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Introduction I

e Background

e Bounded Input, Bounded Output (BIBO) stability of quarter-plane ITR

filters

e Not all output masks are recursively computable: Figure 1.
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Figure 1: Two examples of not recursive computable masks



Background I

e 2-D difference equations

y(ni,ng) = Zza(m —711,n9 — 13) T(r1,72)

- Z Z b(m — ky,ng — kz) y(/ﬁ,kz)

k1#n1 ka#n2

e Input and output masks

— a(nqy,ny) is called the support of the input mask
— b(ny,n9) is called the support of the output mask
— Angle of support : minimum angle enclosing support of mask

— y(ny,n2) is computed as in Figure 2

Weight + R Weight - -
and and m

Sum Sum

Figure 2: Recursive computation.

— What degrees of freedom exist for moving the output mask?

— What must the boundary conditions be?



Recursive Computation I

Consider a four-tap all-pole IIR filter to be passed over an N x N
image in a raster scan fashion, e.g. in Floyd-Steinberg error diffusion

halftoning.
What are the boundary conditions?

How many rows of the image do we need to keep in memory at one

time?
What parallelism exists if any?

What is the tradeoff between the amount of parallelism exploited and

memory”?



Recursive Computability I

e Recursive computability: Computing the difference equation using known

values of the shifted output samples and initial conditions.

— Support of output mask

— Initial conditions

x Initial conditions must be 0, and must lie outside the sup-
port of the output sequence, for the filter to be Linear Shift
Invariant (LSI).

— Order of recursion

e Types of recursively computable masks

— Quarter-plane masks: supported in a quadrant in $?

— Non-Symmetric Half Plane (NSHP): supported in a half-plane
in 2

e Not all possible orderings are equivalent

— Amount of storage

— Degree of parallelism



Boundary Conditions I

e For a recursive system, how do you choose the boundary conditions.

— If the system is to be LTI, the initial conditions must be zero

outside the support of the filter.
e Example: y[ni,no] = y[ni — 1,mo] +y[ny + 1,n5 — 1] + x[ny, no

— Now assume a different set of boundary conditions: Figure 3.
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Figure 3: Boundary conditions (left) Response of y[n, ng] to d[n1, ne] (right)

Response to d[ny, ng]: Figure 3

Response to 6[n; — 1,ny — 1]: Figure 4

This is a shifted version of the above: consistent with support of

the impulse response
— Let’s begin guessing at some boundary conditions: Figure 4

— Calculated response to d[ny,ns]: Figure 5
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Figure 4: Response of y[ny, ns] to d[n; — 1,ne — 1] (left) Another boundary

condition (right)
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Figure 5: Response of y[n;,ns| to d[ny, ny] (left) Response of y[ng, ny] to
d[ny — 1,ne — 1] (right)
— Response to §[n; — 1,ny — 1]: Figure 5

— Note: This is not a shifted version of the response d[n, ns]: These

boundary conditions do not lead to an LTT system.



The Transfer Function I

H(z1,20) = .Y hlni,no)zy ™2™

e The z-transform will not converge for all values of (21, z2)

e If it converges for z; = €/*', 2o = €/“? then the Discrete-Time Fourier

Transform exists and the system is stable.

|21] = 1 and |z3] = 1 = Unit Bicircle

Properties of the z-transform I

Separable Signals: v[ni| w[ng] <= V (z1) W (z22)

Linearity

Shift

Convolution

e Linear mapping (look familiar?)

wlmy, my] ny = Imy + Jmg,ny = Kmy + