that use a simple

capacitor to gather empirical data are not able to capture these nonlinear effects.

Cell models are used throughout the entire IC design flow. Their inability

to accurately model today’s silicon makes their use in the latter portion of the

flow problematic as the designer must add sufficient guardband to the design to

37

account for these deficiencies. Clearly a new cell model is required that exhibits

both accuracy and evaluation speed. As interconnect delay accuracy cannot be

sacrificed, such a model must also be able to produce results that can be consumed

by a highly accurate interconnect model. Existing cell models are still useful in

the early portion of the design flow, where evaluation speed is crucial, but they

must also be as accurate as possible so that both front-end and back-end models

produce consistent results throughout the entire flow.

This chapter is divided into three primary sections. The first section intro-

duces a novel cell characterization technique, over sampling and data reduction,

which maximizes the potential accuracy of table-lookup cell models. Specifically,

only by determining the response surface of a cell can accurate characterization

tables be constructed that best approximate the surface with very little loss of

accuracy. Table-lookup models are used today throughout most IC design flows.

The second section describes Blade, a new cell model and evaluation

engine. Characterization for the Blade model is faster and simpler than charac-

terization for table-lookup models or characteristic equations. Blade models are

also able to produce and consume nonlinear waveforms and drive arbitrary loads

at or near SPICE accuracy with runtimes that are tens of thousands of times faster

than SPICE. The performance and accuracy of the Blade model is such that it

could easily replace the traditional table-lookup model or characteristic equation

model in the back end of the integrated circuit design flow when accuracy is more

crucial than raw model evaluation speed.

The third and final section details the interface between the Blade model

and the interconnect model. Traditionally this interface has been the source of

38

accuracy loss. As Blade produces nonlinear waveforms, the interconnect model

needs to efficiently consume this data to produce equally accurate waveforms for

the cells being driven. This section describes an interface, Razor, based on poles

and residues, that consumes arbitrary waveforms produced by Blade without

sacrificing accuracy, speed, or memory. Razor also produces voltage waveforms

that the Blade model can, in turn, directly consume without loss of accuracy.

This combination of cell and interconnect delay calculation is called stage delay

calculation.

3.1 Cell Characterization and Modeling

The accuracy of a cell characterization table is a function of the points

stored within the table from which interpolated values are calculated. This section

addresses the topic of accuracy by focusing on the answers to two questions: Over

what range of values should characterization occur? Within that range, which

and how many points should be selected for measurement?

To answer these two questions, the concept of over sampling and data re-

duction is introduced. Over sampling is used to create a detailed view of a cell’s

response surface by measuring a cell’s electrical behavior at many different points

beyond just those stored within the final model. Data reduction is a dynamic pro-

gramming solution to reduce this detailed response surface to a manageable size

for use by CAD applications. Two different approaches to data reduction are pre-

sented. The first approach is CPU intensive but produces highly accurate results

when compared to the original data. In the event that CPU time is not plentiful,

a second approach is presented which increases error margins only slightly over

39

the first but executes substantially faster.

3.1.1 Auto-Ranging

A cell library is often composed of only a few dozen different logic func-

tions. However, each logic function may be represented many times with different

physical implementations. For example, there can be as many as 20 different

inverters in a typical cell library.

The physical implementation of a cell determines its electrical, temporal,

and spatial characteristics. For example, a buffer composed of very small transis-

tors may not be able to source or sink enough current within a given time period

to make it a suitable choice as a clock buffer driving a large interconnect network.

However, such a buffer might be ideal to drive a small network with very few cell

loads. The ability of a cell to drive a load is referred to as a cell’s drive strength.

Cells built with larger transistors tend to have faster output transition times and

smaller intrinsic delays than those built with smaller transistors for a given load.

On the other hand, larger transistors require more area on the integrated circuit

and consume more power.

A library has a variety of different implementations for a given logic func-

tion so that the smallest implementation that meets the design goals can be used.

Using a cell that has a larger drive strength than required to meet timing con-

straints leads to higher power consumption and chip area. These qualities, in turn,

affect consumers in terms of battery life for their cellular phones and/or cost of

their electronic products, for example.

The job of the engineering team designing a robust cell library is to provide

40

a large enough selection of drive strengths that can, when used in the integrated

circuit, meet the electrical and economic design goals. Knowing that a given cell

implementation is designed to function optimally under a certain set of conditions,

the characterization engineer, or librarian, need only create a model within that

target operational range.

Auto-ranging is the process of automatically determining what conditions

a cell is designed to operate under. Once these limits have been determined, char-

acterization can occur within these established parameters to create the model.

For cell models that are functions of the input transition time and the capacitive

load on the output, four limits must be determined.

3.1.1.1 Capacitive Limits

To determine the upper-bound capacitive load that a cell must be able to

drive, the timing goals for the integrated circuit can be used. Consider the case

of a microprocessor operating at 1GHz. The clock period for such a processor is

1 nanosecond. There may be eight or more levels of logic, between two sequential

elements, that must be evaluated within this clock period.

Design parameters can be used by the librarian to limit the maximum

capacitive load that a cell is characterized against. In this fictional microprocessor,

for example, an output transition time of 1 nanosecond is unreasonable as the

signal would be unusable in a 1-nanosecond clock period. Armed with specific

design goals, the librarian can make an informed determination of the maximum

output transition time that a cell should produce in the integrated circuit. This, in

turn, can be used to automatically drive simulations that determine the maximum

41

capacitive load placed on the output of the cell to obtain this maximum output

transition time. Because the output transition time is also a function of input

transition time, the cell should be simulated using the fastest reasonable input

transition time to determine the maximum capacitive load that the cell can drive.

The minimum capacitive load can be determined through inspection of the

cell library. The minimum load a cell might drive would be the active load that

occurs when a cell adjoins the cell it drives. Thus, the lower capacitive limit for

a cell would be the effective input pin capacitance of the smallest cell it could

reasonably be expected to drive in this fashion1.

3.1.1.2 Input Transition Time Limits

In the previous section the slowest output transition time was determined

by the librarian. A good approximation for the slowest input transition time would

be this output transition time. While it is true that transition times degrade over

interconnect, too much of a degradation would cause the design to fail to meet its

timing constraints.

The fastest input transition time can be determined through simulation.

The fastest input transition times exhibited by a cell occur when the cell is very

lightly loaded and is driven by a large cell through abutment.

3.1.1.3 Input Voltage Waveforms

For an empirical model to be accurate, the conditions under which the

measured data is gathered must closely approximate the conditions under which

1Often this value is so small that a value of 0 picofarads can be used as well.

42

the cell is expected to operate within the IC. In older generations of IC fabrication

technology, saturated linear ramps could closely approximate the actual voltage

waveforms created by a cell. However, the decrease in transistor feature sizes and

increase in interconnect load has resulted in output transitions much less linear in

nature. Therefore, in order to accurately capture electrical data about a cell, the

input transitions to the cell during characterization must reasonably approximate

these nonlinear waveforms.

The simplest way to create input waveforms that approximate those ex-

pected during normal operation is to use a cell from the cell library as a driver cell

to create these waveforms. However, directly coupling the output of the driver cell

to the cell being characterized may not yield predictable input transition times.

When the cell being characterized is loaded, coupling back to the input pin will

result in an alteration of the input waveform. In other words, two different input

waveforms can be created by the driving cell by simply changing the capacitive

load on the cell being characterized while all other conditions remain unchanged.

The solution to this dilemma is shown in Figure 3.1. By separating the

driving cell that creates the input waveform from the cell being characterized, Cl

coupling cannot alter the waveform shape because the voltage-controlled voltage

source (VCVS) is an ideal source generating a forced response. This driver cell

is precharacterized for a specific (fixed) input transition time and a variety of

capacitive loads. During the characterization of a cell, a value for Crise/fall is

chosen such that a waveform with the desired slew rate is produced by the driver.

43

Vin

rise/fallC

outV

lC

VCVS

Figure 3.1: A buffer is used as a driver cell to create a realistic voltage waveform
for use in characterization. By altering Crise/fall the input transition time to the
cell being characterized can be altered. A VCVS guarantees that Cl coupling to
the input pin will not alter the shape of Vout.

3.1.1.4 Putting It All Together

Using just a few pieces of information from the user, the cell’s upper char-

acterization limits can be automatically determined. This operation can be per-

formed for each unique characterization table being generated.

To determine the fastest input transition time, the fastest buffer in the cell

library should be used to directly drive the input pin being characterized. In the

event that a buffer is not the highest drive-strength cell in the library, a buffering

function can usually be created by tying the secondary inputs of the largest drive-

strength cell to VDD or VSS as appropriate and/or by creating a compound cell by

prepending an inverter to the input. The output pin should be loaded with the

minimum capacitive load that might be driven by that cell in the design.

Using this same netlist configuration, another simulation can be performed

to determine the capacitive load for which the output transition time reaches the

44

predefined limit. Many simulators perform this type of optimization function

directly.

The other two values, the minimum capacitive load and the slowest input

transition time, can be specified by the user directly. Unlike the other two pa-

rameters, these may be more globally applicable and need not change from cell to

cell.

3.1.2 Over Sampling and Data Reduction

Once a cell’s characterization limits have been determined, the selection

of points to measure within those limits must still be made. Some cells may

have a nearly linear response surface for intrinsic delay and output transition

time while others may not. Without actually knowing the characteristics of the

response surface, it is not possible to determine beforehand where or how many

measurements should be made to obtain the best possible representation in the

characterization table.

One rather obvious solution to the problem would be to create a very large

characterization table of sufficient granularity to ensure that interpolation errors

are minimized. Modeling the surface with a smaller table introduces a greater

chance of interpolation error than with a larger table. However, program memory

and runtime constraints place practical limits on the size of the tables. Obviously,

smaller tables are less of a drain on system resources than larger tables. Random

table lookups also take longer for bigger tables than for smaller tables.

Essentially, there are only two methods available to improve overall char-

acterization table accuracy while maintaining reasonable table sizes. The first

45

method is an iterative one. A set of points can be selected and the cell’s response

measured at these points. Then, using Monte Carlo simulation, a second set of

points can be selected and measured. These measured points can be compared to

the interpolated value from the characterization table and the errors then deter-

mined. If the error exceeds some predetermined margin, the selection of points

can be refined to attempt to reduce the error, and the process repeated.

The second method, called over sampling and data reduction, draws its

origins from the first. In the first method, a number of points were measured,

some of which were used within the characterization table and others used for

error analysis. Instead of iterating in this fashion to converge upon a solution,

over sampling and data reduction is the process of performing many more mea-

surements of the cell’s response to obtain a highly accurate representation of the

overall response surface. Once this data has been gathered, entire rows or columns

of data that can be interpolated without significant error can be removed from

the table. Error calculation becomes part of the process in determining which

measured points are no longer needed, thus removing the need for separate error

analysis.

The difficulty with over sampling and data reduction is that the selection

of any row or column for removal affects any subsequent selection. Thus, a greedy

selection of rows or columns for removal will not necessarily yield the smallest

tables while maintaining desired error margins.

46

3.1.2.1 Error Calculation

In trying to determine which indices of a large table to use in the final,

reduced table, the error must be calculated for those indices used in the reduced

table and compared against any other potential indices. Thus, any point Ri,j in

the response table, R, represents two potential indices (i for the transition time

and j for the capacitive load) in the reduced table. Stated another way, any

point Ri,j may be the lower-left corner of a rectangle that defines the reduced

table area coverage. Therefore, the first step is to determine the error associated

with choosing point Ri,j and any point above and to the right as the bounds

of a reduced table entry. This is done by calculating the coefficients describing

the corners of this rectangle, interpolating for any points in the rectangle, and

summing the difference between the interpolated values and the measured values

from SPICE as shown in Algorithm 3.1.

As an example, consider points R1,0 and R3,2 in Figure 3.2(a). The coeffi-

cients of the characterization equation are calculated using points R1,0, R3,0, R1,2,

and R3,2, the four corners of the rectangle defined by R1,0 and R3,2. Interpolation

error for this region is determined by comparing the SPICE measured data within

this region to the interpolated values. For the region defined by R1,0 and R3,2,

interpolated values are calculated for indices that correspond to points R1,0, R2,0,

R3,0, R1,1, R2,1, R3,1, R1,2, R2,2, and R3,2. The differences between each of these

values and the SPICE measured values in the large table are summed as the error

associated with this region.

A complete error table can be calculated for the response surface using this

procedure for every point in the table to every point above and to the right. This

47

Algorithm 3.1 Data reduction relies upon the creation of a table that stores
interpolation errors. Any two points in the original measured data can define a
rectangular region which may be part of the reduced response surface. The error
associated with this region is the sum of the differences between the interpolated
values in this region and the SPICE measured values.

Require: Measured SPICE data in array Data
ErrorTable ⇐ ∅
for I = 0 to NumLoads − 2 do

for J = 0 to NumInputSlews − 2 do
FromIndex ⇐ I × NumInputSlews + J
for K = I + 1 to NumLoads − 1 do

for L = J + 1 to NumInputSlews − 1 do
/*
* Calculate coefficients of the characteristic equation
* for the region defined by the four points
* Data[I][J], Data[I][L], Data[K][J], and Data[K][L]
*/
ToIndex ⇐ K × NumInputSlews + L
CalculateCoefs(Data, I, J, K, L, a1, a2, a3, a4)
/*
* Calculate interpolation error and store as the
* error of this region
*/
Error ⇐ 0
for M = I to K do

for N = J to L do
Error ⇐ Error + InterpError(Data[M][N], a1, a2, a3, a4)

end for
end for
ErrorTable[FromIndex][ToIndex] ⇐ Error

end for
end for

end for
end for

48

table is used in the next phase of data reduction to obtain the final cell model.

49

2

41

3

1 6

4

3

5

2

R 49,48R1,48

0,3R 1,3R 2,3R 3,3R 48,3R 49,3R

0,2R 1,2R 2,2R 3,2R 48,2R 49,2R

0,1R 1,1R 2,1R 3,1R

C

R 49,1R

0,0R 1,0R 2,0R 3,0R 48,0R 49,0R

48

49

Input Transition Time

(a)

(c)(b)

48,1

load

0 4948321

0

1

2

3

0,49R 1,49R 2,49R 3,49R 48,49R 49,49R

0,48R R 2,48R 3,48R 48,48

Figure 3.2: Traversal of the characterization table. (a) Resource table. (b) Two
steps from intermediate point. (c) Three steps from intermediate point.

50

3.1.2.2 Reduction of Characterization Tables

In order to reduce a large characterization table into a smaller characteri-

zation table, a dynamic programming solution is used [24]. Consider, for example,

the reduction from a 50 × 50 table to a 10 × 10 representation. In the previous

section the error was calculated from any point to another above and to the right

in one step. It is now possible to estimate the error from any point to R49,49 in

two steps, as shown in Figure 3.2(b). The approximate error is the error between

that point and any intermediate point above and to the right plus the error be-

tween the intermediate point and R49,49 (regions one and two in Figure 3.2(b)).

Additionally, the selection of the intermediate point implies that its two indices

would also divide the entire table, so the error associated with regions three and

four must also be included.

This method of searching is performed for every point in the table for any

two steps. For any point in the table, the algorithm finds the intermediate point

that it can step to such that the accumulated error is minimized for all regions

above and to the right of it. This value and a pointer to the intermediate point is

now stored on that point as the path from that point to R49,49 in two steps.

This process is repeated for three steps, as shown in Figure 3.2(c). To go

from any point to R49,49 in three steps, the error can be approximated by the

error from that point to an intermediate point and the error from that point to

R49,49 in two steps. Because all two-step data has been calculated and stored, this

value need not be recalculated. The selection of an intermediate point implies

the acceptance of two intermediate table indices, the error for which must also be

included. This corresponds to regions three, four, five, and six in Figure 3.2(c).

51

This entire process is repeated until the data for nine steps is calculated

for every point as shown in Algorithm 3.2. It is now a simple matter to trace

the path from point R0,0 to R49,49 in nine steps to arrive at the ten indices to use

for the table. The error associated with nine steps from point R0,0 is the error

associated with using these indices with respect to the large 50 × 50 table.

An alternative approach is to select the indices for the input transition

time in one pass and the capacitive load indices in a second. This method causes

some loss in accuracy but requires significantly fewer computing resources both

in terms of compute time and memory.

In this algorithm, dynamic programming is used to determine the indices.

However, instead of calculating the characteristic equation between every point

pair in the table, the equation is only generated for points that span entire rows or

columns of the table. Thus, every point in the bottom row of the table is matched

with every point on the top row and to the right of it. The characteristic equation

is generated and errors measured. Dynamic programming is used to determine

the boundaries between these equations in the manner previously described. The

same approach is used to determine column indices independently.

3.1.3 Conclusion

Creating characterization tables without knowledge of the response surface

being approximated can lead to large errors when comparing an interpolated re-

sponse against the exact response as calculated by a reference program such as

SPICE. While Monte Carlo simulation can be used to refine the data gathered in

this manner, it cannot provide the guarantee of a certain margin of error.

52

Algorithm 3.2 A reduced response table is derived from the measured data by
applying dynamic programming. After completion, the reduced table indices can
be found by tracing the Next fields of StepTable.

/*
* Initialize the table with precalculated error values
*/
StepTable ⇐ ∅
LastEntry ⇐ NumLoads × NumInputSlews − 1
for I = 0 to NumLoads − 1 do

for J = 0 to NumInputSlews − 1 do
StateIndex ⇐ I × NumInputSlews + J
StepTable[StateIndex][0].Err ⇐ ErrorTable[StatIndex][LastEntry]
StepTable[StateIndex][0].Next ⇐ LastEntry

end for
end for
/*
* Now calculate errors from any point in the table to
* the corner using previously calculated error data.
*/
for S = 1 to NumSteps do

for I = 0 to NumLoads − (S + 2) do
for J = 0 to NumInputSlews − (S + 2) do

FromPt ⇐ I × NumLoads + J
StepTable[FromPt][S] ⇐ ∅
for K = I + 1 to NumSteps − (S + 1) do

for L = J + 1 to NumInputSlews − (S + 1) do
NextP t ⇐ K × NumLoads + L
Err ⇐ ErrorTable[FromPt][NextP t]
NextErr ⇐ StepTable[NextP t][S − 1].Err
SideErr ⇐ SideError(ErrorTable, FromPt, NextP t, StepTable)
TotalErr ⇐ Err + NextErr + SideErr
if StepTable[FromPt][S].Err > TotalErr then

StepTable[FromPt][S].Err ⇐ TotalErr
StepTable[FromPt][S].Next ⇐ NextP t

end if
end for

end for
end for

end for
end for

53

By performing a much more exhaustive set of simulations to obtain a com-

plete view of the response surface, a better selection of representative points can

be made for the characterization table that more accurately represents the entire

surface. Even with the surface known, however, the selection of points can be

shown to be NP-hard (the selection of any single point in the table has an impact

on the selection of all points in the table). By using a dynamic programming

solution to identify these indices, a near-optimal solution can be determined in

polynomial time with very small error margins when compared to the original

data.

3.2 �����

Over sampling and data reduction can provide a very accurate view of the

response of a cell when compared to the SPICE data used to create the character-

ization table. However, that data is empirically gathered using a certain profile

for the input voltage and for the capacitive load. When the model is used in an

environment for which this profile is no longer valid, the interpolated response

produced by the model may exhibit large errors when compared to silicon perfor-

mance. For those portions of the IC design flow that need a greater guarantee of

accuracy, a model that is independent of these constraints and that also evaluates

rapidly is required.

Research for advanced models that meet both accuracy and runtime re-

quirements has traditionally followed one of two paths: enhanced empirical mod-

els and SPICE-like evaluation engines. Until now, neither has sufficiently met

both requirements well enough to displace the traditional characteristic equation

54

or characterization table from the back end of the IC design flow.

While there have been several empirical models proposed, most are exten-

sions of the existing models. A voltage waveform is used as an input to the cell,

some load is placed on the output of the cell, and the electrical characteristics

of the cell are measured. Unfortunately, despite increasing sophistication, these

types of empirical models still tend to produce inaccurate results when they are

used in environments in which the input voltage or load characteristics do not

match those used during model creation. For example, noisy input voltage wave-

forms can dramatically impact the actual performance of a cell, but cells are not

normally characterized using such inputs.

SPICE-like evaluation engines tend to produce better results over a broad

range of usage models and environments, but only at the expense of CPU run-

time and memory. While engines exist that run many times faster than SPICE,

these engines often achieve their speed enhancements through the use of simpli-

fied transistor models. Simplified transistor models, by their very nature, tend

to be less accurate than those models used by SPICE. These small errors can

be compounded during transient analysis as there are multiple transistors in a

gate and multiple timesteps over a single transient run. Additionally, even with

speed improvements of 100× over SPICE, these engines are still too slow to apply

against large portions of the integrated circuit design.

The Blade model follows a hybrid approach. A detailed I–V model2 of

the cell is empirically created by performing DC sweeps in SPICE. Because a DC

analysis does not capture the effect of internal capacitance or internal interconnect

2An I–V model is a current (I) and voltage (V) model.

55

Test

Sweep

V out

V in
DC

Sweep

V in V out
i(,)Circuit

Under

DC

Figure 3.3: To create the Blade I–V table, voltage supplies are attached to the
input and output pins and the current flow is measured.

delay, a subsequent transient analysis is made to gather data from which internal

parasitics and delay values can be modeled. Once all data has been empirically

gathered, the model is evaluated in the Blade runtime engine.

