
Computation of the 
Multidimensional Discrete Fourier Transform (DFT) 

Lecture by Prof. Brian L. Evans (UT Austin) 

Scribe: Wade C. Schwartzkopf (UT Austin) 

v DIRECT COMPUTATION OF TWO-DIMENSIONAL DFTS 

◊ If the twiddle factors (WN terms) are pre-computed and stored in a 
table, then we require 

• N1
2 

N2
2 complex multiplies and adds 

• 1012 complex multiplies and adds (CMADs) if N1=N2=1024: 

@1 µs/CMAD ⇒ 11.5 days (low-end programmable processor) 

@1 ns/CMAD ⇒ 16.7 minutes (high-end dedicated processor) 

Since bus speeds are significantly slower than processor speeds, we can 

only process the data in real time if we can feed data to the processor 

quickly enough.  Note that a 200 MHz Texas Instruments TMS320C62x is 

a fixed-point programmable DSP processor that can compute one CMAD 

in 10 ns.  A CMAD consists of four real multiplications plus four real 

additions, and the 200 MHz C62x can perform 400 million real 

multiplications per second.  For more information about the C62x, see 

http://www.ece.utexas.edu/~bevans/courses/ee345s/lectures/01_Architecture 

v ROW-COLUMN DECOMPOSITION 

◊ We can regroup the computations 
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◊ Interpretation 

• To compute G(n, k2), compute a 1-D DFT of the nth column of x.  Do 
this for all values of n. 

◊ Computation can be done using N1 N2-point DFTs +N2 N1-point DFT’s 

• With direct computation of the 1-D DFTs, the requires 

 

• 2×109 CMADs if N1 = N2 = 1024 for direct computation 

@1 µs/CMAD ⇒ 33.3 minutes 

@1 ns/CMAD ⇒ 2 seconds 

• If N1 = 2u; N2 = 2v and a 2-D Fast Fourier Transform (FFT) is used 

•  2x107 CMADs if N1 = N2 = 1024 

@1 µs/CMAD ⇒ 10 seconds 

@1 ns/CMAD ⇒    0.01 seconds 

This execution time is now fast enough to perform a frame-based DFT for 

a video sequence at 30 frames/s.  

• Note: Must be able to access data rowwise and columnwise.  This 
needs memory! 

v MULTIDIMENSIONAL DFT’S 

◊ Things become more complicated as the dimensionality goes up. 

1. Compute a 1-D DFT with regard to n1 for each value of n2, n3, …, nM. 

2. Compute a 1-D DFT with regard to n2 for each value of k1, n3, …, nM. 

… 

M. Compute a 1-D DFT with regard to nM for each value of k1, k2, … 

k(M-1) 
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◊ Let NP = N1N2…NM, then 

 

v DEALING WITH STORAGE 

◊ If the machine on which an FFT is to be computed has limited 
memory, then it may be difficult to access the data both rowwise and 
columnwise. 

◊ This is particularly true for 3-D and higher. 

◊ In such cases the data is typically stored rowwise in secondary 
storage and matrix transposition is performed. 

1. Take row DFTs 

2. Transpose 

3. Take row DFTs 

4. Transpose 

etc. 

v EKLUNDH’S TRANSPOSITION ALGORITHM 

◊ If N1 = N2 = 2u, then transposition of a 2-D sequence (note that the 
origin is in the lower left-hand corner) can be performed recursively 
in u stages using only 2 rows of memory.  The algorithm requires u 
passes through the matrix. 
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v MORE GENERAL DFT ALGORITHMS 

◊ The rectangular DFT relates a finite extent rectangular array to 
rectangular samples of its Fourier transform. 

• Is there a DFT for hexagonal arrays? 

• Is there a DFT connecting a rectangular array to hexagonal samples of 
its Fourier transform? 

◊ Definitions 

• )(~
nx : periodic sequence with periodicity matrix N. 

• IN: set of |det(N)| samples that makes up exactly one period of )(~
nx . 

◊ Hypothesis 

• Let’s hypothesize that )(~
nx  can be expressed as a finite linear 

combination of harmonically related complex sinusoids. 

(*) 

 

where k is an integer vector and JN is a set of multidimensional indices. 

• If this representation is valid, it must be consistent with the periodicity 
of x~ . 

 

(**) 

 

• Equating the right sides of (*) and (**) and making use of the 
orthogonality property of the complex exponentials, for any harmonic 
that is not zero, we must have 
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• If we define ( ) )( det
~

kN akX = , then 

 

 

• The complex exponentials in this sum are periodic in n with periodicity 
matrix N and in k with periodicity matrix Nt. 

 

 

 

• If we replace the periodic arrays x~  and X
~

 with finite support arrays x~  

and X
~

 with support on IN and JN, respectively, we obtain the 
generalized DFT. 

 

v SAMPLING THE FOURIER TRANSFORM 

◊ Define 

 

◊ Then 
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◊ Recall 

◊ Note: If V is given, we have limited control over the locations of the 

frequency samples because of the constraint that N must be an 
integer matrix. 
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v QUINCUNX DFT 

(Figure 3.10 in notes) 

 

 

 

 

◊ If we use 

 

 

◊ Then 

 

 

 

◊ This matrix [1 1; 1 –1] is called a quincunx sampling matrix (a non-
rectangular sampling matrix of determinant +2 or –2). This is 
quincunx sampling. 

v EVALUATING GENERAL DFT’S 

◊ Fact: If N is diagonal, the general DFT can be evaluated using a row-
column algorithm 
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◊ Smith Form Decomposition: 

• Any non-singular integer matrix can be expressed as 

N = U D V 

where 

U, V : unimodular integer matrices (determinant of +1 or –1) 

D : diagonal integer matrix 

Substituting a Smith form of a periodicity matrix N, 

We would like to express the DFT of a signal with non-rectangular 

periodicity in terms of a separable DFT.  We would like the term in the 

exponential to be of the form  

We work towards this goal by making the following change of variables: 

◊ Algorithm 

1. Compute )ˆ(nx  by permuting x(n) according to nUn  ˆ 1−= .  The 

permuted values should fall (or be made to fall using circular shifting) 

into the fundamental parallelopiped formed by D, i.e. a rectangular 

volume of samples. 

2. Calculate a separable DFT according to entries on the diagonals of D 

3. Permute DFT )ˆ(kX  using kVk ˆ T= . 
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