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Abstract. We study a linear system with a Markovian switching parameter perturbed by

white noise. The cost function is quadratic. Under certain conditions, we find a linear feedback

control which is almost surely optimal for the pathwise average cost over the infinite planning

horizon.

1. Introduction. We study a parameterized linear system perturbed by white noise. The
parameters are randomly switching from one state to the other and are modelled as a finite
state Markov chain; the values of the parameter and the state of the linear system are
assumed to be known to the controller. The objective is to minimize a quadratic cost over
the infinite planning horizon. Such dynamics arise quite often in numerous applications
involving systems with multiple modes or failure modes, such as fault tolerant control
systems, multiple target tracking, flexible manufacturing systems, etc. [3], [4], [9].

For a finite planning horizon, the problem is well understood, but difficulties arise when
the planning horizon is infinite (very large in practice) and one looks for a steady state
solution. Due to constant perturbation by the white noise, the total cost is usually infinite,
rendering the total cost criterion inappropriate for measuring performance. In this situation,
one studies the (long-run) average cost criterion. Here we study the optimal control problem
of such a system with pathwise average cost. Pathwise results are very important in practical
applications, since we often deal with a single realization. This problem for a very general
hybrid system has been studied in [5], where we have established the existence of an almost
surely optimal stationary Markov control and have characterized it as a minimizing selector
of the Hamiltonian associated with the corresponding dynamic programming equations.
When specializing to the LQG case, the existence results in [5] carry through with minor
modifications, but the characterization results do not, since the boundedness of the drift
is crucially used to derive the dynamic programming equations. In this note we sketch
the derivation of the existence result for the LQG problem from [5]. We then characterize
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the optimal control by solving the dynamic programming equations via Riccati equations.
Similar dynamics, but with an overtaking optimality criterion, have been recently studied
in [6].

Our paper is structured as follows. Section 2 deals with the problem description. The
main results are contained in Section 3. Section 4 concludes the paper with some remarks.

2. Problem Description. For the sake of notational convenience, we treat the scalar
case. The higher dimensional case can be treated in an analogous manner. Let S(t) be a
(continuous time) Markov chain taking values in S = {1, 2, . . . , N} with generator Λ =

[
λij

]
such that λij > 0, i �= j (this condition can be relaxed. See Remark 3.1(v).). Let X(t) be
a one-dimensional process given by

(2.1)
dX(t) =

[
A

(
S(t)

)
X(t) + B

(
S(t)

)
u(t)

]
dt + σ

(
S(t)

)
dW (t)

X(0) = X0

for t ≥ 0, where W (·) is a one-dimensional standard Brownian motion independent of S(·)
and X0. u(t) is a real valued nonanticipative process satisfying

(2.2)
∫ T

0

u2(t)dt < ∞ a.s. (almost surely)

for each T > 0, A(i), B(i), σ(i) are scalars such that B(i) �= 0 and σ(i) > 0 for each i.
We will often write Ai, Bi, etc. instead of A(i), B(i). The nonanticipative process u(t)
satisfying (2.2) is called an admissible control. It is called a stationary Markov control if
u(t) = v

(
X(t), S(t)

)
for a measurable map v : R × S → R. With an abuse of notation, the

map v itself is called a stationary Markov control. A stationary Markov control v(x, i) is
called a linear feedback control if v(x, i) = kix, where ki are scalars, i = 1, . . . , N .

Under a stationary Markov control v, the hybrid process
(
X(t), S(t)

)
is a strong (time-

homogeneous) Markov process [4]. Let v be a stationary Markov control. Under v, the
point (x, i) ∈ R × S is said to be recurrent under v if

P v
x,i

(
X(tn) = x, S(tn) = i, for some sequence tn ↑ ∞

)
= 1 ,

where P v
x,i is the measure under v and with initial condition X(0) = x, S(0) = i, in (2.1).

A point(x, i) is transient under v, if

P v
x,i

(
|X(t)| → ∞, as t → ∞

)
= 1 .

For a space of dimension d > 1, the point (x, i) ∈ R
d × S, is said to be recurrent under v,

if given any ε > 0,

P v
x,i

(
‖X(tn) − x‖ < ε, S(tn) = i, for some sequence tn ↑ ∞

)
= 1 .

If all points (x, i) are recurrent, then the hybrid process
(
X(t), S(t)

)
is called recurrent. It

is shown in [5] that under our assumption, for any stationary Markov control,
(
X(t), S(t)

)
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is either recurrent or transient. A recurrent
(
X(t), S(t)

)
will admit a unique (up to a

constant multiple) σ-finite invariant measure on R×S (resp. R
d ×S for higher dimension).

The hybrid process
(
X(t), S(t)

)
is called positive recurrent if it is recurrent and admits

a finite invariant measure. For other details concerning recurrence and ergodicity of this
class of hybrid systems we refer the reader to [5]. A stationary Markov control v is called
stable if the corresponding process

(
X(t), S(t)

)
is positive recurrent. The cost function

c(x, i, u) : R × S × R → R+ is given by

(2.3) c(x, i, u) = C(i)x2 + D(i)u2,

where Ci > 0, Di > 0 for each i. We say that an admissible policy u(·) is a.s. optimal if
there exists a constant ρ∗ such that

(2.4) lim sup
T→∞

1
T

∫ T

0

[
C

(
S(t)

)
X2(t) + D

(
S(t)

)
u2(t)

]
dt = ρ∗ Pu a.s.,

where X(t) is the solution of (2.1) under u(·), and for any other admissible policy ũ(·)

(2.5) lim sup
T→∞

1
T

∫ T

0

[
C

(
S(t)

)
X̃2(t) + D

(
S(t)

)
ũ2(t)

]
dt ≥ ρ∗ P ũ a.s.,

where X̃(t) is the solution of (2.1) under ũ(·), and initial condition X̃(0) = X0. Note that
in (2.4) and (2.5) the two measures with respect to which the ‘a.s.’ qualifies may be defined
on different measurable spaces. Our goal is to show the existence of an a.s. optimal control
and then find an a.s. optimal linear feedback control.

3. Main Results. We first note that the set of stable Markov policies is nonempty. The
proof of this claim is rather standard and relies on a Lyapunov technique (see [10] for more
general results).

For a stable stationary Markov control v, there exists a unique invariant probability
measure, denoted by ηv, for the corresponding process

(
X(t), S(t)

)
, and

(3.2) ρv := lim
T→∞

1
T

∫ T

0

[
C

(
S(t)

)
X2(t) + D

(
S(t)

)
v2

(
X(t), S(t)

)]
dt

=
N∑

i=1

∫
R

(
Cix

2 + Div
2(x, i)

)
ηv(dx, i) a.s.

If v, as above, is a stable linear feedback, then it can be shown as in [11] that ρv < ∞. Let

(3.3) ρ∗ = inf
v

ρv

where the infimum is over all stable linear feedback controls. Clearly, we look for a stable
linear feedback control v∗ such that ρ∗ = ρv∗ and v∗ is a.s. optimal among all admissible
controls. Since Ci > 0, the cost function c in (2.3) penalizes the unstable behavior. In other
words, the cost penalizes the drift of the process away from some compact set, requiring
the optimal control to exert some kind of a “centripetal force” pushing the process back
towards this compact set. Thus, the optimal control gains the desired stability property. In
the framework of [5], it is easily seen that the penalizing condition (A5)

lim inf
|x|→∞

inf
u

c(x, i, u) > ρ∗

is satisfied. Thus by the results of [5], we have the following existence result.
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Theorem 3.1. There exists a stable stationary Markov control which is a.s. optimal.

We now proceed to find a stable linear feedback control which is a.s. optimal. To this
end, we study the dynamic programming equation given by

(3.4)
1
2
σ2

i V ′′(x, i) + min
u

[(
Aix + Biu

)
V ′(x, i) + C(i)x2 + D(i)u2

]
+

N∑
j=1

λijV (x, j) = ρ,

where ρ is a scalar and V : R × S → R. Since the drift is unbounded, the dynamic
programming treatment of [5] is not applicable here. We look for a trial solution of (3.4),
of the form

(3.5) V (x, i) = Qix
2 + Ri,

where Qi and Ri are to be determined. Following the usual procedure, we find that the
minimizing selector in (3.4) is given by

(3.6) v(x, i) = −BiQix

Di

where the Qi’s are the unique positive solution of the algebraic Riccati system

(3.7) 2AiQi −
B2

i Q2
i

Di
+ Ci +

N∑
j=1

λijQj = 0

and the Ri’s are given by

(3.8) σ2
i Qi +

N∑
j=1

λijRj = ρ.

Note that (3.8) is an underdetermined system of equations in Ri, ρ, i = 1, 2, . . . , N . Also,
if the Ri’s satisfy (3.8), then so do Ri + k for any constant k.

Lemma 3.1. Fix an i0 ∈ S. Then there exists a unique solution (Ri, ρ) to (3.8) satisfying
Ri0 = 0.

