Rectangular M-D Discrete Fourier Transform

Lecture by Prof. Brian L. Evans (UT Austin)

Scribe: Milos Milosevic (UT Austin)

Rectangular Fourier Series

Any rectangularly periodic array with horizontal and vertical periods N_{1} and N_{2} can be expressed as a finite sum of harmonically related complex sinusoids.

$$
\begin{aligned}
& \tilde{x}\left(n_{1}, n_{2}\right)=\frac{1}{N_{1} N_{2}} \sum_{k_{1}=0}^{N_{1}-1 N_{k_{2}}=0} \sum_{2}-1 \\
& X \\
& \left(k_{1}, k_{2}\right) \exp \left(j \frac{2 \pi}{N_{1}} n_{1} k_{1}+j \frac{2 \pi}{N_{2}} n_{2} k_{2}\right) \\
& \tilde{X}\left(k_{1}, k_{2}\right)=\sum_{n_{1}=0}^{N_{1}-1 \sum_{2} \sum_{2}-1} \tilde{x}\left(n_{1}, n_{2}\right) \exp \left(-j \frac{2 \pi}{N_{1}} n_{1} k_{1}-j \frac{2 \pi}{N_{2}} n_{2} k_{2}\right)
\end{aligned}
$$

Each sum involves only a finite number of samples
If the second sum is used to define $\tilde{X}\left(k_{1}, k_{2}\right)$, that second sequence is seen to be rectangularly periodic with horizontal and vertical periods N_{1} and N_{2}, respectively.

Rectangular DFT

There is a one-to-one relationship between a sequence with periods N_{1} and N_{2}, and a finite extent sequence with support on $\left[0, N_{1}-1\right] \times\left[0, N_{2}-1\right]$.

$$
x\left(n_{1}, n_{2}\right)=\left\{\begin{array}{cc}
\tilde{x}\left(n_{1}, n_{2}\right) & \left(n_{1}, n_{2}\right) \in R_{N_{1} N_{2}} \\
0 & \text { otherwise }
\end{array}\right.
$$

where $R_{N_{1} N_{2}}=\left\{\left(n_{1}, n_{2}\right): 0 \leq n_{1} \leq N_{1}-1,0 \leq n_{2} \leq N_{2}-1\right\}$

$$
\begin{gathered}
\tilde{x}\left(n_{1}, n_{2}\right)=\sum_{k_{1}} \sum_{k_{2}} x\left(n_{1}-k_{1} N_{1}, n_{2}-k_{2} N_{2}\right) \\
x\left(n_{1}, n_{2}\right) \Leftrightarrow \tilde{x}\left(n_{1}, n_{2}\right) \Leftrightarrow \tilde{X}\left(k_{1}, k_{2}\right) \Leftrightarrow X\left(k_{1}, k_{2}\right)
\end{gathered}
$$

The outside sequences are of finite extent. The direct relationship between them is the DFT.

$$
\begin{gathered}
x\left(n_{1}, n_{2}\right)=\frac{1}{N_{1} N_{2}} \sum_{k_{1}=0}^{N_{1}-1 N_{2}=0} \sum_{2}-1
\end{gathered}\left(k_{1}, k_{2}\right) \exp \left(j \frac{2 \pi}{N_{1}} n_{1} k_{1}+j \frac{2 \pi}{N_{2}} n_{2} k_{2}\right) 0 \leq n_{1}<N_{1,} 0 \leq n_{2}<N_{2} .
$$

The DFT corresponds to (rectangular) samples of the discrete-time Fourier transform

$$
X\left(k_{1}, k_{2}\right)=X_{a}\left(\frac{2 \pi k_{1}}{N_{1}}, \frac{2 \pi k_{2}}{N_{2}}\right)
$$

Example

$$
x\left(n_{1}, n_{2}, n_{3}\right)=\delta\left(n_{2}, n_{3}-1\right) \quad\left(n_{1}, n_{2}, n_{3}\right) \in R_{N_{1} N_{2} N_{3}}\left(n_{1}, n_{2}, n_{3}\right)
$$

