
On the Construction of Zero-Deficiency
Parallel Prefix Circuits with Minimum Depth

HAIKUN ZHU, CHUNG-KUAN CHENG, and RONALD GRAHAM

University of California, San Diego

A parallel prefix circuit has n inputs x1, x2, . . . , xn, and computes the n outputs yi = xi • xi−1 • · · · •
x1, 1 ≤ i ≤ n, in parallel, where • is an arbitrary binary associative operator. Snir proved that the
depth t and size s of any parallel prefix circuit satisfy the inequality t +s ≥ 2n−2. Hence, a parallel
prefix circuit is said to be of zero-deficiency if equality holds. In this article, we provide a different
proof for Snir’s theorem by capturing the structural information of zero-deficiency prefix circuits.
Following our proof, we propose a new kind of zero-deficiency prefix circuit Z (d) by constructing
a prefix circuit as wide as possible for a given depth d . It is proved that the Z (d) circuit has the
minimal depth among all possible zero-deficiency prefix circuits.

Categories and Subject Descriptors: B.6.1 [Logic Design]: Design Styles—Parallel circuits

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Zero-deficiency, parallel prefix circuits, depth-size trade-off

1. INTRODUCTION

1.1 Problem Definition

The prefix problem, which mostly gains research attention with the emergence
of parallel computing, is actually the abstraction of many practical applications
such as binary addition, radix sort, linear recurrences solving, polynomial eval-
uation, etc. [Lakshmivarahan and Dhall 1994]. Formally, the prefix problem is
defined as follows:

Definition 1.1. [Prefix Problem] Given n inputs x1, x2, . . . , xn and an ar-
bitrary binary associative operator •, compute the prefix results Yi = xi • xi−1 •
· · · • x1 for 1 ≤ i ≤ n.

This article is based on work previously published as “Constructing Zero-Deficiency Parallel Prefix
Adder of Minimum Depth,” In Proceedings of the 2005 Asia and South Pacific Design Automation
Conference (ASPDAC 2005). c©2005 IEEE.
This work was supported in part under grants from National Science Foundation (NSF) project
number MIP-9987678, the California MICRO program, and SRC support.
Authors’ address: Computer Science and Engineering, University of California, San Diego, La Jolla,
CA 92093-0404; email: {hazhu,kuan,rgraham}@cs.ucsd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-4309/06/0400-0387 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006, Pages 387–409.

388 • H. Zhu et al.

Fig. 1. An example of the parallel prefix circuit: Sklansky’s structure.

Since the binary operator • is associative, it is convenient to introduce the
partial prefix result y[i: j] using the following recurrence formula:

y[i:i] = xi, 1 ≤ i ≤ n (1)
y[i: j] = y[i:k] • y[k−1: j], 1 ≤ j < k ≤ i ≤ n (2)

Using the above representation, Yi is nothing but a special kind of partial
prefix result:

Yi = y[i:1] (3)

Nevertheless, the Yi are usually referred to as final prefix results so as to be
distinguishable from other intermediate partial prefix results.

Note that the associative operator • in general may not be commutative.
Thus in computing Yi it is imperative to keep the order of the primary inputs
xi as it is defined.

Typically, the prefix problem is visualized by a directed acyclic graph, re-
ferred to as the parallel prefix circuit, which takes in the n inputs xi(1 ≤ i ≤ n)
and produces the n final prefix results Yi(1 ≤ i ≤ n) in parallel. The computa-
tion nodes in the prefix circuit are arranged in levels representing the timing
of the results. Each computation node has two inputs, which can be either pri-
mary inputs or partial prefix results from previous levels, and produces either
another partial or a final prefix result. All the computation nodes that generate
y[i: j] with the same i are in the same column. As an example, Figure 1 shows
a 16-input Sklansky [1960] prefix circuit, which produces all the prefix results
in 4 levels, level 0 being the primary inputs. The primary inputs are repre-
sented by solid squares while the computation nodes are represented by solid
black nodes. The white nodes are simply placeholders which do nothing but
pass through the data. In the rest of this article, we always mean computation
nodes when we say “nodes”, unless otherwise stated.

It is then natural to define the size and depth of the prefix circuits as follows:

Definition 1.2. Denote a prefix circuit of n inputs as G(n). In the absence
of confusion, we say the width of G(n) is n. The size of G(n), denoted by sG(n), is
the number of computation nodes in G(n). Similarly, the depth of G(n), denoted
by dG(n), is the number of levels in G(n).

The main problem in designing prefix circuits has been identifying the exact
tradeoff between the size and the depth. Snir [1986] proved that sG(n) + dG(n)

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 389

Fig. 2. Depth-Size tradeoffs of the parallel prefix circuits.

≥ 2n − 2 holds for arbitrary prefix circuits, based on a concept he introduced
called zero-deficiency:

Definition 1.3. The deficiency of a prefix circuit G(n) is defined as

def (G(n)) = sG(n) + dG(n) − (2n − 2). (4)

G(n) is said to be of zero-deficiency if def (G(n)) = 0.

Snir’s theorem indicates that the solution space for parallel prefix circuits
should look like Figure 2. For a given width n, the maximum depth of the
prefix circuits is n− 1 (serial prefix circuit) while the minimum depth is �log n�
(Sklansky’s circuit [Sklansky 1960]). For loose depth constraints we can observe
a linear tradeoff between the depth and the size which is exhibited by the
zero-deficiency prefix circuits. However, if the depth constraint is too tight,
the size of the prefix circuits will grow dramatically and zero-deficiency prefix
circuits no longer exist. A direct example of this is the Sklansky’s structure in
Figure 1, which has depth k and size k2k−1 for width 2k . Nevertheless, even
when zero-deficiency is not achievable, there is certainly a lower bound for
the size under the given depth constraint. Hence, we introduce the concept of
depth-size optimal:

Definition 1.4. A parallel prefix circuit is defined as depth-size optimal if
it achieves the minimum size for the given depth constraint.