Proof. We have for any T > 0,

(3.9)
E R(S(T )) − E R(S(0)) = E

[∫ T

0

N∑
j=1

λS(t),jRj dt
]

= ρT − E
[∫ T

0

σ2
(
S(t)

)
Q

(
S(t)

)
dt

]
,

where the second equality follows from (3.8). Dividing (3.9) by T , letting T → ∞, and
using the fact that the chain S(t) is irreducible and ergodic, we have

(3.10)

ρ = lim
T→∞

1
T

E
[∫ T

0

σ2
(
S(t)

)
Q

(
S(t)

)
dt

]

= lim
T→∞

1
T

∫ T

0

σ2
(
S(t)

)
Q

(
S(t)

)
dt a.s.

=
N∑

i=1

σ2
i Qiπ(i)
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where π = [π(1), . . . , π(N)]′ is the (unique) invariant probability measure of S(t). Let Ri

be defined by

(3.11) Ri = E
[∫ τi0

0

(
σ2

(
S(t)

)
Q

(
S(t)

)
− ρ

)
dt

∣∣ S(0) = i
]

where τi0 = inf
{
t > 0

∣∣ S(t) = i0
}
. Then, using Dynkin’s formula, it is seen that Ri satisfies

(3.8) with Ri0 = 0. Let (R′
i, ρ

′) be another solution to (3.8) such that R′
i0

= 0. As before,
we have

ρ′ =
N∑

i=1

σ2
i Qiπ(i) = ρ.

Let M(t) = R
(
S(t)

)
− R′(S(t)

)
. Then using (3.8), M(t) is easily seen to be a martingale

which converges a.s. Since S(t) is positive recurrent, it visits every state infinitely often.
Hence Ri − R′

i must be a constant. Thus Ri − R′
i = Ri0 − R′

i0
= 0. �

In view of these results, using Ito’s formula and the pathwise analysis of [5], the following
result is now apparent.

Theorem 3.2. For the LQG problem (2.1)–(2.3), the linear feedback control given by (3.6)
is a.s. optimal, where the Qi’s are determined by (3.8). The pathwise optimal cost is given
by (3.9).

Some comments are in order now.

Remark 3.1.

(i) The condition Bi �= 0 for each i can be relaxed. If for some i, Bi = 0, then the
above result will still hold if (Ai, Bi) are stochastically stabilizable in a certain sense
[7], [9].

(ii) For the multidimensional case, if Bi, Ci, σi are positive definite, then all the above
results will hold. But the positive definiteness of Bi is a very strong condition, since
in many cases the Bi’s may not even be square matrices. In such a case if we assume
that (Ai, Bi) are stochastically stabilizable, then the above results will again hold.
Sufficient conditions for stochastic stabilizability are given in [2], [7], [9]. If Ci is not
positive definite, then the cost does not necessarily penalize the unstable behavior,
as discussed in the foregoing. Thus the condition (A5) of [5] is not satisfied. In
this case under a further detectability condition, the optimality can be obtained in
a restricted class of stationary Markov controls [2].

(iii) Let ρ be as in (3.9). Then for any admissible policy u(t) it can be shown by the
pathwise analysis in [5] that

lim inf
T→∞

1
T

∫ T

0

[
C

(
S(t)

)
X2(t) + D

(
S(t)

)
u2(t)

]
dt ≥ ρ a.s.

This establishes the optimality of the linear feedback control v (3.6) in a much
stronger sense, viz. the most “pessimistic” pathwise average cost under v is no worse
than the most “optimistic” pathwise average cost under any admissible control.
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(iv) For T > 0, let V (x, i, T ) denote the optimal expected cost for the finite horizon
[0, T ]. Then it can be shown as in [2] that

lim
T→∞

1
T

V (x, i, T ) = ρ

where ρ is as in (3.9). Thus the finite horizon value function approaches the optimal
pathwise average cost as the length of the horizon increases to infinity. Thus for
large T , the linear feedback control (3.6) would be a reasonably good nearly optimal
control for the finite horizon case. This would be particularly useful in practical ap-
plications since it is computationally more economical to solve the algebraic Riccati
system than the Riccati system of differential equations.

(v) The condition λij > 0 can be relaxed to the condition that the chain S(t) is irre-
ducible (and hence ergodic). The existence part in [5] can be suitably modified to
make the necessary claim here. In the dynamic programming part, the existence of
a unique solution in Lemma 3.1 is clearly true under the irreducibility condition.

4. Conclusions. In this note, we have studied the pathwise optimality of an LQG regulator
with Markovian switching parameters. We have assumed that the Markovian parameters
are known to the controllers. This is an ideal situation. In practice the controllers may
not have a complete knowledge of these parameters. In this case, one usually studies the
corresponding minimum variance filter. Unfortunately, this filter is almost always infinite
dimensional [9]. A computationally efficient suboptimal filter has been developed in [1], [8].
We hope that our results will be useful in the dual control problem arising in this situation.
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