Infinite Impulse Response Filters

Lecture by Prof. Brian L. Evans Slides by Niranjan Damera-Venkata

Embedded Signal Processing Laboratory

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712-1084

http://signal.ece.utexas.edu

Introduction

- Background
- Bounded Input, Bounded Output (BIBO) stability of quarter-plane IIR filters
- Not all output masks are recursively computable: Figure 1.

Figure 1: Two examples of not recursive computable masks

Background

• 2-D difference equations

$$y(n_1, n_2) = \sum_{r_1} \sum_{r_2} a(n_1 - r_1, n_2 - r_2) \ x(r_1, r_2)$$
$$- \sum_{k_1 \neq n_1} \sum_{k_2 \neq n_2} b(n_1 - k_1, n_2 - k_2) \ y(k_1, k_2)$$

- Input and output masks
 - $-a(n_1,n_2)$ is called the support of the input mask
 - $-b(n_1, n_2)$ is called the support of the output mask
 - Angle of support β : minimum angle enclosing support of mask
 - $-y(n_1,n_2)$ is computed as in Figure 2

Figure 2: Recursive computation.

- What degrees of freedom exist for moving the output mask?
- What must the boundary conditions be?

Recursive Computation

- Consider a four-tap all-pole IIR filter to be passed over an $N \times N$ image in a raster scan fashion, e.g. in Floyd-Steinberg error diffusion halftoning.
- What are the boundary conditions?
- How many rows of the image do we need to keep in memory at one time?
- What parallelism exists if any?
- What is the tradeoff between the amount of parallelism exploited and memory?

Recursive Computability

- Recursive computability: Computing the difference equation using known values of the shifted output samples and initial conditions.
 - Support of output mask
 - Initial conditions
 - * Initial conditions must be 0, and must lie outside the support of the output sequence, for the filter to be Linear Shift Invariant (LSI).
 - Order of recursion
- Types of recursively computable masks
 - Quarter-plane masks: supported in a quadrant in \Re^2
 - Non-Symmetric Half Plane (NSHP): supported in a half-plane in \Re^2
- Not all possible orderings are equivalent
 - Amount of storage
 - Degree of parallelism

Boundary Conditions

- For a recursive system, how do you choose the boundary conditions.
 - If the system is to be LTI, the initial conditions must be zero outside the support of the filter.
- Example: $y[n_1, n_2] = y[n_1 1, n_2] + y[n_1 + 1, n_2 1] + x[n_1, n_2]$
 - Now assume a different set of boundary conditions: Figure 3.

Figure 3: Boundary conditions (left) Response of $y[n_1, n_2]$ to $\delta[n_1, n_2]$ (right)

- Response to $\delta[n_1, n_2]$: Figure 3
- Response to $\delta[n_1-1,n_2-1]$: Figure 4
- This is a shifted version of the above: consistent with support of the impulse response
- Let's begin guessing at some boundary conditions: Figure 4
- Calculated response to $\delta[n_1, n_2]$: Figure 5

Figure 4: Response of $y[n_1, n_2]$ to $\delta[n_1 - 1, n_2 - 1]$ (left) Another boundary condition (right)

n_2										\mathbf{n}_2									
			0	5	14	28	48	75					0	2	5	9	14	20	
			0	2	5	9	14	20					0	1	2	3	4	5	
			0	1	2	3	4	5					0	0	1	1	1	1	
			0	1	1	1	1	1	$\frac{n_1}{-}$				0	0	0	0	0	0	$\frac{n_1}{-}$
			0	0	0	0	0	0					0	0	0	0	0	0	
	•																		
										•								•	

Figure 5: Response of $y[n_1,n_2]$ to $\delta[n_1,n_2]$ (left) Response of $y[n_1,n_2]$ to $\delta[n_1-1,n_2-1]$ (right)

- Response to $\delta[n_1-1,n_2-1]$: Figure 5
- Note: This is not a shifted version of the response $\delta[n_1, n_2]$: These boundary conditions do not lead to an LTI system.

The Transfer Function

$$H(z_1, z_2) = \sum_{n_1} \sum_{n_2} h[n_1, n_2] z_1^{-n_1} z_2^{-n_2}$$

- The z-transform will not converge for all values of (z_1, z_2)
- If it converges for $z_1 = e^{j\omega_1}$, $z_2 = e^{j\omega_2}$, then the Discrete-Time Fourier Transform exists and the system is stable.

$$|z_1| = 1$$
 and $|z_2| = 1 \Rightarrow$ Unit Bicircle

Properties of the z-transform

- Separable Signals: $v[n_1] w[n_2] \iff V(z_1) W(z_2)$
- Linearity
- Shift
- Convolution
- Linear mapping (look familiar?)