We shall stress the difference between zero-deficiency and depth-size opti-
mal. A zero-deficiency prefix circuit must be depth-size optimal, but the con-
verse may not hold. In Figure 2, the region between curves d = f (n) and
d = �log n� is where zero-deficiency prefix circuits do not exist, but depth-size
optimal prefix circuits do. It remains an open question to find the zero-deficiency
prefix circuits of minimum depth, which is the subject of this article.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

390 • H. Zhu et al.

1.2 Previous Work

Various zero-deficiency prefix circuits were proposed in the past. Snir [1986]
gave a class of zero-deficiency prefix circuits by concatenating a Brent–Kung
circuit with a serial prefix circuit. His design requires that dG(n) ≥ 2�log n� − 2.
Following the same idea, Lin and Shih were able to improve the minimum
depth to as small as 2�log n� − 5 by fine tuning the widths of the Brent–
Kung circuits and the serial circuits [Lin and Shih 1999]. Another kind of
zero-deficiency circuit of small depth is the LYD(n) circuit which comprises a
Brent–Kung circuit, a delay-balanced two-level serial circuit, and two one-level
serial circuits [Lakshmivarahan et al. 1987]. Zimmermann [1996] proposed
a heuristic algorithm for prefix circuit optimization using depth-controlled
compression and expansion. Although his approach in many cases produces
depth-size optimal or near optimal prefix circuits, optimality of his results is not
guaranteed.

Historically, there are also some other prefix circuit designs such as those in
Ladner and Fischer [1980], Fich [1983] and Bilgory and Gajski [1986]. How-
ever, these prefix circuit structures have non-zero deficiency, and are therefore
inferior to the zero-deficiency prefix circuits considered in this paper.

In this article, we propose a new kind of zero-deficiency prefix circuit called
Z (d) that provably has the minimum depth for a given width. We managed to
do so from an alternative point of view, that is, by constructing a zero-deficiency
prefix circuit of maximum width for a given depth. Our new philosophy leads
to a systematic way of prefix circuit construction, as opposed to previous ad-hoc
approaches.

The remainder of the article is organized as follows. In Section 2, we first
give a revised proof for Snir’s lower bound theorem sG(n) + dG(n) ≥ 2n − 2,
which is enlightened by similar ideas in Fich [1983] and Lakshmivarahan and
Dhall [1994], and then discuss the properties of the zero-deficiency circuits. Our
main contribution lies in Section 3, where a new class of zero-deficiency prefix
circuits Z (d) is proposed. We will prove that Z (d) has the minimum depth
among all possible zero-deficiency prefix circuits. In Section 4, we extend Z (d)
circuit to consider arbitrary width and depth constraints. Section 5 offers a few
comments on the proposed structure and compares it with some other work.
Section 6 concludes the article.

2. PROPERTIES OF THE ZERO-DEFICIENCY PREFIX CIRCUITS

Snir’s original proof for sG(n) + dG(n) ≥ 2n − 2 is by mathematical induction and
does not reveal the structural information of zero-deficiency circuits. We notice
that there are some nice ideas in Fich [1983] and Lakshmivarahan and Dhall
[1994], which can be used to devise an elegant proof for Snir’s theorem. In this
section, we polish these ideas and prove an enhanced version of Snir’s lower
bound theorem.

THEOREM 2.1. For an n-input prefix circuit G(n), denote the depth of its last
prefix output Yn as d M

G(n). Then

sG(n) + dG(n) ≥ sG(n) + d M
G(n) ≥ 2n − 2. (5)

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 391

Fig. 3. The primal fan-in tree, primal fan-out tree and ridge of a parallel prefix circuit.

PROOF. Let us consider the node that generates the last final prefix result
Yn, and use Figure 3 as an illustration. This output node has to cover all the
primary inputs, hence the structure that generates Yn must be an upside-down
tree with all the primary inputs being its leaves. Let us name it the primal
fan-in tree. Note that some nodes in the primal fan-in tree may have fan-outs
to prefix outputs other than Yn, but those fan-outs and their succeeding nodes
do not constitute the primal fan-in tree. Put another way, one can identify the
primal fan-in tree by starting from the node Yn and tracing its inputs all the
way back to the primary inputs. Remember that the binary operator is not
commutative in general, and the order of the primary inputs is fixed. Thus, the
primal fan-in tree is essentially a binary alphabetical tree. To illustrate, the
edges of the primal fan-in tree in Figure 3 are highlighted using heavy lines.
The size of the primal fan-in tree is exactly n − 1, and its depth is d M

G(n).
On the other hand, the first primary input x1 has to be fed into every final

prefix output, either directly or indirectly. Consequently, there is another tree
rooted at x1 with the final prefix outputs Yi (1 ≤ i ≤ n − 1) as its leaves. Let us
call it the primal fan-out tree. The primal fan-out tree may not necessarily be
a binary tree, since one node may fan out to more than two nodes of next level.
Nevertheless, it is clear that the primal fan-out tree has at least n − 1 nodes,
which are just the n − 1 final prefix outputs Yi (1 ≤ i ≤ n − 1). In Figure 3, the
edges of the primal fan-out tree are shown by heavy dotted lines.