At location $n_{2}=0$ and $n_{3}=1$, this function is a line impulse in 3-D that varies over integer values of n_{1}. Recall that $\delta\left(n_{2}, n_{3}-1\right)=1 \delta\left(n_{2}\right) \delta\left(n_{3}-1\right)$.

$$
X\left(k_{1}, k_{2}, k_{3}\right)=\sum_{n_{1}=0}^{N_{1}-1 n_{2}=0} \sum_{n_{3}-1}^{N_{3}=0} \sum_{n_{3}-1}^{N_{2}}\left(n_{2}, n_{3}-1\right) W_{N_{1}}^{n_{1} k_{1}} W_{N_{2}}^{n_{2} k_{2}} W_{N_{3}}^{n_{3} k_{3}}
$$

First evaluate the sum with respect to n_{3}

$$
X\left(k_{1}, k_{2}, k_{3}\right)=W_{N_{3}}^{k_{3}} \sum_{n_{1}=0}^{N_{1}-1 n_{2}=0} \sum_{N_{2}} \delta\left(n_{2}\right) W_{N_{1}}^{n_{1} k_{1}} W_{N_{2}}^{n_{2} k_{2}}
$$

Now evaluate with respect to n_{2}

$$
X\left(k_{1}, k_{2}, k_{3}\right)=W_{N_{3}}^{k_{3}} \sum_{n_{1}=0}^{N_{1}-1} W_{N_{2}}^{n_{2} k_{2}}=N_{1} \delta\left(k_{1}\right) W_{N_{3}}^{k_{3}} \quad \text { (separable) }
$$

Properties of the DFT

- Linearity: $a x_{1}\left(n_{1}, n_{2}\right)+b x_{2}\left(n_{1}, n_{2}\right) \leftrightarrow a X_{1}\left(k_{1}, k_{2}\right)+b X_{2}\left(k_{1}, k_{2}\right)$
- Circular shifts: $x\left(\left(\left(n_{1}-m_{1}\right)\right)_{N_{1}},\left(\left(n_{2}-m_{2}\right)\right)_{N_{2}}\right)=W_{N_{1}}^{m_{1} k_{1}} W_{N_{2}}^{m_{2} k_{2}} X\left(k_{1}, k_{2}\right)$

Circular Shift

- Symmetry: If $x\left(n_{1}, n_{2}\right)=x^{*}\left(n_{1}, n_{2}\right)$, i.e. the sequence is real-valued, then $X^{*}\left(k_{1}, k_{2}\right)=X\left(\left(\left(N_{1}-k_{1}\right)\right)_{N_{1}},\left(\left(N_{2}-k_{2}\right)\right)_{N_{2}}\right)$
- Duality: If $x\left(n_{1}, n_{2}\right) \leftrightarrow X\left(k_{1}, k_{2}\right)$, then $X^{*}\left(n_{1}, n_{2}\right) \leftrightarrow N_{1} N_{2} x^{*}\left(k_{1}, k_{2}\right)$
- Circular Convolution: $x\left(n_{1}, n_{2}\right) \overbrace{N_{1} x N_{2}}^{\text {Circ.Conv. }} h\left(n_{1}, n_{2}\right)=X\left(k_{1}, k_{2}\right) H\left(k_{1}, k_{2}\right)$
- The convolution is circular with respect to both variables
- If the DFT support $N_{1} \mathrm{x} N_{2}$ is large enough to contain the linear convolution, then circular convolution $=$ linear convolution
- If the extent of x is $N_{1} \times N_{2}$ and h is $M_{1} \times M_{2}$, then the linear convolution of x and h is $P_{1} \times P_{2}$ where $P_{1}=N_{1}+M_{1}-1$ and $P_{2}=N_{2}+M_{2}-1$.
- The DFT size must be at least $P_{1} \times P_{2}$