$$x[n_1, n_2] = \begin{cases} w[m_1, m_2] & n_1 = Im_1 + Jm_2, n_2 = Km_1 + Lm_2 \\ 0 & \text{otherwise} \end{cases}$$

$$IL - JK \neq 0$$

$$X(z_1, z_2) = W(z_1^I z_2^K, z_1^J z_2^L);$$

Z-transform of Linear Mappings

• Linear mapping

$$x[n_1, n_2] = \begin{cases} w[m_1, m_2] & n_1 = Im_1 + Jm_2, n_2 = Km_1 + Lm_2 \\ 0 & \text{otherwise} \end{cases}$$

$$IL - JK \neq 0$$

$$X(z_1, z_2) = W(z_1^I z_2^K, z_1^J z_2^L)$$

- Notice the regular insertion of zeros
- This is upsampling by upsampling matrix

$$\mathbf{R} = \begin{bmatrix} I & J \\ K & L \end{bmatrix}$$

where det $\mathbf{R} = IL - JK \neq 0$

• Frequency response $X(\omega)$ of an upsampler to input $W(\omega)$

$$X_u(\omega) = X(\mathbf{R}^t \omega)$$

• Let $z_1 = e^{j\omega_1}$ and $z_2 = e^{j\omega_2}$

$$X(z_1, z_2) = W(z_1^I z_2^K, z_1^J z_2^L)$$
$$X(e^{j\omega_1}, e^{j\omega_2}) = W(e^{jI\omega_1}e^{jK\omega_2}, e^{jJ\omega_1}e^{jL\omega_2})$$
$$\mathbf{R}^t = \begin{bmatrix} I & K \\ J & L \end{bmatrix}$$

Inverse z-transform

$$x[n_1, n_2] = \frac{1}{(2\pi j)^2} \oint_{c_2} \oint_{c_1} X(z_1, z_2) z_1^{n_1 - 1} z_2^{n_2 - 1} dz_1 dz_2$$

$$X(z_1, z_2) = \frac{1}{1 - az_1^{-1} - bz_2^{-1}} |a| + |b| \le 1$$

• Choose ROC that includes the unit bicircle.

$$x[n_1, n_2] = \frac{1}{(2\pi j)^2} \oint_{c_2} \oint_{c_1} \frac{z_1^{n_1} z_2^{n_2}}{z_1 z_2 - a z_2 - b z_1} dz_1 dz_2$$

$$= \frac{1}{(2\pi j)^2} \oint_{c_2} \oint_{c_1} \frac{\frac{1}{z_2 - b} z_1^{n_1} z_2^{n_2}}{z_1 - \frac{a z_2}{z_2 - b}} dz_1 dz_2$$

$$= \frac{1}{(2\pi j)^2} \oint_{c_2} \frac{1}{z_2 - b} z_2^{n_2} \oint_{c_1} \frac{z_1^{n_1}}{z_1 - \frac{a z_2}{z_2 - b}} dz_1 dz_2$$

• The inner integral (with respect to z_1) is the inverse z-transform of a first-order system with a pole at $\frac{az_2}{z_2 - b}$

$$x[n_1, n_2] = \frac{1}{2\pi j} \oint_{c_2} \frac{z_2^{n_2}}{z_2 - b} \left(\frac{az_2}{z_2 - b}\right)^{n_1} u(n_1) dz_2$$

$$= a^{n_1} u[n_1] \frac{1}{2\pi j} \oint_{c_2} \frac{z_2^{n_1 + n_2}}{(z_2 - b)^{n_1 + 1}} dz_2$$

$$= \frac{(n_1 + n_2)!}{n_1! n_2!} a^{n_1} b^{n_2} u[n_1, n_2]$$

- What does this tell us about other examples? very little
- Consider an example:

$$H(z_1, z_2) = \frac{1}{1 - az_1^{-1} - bz_2^{-1} - cz_1^{-1}z_2^{-1}}$$

$$B(e^{j\omega_1}, z_2) = 1 - ae^{-j\omega_1} - bz_2^{-1} - ce^{-j\omega_1}z_2^{-1}$$

Setting $B(e^{j\omega_1}, z_2) = 0$ and solving gives

$$z_2 = \frac{b + ce^{-j\omega_1}}{1 - ae^{-j\omega_1}}$$

This is a bilinear transformation which must map circles into circles.

Figure 6: Bilinear transform

Point A
$$\omega_1 = \pi$$
 $z_2 = \frac{b-c}{1+a}$
Point B $\omega_1 = 0$ $z_2 = \frac{b+c}{1-a}$

Point B
$$\omega_1 = 0$$
 $z_2 = \frac{b+c}{1-a}$

$$\left| \frac{b-c}{1+a} \right| < 1 \quad \left| \frac{b+c}{1-a} \right| < 1$$

From the other part of the locus

$$\left| \frac{a-c}{1+b} \right| < 1 \quad \left| \frac{a+b}{1-b} \right| < 1$$