Notice that the primal fan-in tree and the primal fan-out tree actually overlap
on the path from the first primary input x1 to the last prefix output Yn, which
we call the ridge of the prefix circuit. There are at most d M

G(n) nodes on the ridge.
Up to now we have had (n − 1) + (n − 1) − d M

G(n) = 2n − 2 − d M
G(n) nodes in the

prefix circuit. Since the primal fan-in tree and primal fan-out tree shall exist in
every prefix circuit, this is indeed the minimum number of nodes for a general
prefix circuit. Hence, we have

sG(n) + dG(n) ≥ sG(n) + d M
G(n) ≥ 2n − 2.

In fact, each final prefix output Yi (1 ≤ i ≤ n) is generated by a binary
alphabetical tree. Only the one generates Yn is called primal because it covers

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

392 • H. Zhu et al.

Fig. 4. (a) Sklansky’s prefix circuit; and (b) Brent–Kung circuit; The edges of the primal fan-in
tree are emphasized by heavy lines, while the edges of the primal fan-out tree are emphasized by
heavy dotted lines.

all the primary inputs. Likewise, from each primary input xi (1 ≤ i ≤ n) sprouts
a fan-out tree to Y j (i ≤ j ≤ n). Only the one rooted at x1 is called primal because
it feeds all of the final prefix outputs.

It can be inferred from the above proof that a zero-deficiency prefix circuit has
no nodes other than those on its primal fan-in tree and primal fan-out tree. For
example, the Sklansky’s prefix circuit [Sklansky 1960] in Figure 4(a) has 6 nodes
in addition to its primal fan-in tree and primal fan-out tree, thereby it is not a
zero-deficiency circuit. Furthermore, for a zero-deficiency prefix circuit the last
output Yn must also be the latest output. For instance, the Brent-Kung circuit
[Brent and Kung 1982] shown in Figure 4(b) is not a zero-deficiency circuit
because Y16 is two levels ahead of Y15, although Brent-Kung circuit consists of
only the primal fan-in tree and primal fan-out tree.

In summary, Definition 2.2 gives a formal treatment of the concepts involved
in the proof of Theorem 2.1, while Corollary 2.3 gives the necessary and suffi-
cient conditions for a prefix circuit to be of zero-deficiency.

Definition 2.2. For a prefix circuit G(n), the binary alphabetical tree that
generates the last final prefix output Yn is called the primal fan-in tree of G(n).
The broadcasting tree that propagates the first primary input x1 to the final
prefix outputs Yi (1 ≤ i ≤ n) is defined as the primal fan-out tree of G(n). The
common part of the primal fan-in tree and the primal fan-out tree, that is, the
path from the first primary input to the last final prefix output, is defined as
the ridge of G(n).

COROLLARY 2.3. A prefix circuit G(n) of depth d is of zero-deficiency if and
only if

(1) G(n) comprises only the primal fan-in tree and the primal fan-out tree, which
overlap on its ridge;

(2) d M
G(n) = d, that is, the last prefix output Yn is also the latest output;

(3) The ridge has d nodes, one node per level.

3. A NEW CLASS OF ZERO-DEFICIENCY PREFIX CIRCUITS

In this section, we propose a new class of zero-deficiency prefix circuits, called
Z (d), which have the minimum depth among all zero-deficiency prefix circuits.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 393

Fig. 5. The recursive definition of the T k(t) trees: (a) T 1(t), t ≥ 1; (b) T k(k), k ≥ 2; (c) T k(t),
2 ≤ k < t.

3.1 Building the Components of Z(d) Circuit: T k(t) Trees and Ak(t) Trees

We will first construct a class of parameterized trees called T k(t) trees which
will be used to form the primal fan-in tree of the Z (d) circuit. We then de-
fine the Ak(t) trees which will be used to form the primal fan-out tree of
Z (d). A Z (d) circuit is constructed by assembling T k(t) trees and Ak(t) trees
together.

The T k(t) trees follow a recursive definition as described in Figure 5. Note
that Figures 5(a), (b) and (c) together define T k(t) over 1 ≤ k ≤ t. A few more
observations can be made by investigating the graphical definition carefully:

—T 1(t) in Figure 5(a) are just the serial prefix circuits.
—The width of a T k(k) tree is 2k for any k ≥ 1.
—A T k(t) tree is a binary tree of depth t for 1 ≤ k ≤ t.

The last two observations above can be easily verified by mathmatical induction
based on the recursive definition.

Also it is interesting to note that the parameter k in some sense denotes
the “order” of a T k(t) tree, that is, the level of recursions that one need to go
through when tracing T k(t) back to the primitive construct T 1(1). It can be
proved, again by induction, T k(t) has k computation nodes on its most signif-
icant column. However, the proof is omitted here since it is not crucial in the
following discussion.

As an example, Figure 7(a) shows the T 3(5) tree whose depth is 5, and
how it is constructed from T 2(4) and T 3(4), conforming to Figure 5(c). One
can even trace the composition of T 2(4) to T 1(4) and T 2(3), and similar for
T 3(4).

Algorithm 1, which is essentially a direct algorithmic translation of Figure 5,
formally presents how a T k(t) tree is generated.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

394 • H. Zhu et al.

Fig. 6. The recursive definition of the Ak(t) trees: (a) A1(t), t ≥ 1; (b) Ak(k), k ≥ 2; (c) Ak(t),
2 ≤ k < t.

Fig. 7. Examples of the T k(t) and Ak(t) trees: (a) T 3(5); (b) A3(5).