3.2.1 The ����� Current Model

The Blade model is a current-based model. Instead of measuring a voltage

waveform output by the cell in response to a voltage input and a capacitive load,

the ability of the cell to source or sink current in response to a voltage level on

the input and a voltage level on the output is measured. In this manner a two-

dimensional table can be constructed. One index is the voltage level on the input

and the second is the voltage level on the output. The process is illustrated in

Figure 3.3.

The two voltage supplies attached to the cell are independently swept from

56

VSS to VDD. The other pins of the cell are set such that a transition at the input

pin would cause a transition at the output pin3. To obtain maximum accuracy,

the voltage stepsize must be sufficiently small so as to fully capture the current

response surface. Unlike transient analysis, performing this type of DC sweep is

extremely fast in SPICE. Thus, a large amount of data can be gathered rapidly

so as to fully capture the I–V characteristics of the cell.

In the Blade model the data structure into which the current is stored

is identical to the characterization table described in the previous section. Thus,

to conserve space, the technique of over sampling and data reduction can be

performed on this I–V table, if so desired.

The end result of this phase of the Blade characterization process is a

voltage-controlled current-source model of a pin-to-pin path through the cell, con-

trolled by the input and output voltages. To completely model a cell, multiple

Blade pin-to-pin models are required, one for each path that exists within the

cell.

3.2.2 The ����� Runtime Engine

Before developing the Blade model further, it is important to understand

how this model can be evaluated. There are two important aspects to the Blade

runtime engine. The first is the nonlinear solver that is used to calculate the

Blade model’s response. The second is the formulation of the problem on which

the nonlinear solver operates. Both are described in the following sections.

3In the event that there are several such settings, state-dependent models can be created, if
so desired.

57

C

Blade

V in

inV

outV

Current
Model

Blade

i

Figure 3.4: A simple example of the Blade model loaded with a single capacitor
and driven by a saturated voltage ramp input.

3.2.2.1 The Nonlinear Solver

The Blade nonlinear solver is used to determine the transient response of

a cell driving a load. Consider the very simple case of the Blade model loaded

with a capacitor and being driven by some input voltage waveform as shown in

Figure 3.4. Given a time-indexed array of the input voltage, Vin, and an initial

voltage across the capacitor, the Blade nonlinear solver determines the output

voltage at each time point.

In the Blade model, the current is a function of both Vin and Vout. The

current charging the capacitor is a function of the capacitance and the change in

the voltage across the capacitor over time.

iBlade = fBlade(Vin, Vout) (3.1)

icap = C
dVout

dt
(3.2)

58

Recognizing that all current sourced by the Blade model must flow into the

capacitor, an objective function can be derived.

fobj(Vout) = C
dVout

dt
− fBlade(Vin, Vout) = 0 (3.3)

The function fobj(Vout) is a nonlinear first-order differential equation. By replacing

the single capacitor with its companion model (covered in the next section), a

simple nonlinear equation can be formulated for fobj(Vout).

Newton-Raphson (NR) iteration is used within most SPICE engines to

solve for roots of nonlinear equations as it converges upon an answer quadratically.

In the NR method, an iterative approach is used to find an answer. Given a

function of the form

f(x) = 0 (3.4)

with a previous guess of xk, a new estimate for x, xk+1, can be derived:

xk+1 = xk + ∆xk where ∆xk =
−f(xk)

f ′(xk)
(3.5)

Newton-Raphson iteration is illustrated in Figure 2.8.

As stated previously, the NR method converges upon an answer quadrati-

cally. In other words,

(xk+1 − xk)

(xk − xk−1)2
≈ C where C = constant (3.6)

In order for Newton-Raphson to function properly, the first derivatives must exist

and be continuous. Because the Blade current model is a table-lookup model

and, as such, has no first derivative, Newton-Raphson iteration cannot be applied.

Secant iteration converges almost as rapidly as Newton-Raphson iteration

(1.67 as opposed to 2.0 for Newton-Raphson) and does not place a restriction upon

59

−1 0

x1

x2

x3

y = f(x)

(initial guesses)
x x

Figure 3.5: Secant iteration converges to a solution for f(x) = 0 by using the
previous two estimates to solve for the next.

the data content [35]. Instead of using the derivative of the function to calculate

the next guess, secant uses only the function itself. The slope is determined by

using the last two points.

xk+1 = xk +
−yk∆xk−1

yk − yk−1
(3.7)

This approach requires two initial guesses instead of one: x−1 and x0.

Given the nature of the Blade model and the need to obtain maximum

runtime speeds, the secant approach is the method used within the Blade runtime

engine.

3.2.2.2 Problem Formulation

In SPICE a cell model is composed of numerous transistors, diodes, capaci-

tors, resistors, and/or inductors. The companion model for the active components

60

(b)

inV C 1 C 2

I BLADE

Ieq1

Geq1

Ieq2

Geq2

1 2R
RBlade

Model

(a)

Figure 3.6: A Blade cell model is shown driving a π-model in (a). In (b) each
capacitor is replaced by its companion model.

may end up changing for each Newton-Raphson iteration. This process, in turn,

results in a change to the modified nodal admittance (MNA) matrix [23] used

to represent the circuit and a recalculation of that matrix’s inverse. Because the

Blade model is a voltage-controlled current source, the MNA matrix is not mod-

ified at any time during the nonlinear iterations. Additionally, where a cell might

need a 300- or 400-element matrix to represent the resistors, capacitors, diodes,

and transistors that compose it, plus additional room to represent the load being

driven, the Blade model only needs a matrix to represent the load.

Consider the case of a Blade cell model driving a π-model as shown in

Figure 3.6. That same figure also shows the companion model representation that

is used to populate the MNA matrix.

The trapezoidal companion model for a capacitor is shown in Figure 3.7.

61

∆i

(t + t)∆i

(t + t)∆vIeq

Geq

+

−

(t + t)

Figure 3.7: The Norton equivalent trapezoidal companion model for a capacitor
consists of linear elements which can be solved for using numerical integration.

The relationship between the capacitor and its companion model is given by the

following equations [46]:

Ieq = i(t) +
2C

∆t
v(t) (3.8)

Geq =
2C

∆t
(3.9)

Using this companion model, the MNA for the Blade model driving a

π-model can be developed.[
1
R

+ Geq1 − 1
R− 1

R
1
R

+ Geq2

] [
v1

v2

]
=

[
Ieq1 − IBlade

Ieq2

]
(3.10)

As the MNA matrix never changes unless the timestep, ∆t, changes, the Blade

model is able to rapidly analyze the circuit.

3.2.3 Accounting for Internal Parasitics

At this point the Blade model consists solely of a voltage-controlled cur-

rent source operating on a lookup table. Because this table was created by DC

62

(steady-state) simulation, the effects of any internal parasitics were lost. Unless

these parasitics are included within the model, the Blade model will always be

optimistic when compared to SPICE. The transient effects of these parasitics must

be captured.

During the development of the Blade model, two different parasitic types

were targeted: internal capacitance and internal interconnect.

3.2.3.1 Internal Capacitance

The internal capacitance includes the capacitance between the four nodes

of a transistor: CGS, CGD, CBS, and CBD. When the transistors are organized in

such a way as to create a simple logic function implementation, it is possible to

make simplifying assumptions concerning these capacitances.

To better explain the basis for the simplifying assumptions, consider the

case of a two-input NOR gate as shown in Figure 3.8. In Figure 3.8(a) the two-

input NOR is shown with these internal capacitors. One of the input pins is tied

to VSS as indicated. The remaining pin is the input pin of interest.

In Figure 3.8(b), the PMOS transistor tied to VSS is replaced with a short

while the NMOS transistor tied to VSS is replaced with an open. Also, the capac-

itors that are tied to VSS or VDD are independently split out for the purposes of

illustration. The dark black line in this figure represents a short in place of the

PMOS transistor with its gate tied to VSS.

Next, as shown in Figure 3.8(c), capacitors that do not affect the signal

delay (those with both ends tied to one of VSS or VDD) are removed. Internal

capacitors in parallel are combined.

63

(d)

Ceff

Ceff
Ceff

Ceff

VSS

VSS

CeffCinternal

(e)

(a) (b)

(c)

Figure 3.8: Simplifying assumptions concerning internal capacitance and the
Blade model. A two-input NOR is used to illustrate the simplifications when
one input is being characterized while the other is held to a constant value.

64

In Figure 3.8(d), the schematic is redrawn to show that the pin driving

the PMOS transistor and the pin driving the NMOS transistor are the same pin.

Capacitors in parallel are combined.

The final representation, shown in Figure 3.8(e), represents a single inverter

driving an internal capacitor, representing various internal capacitances, and the

original Ceff load. The capacitor tied between the input pin and the output pin

is combined with the other internal capacitors as the input is driven by an ideal

source. Thus, tying the capacitor to the input pin has no effect on the input

signal. When modeled as a simple linear capacitor, it can be combined with the

other capacitors in parallel.

This type of simplification is valid for applications, such as static timing

analysis, in which analysis is performed under the assumption of only a single

input pin switching at any given point in time. For many logic functions, the

effect of holding all inputs but one constant is that the input waveform is inverted

at the cell’s output pin, as shown with the two-input NOR. For many compound

cells, the result is a buffer4.

The purpose of this illustration is simply to provide an understanding be-

hind the use of a single capacitor to represent internal capacitances within the

Blade model. Experimental results, presented in the next chapter, show that

the addition of a single capacitive value to represent internal capacitances pro-

vides an effective approximation such that accurate waveforms can be generated

for combinatorial cells with the Blade model.

4Compound cells are covered in a later section.

65

3.2.3.2 Internal Cell Interconnect

Waveforms used to drive interconnect models degrade at the far end of the

interconnect. For long pieces of interconnect that connect a cell to those cells it

drives, this degradation can be severe.

Interconnect is also present inside a cell between the point that the input

pin is identified to exist and the transistor gate(s) that the input pin drives. It

is also present between the transistor source and drain nodes and the output pin

location. Because standard cells are typically very small, the amount of waveform

degradation across this interconnect is almost immeasurable. Also, waveform

degradation in the Blade model is already being accounted for in the internal

capacitance adjustments.

The other effect of interconnect is to delay the propagation of voltage

waveforms from the input or output pin location to or from the transistors. This

delay must be accounted for. In the Blade model, this delay is a single constant

that is used to offset any voltage waveform created by the evaluation of the model.

3.2.3.3 Model Calibration

A calibration program is used to determine the internal capacitance adjust-

ment and the time adjustment for internal interconnect. In this process, SPICE

transient analysis is performed on the cell of interest. The cell is loaded with a

simple capacitor (approximating the average load such a cell might drive in a real

design) and is driven by some generally representative input waveform. Unlike

traditional cell characterization, a saturated linear ramp is sufficient to obtain

66

accurate results for the purpose of calibration5.

Using the results of this SPICE transient analysis, the Blade model can

be calibrated. The process begins by reading the SPICE results and creating an

environment under which the DC-based Blade model will operate including du-

plication of the exact load used in the SPICE analysis. In addition to the load used

in the SPICE run, the calibration program uses an additional capacitor, Cinternal,

tied to the output of the model, to mimic the effect of internal capacitance. Once

the model is ready to be evaluated, the same input used to drive the SPICE model

is used to drive the Blade model.

