Homework: BDDs

1. For the following functions:

$$F = ab + c$$

$$G = bc' + d$$

$$H = c + d'$$

(a) Draw BDDs F, G, and H using the variable ordering

$$a < b < c < d.$$

- (b) Compute ite(F, G, H), and draw the corresponding BDD.
- (c) Compute *ite_constant*(F, G, H), using the algorithm presented in class. Show all steps.

25 marks

- 2. Let $f(x_1, x_2, x_3, x_4) = x_1 x_2' + x_3 x_4' + x_2 x_4$, and $g(x_1, x_2, x_3) = x_1 + x_2' x_3$.
 - (a) Draw the BDDs for f and g for the variable ordering $x_1 < x_3 < x_4 < x_2$.
 - (b) Compute the BDD for $f(x_1, x_2, x_3, g(x_1, x_2, x_3))$ using the *bdd_compose* algorithm given in class.

25 marks

- 3. Suppose you were given a BDD for a function $f(x_1, x_2, x_3, y_1, y_2, y_3)$. How would you check if there existed functions g and h whose supports were x_1, x_2, x_3 and y_1, y_2, y_3 respectively such that
 - (a) $f = g \cdot h$

(b)
$$f = g \oplus h$$

25 marks

4. Let F be a BDD for a Boolean function $f : B^n \to B$. Suppose the cost of a minterm $(\alpha_1, \ldots, \alpha_n)$ in B^n was defined to be $\sum_{i=1}^n c_i \cdot \alpha_i$, where the c_i 's are real-valued constants.

Given an efficient procedure (which operates on F) for finding the cheapest minterm in the onset of f.

20 marks