Following nearly the same recursive way of construction as the T k(t) trees,
we define the Ak(t) trees as shown in Figure 6. The algorithmic description of
an Ak(t) tree is presented in Algorithm 2. By simple induction, we can infer
that for an Ak(t) tree, k + 1 is the tree depth while t + 1 is the fan-out of the
root. We also give an example of the A3(5) tree shown in Figure 7(b). Comparing
A3(5) with T 3(5) helps to point out the similarity between Ak(t) and T k(t). In
fact, we notice that

— A1(t) and T 1(t) have the same width for t ≥ 1 (see Figure 5(a) and Figure 6(a));
— Ak(t) and T k(t) shall have the same recurrence formula of the width for

2 ≤ k ≤ t (compare Figure 5(b) with Figure 6(b), and Figure 5(c) with
Figure 6(c)).

Therefore, it is straightforward to conclude that T k(t) and Ak(t) have the same
width.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 395

Algorithm 1: Generation of the T k(t) circuit.

Function: TtreeGen(k,t)
Input : k ∈ Z+, t ∈ Z+
Output : T k(t) Circuit
if t < k then

return -1;
// T k(t) does not exist.

else if k = 1 then
Generate T 1(t) according to Figure 5(a);
return T 1(t);

else if k = t then
T k−1(k − 1) ← TtreeGen (k − 1, k − 1);
Construct T k(k) according to Figure 5(b);
return T k(k);

else
T k−1(t − 1) ← TtreeGen (k − 1, t − 1);
T k(t − 1) ← TtreeGen (k, t − 1);
Construct T k(t) according to Figure 5(c);
return T k(t);

end

Algorithm 2: Generation of the Ak(t) circuit.

Function: AtreeGen(k,t)
Input : k ∈ Z+, t ∈ Z+
Output : Ak(t) Circuit
if t < k then

return -1;
// Ak(t) does not exist.

else if k = 1 then
Generate A1(t) according to Figure 6(a);
return A1(t);

else if k = t then
Ak−1(k − 1) ← AtreeGen (k − 1, k − 1);
Construct Ak(k) according to Figure 6(b);
return Ak(k);

else
Ak−1(t − 1) ← AtreeGen (k − 1, t − 1);
Ak(t − 1) ← AtreeGen (k, t − 1);
Construct Ak(t) according to Figure 6(c);
return Ak(t);

end

Summarizing the above discussion, we have the following theorem:

THEOREM 3.1. Given k ∈ Z+ and t ∈ Z+ such that 1 ≤ k ≤ t, the following
properties regarding T k(t) and Ak(t) hold:

(1) T k(t) and Ak(t) have the same width, which is

N (k, t) =
k∑

i=0

(
t
i

)
for 1 ≤ k ≤ t (6)

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

396 • H. Zhu et al.

Fig. 8. Assembling T 3(5) and A3(5).

Fig. 9. (a) Assembling T k(t) and Ak(t) into a prefix circuit T Ak(t); (b) An abstract representation
of T Ak(t).

(2) T k(t) is a binary tree of depth t and size N (k, t) − 1;
(3) Ak(t) has a depth of k +1 and a size of N (k, t), exactly one computation node

per column.

PROOF. The derivation of Eq. (6) can be found in Appendix A. (2) and (3) can
be proved directly using mathematical induction which is omitted here.

Note that when t = k, the width of T k(k) is N (k, k) = ∑k
i=0

(k
i

) = 2k , which
is in accordance with our previous observation.

3.2 Construct Z(d) Circuit by Assembling T k(t) and Ak(t)

It is interesting to note that T 3(5) and A3(5) can be assembled together to form
a prefix circuit, as shown in Figure 8. If we consider the root of A3(5) as the
final prefix output Yi, from the figure we can tell that the assembled structure
produces all the final prefix outputs Y j for i +1 ≤ j ≤ i +26. In general, we can
always combine a pair of a T k(t) tree and an Ak(t) tree to form a prefix circuit
as shown in Figure 9.

THEOREM 3.2. Assemble T k(t) and Ak(t) trees together as shown in
Figure 9(a), and denote the resulting structure as T Ak(t):

(1) T Ak(t) generates the final prefix outputs Y j (i + 1 ≤ j ≤ i + N (k, t)) if the
root of Ak(t) is the final prefix output Yi;

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 397

Fig. 10. A decomposed view of T Ak(t).

Fig. 11. A new class of zero-deficiency prefix circuits Z (d).

(2) The depth of T Ak(t) is k + t;
(3) The size of T Ak(t) is 2N (k, t).

PROOF. We will first prove (1) by mathematical induction. The base cases of
T A1(1) and T A2(1) can be verified with ease.

Using the definitions of T k(t) and Ak(t), the T Ak(t) circuit defined in
Figure 9(a) can be decomposed into the one shown in Figure 10. Note that
if we move Ak(t − 1) one level toward T k(t − 1) then essentially they form
T Ak(t − 1). Therefore, by inductive assumption, the final prefix outputs Y j for
i + 1 ≤ j ≤ i + N (k, t − 1) are available.

Likewise, moving Ak−1(t − 1) two level closer to T k−1(t − 1) would yield
T Ak−1(t−1). Since the root of Ak−1(t−1) is the final prefix output Yi+N (k,t−1), the
final prefix outputs Y j for i + N (k, t − 1) + 1 ≤ j ≤ i + N (k, t) are available too.

Second, from Figure 9(a) we can immediately tell that the depth of T Ak(t)
is (k + t) since T k(t) and Ak(t) have one level overlapping.