After the model environment is created, many different Blade evaluations

are made. Each run differs from the previous by incrementally adding to Cinternal.

After each simulation, the waveform created by the Blade model and the wave-

form created by SPICE are compared. The Root Mean Squared, or RMS6 value,

of the time differences between the two waveforms is calculated for key points

along the waveform. The Cinternal value for which the RMS is minimum is the

capacitance chosen to represent internal capacitances and waveform degradation

effects of the internal interconnect7.

Once the internal capacitance is known, the same data can be used to ac-

5The Blade model is designed to determine the response of a cell to arbitrary input wave-
forms and output loads. Thus, calibration can occur using any input waveform and load. The
use of a saturated linear ramp and single capacitor is merely for simplicity.

6RMS =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

7This brute force method to finding Cinternal can be replaced with a more elegant approach
that finds the calibration parameters faster. However, the Blade model evaluates so rapidly
that the slight decrease in CPU time associated with a more sophisticated algorithm does not
justify the additional effort required to enhance the calibration program.

67

count for internal interconnect delay. By examining the time difference between

the Blade and SPICE waveforms, an overall time delay can be calculated. Specif-

ically, the time difference between the 50% points of the two waveforms is used as

the second component of the cell calibration: time shift.

Once calculated, the internal capacitance adjustment and the time offset

are used for all Blade evaluations between the input pin and output pin, irre-

spective of the load (capacitor, π-model, tree, or mesh). These values are also

independent of the direction of the voltage swing on the input pin or output pin

as demonstrated in the next chapter. The calibration parameters are unique,

however, to the specific input-to-output pin path being modeled.

3.2.3.4 Conclusion

Instead of pursuing an analytic approach to determine the effect of internal

parasitics on the cell, an empirical approach was chosen. Given the speed of the

Blade model (covered in the next chapter), the process of calibrating the model

was quickly accomplished. Using empirical measurements simplified the process

as the model generator did not need to consider custom SPICE transistor models

or attempt to mimic the calculations performed by SPICE once a model was

selected.

3.2.4 Compound Cells

Compound cells are those standard cells that are composed of two or more

primitive logic functions. In a primitive cell, the gates of all transistors are driven

by inputs from outside the cell. Compound cells, on the other hand, use the output

of one or more primitive gates to drive one or more primitive gates, all within the

68

compound cell. Examples of compound cells include simple noninverting logic

cells like AND gates and OR gates.

Characterization of compound cells is more complex than characterization

of primitive cells. While the method used for primitive gates can be used to derive

a current model for the gate, the calibration process will not yield a single time

offset value that can be used across a variety of input waveforms. To accurately

characterize a compound cell, the primitive cells each must be characterized in-

dependently. For the purposes of discussion, the characterization of an OR gate

will be presented.

The first step in characterizing the primitives that compose the compound

cell is the extraction of the primitive netlists from the compound cell SPICE

netlist. In the case of the OR gate, the node that identifies the output of the

NOR gate is located and the single SPICE netlist of the OR gate is broken into

two subcircuit SPICE netlists as shown in Figure 3.9: one for the NOR gate and

one for the INV gate it drives.

Once the SPICE netlists for the two primitive gates have been created, the

I–V characteristics for each primitive gate are extracted. This process is identical

to the process carried out for primitive standard cell logic described previously

and is illustrated in Figure 3.9.

After the current profile has been determined, the model must be cali-

brated. Calibration of the OR gate must occur in two stages. Both the NOR gate

and the INV gate must be calibrated individually.

Unlike a primitive logic gate, the output of the NOR gate never will be

loaded with anything other than the INV gate it drives. Thus, calibration of the

69

V

Sweep

V in V out
i(,)in V out

i(,)

DC
Sweep

DC
Sweep

DC
Sweep

DC

Figure 3.9: For compound cells like an OR gate, current models are extracted for
both the NOR component and the INV component.

NOR gate simply involves the determination of a Cinternal value to represent both

the internal capacitance of the NOR gate as well as the effective capacitance of

the input pin of the INV gate. Once calculated, this fixed value is used in all

subsequent evaluations of the Blade OR gate model.

In the case of the NOR gate, a SPICE deck very much like that of a

primitive gate is created. There are only two major differences. First, instead

of placing a capacitor on the output of the NOR gate, the gate is simply loaded

with the INV that it drives in the OR gate. Second, the output pin of the INV

gate is loaded with some reasonable capacitive load. A voltage waveform drives

the pin of interest and the voltage at the output of the NOR gate is measured.

From these two voltage waveforms the value of Cinternal for the NOR gate can be

calculated as described for primitive logic gates.

70

VCVS

Cinternal Cinternal Cload

Figure 3.10: Calibration for the OR compound cell occurs in two stages. The
first determines a Cinternal value on the NOR gate while driving the INV gate.
The second uses that waveform to calibrate the INV gate. The runtime engine
transparently treats the two cells as one (as shown) during the evaluation process.

Unlike the NOR gate, the INV portion of the OR gate is calibrated just

like any primitive gate. A voltage waveform drives the input, the output is loaded

with some capacitive load, and the input and output voltage waveforms are used

to determine the Cinternal value for the INV gate.

The final stage of calibration puts these two Blade models together to

determine the time shift between the OR gate and the two Blade components.

This is easily done by driving the OR gate with a voltage waveform, placing a

load on the output, measuring the output voltage waveform, and calibrating to

this waveform using the NOR and INV values previously determined.

The NOR and INV models are unified to produce the Blade model of

the OR gate. During model evaluation, the results produced by evaluating the

NOR gate are used to drive the INV gate to generate the output waveform of the

compound OR gate, as shown in Figure 3.10.

71

3.2.5 Noisy Inputs

Cells differ from one another in the way that they respond to voltage

waveforms that include distortions due to noise. Some cells are relatively noise

tolerant while others exhibit dramatic variations in the shape of the output voltage

waveforms. The response of a cell to noise imposed on its input signal is largely

dependent upon the intrinsic noise immunity of the cell. This immunity can

be attributed to the number, placement, and size of transistors, the amount of

interconnect in the cell, and the number of contacts in the cell, among other

things.

The standard formulation of the Blade model, consisting of a voltage-

controlled current source and an internal capacitor, unintentionally disregards the

noise immunity characteristics of a cell. For cells with little to no noise immunity,

this formulation accurately represents the cell’s response. However, for larger or

more complex cells, the omission of this characteristic from the model may result

in the incorrect transfer of a noise response at the model’s output.

To alleviate the problem of incorrect noise modeling, an enhancement to

the Blade model, called the noise immunity filter, has been developed. This noise

rejection filter conditions the input signal to correct for the lost noise immunity in

the model. Specifically, a single-pole low-pass filter is used, thereby reducing the

undesirable high-frequency transfer characteristic of the original Blade model.

This filter can be thought of as a simple RC segment applied to the input signal

as shown in Figure 3.11.

The noise immunity filter is characterized after the other components of

the Blade model have been calculated. The process starts by establishing a cell’s

72

Load

Vnoise Vin Cinternal

Noise Immunity Filter

Blade Model

Figure 3.11: The Blade model for noise differs slightly from the standard model.
A low-pass filter provides protection from variations in the input voltage for cells
that exhibit some degree of noise immunity.

sensitivity to noise. Using SPICE, a cell’s response to a noisy input is determined.

As each cell will respond differently, there is no single waveform that is guaranteed

to provide this data. For example, the use of an underdamped waveform will result

in the creation of a filter that does not accurately model a cell’s true response.

The presence of the noise immunity filter has no effect on the value of

Cinternal for the Blade model. However, it does impact the time offset value.

Thus, characterization involves the determination of a pole such that the Blade-

and SPICE-generated waveforms agree, as determined by the RMS value in the

calibration program. This is done by simply simulating the Blade model with an

input waveform that has first been processed through the noise immunity filter.

After the pole has been calculated, a new time offset is determined by measuring

the time difference between the 50% point of the two output waveforms. It is

important to note that this value may be a negative number in the resultant

model.

73

The noise immunity filter can be used irregardless of the input waveform

shape. For example, the filter can be used to process a saturated linear ramp

without effecting the quality of the model’s output. However, because it introduces

an additional step in both the model characterization process as well as the model

evaluation process, it’s use should be restricted to cells located in environments

in which noise will be present.

3.2.6 Conclusion

The Blade model and runtime engine combine an empirically derived

current model with a nonlinear engine to achieve both speed and accuracy. By

focusing on the ability of a cell to source or sink current, the Blade system is de-

signed to respond to arbitrary voltage waveform inputs including noisy waveforms

and those with long tails. The Blade model is also designed to handle arbitrary

loads including lumped-C, π-models, trees, and meshes.

Maximum speed is achieved through high-performance lookup tables like

those used as characterization tables. The nonlinear solver uses secant iteration

to converge almost as rapidly as Newton-Raphson iteration.

Whereas traditional cell characterization can require hundreds of SPICE

transient analysis runs to measure accurate pin-to-pin data under very specific

conditions, characterization for a Blade model is much simpler. A single SPICE

DC sweep and a single transient analysis run are required for primitive logic. For

compound cells, two runs are required. The dramatic reduction in the number

of transient analysis runs results in huge speed improvements over traditional

characterization.

74

3.3 �����: Accurate Stage Delay

Stage delay is the measured time between a point of the voltage waveform

used to drive the input of a cell to a point of the voltage waveform at the next

cell being driven as shown in Figure 3.12. Stage delay accuracy is a function of

the accuracy of the cell model, the accuracy of the interconnect model, and the

ability to propagate waveforms created by the cell model through the interconnect

model. In the past, stage delay accuracy has been hindered by the limitations of

the cell model and by the inability to propagate arbitrary waveforms through the

interconnect model efficiently.

The output of a Blade transient analysis is a time-indexed voltage array

in which the timesteps are uniform. Thus, for a 1 nanosecond transient analy-

sis period with a 1 picosecond timestep, a 1000-segment piecewise linear (PWL)

description is computed. This PWL represents the voltage waveform that must

propagate through the interconnect accurately and efficiently to determine the

voltage waveform at each cell being driven. By taking advantage of the fixed

stepsize, a simple and efficient calculation of the voltage at a node in the inter-

connect can be calculated.

Let Ai represent the slope of the input voltage segment between time

(i − 1)∆t and i∆t where ∆t is the fixed timestep. The input voltage to the

interconnect can be described by the sum of a series of infinite ramps shifted in

time. Figure 3.13 illustrates this concept. It can be described mathematically by

equation 3.11.

vin(t) = vin(i∆t) = A1i∆t + (A2 − A1)(i − 1)∆t + . . . + (Ai − Ai−1)∆t (3.11)

75

D

A

B

C

Figure 3.12: Stage delay is the delay between a point on the voltage waveform of
a cell’s input to a point on the voltage waveform of a cell it drives, through the
interconnect. This figure shows three such paths: A to B; A to C; and, A to D.