Finally,

size of T Ak(t) = 1 + (size of T k(t)) + (size of Ak(t))
= 1 + (N (k, t) − 1) + N (k, t)
= 2N (k, t).

The proposed Z (d) circuit is constructed by concatenating T Ai(i) (1 ≤ i ≤
	d/2
) and T Ad−i(i) (d/2
 < i ≤ d−1) in the increasing order of i, as illustrated
in Figure 11. When concatenating two neighboring circuits T Ak1 (i) and T Ak2 (i+
1), the most significant output of T Ak1 (i) merges with the least significant input
of T Ak2 (i + 1), allowing the former to feed the latter. Therefore, starting from

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

398 • H. Zhu et al.

T A1(1), the Z (d) circuit works really like a line of dominos, generating prefix
results for every column.

As an example, Figure 12 shows the Z (d)|d=8 circuit, which is constructed
from T A1(7), T A2(6), T A3(5), T A4(4), T A3(3), T A2(2) and T A1(1). Algorithm 3
describes the generation of the Z (d) circuit, while Theorem 3.3 gives the width
of the Z (d) circuit.

Algorithm 3: Generation of the Z (d) circuit.

Function: ZGen(d)
Input : d ∈ Z+
Output : Zero-deficiency prefix circuit Z (d)
if d = 1 then

Z (1) ← T 1(1);
return Z (1);

else
for i = 1 to � d

2 � − 1 do
T i(d − i) ←TtreeGen (i, d − i); // call algorithm 1;
Ai(d − i) ←AtreeGen (i, d − i); // call algorithm 2;
Stitch T i(d − i) and Ai(d − i) into T Ai(d − i) as shown in Figure 9(a);

end
for 1 to i = 	 d

2
 do
T i(i) ←TtreeGen (i, i); // call algorithm 1;
Ai(i) ←AtreeGen (i, i); // call algorithm 2;
Stitch T i(i) and Ai(i) into T Ai(i) as shown in Figure 9(a);

end
Stitch all the T, A trees together to form Z (d) as shown in Figure 11;

end

THEOREM 3.3. The width of the Z (d) circuit, which we denote by NZ (d), is

NZ (d) = F (d + 3) − 1 for d ≥ 1 (7)

where F (k) is the well-known Fibonacci series defined by the recurrence

F (1) = F (2) = 1, F (k) = F (k − 1) + F (k − 2) for k ≥ 3

PROOF. See Appendix B

3.3 Optimality of the Z (d) Circuit

In order to prove the optimality of the Z (d) circuit, we shall first show that the
Z (d) circuit is indeed of zero-deficiency, which is addressed in Theorem 3.4, and
prove that it does have the minimum depth among all possible zero-deficiency
circuits, which is addressed in Theorem 3.5. Actually, the intuition behind con-
structing the Z (d) circuit is that we can try to find the zero-deficiency prefix cir-
cuit of maximum width for a given depth, instead of finding the zero-deficiency
prefix circuit of minimum depth for a given width. Of course, the two points of
view are actually equivalent.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 399

F
ig

.1
2.

A
n

ex
am

pl
e

of
th

e
Z

(d
)

ci
rc

u
it

:
Z

(d
)| d

=8
.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

400 • H. Zhu et al.

THEOREM 3.4. The parallel prefix circuit Z (d) shown in Figure 11 is of zero-
deficiency.

PROOF. The depth of Z (d) is automatically d by the way we constructed it.
The size of Z (d) is the sum of the sizes of all the constituent T Ak(t) circuits.
Note that every two neighboring T Ak(t) circuits have one node in common, and
there are in total d − 2 common nodes. Therefore,

sZ (d) =
∑

(size of AT k(t) circuits) − (d − 2)
= 2(NZ (d) − 2) − (d − 2)
= 2NZ (d) − d − 2

That is:

sZ (d) + d = 2NZ (d) − 2

Therefore, Z (d) is of zero-deficiency.

THEOREM 3.5. Z (d) has the maximum width for a given depth d among all
zero-deficiency prefix circuits.

PROOF. We will only sketch the arguments. We would like to show that given
a depth d , the widest zero-deficiency circuit that we can build is actually Z (d).

Suppose G(n) is a zero-deficiency circuit of depth d . According to Corol-
lary 2.3, the ridge of G(n) has d nodes on it, one node per level. Starting from the
last final prefix output Yn, let us number the nodes on the ridge as v1,v2, . . . ,vd

in order, as shown in Figure 13, and correspondingly denote the columns where
they reside in as colv1 , colv2 , . . . , colvd . Node vi is at level d − i + 1.

(1) For columns between colv1 and colv2 , the only way to get the prefix results is
to take node v2 as the input and produce the results at level d . Accordingly,
the only possible structure above the v1 − −v2 connection is a serial prefix
circuit, and its maximum possible width is d .

(2) Now consider the columns between colv2 and colv3 . The structure above the
v2 − −v3 connection is an alphabetical binary tree, and its root is the node
directly above v2. For this tree to have a span as wide as possible, the path
from its root to its least significant input must increase exactly one level
each time. The total number of nodes on this path is d − 2, and every node
is a partial prefix result. Let us label these nodes as u1, u2, . . . , ud−2, and
their corresponding columns as colu1 , colu2 , . . . ,colud−2 . Z (d)’s prefix results
at columns colui (i = 1 · · · d − 2) can be generated at level d − 1 by directly
taking v3 as the input.

(3) Again, label these output nodes at level d − 1 as u′
1, u′

2,· · ·, u′
d−2 (note u′

1
is just v2). The outputs of the columns between u′

1 and u′
2 have no other

choice but to take u′
2 as the input directly. Accordingly, the structure above

the u1 − −u2 connection must be a serial prefix circuit, and its maximum
width is d −2. Likewise, the structure above the u2 −−u3 connection is also
a prefix circuit whose maximum width is d − 3, and so on. Therefore, the
binary tree above the v2 − −v3 connection is identical to the T 2(d − 2) tree.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 401

F
ig

.1
3.

Z
er

o-
de

fi
ci

en
cy

pr
efi

x
ci

rc
u

it
of

m
ax

im
u

m
w

id
th

in
ac

ti
on

.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

402 • H. Zhu et al.

Table I. Widths of LS(n), LY D(n) and Z (d) Circuits

Depth WLS WLYD WZ depth WLS WLYD WZ

3 7 7 7 13 260 308 986
4 11 12 12 14 383 446 1596
5 16 20 20 15 517 576 2583
6 23 33 33 16 575 843 4180
7 33 54 54 17 1030 1101 6764
8 47 77 88 18 1535 1625 10945
9 66 95 143 19 2055 2139 17710

10 95 135 232 20 3071 3176 28656
11 131 169 376 21 4104 4202 46367
12 191 242 609 22 6143 6264 75024

We can continue the above analysis to the lower columns in a similar way.
It turns out that in order to make the whole zero-deficiency circuit as wide as
possible, the binary tree above the v3−−v4 connection must be the T 3(d−3) tree,
and the structure under the v3 − −v4 connection is just an A3(d − 3) tree, and
so on. Thus, the resulting circuit is exactly Z (d) as we defined in Figure 11.

Table I shows the widths of Z (d) circuits for 3 ≤ d ≤ 22, with the results
of Lin’s design [Lin and Shih 1999] and the LY D(n) circuit [Lakshmivarahan
et al. 1987] listed for comparison. Each number is read as the maximum width
up to which a zero-deficiency prefix circuit of that type under the given depth
can be constructed. Clearly, our design dominates the other two, especially when
the depth is large.

4. GENERALIZED Z (D) CIRCUIT

It is now clear that the curve of function d = f (n) in Figure 2 is just the inverse
function of NZ (d) = F (d + 3) − 1 given in Theorem 3.3. Formally, we have

THEOREM 4.1. The minimum depth of any n-input zero-deficiency prefix cir-
cuit is given by

dmin(n) = min{t : F (t) ≥ n + 1} − 3 (8)

Figure 14 sketches the shape of dmin(n), which is a piecewise constant func-
tion. Note that the Z (d) circuits described in Algorithm 3 only represent the
extreme cases of the zero-deficiency circuits, namely, the rightmost points of the
step segments in Figure 14. It is of practical interest to construct zero-deficiency
circuits for every width-depth pair (n, d) such that d ≥ dmin(n). Fortunately,
this is not difficult to do based on the proposed Z (d) circuit, and can be tackled
in two steps.

First, we need to consider all the (n0, d0) pairs residing on the curve of dmin(n).
For these points, we can simply construct Z (d)|d=d0 first, whose width is F (d0 +
3)−1, and discard the most significant F (d0 +3)−1−n0 columns. For example,
a 64-input prefix circuit of depth 8 can be obtained by discarding the leading
24 columns of Z (d)|d=8. Care must be taken to make small adjustments on the
new most significant columns after discarding.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 403

Fig. 14. dmin(n): minimum depth of zero-deficiency prefix circuits as a function of width n.

Fig. 15. Zero-deficiency prefix circuit for arbitrary (n, d) pair; t0 is a positive integer such that
d − t0 = dmin(n − t0).

For (n0, d0) pairs such that d0 > dmin(n0), we first draw a 45 degree line
though (n0, d0), intersecting dmin(n) at (n′, d ′), as shown in Figure 14. We can
then construct zero-deficiency circuit for (n′, d ′), and concatenate it with a (d0 −
d ′)-input serial prefix circuit.

The above idea translates into Algorithm 4, which generates zero-deficiency
prefix circuits for arbitrary (n, d) pairs.

Algorithm 4: Generation of zero-deficiency circuit for arbitrary (n, d) pair.

Function: ZXGen(n,d)
Input : n ∈ Z+, d ∈ Z+
Output : A zero-deficiency prefix circuit ZX(n,d) of width n and depth d
if d < dmin(n) then

return -1;
else

Find t0 s.t. d − t0 = dmin(n − t0);
Z (d − t0) ←ZGen(d − d0); // Call Algorithm 3;
Z X (n − t0, d − t0) ←truncating the t0 most significant columns of Z (d − t0);
Z X (n, d) ←Concatenate Z X (n − t0, d − t0) with a t0-input serial prefix circuit as
shown in Figure 15;
return ZX(n,d);

end

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

404 • H. Zhu et al.

5. COMPARISONS AND DISCUSSIONS

5.1 A Comparison to Zimmermann’s Algorithm

Zimmermann [1996] proposed a heuristic algorithm to generate parallel pre-
fix circuit of small size under a given depth constraint. His algorithm consists
of two steps: compressions and expansion. The compression step starts with
a serial prefix circuit and compact it as much as possible, effectively reducing
the depth at the cost of increasing size. The expansion step tries to reduce the
size by bouncing back the depth subject to the depth constraint. His algorithm
in many cases can produce zero-deficiency prefix circuit. However, since his
algorithm is greedy in nature, there is no guarantee on the optimality. In con-
trast, the proposed Z (d) circuit and its generalization has provable optimality
for d ≥ dmin(n), and shows its advantage when the depth constraint is really
tight. For example, given width 54 and depth 7, our design has 99 nodes, while
Zimmermann’s algorithm gives a design of 104 nodes [Zimmermann].