Using a moment-matching technique such as AWE [45], nth-order reduced

interconnect models can be constructed for each interconnect sink (the point at

which the interconnect and cell being driven are connected) driven by vin(t). Given

n poles and residues of a sink node (p and k, respectively) driven by an infinite

ramp input voltage of slope A, the voltage at the sink at time t, v(t), can be

described by a reduced-order model of the form given in equation 3.12.

v(t) = A[t −
n∑

i=1

ki

pi
(1 − epit)] (3.12)

76

−A

1

Voltage

Time
∆τ ∆τ ∆τ ∆τ

A

A

A

2

3

4
4

A

Figure 3.13: A voltage waveform can be described by the sum of a series of infinite
ramps, each shifted in time by fixed timestep of ∆t.

The response for a saturated ramp input can be described by equation 3.13

where τ is the point in time after which the voltage remains constant.

v(t) =

A[t −
n∑

i=1

ki

pi
(1 − epit)] if t < τ

A[t −
n∑

i=1

ki

pi

(1 − epit)] − A[(t − τ) −
n∑

i=1

ki

pi

(1 − epi(t−τ))] if t ≥ τ

(3.13)

This approach can be extended to accommodate multiple input ramps.

77

This process, called recursive convolution [4], has been shown to produce an exact

solution to the problem of interfacing PWL voltage representations to reduced-

order frequency-domain representations of the interconnect.

Razor is a novel implementation of recursive convolution that takes ad-

vantage of the fixed timestep size used in Blade to efficiently and accurately

calculate the voltage waveforms at each interconnect sink node. Razor is an

O(np) algorithm where n is the number of timesteps and p is the number of poles.

Although Razor was developed for Blade, it can be applied efficiently

to the general PWL problem in which timesteps are not uniform. An arbitrary

PWL can be converted into a new PWL representation with uniform timesteps

with little to no loss of accuracy by selecting a timestep of sufficient resolution.

This uniform timestep PWL then can be used as input to Razor.

Razor achieves its speed through the calculation of partial sums of the

fully-factored saturated ramp equation given in equation 3.13. Consider a two-

pole representation of a RC interconnect sink with an infinite ramp of slope A

driving it. For a fixed timestep size of ∆t, v(t) = v(i∆t). The contribution of

PWL segment j after time i∆t (where i ≥ j) is given by 3.14.

Aj[(i − j)∆t − (
k1

p1
− k1

p1
ep1(i−j)∆t +

k2

p2
− k2

p2
ep2(i−j)∆t)] (3.14)

Rearranging terms yields 3.15.

Aj [(i − j)∆t − (
k1

p1
+

k2

p2
) +

k1

p1
ep1(i−j)∆t +

k2

p2
ep2(i−j)∆t] (3.15)

Each of these components can be independently calculated and the partial sums

added.

78

v(t) = v(i∆t) =

4∑
m=1

Sm(i∆t) (3.16)

S1(i∆t) =
i∑

j=1

Aj∆t = Ai∆t + S1((i − 1)∆t) (3.17)

S2(i∆t) = −Ai(
k1

p1
+

k2

p2
) (3.18)

S3(i∆t) = (Ai − Ai−1)
k1

p1
ep1∆t + ep1∆tS3((i − 1)∆t) (3.19)

S4(i∆t) = (Ai − Ai−1)
k2

p2

ep2∆t + ep2∆tS4((i − 1)∆t) (3.20)

Because the poles, residues, and timesteps are all constant, the fractions

and exponents can be precomputed. These precomputed values are then propa-

gated through the calculation of the various Si terms. A similar derivation can

be made for RLC8 circuits (with imaginary pole and residue components) as well

as for higher order representations.

8The term RLC refers to a circuit consisting only of resistors (R), capacitors (C), and induc-
tors (L).

79

Chapter 4

Results

This chapter presents experimental results achieved when using the charac-

terization models and the Blade and Razor runtime environments. It is divided

into three sections, each detailing the results obtained by each model.

4.1 Over Sampling and Data Reduction

Implementation of the over sampling and data reduction characterization

methodology was originally performed under Linux using G++. Avant! HSPICE

was used to extract empirical cell data. This methodology was compared to a

cell characterization methodology in which data was extracted and Monte Carlo

simulation was performed to refine the data selection.

Over sampling and data reduction have been implemented in a production

characterization system. Typical results are shown in this section. A 50 × 50

characterization response surface was extracted for various cell paths. This large

data set was used both to derive a reduced table as well as to compare against to

determine total error margins.

4.1.1 Dependent Variable Analysis

Figure 4.1 shows the error margins associated with a typical cell in a library

used for a high-performance microprocessor design. The largest errors were seen

80

in the regions of fastest input transition time and, most notably, light capacitive

load. This also happens to be the region favored by synthesis programs when

generating a cell netlist.

0 0.00728 0.0218 0.0364 0.0655 0.0873 0.109 0.131 0.153

0.14162

0.15574

0.29435

0.43933

0.59177

0.74533

0.89363

1.04756

1.19445

-12

-10

-8

-6

-4

-2

0

2

A
ve

ra
ge

 P
er

ce
nt

ag
e

Er
ro

r

Cap Load (pf)

Rise Time (ns)

Figure 4.1: A 3-D surface of the error percentages between a Monte Carlo-based
characterization system table and a 50 × 50 table created by over sampling.

This same data was used to create a 6 × 6 reduced table in which both

input transition time and capacitive load were optimized simultaneously. The

error margins between this reduced table and the original HSPICE data are shown

in Figure 4.2. In general, the errors tended to fall within ±0.2% providing a highly

accurate interpolation estimate of the actual response to a given input transition

time and output capacitive load. Figure 4.3 shows an overlay of the measured

response surface and the reduced form of the response surface for a four-input

AND gate.

When the over sampling and data reduction methodology was originally

81

0

0.
01
06

0.
02
47

0.
03
89

0.
05
66

0.
07
78

0.
09
9

0.
11
67

0.
14
14

0.13176

0.20506

0.33841

0.38409

0.59219

0.71747

0.87229

1.0513

1.2054

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 P
er

ce
nt

ag
e

Er
ro

r

Cap Load (pf)

Rise Time (ns)

Figure 4.2: A 3-D surface of the error percentages between the reduced table and
the 50 × 50 table from which it was derived.

implemented, benchmarks were performed on a 200MHZ AMD K6 CPU with

64Mb of physical memory. Generation of a 10×10 reduced table from the original

50 × 50 took approximately 17 CPU minutes, 16 of which were used to calculate

the errors in the initial stage. The primary factor determining CPU runtime was

the number of steps required to create the reduced table. A 10 × 10 table took

twice as long to create as a 7 × 7 table.

4.1.2 Independent Variable Analysis

The assumption of independence between input transition time and ca-

pacitive load resulted in a minor increase in error rates, but required only five

CPU seconds to complete a 6 × 6 table generation. Error margins typically were

between +0.5% and −0.8%. These error margins were still substantially lower

82

4-Input AND Gate Intrinsic Delay

HSPICE
Data Reduction

0 10 20 30 40 50 60 70 80 90 100
Input Transition Delay (ns) 0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

Capacitive Load (pf)

0
20
40
60
80

100
120
140

Delay (ns)

Figure 4.3: A 15 × 15 response surface measured with HSPICE. The reduced
response surface is overlaid. The nonlinear regions for low cell loads are accurately
represented by the reduced response surface.

than those exhibited by the Monte Carlo-based characterization system.

4.1.3 Path Errors

Over sampling and data reduction were used to create the characterized cell

library used to in the AMD Athlon microprocessor. In this type of timing sensitive

application, it was not enough to simply say that a reduced table approximated a

much larger table with small errors. The true test of accuracy was how well those

cells functioned in timing paths when compared to SPICE.

83

In order to verify the path accuracy of the characterization data, a Tcl

program was written to selectively prune a path out of the Athlon design, cre-

ate a SPICE netlist that accurately represented the path, and compare SPICE

measured data to the results of the static timing analysis program used by the

designer. An example of a pruned path is shown in Figure 4.4. The program

extracted all components of the selected timing path along with any secondary

components. The secondary cells were also loaded with a capacitor that was

matched to the effective load that they drove (tertiary loading). All pins not part

of the timing path were biased to VDD or VSS such that they propagated the signal

from input to output. For those cells that were in the timing path, the secondary

pins were biased such that the direction of the output transitions (rising or falling)

matched those specified by static timing analysis. The interconnect model was

also extracted from static timing analysis and duplicated within the SPICE deck.

The entire circuit was then simulated using SPICE.

Over 200 different timing paths were run through this Tcl program. While

the exact numbers remain confidential, it can be stated that over 98% of the

paths had cumulative path delays with error margins of 2% to 4% (pessimistic)

when the static timing analysis results for the path were compared to HSPICE.

Error margins using the Monte Carlo methodology were between 10% and 30% of

HSPICE.

4.2 �����

The Blade modeling system and runtime engine was written in C++ and

compiled under RedHat Linux 7.1 using G++ 2.95.3. Avant! HSPICE version

84

Vss

Vcc

Figure 4.4: By biasing secondary pins to VDD or VSS and applying tertiary capac-
itive load to branching cells, a path can be created for use in a SPICE run which
matches the signal transitions reported by static timing analysis. A comparison
of the SPICE results can be made to the timing values reported by static timing
analysis to determine the accuracy of the underlying cell library.

2001.4 for RedHat Linux 7.1 was used to perform the DC current extraction,

the model calibration, and CPU runtime comparisons. All runs, both Blade

and HSPICE, were made on a 1800+ AMD Athlon (1.533GHz clock speed) with

512Mb of memory.

Blade models were created for cells in a 0.13 µm, 1.5V production cell

library. All cell netlists were created by parasitically extracting the cell’s layout.

Cell netlists consisted of various combinations of transistors, diodes, resistors, and

capacitors.

Blade models were created using the process outlined in the previous

chapter. The input and output voltages were swept from 0V to 1.5V in 0.05V

85

increments, yielding a 31×31 I–V table. Figure 4.5 shows the I–V curve extracted

for one path through a four-input AOI cell. HSPICE DC sweep CPU runtimes

never exceeded one CPU second for any cell in the library.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Vin (V) 0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

Vout (V)

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2

i(Vin, Vout) (mA)

Figure 4.5: The I–V curve for a four-input AOI cell from input pin A1 to output
pin ZN.

4.2.1 Calibration

Once the DC current flow was measured, the process of calibration be-

gan. Figure 4.6 shows the waveforms created by the Blade model of a four-input

NAND gate at various points in the calibration process. The final model re-

quired an additional internal capacitance addition of 0.02 picofarads and a 0.010

86

nanosecond offset for internal parasitics.