Another merit of the proposed structure is that, when the depth constraint is
loose, Algorithm 4 tends to compact all the nodes to lower levels and columns.
Such a scheme can achieve low power in the context of prefix adder design, be-
cause cells of higher logic levels usually have higher activity rates which are pro-
portional to dynamic power consumption. Zimmermann’s algorithm, however,
tends to bring nodes to higher levels in the expansion step. A detailed analysis
on power characteristic of the proposed structure is planned for future work.

On the other hand, Zimmermann’s algorithm can handle cases of integer,
non-uniform input arrival times (AT), while the proposed approach only con-
siders the case of uniform AT. Hence it is interesting to extend our idea to
produce provably good prefix circuits under nonuniform AT. A conceivable way
to attack this problem is to partition the whole circuit into consecutive sub-
blocks, each with an uniform AT profile, and solve the sub-blocks individually
and sequentially. In this case, each sub-block may receive a delayed first input,
which is generated by the previous sub-block.

5.2 Zero-Deficiency Prefix Circuits of Limited Fan-Out

Another possible extension problem is to generalize the Z (d) circuit and con-
sider fan-out constraints. Lin and others have done a lot of work in this re-
spect, that is, constructing zero-deficiency1 prefix circuits of limited fan-out,
especially 2 and 4 [Lin 1999; Lin et al. 2003; Lin and Chen 2003; Lin and Hsiao
2004]. Their approaches are largely constructive and cannot be generalized for
arbitrary fan-out constraints. However, we may have a different way of con-
structing fan-out limited prefix circuits by directly pruning the out branches of
large fan-out nodes in our proposed Z (d) circuit. A preliminary study shows
that by doing this way we can generate a prefix circuit of up to 72-bit for depth
constraint 8 and fan-out limit 4, as shown in Figure 16. By contrast, under the
same constraints the maximum widths that can be achieved by H4 [Lin et al.

1Lin and Shih [1999] had used depth-size optimal to denote the concept of zero-deficiency in their
papers. However, we explicitly distinguish depth-size optimal and zero-deficiency, as stated in
Section 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 405

F
ig

.1
6.

A
ze

ro
-d

efi
ci

en
cy

pr
efi

x
ci

rc
u

it
w

it
h

de
pt

h
8

an
d

fa
n

-o
u

t
4,

de
ri

ve
d

fr
om

Z
(d

)| d
=8

.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

406 • H. Zhu et al.

2003], Z4 [Lin and Chen 2003] and WE4 [Lin and Hsiao 2004] are 64, 67 and
57 respectively.

6. CONCLUSIONS

In this article, we have proposed a new class of zero-deficiency prefix circuits
Z (d) which has the minimum possible depth for a given width. We described the
construction of Z (d) and proved its optimality in detail. We also extend Z (d)
circuits to consider general width and depth specifications. Thus for d ≥ dmin(n)
(as established in Theorem 4.1), the optimal depth-size trade-off problem for
prefix circuits is completely resolved.

APPENDIX

A. DERIVATION OF EQUATION (6)

PROOF. According to the definition of T k(t), N (k, t) obeys the following re-
currence formula:

N (k, t) = N (k, t − 1) + N (k − 1, t − 1) for 2 ≤ k < t (9)

and boundary conditions:

N (1, t) = t for t ≥ 1 (10)
N (k, k) = 2k for k ≥ 2. (11)

Although N (k, t) is defined over 1 ≤ k ≤ t only, mathematically it is valid to
extend N (k, t) to the entire first quadrant of t ≥ 0, k ≥ 0. Interestingly, if we
set the new boundary conditions to be

N (0, t) = N (k, 0) = 1 for t ≥ 0, k ≥ 0. (12)

Then the extended N (k, t) sequence still satisfies the recurrence equation (9)
for t ≥ 1, k ≥ 1, as well as the original boundary conditions (10) and (11).

We can then construct a generating function using the extended N (k, t) as
the corresponding coefficients:

F (x, y) =
∑
k≥0
t≥0

N (k, t)xk yt . (13)

We can further derive that

F (x, y) =
∑
k≥0

xk +
∑
t≥1

yt +
∑
k≥1
t≥1

N (k, t)xk yt

=
∑
k≥0

xk +
∑
t≥1

yt +
∑
k≥1
t≥1

(N (k, t − 1) + N (k − 1, t − 1))xk yt

=
∑
k≥0

xk + y
∑
t≥0

yt + y
∑
k≥1
t≥0

N (k, t)xk yt + x y
∑
k≥0
t≥0

N (k, t)xk yt

=
∑
k≥0

xk + y F (x, y) + x y F (x, y). (14)

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 407

Thus

F (x, y) = 1
1 − y(1 + x)

·
∑
k≥0

xk =
∑
k≥0

(y(1 + x))k ·
∑
k≥0

xk . (15)

Recall that N (k, t) is the coefficient of term xk yt in F (x, y). The only term
containing yt in the right-hand side of (15) is yt(1 + x)t , and

(1 + x)t =
t∑

i=0

(
t
i

)
xi. (16)

Clearly, only the first k + 1 terms of the expansion of (1 + x)t will generate
xk when multiplied by proper terms in

∑
k≥0 xk . Therefore

N (k, t) =
k∑

i=0

(
t
i

)
for 1 ≤ k < t. (17)

B. PROOF OF THEOREM 3.3

PROOF. From Figure 11, we see that the width of Z (d) is just the sum of the
widths of all its constituent T Ak(t) circuits plus 2.