The process of calibration occurred rapidly. Given the speed of the Blade

model and runtime engine, the calibration program was able to investigate 3000

different values to account for internal capacitances. Cinternal values from 0 pico-

farads to 0.3 picofarads in steps of 0.1 femtofarads were examined in the current

implementation. Calibration runtimes were typically under one CPU second.

Final Blade Model
Cinternal Adjusted Blade Output

Ramp Input
HSPICE Output

Uncalibrated Blade Output

0.8

1.2

1.4

1e−10 2e−10 3e−10 4e−10 5e−10 6e−10 7e−10

V
ol

ta
ge

 (
V

)

Time (sec)

Calibration of 4−input NAND

0.4

0.2

0

0.6

1

Figure 4.6: Calibration of a four-input NAND from pin A2 to output pin Z.

In the case of the four-input NAND gate, the internal capacitance had a

dramatic effect on the shape of the output voltage waveform, but the parasitic

time adjustment was relatively minimal. This was not always the case. Ta-

ble 4.1 provides some example calibration parameters for a small selection of cell

input/output pin paths. The RMS values represent the differences exhibited be-

87

tween the shape of the SPICE and Blade waveforms as described in the previous

chapter.

Table 4.1: Calibration Parameters for Sample Cells Paths

Input Output Internal Time RMS
Cell Pin Pin Cap (pf) Offset (nsec) Error (nsec)

AOI A1 Z 0.0111 0.045 0.00226
INV I ZN 0.0028 0.003 0.00038

NAND A2 ZN 0.02 0.010 0.00114
A2 *internal* 0.0065

OR *internal* Z 0.002 0.004 0.00060
2-input
XOR A2 Z 0.0084 0.028 0.00115

3-input
XOR A1 Z 0.0745 0.160 0.00817

Figure 4.7 shows HSPICE and Blade results for a two-input OR gate.

The output of the internal node referenced in Table 4.1 is shown also.

4.2.2 Using the Models

Calibrated Blade models were evaluated and compared to HSPICE runs

under identical conditions. Various input waveform shapes, from ramps to noisy

input signals were applied. Various output loads were tested, from simple capaci-

tors to multi-segment π-models representing reduced-order networks. In all cases

the waveforms produced by the Blade models matched their HSPICE counter-

parts to within 1-2%1.

The ability of Blade to accurately handle noisy inputs, as shown in Fig-

1Error margins were determined by comparing the RMS of the differences between the Blade
and HSPICE waveforms to the intrinsic delay measured by HSPICE.

88

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2e-10 4e-10 6e-10 8e-10 1e-09

V
ol

ta
ge

 (
V

)

Time (sec)

2-Input OR Gate

Input
Intermediate Node

HSPICE
Blade

Figure 4.7: A waveform driving pin A2 of a two-input OR gate. HSPICE and
Blade results are virtually identical. The internal node waveform (the output of
the NOR gate feeding the INV gate) also is shown.

89

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1e-10 2e-10 3e-10 4e-10 5e-10

V
ol

ta
ge

 (
V

)

Time (sec)

Noisy Input
INV HSPICE Output

INV Blade Output

Figure 4.8: A noisy input signal applied to an inverter driving a reduced-order
π-model. Blade and HSPICE outputs are virtually identical. This gate had no
noise immunity characteristics, so the Blade model was not enhanced with a
noise immunity filter.

ure 4.8, is unique for a simulation model that is not based on transistor-level

analysis. As design feature sizes move below 0.18 µm, the capacitive coupling be-

tween interconnect will account for over 50% of the total wire capacitance. Noise

caused by this interconnect coupling can increase the total stage delay by as much

as 100%. Accurately modeling both cell and interconnect delay in the presence of

noise will only become more critical as feature sizes continue to shrink and noise

problems more frequently manifest.

Distinct tails in a cell’s output voltage waveform are also accurately calcu-

90

lated using the Blade cell model. Figure 4.9 demonstrates that Blade models

can both produce and consume such arbitrary voltages.

Blade Output of XOR

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2e−10 4e−10 6e−10 8e−10 1e−09 1.2e−09 1.4e−09

V
ol

ta
ge

 (
V

)

Time (sec)

INV Output

XOR Output

Ramp Input
HSPICE Output of INV

Blade Output of INV
HSPICE Output of XOR

0

Figure 4.9: A ramp input drives an inverter to produce an output voltage wave-
form with a distinct tail. This waveform, in turn, drives an XOR cell. HSPICE
and Blade results are nearly identical showing that Blade can both produce
and consume arbitrary voltage waveforms exhibiting distinct tails.

4.2.3 Performance

Unlike SPICE, the Blade model runtime is independent of the number of

transistors or parasitic elements in the cell netlist. Once the DC current informa-

tion is empirically gathered and tabulated and the model is calibrated, Blade

runtime is governed by the number of nonlinear iterations to convergence, the

number of primitive gates in a cell, and the type of load driven.

Experimental results are presented in Table 4.2. Results are shown for a 1-

91

picosecond stepsize and a 1-nanosecond transient analysis period (1001 nonlinear

iterations). On the average, one nonlinear iteration took 125 nanoseconds to

complete. The complete simulation of a gate consumed 1.4Mb of memory. The

OR gate took twice as long as it is composed of two cells: a NOR gate followed

by an INV gate.

With the exception that secant iteration requires an additional Blade

model evaluation to seed the algorithm, the use of secant iteration did not nega-

tively impact the performance of the Blade runtime engine. After the initial two

points were calculated, secant iteration looped until convergence was achieved. In

the Blade runtime engine, convergence is defined as a voltage differential of no

more than 0.001V. For 1001 nonlinear iterations, the minimum number of total

loops would be 1001 with 3003 Blade model evaluations. On the average there

were 1006 total loops with 3009 model evaluations over the 1-nanosecond transient

analysis period.

4.2.4 The Noise Immunity Filter

Some cells, such as the INV, were highly sensitive to the presence of noise

in the input waveform. Others, such as the small AOI shown in Figure 4.10,

exhibited some degree of noise immunity. When the this AOI cell is used with a

noise immunity filter of RC time constant 0.05 nanoseconds, the resultant model

time offset was -0.008 nanoseconds.

The same noisy waveform was used to drive the largest AOI cell in the

library. As shown in Figure 4.11, the presence of the noise immunity filter dra-

2The CPU time listed is only for the transient analysis portion of the HSPICE run. It does
not include input, output, setup time, or other portions of the HSPICE run.

92

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1e-10 2e-10 3e-10 4e-10 5e-10 6e-10 7e-10 8e-10

V
ol

ta
ge

 (
V

)

Time (sec)

Small AOI Noise Immunity Filter

Noisy input
HSPICE AOI

Blade w/o filter
Blade w/ filter

Figure 4.10: A noise immunity filter with an RC time constant of 0.05 nanosec-
onds, when applied to the voltage input of a small AOI cell, results in an output
voltage waveform nearly identical to the SPICE waveform.

93

Table 4.2: Blade CPU Runtime Results

Number/Type of HSPICE Blade
Cell Elements Time2 Time Speedup

AOI 18 transistors 0.67s 129µsec 5,200
118 capacitors

4 diodes
141 resistors

INV 8 transistors 0.35s 125µsec 2,800
59 capacitors

1 diodes
72 resistors

OR 14 transistors 0.53s 250µsec 2,120
95 capacitors

2 diodes
127 resistors

XOR 35 transistors 2.23s 122µsec 18,300
316 capacitors

3 diodes
345 resistors

matically impacted the result of the Blade model. In this case, a noise filter with

RC time constant of 0.026 nanoseconds was used to drive a Blade model with a

time offset of 0.113 nanoseconds.

The use of a noise immunity filter against saturated linear ramp input wave-

forms resulted in nearly identical RMS values (when compared to prior Blade

calibration runs) while causing an increase in the error margin to 4% - 5%. The

Blade results were always more pessimistic than the SPICE results. Alterna-

tively, reducing the time offset resulted in standard Blade error margins while

increasing error margins for noisy signals to 4% - 5% (optimistic when compared

to SPICE). Error margins for saturated linear ramps were greater than those for

other input waveforms as the output of the noise immunity filter differed from the

94

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1e-10 2e-10 3e-10 4e-10 5e-10 6e-10 7e-10 8e-10

V
ol

ta
ge

 (
V

)

Time (sec)

Large AOI Noise Immunity Filter

Noisy input
HSPICE AOI

Blade w/o filter
Blade w/ filter

Figure 4.11: Without a noise immunity filter, the Blade model for a large AOI
generates an output spike not exhibited by SPICE. However, with the filter added,
the SPICE and Blade models are nearly identical.

95

ramps to a greater degree than for realistic waveform inputs.

4.3 �����

Razor is written in C++ and can run as part of the Blade runtime en-

gine to produce stage delay values or in a standalone mode to simply compute

interconnect delay. When used in conjunction with Blade, the fixed-timestep

PWL created by Blade during model evaluation is transparently passed to Ra-

zor to compute the interconnect delay. When used in standalone mode, the input

can be any arbitrary PWL representing a voltage waveform. If the PWL does not

use a fixed timestep, a new fixed-timestep PWL is created to approximate the

input.

Poles and residues representing the interconnect must be created prior to

using Razor. During model development and performance runs, RICE [50] was

used to create the interconnect representations.

The development and runtime environment for Razor was identical to

that used for Blade. However, unlike Blade experiments, direct comparisons

to HSPICE for interconnect-only analysis were impossible due to input line-size

limitations imposed by HSPICE. A 1000-segment PWL could not be consumed

by HSPICE for a 1:1 comparison of results. Thus, Razor analysis was performed

indirectly using two different methods. In the first, a reduced (approximate) PWL

was created for use by HSPICE. In the second the entire stage was simulated by

HSPICE and by the Blade/Razor combination and the results compared.

In order to create a reduced PWL for use by HSPICE, a separate pro-

gram was written that determined the best points to pick in the PWL that most

96

accurately represented the entire PWL. Dynamic programming was used to de-

termine these points efficiently. Use of this program as an approach to avoid fixed

timesteps in Razor is impractical due to the CPU time requirements. For ex-

ample, reducing a 1000-point PWL to a 10-point PWL took 2 CPU seconds or

approximately 25, 000× the CPU runtime of a Razor run using the full 1000

points at a fixed timestep.

4.3.1 Performance Overview

For a given number of segments to describe a voltage waveform and a given

number of poles to represent the interconnect, Razor executes in a fixed time

period. Whereas Blade uses a nonlinear solver to determine current flow from

the Blade model to its load, Razor uses a purely deterministic solution for

interconnect analysis.

Table 4.3 summarizes some of the performance results exhibited by Razor.

As previously stated, interconnect analysis using Razor is an O(np) approach

where n is the number of PWL segments and p is the number of poles.

Razor memory consumption is governed by the number of PWL segments.

For a 1000-segment PWL, Razor consumed 1.2Mb of memory.

In order to perform the HSPICE analysis for the runtime benchmarks,

large PWLs used as input to Razor were reduced to 20-segment PWLs using the

dynamic programming approach previously described. Thus, the HSPICE results

were independent of the number of PWL segments used in Razor or the number

of poles used in the reduced-order interconnect model.

97

Table 4.3: Razor CPU Runtime Results

PWL Razor HSPICE
Segments Poles Time Time3 Speedup

1000 2 80µsec 1.2s 15,000
500 2 44µsec 1.2s 27,300
1000 4 115µsec 1.2s 10,500
1000 2 82µsec 2.7s 33,000
800 2 63µsec 2.7s 43,000

4.3.2 Accuracy

Figure 4.12 shows a comparison of the Blade and Razor stage model

compared to HSPICE. A stage consisting of an inverter driving a large RC tree rep-

resenting the interconnect was simulated using HSPICE and the Blade/Razor

stage model. HSPICE and Razor results were compared at the three terminals

of the tree. The results of the two runs were virtually indistinguishable.

As shown in Figure 4.13, Razor is not limited to monotonic waveforms.

The noisy waveform created by Blade in the previous section can be consumed

by the Razor interconnect model just as easily and accurately. Again, HSPICE

and Razor results are indistinguishable.

3The CPU time listed is only for the transient analysis portion of the HSPICE run. It does
not include input, output, setup time, or other portions of the HSPICE run.

98

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2e-10 3e-10 4e-10 5e-10 6e-10 7e-10 8e-10 9e-10 1e-09

V
ol

ta
ge

 (
V

)

Time (sec)

HSPICE vs. Razor

Inverter Output
HSPICE

Razor

Figure 4.12: The voltage waveforms caused by an inverter driving a large RC
tree representing the interconnect are shown. The Blade inverter and Razor
stage model are virtually identical to the same circuit in HSPICE. The plotted
waveforms are those measured at the far three ends of the interconnect.

99

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1e-10 2e-10 3e-10 4e-10 5e-10 6e-10 7e-10 8e-10 9e-10 1e-09

V
ol

ta
ge

 (
V

)

Time (sec)

HSPICE vs. Razor

AOI Output
HSPICE

Razor

Figure 4.13: A noisy signal output by a cell driving an interconnect load. Razor
results are nearly identical to those produced when HSPICE modeled the cell and
interconnect simultaneously.

100

4.4 Final Remarks

The Blade and Razor environments uniquely provide both speed and

accuracy. Two obvious questions arise: How fast? How accurate? In order to

address these questions, all Blade and Razor comparisons were made using a

commercial cell library simulated with the industry standard simulator, Avant!

HSPICE. Cell netlists were obtained by performing parasitic extraction against

the cell layout resulting in the presence of transistors, resistors, capacitors, and

diodes in the simulated netlists. Additionally, these libraries were designed for

leading edge, nanometer designs that exhibit the pathological effects just now

being seen.

Valid comparisons between these environments only can be made if the

Blade, Razor, and HSPICE control variables are identical. In other words, a

transient analysis run in HSPICE using a 1-picosecond stepsize cannot be com-

pared to a Blade run using a 2- or 3-picosecond stepsize. In creating the bench-

mark data, the same control variables were used by Blade, Razor, and HSPICE,

to the greatest extent possible. The result is an “apples to apples” comparison

between the applications.

It is also important to note that HSPICE CPU times cited with respect to

Blade and Razor are only for the transient analysis portions of the HSPICE

simulation. HSPICE listings contain the CPU time required for many different

parts of the total run including operating point evaluation, transient analysis,

input, output, error checks, and setup time. In order to obtain a true compari-

son between Blade/Razor and HSPICE, only the transient analysis times are

compared between the systems.

101

Publications of models created prior to the creation of Blade and Razor

also contain benchmark information. For example, [21] claims a speedup of up to

1000× over SPICE. No attempt is made to compare Blade and Razor against

such runtime claims. None of the papers reviewed provided enough information

to determine the exact conditions under which these simulations occurred. For

example, there is a vast difference between Berkeley SPICE and Avant! HSPICE

in terms of accuracy, speed, and transistor support. There is also little to no

information available to determine what control parameters were used by the

authors during either the SPICE simulations or the simulations of their models.

One obvious solution would be to implement each model reviewed on a

standard platform and run comparisons locally. Unfortunately, rewriting each of

these models from scratch was impractical. Additionally, the papers themselves

usually did not provide enough information to accurately reproduce the authors’

results. Even when existing source code written by the authors was obtained and

locally compiled, as was the case for several models, the presence of hardcoded pa-

rameters and functions made comparisons against cells and interconnect available

for Blade runs impossible.

While direct runtime comparisons cannot be made to prior work easily,

several conclusions can be drawn from the published material. First, the fastest

models benchmarked in existing literature exhibited runtimes that were 1400×
better than SPICE at best. Runtimes for Blade showed minimum improvements

of 2120× when compared to HSPICE. Second, Blade is able to both produce and

consume arbitrary waveforms, including noisy waveforms and waveforms with dis-

tinct tails. No other published macromodels were able to produce these results.

102

While SPICE-like transistor-level analysis programs are able to perform this type

of analysis, they typically run at speeds of 25× to 50× faster than SPICE. Finally,

none of the macromodel literature presented evaluations of complicated, com-

pound cells (like the XOR) or cells with netlists that were parasitically extracted.

All Blade runs were made using a nanometer cell library used in leading-edge

production designs today.

103

Chapter 5

Conclusion

In the last decade, the dominance of interconnect delay as a component of

the total path delay has resulted in great strides in interconnect modeling while

ignoring the data generator for that interconnect: the cell model. Cell models

today look very much like they did 15 years ago. Unfortunately, such models are

insufficient for nanometer effects that must now be accounted for.

Empirical cell models can be evaluated rapidly, but their evaluation yields

only a single value used to represent intrinsic delay and output transition time.

Models used by nonlinear solvers, such as SPICE, can yield highly accurate results,

but only at the expense of CPU runtime and memory. The penalty associated

with the use of these models is so severe that IC designers in the back end of

the flow, when accuracy is critical, must use the less accurate empirical models in

order to meet time-to-market constraints.

This dissertation has presented two new modeling technologies. The first,

Blade, provides near-SPICE accuracy while evaluating at speeds tens of thou-

sands of times faster than HSPICE. Razor, the second model, combines the

results of Blade with an interconnect model to enable accurate stage delay mod-

eling. The resultant stage delay model is sufficiently fast and accurate enough to

be embedded within applications used during the back end of the design flow.

Unlike empirical models, Blade and Razor both produce and consume

104

arbitrarily complex waveforms. This makes their use in environments for which

characterization cannot be performed a priori, such as noisy environments, es-

pecially attractive. The combination of near-SPICE accuracy, extremely short

runtimes, and the production and consumption of complex voltage waveforms

uniquely distinguishes Blade and Razor from other gate-level systems.

While accuracy is vital to the IC design flow, consistency between the

front end and the back end of the flow is also required. Back-end models that

are inconsistent with those used in the front end of the design flow can cause

additional overhead and can, in fact, result in a negative performance impact on

the overall design. The easiest way to achieve consistency with highly accurate

back-end models is to use accurate front-end models. To meet these accuracy

requirements, a new characterization and modeling methodology, over sampling

and data reduction, is presented.

Over sampling and data reduction yields highly accurate characterization

table models for cells. Once a cell’s response surface has been determined, the

best set of points with which to model that response surface can be selected. Over

sampling yields this highly accurate view of the overall cell response surface. Data

reduction, through a dynamic programming mechanism, reduces this large table

to a manageable size for use in CAD applications. Since the introduction of over

sampling and data reduction [11], hundreds of commercial cell libraries have been

characterized using this technique.

Together, these technologies combine to provide IC designers with the most

accurate cell and interconnect modeling without sacrificing evaluation speed.

105

Bibliography

[1] Emrah Acar, Florentin Dartu, and Lawrence T. Pileggi. TETA: Transistor-

level waveform evaluation for timing analysis. In IEEE Transactions on

CAD, volume 21, pages 605–616, May 2002.

[2] Charles J. Alpert, Anirudh Devgan, and Chandramouli V. Kashyap. RC

delay metrics for performance optimization. In IEEE Transactions on CAD,

volume 20, pages 571–582, May 2001.

[3] R. Arunachalam, F. Dartu, and L. T. Pileggi. CMOS gate delay models

for general RLC loading. In Proceedings 1197 IEEE Internation Conference

on Computer Design: VLSI in Computers and Processors, pages 224–229,

October 1997.

[4] J. Bracken, V. Raghavan, and R. Rohrer. Interconnect simulation with

asymptotic waveform evaluation. In IEEE Transactions on Circuits and

Systems, volume 39, 1992.

[5] Alexander Chatzigeorgiou, Spiridon Nikolaidis, and Ioannis Tsoukalas. A

modeling technique for CMOS gates. In IEEE Transactions on CAD, vol-

ume 5, pages 557–575, May 1999.

[6] B. R. Chawla, H. K. Cummel, and P. Kozak. MOTIS - a MOS timing

simulator. In IEEE Transactions on Circuits and Systems, volume CAS-

22(12), pages 901–910, December 1975.

106

[7] H. C. Chen and D. Du. Path sensitization in critical path problem. In IEEE

Transactions on CAD, volume 12, pages 196–207, 1993.

[8] Liang-Chi Chen, Sandeep K. Gupta, and Melvin A. Breuer. A new gate delay

model for simultaneous switching and its applications. In 38th IEEE/AMC

Design Automation Conference Proceedings, pages 289–294, 2001.

[9] Y. Cheng, M. Chan, K. Hui, M. C. Jeng, Z. H Liu, J. H. Huang, Kai Chen,

P. K. Ko, and C. Hu. BSIM3v3 Manual (Final Version). University of

California at Berkeley, December 1996.

[10] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-

tion to Algorithms. McGraw-Hill, Inc., 1990.

[11] John F. Croix and D. F. Wong. A fast and accurate technique to opti-

mize characterization tables for logic synthesis. In 34th IEEE/ACM Design

Automation Conference Proceedings, pages 337–340, 1997.

[12] John Darringer, Evan Davidson, David J. Hathaway, Bernd Koenemann,

Mark Lavin, Joseph K. Morrell, Khalid Rabmat, Wolfgang Roesner, Erich

Schanzenbach, Gustavo Tellez, and Louise Trevillyan. EDA in IBM: Past,

present, and future. In IEEE Transactions on CAD, volume 19, pages 1476–

1497, December 2000.

[13] F. Dartu, N. Menezes, J. Qian, and L. T. Pillage. A gate-delay model for high

speed CMOS circuits. In 31st IEEE/ACM Design Automation Conference

Proceedings, pages 576–580, 1994.

[14] F. Dartu and L. T. Pileggi. TETA: Transistor-level engine for timing analy-

sis. In 35th IEEE/ACM Design Automation Conference Proceedings, pages

595–598, 1998.

107

[15] Florentin Dartu, Noel Menezes, and Lawrence T. Pileggi. Performance com-

putation for precharacterized CMOS gates with RC loads. IEEE Transac-

tions on CAD, pages 544–553, May 1996.