NZ (d) = 2 +
	 d

2
∑
i=1

N (i, i) +
d−1∑

i=	 d
2
+1

N (d − i, i)

= 2	 d
2
+1 +

� d
2 �−1∑
i=1

N (i, d − i). (18)

What remains is to derive a closed form for the right-hand side of the above
equation. In writing NZ (d) we will distinguish the cases of d even and d odd.

NZ (2d) = 2d+1 +
d−1∑
i=1

i∑
j=0

(
2d − i

j

)
(19)

NZ (2d + 1) = 2d+1 +
d∑

i=1

i∑
j=0

(
2d + 1 − i

j

)
. (20)

Taking the difference of NZ (2d + 1) and NZ (2d), and utilizing the well-known
binomial equation

(n
k

) − (n−1
k

) = (n−1
k−1

)
, we have

NZ (2d + 1) − NZ (2d) =
d∑

i=1

i∑
j=0

(
2d + 1 − i

j

)
−

d−1∑
i=1

i∑
j=0

(
2d − i

j

)

=
d∑

j=0

(
d + 1

j

)
+

d−1∑
i=1

i∑
j=0

((
2d + 1 − i

j

)
−

(
2d − i

j

))

= (2d+1 − 1) +
d−1∑
i=1

i∑
j=1

(
2d − i
j − 1

)

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

408 • H. Zhu et al.

= 2d+1 +
d−1∑
i=1

i∑
j=0

(
2d − i

j

)
− 1 −

d−1∑
i=1

(
2d − i

i

)

= NZ (2d) −
d∑

i=0

(
2d − i

i

)
+ 1. (21)

Therefore

2NZ (2d) − NZ (2d + 1) =
d∑

i=0

(
2d − i

i

)
− 1. (22)

Similarly, we have

2NZ (2d + 1) − NZ (2d + 2) =
d∑

i=0

(
2d + 1 − i

i

)
− 1. (23)

It is easy to show by induction that

d∑
i=0

(
2d − i

i

)
= F (2d + 1) (24)

d∑
i=0

(
2d + 1 − i

i

)
= F (2d + 2), (25)

where F (r) denotes the rth Fibonacci number. Now let us substitute Eqs. (24)
and (25) into Eqs. (22) and (23) respectively, and then unify these two equations,
we obtain

NZ (d + 1) = 2NZ (d) − F (d + 1) + 1. (26)

Again, it can be shown by induction that

NZ (d) = F (d + 3) − 1 for d ≥ 1. (27)

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions.

REFERENCES

BILGORY, A. AND GAJSKI, D. D. 1986. A heuristic for suffix solutions. IEEE Trans. Comput. 35, 1
(Jan.), 34–42.

BRENT, R. P. AND KUNG, H. T. 1982. A regular layout for parallel adders. IEEE Trans. Comput. 31, 3
(Mar.), 260–264.

FICH, F. E. 1983. New bounds for parallel prefix circuits. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing (STOC ’83). ACM, New York, 100–109.

LADNER, R. E. AND FISCHER, M. J. 1980. Parallel prefix computation. J. ACM 27, 4 (Oct.), 831–838.
LAKSHMIVARAHAN, S. AND DHALL, S. K. 1994. Parallel Computing: Using the Prefix Problem. Oxford

University Press, New York.
LAKSHMIVARAHAN, S., YANG, C. M., AND DHALL, S. K. 1987. On a new class of optimal parallel prefix

circuits with (size + depth) = 2n − 2 and �log n� ≤ depth ≤ (2�log n� − 3). In Proceedings of the
1987 International Conference on Parallel Processing. 58–65.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Construction of Zero-Deficiency Parallel Prefix Circuits • 409

LIN, Y. C. 1999. Optimal parallel prefix circuits with fan-out 2 and corresponding parallel algo-
rithms. Neural, Parall. Sci. Comput. 7, 1 (Mar.), 33–42.

LIN, Y. C. AND CHEN, J. N. 2003. Z4: A new depth-size optimal parallel prefix circuit with small
depth. Neural, Parall. Sci. Comput. 11, 3 (Sept.), 221–235.

LIN, Y. C. AND HSIAO, J. W. 2004. A new approach to constructing optimal parallel prefix circuits
with small depth. J. Parall. Distrib. Comput. 64, 1 (Jan.), 97–107.

LIN, Y. C., HSU, Y. H., AND LIU, C. K. 2003. Constructing h4, a fast depth-size optimal parallel
prefix circuit. J. Supercomput. 24, 3 (Mar.), 279–304.

LIN, Y. C. AND SHIH, C. C. 1999. A new class of depth-size optimal parallel prefix circuits. J.
Supercomput. 14, 1 (July), 39–52.

SKLANSKY, J. 1960. Conditional sum addition logic. IRE Trans. Electron. Comput. EC-9, 6 (June),
226–231.

SNIR, M. 1986. Depth-size trade-offs for parallel prefix computation. J. Algor. 7, 2 (June), 185–
201.

ZIMMERMANN, R. Java applet for adder synthesis. In http://www.iis.ee.ethz.ch/zimmi/applets/
prefix.html.

ZIMMERMANN, R. 1996. Non-heuristic optimization and synthesis of parallel-prefix adders. In Pro-
ceedings of the International Workshop on Logic and Architecture Synthesis. 123–132.

Received August 2004; revised February 2005 and August 2005; accepted October 2005

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