[16] Florentin Dartu and Lawrence T. Pileggi. Calculating worst-case gate de-

lays due to dominant capacitance coupling. In 34th IEEE/AMC Design

Automation Conference Proceedings, pages 46–51, 1997.

[17] Anirudh Devgan and Ronald A. Rohrer. Adaptively controlled explicit sim-

ulation. In IEEE Transactions on CAD, volume 13, pages 746–761, June

1994.

[18] W. C. Elmore. The transient response of damped linear network with partic-

ular regard to wideband amplifier. Journal of Applied Physics, (19):55–63,

1948.

[19] Binay J. George, Markus Wloka, and Sean Tyler. Method for deriving a

piecewise linear model. U. S. Patent, December 13, 1994. No. 5,373,457.

[20] Mohamed Hafed, Mourad Oulmane, and Nicholas C. Rumin. Delay and cur-

rent estimation in a CMOS inverter with a RC load. In IEEE Transactions

on CAD, volume 20, pages 80–89, January 2001.

[21] Akio Hirata, Hidetoshi Onodera, and Keikichi Tamaru. Proposal of a tim-

ing model for CMOS logic gates driving a CRC π load. In Proceedings

IEEE International Conference on Computer-Aided Design, pages 537–544,

November 1998.

[22] R. B. Hitchcock, G. L. Smith, and D. D. Cheng. Timing analysis of com-

puter hardware. IBM Journal of Research and Development, pages 100–105,

January 1982.

108

[23] C. W. Ho, A. E. Ruehli, and P. A. Brennan. The modified nodal approach

to network analysis. In IEEE Transactions on Circuits and Systems, pages

504–509, 1975.

[24] Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms.

Computer Science Press, 1978.

[25] Steve H. Jen and Bing Sheu. A compact and unified MOS DC current

model with highly continuous conductances for low-voltage IC’s. In IEEE

Transactions on CAD, volume 17, pages 169–172, February 1998.

[26] Andrew B. Kahng and Sudhakar Muddu. An analytical delay model for RLC

interconnects. In IEEE Transactions on CAD, volume 16, pages 1507–1514,

December 1997.

[27] Timothy Kam, Shishpal Rawat, Desmond Kirkpatrick, Rabindra (Rob) Roy,

Gregory S. Spirakis, Naveed Sherwani, and Craig Peterson. EDA challenges

facing future microprocessor design. In IEEE Transactions on CAD, vol-

ume 19, pages 1498–1506, December 2000.

[28] Chandramouli V. Kashyap, Charles J. Alpert, and Anirudh Devgan. An “ef-

fective” capacitance based delay metric for RC interconnect. In Proceedings

IEEE International Conference on Computer-Aided Design, pages 229–234,

November 2000.

[29] Noriya Kobayashi and Sharad Malik. Delay abstraction in combinational

logic circuits. In IEEE Transactions on CAD, volume 16, pages 1205–1212,

October 1997.

[30] Jaong-Taek Kong and David Overhauser. Digital Timing Macromodeling for

VLSI Design Verification. Kluwer Academic Publishers, 1995.

109

[31] Alexander Korshak and Jyh-Chwen Lee. An effective current source cell

model for VDSM delay calculation. In IEEE International Symosium on

Quality Electronic Design, pages 296–300, 2001.

[32] Kenneth S. Kundert. Sparse matrix techniques. In A. E. Ruehli, editor,

Circuit Analysis, Simulation and Design, chapter 6. North-Holand, 1986.

[33] W. K. C. Lam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Exact

minimum cycle times for finite state machines. In 31st IEEE/ACM Design

Automation Conference Proceedings, pages 100–105, 1994.

[34] Ying Liu, Lawrence T. Pileggi, and Andrzej J. Strojwas. ftd : An exact

frequency to time domain conversion for reduced order RLC interconnect

models. In 35th IEEE/ACM Design Automation Conference Proceedings,

pages 469–472, 1998.

[35] M. J. Maron. Numerical Analysis: A Practical Approach. Macmillan Pub-

lishing Co., Inc., 1982.

[36] M. D. Matson and L. A. Glasser. Macromodeling and optimization of digital

MOS VLSI circuits. IEEE Transactions on CAD, pages 659–678, October

1986.

[37] William J. McCalla. Fundamentals of Computer-Aided Circuit Simulation.

Kluwer Academic Publishers, 1988.

[38] Clayton B. McDonald and Randal E. Bryant. Computing logic-stage delays

using circuit simulation and symbolic Elmore analysis. In 38th IEEE/AMC

Design Automation Conference Proceedings, pages 283–288, 2001.

110

[39] M. Monachino. Design verification system for large-scale LSI designs. IBM

Journal of Research and Development, pages 89–99, January 1982.

[40] L. W. Nagel. A Computer Program to Simulate Semiconductor Circuits.

PhD thesis, University of California, Berkeley, May 1975.

[41] Edouard Ngoya, Jean Rousset, and Juan J. Obregon. Newton-Raphson

iteration speed-up algorithm for the solution of nonlinear circuit equations in

general-purpose CAD programs. In IEEE Transactions on CAD, volume 16,

pages 638–644, June 1997.

[42] P. R. O’Brian and L. T. Savarino. Modeling the driving-point characteristic

of resistive interconnect for accurate delay estimation. In Proceedings IEEE

International Conference on CAD, pages 512–515, 1989.

[43] Altan Odabasioglu, Mustafa Celik, and Lawrence T. Pileggi. PRIMA: Pas-

sive reduced-order interconnect macromodeling algorithm. In Proceedings

IEEE International Conference on CAD, pages 58–65, 1997.

[44] John K. Ousterhout. A switch-level timing verifier for digital MOS VLSI. In

IEEE Transactions on CAD, volume CAD-4, pages 336–348, July 1985.

[45] L. T. Pillage and R. A. Rohrer. Asymptotic waveform evaluation for timing

analysis. In IEEE Transactions on CAD, volume 9, pages 352–366, 1990.

[46] L. T. Pillage, R. A. Rohrer, and C. Visweswariah. Electronic Circuit And

System Simulation Methods. McGraw-Hill, Inc., 1995.

[47] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.

Vetterling. Numerical Recipes in C: The Art of Scientific Computing. Cam-

bridge University Press, second edition, 1993.

111

[48] J. Qian, S. Pullela, and L. T. Pillage. Modeling the effective capacitance

for the RC interconnect of CMOS gates. In IEEE Transactions on CAD,

volume 13, pages 1526–1535, 1994.

[49] Vivek Raghavan and Ronald A. Rohrer. A new nonlinear driver model for

interconnect analysis. In 28th IEEE/ACM Design Automation Conference

Proceedings, pages 561–566, 1991.

[50] C. L. Ratzlaff and L. T. Pillage. RICE: Rapid interconnect circuit evaluation

using AWE. In IEEE Transactions on CAD, pages 763–776, 1994.

[51] Curtis L. Ratzlaff, Satyamurthy Pullela, and Lawrence T. Pillage. Model-

ing the RC-interconnect effects in a hierarchical timing analyzer. In IEEE

Custom Integrated Circuits Conference Proceedings, pages 15.6.1–15.6.4, May

1992.

[52] Jorge Rubinstein, Paul Penfield, and Mark A. Horowitz. Signal delay in RC

tree networks. In IEEE Transactions on CAD, volume 2, pages 202–211,

July 1983.

[53] Yung-Ho Shih, Yusef Leblebici, and Sung-Mo Kang. ILLIADS: A fast timing

and reliability simulator for digital MOS circuits. In IEEE Transactions on

CAD, volume 12, pages 1387–1402, September 1993.

[54] M. Silveira, M. Kamon, and J. White. Efficient reduced-order modeling of

frequency-dependent coupling inductances associated with 3-D interconnect

structures. In 32nd IEEE/ACM Design Automation Conference Proceedings,

pages 376–380, 1995.

[55] Shang-Zhi Sun, David H. D. Du, and Hsi-Chuan Chen. Efficient timing

112

analysis for CMOS circuits considering data dependent delays. In IEEE

Transactions on CAD, volume 17, pages 546–552, June 1998.

[56] Synopsys, Inc. Library Compiler Reference Manual, Volume II, 1995. Rev.

3.3b, Appendix D.

[57] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI De-

sign: A Systems Perspective. Addison Wesley Publishing Company, second

edition, 1993.

[58] Hakan Yalcin, Mohammad Mortazavi, Robert Palermo, Cyrus Bamji, Karem

Sakallah, and John P. Hayes. Fast and accurate timing characterization

using functional information. In IEEE Transactions on CAD, volume 20,

pages 315–331, February 2001.

113

Vita

John Foy Crox, III was born in Louisville, Kentucky on 21 December 1963,

the older of two children to Lt. Col. John F. Crox, Jr. and Joyce S. Crox. As

the son of an Army officer, John spent the first 7 years of his life traveling from

Germany to Ft. Knox, KY and points between.

John attended high school at St. Xavier High School in Louisville where

he was awarded the Bausch & Lomb Honorary Science Award, the Saint Xavier

Award for Outstanding Leadership (for his roles in student government), and

the Saint Xavier Physics Award. Having earned 39 college credits while in high

school, John entered the University of Louisville School of Engineering, Speed

Scientific School, in 1981 to study computer engineering. While at U of L, John

continued his involvement in student government as vice president of his freshman

and sophomore classes. A 4.0 student, John was a member of Mortar Board

and Tau Beta Pi and was a National Dean’s List student. After 21
2

years John

completed his B.S. and graduated from U of L suma cum laude.

In 1985 John changed his last name from Crox to Croix, an abbreviated

form of the ancestral name de la Croix. He also changed his middle name to

Francis.

John spent the next 8 years working for Texas Instruments, in Dallas, TX,

primarily focused on computer-aided design application development. During

this period he enrolled in Southern Methodist University for his M.S. degree in

Computer Science at the School of Engineering under Dr. David Matula. In 1990,

114

two years after entering SMU, John completed his degree with a 4.0 average and

decided to pursue a Ph.D. degree.

In 1992, John moved to Austin, TX to work for IBM on the PowerPC design

team. A few months after arriving in Austin, John enrolled at the University of

Texas at Austin where he started classes in 1993 for his Ph.D. in Electrical and

Computer Engineering.

John joined the AMD Athlon design team in 1995 and subsequently left in

1997 to co-found Silicon Metrics Corporation, where he is the Chief Technology

Officer. He holds two patents and has outstanding applications for an additional

six. John has been keynote speaker and invited guest speaker at several confer-

ences and has written several articles and guest editorials for publications and

conferences in the IC design community.

Permanent address: 1620 Sunterro Drive
Austin, Texas 78727

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version
of Donald Knuth’s TEX Program.

115

	UMI_PGnocr.pdf
	UMI Number: 3077409
	__
	UMI Microform 3077409
	
	
	
	300 North Zeeb Road
	PO Box 1346

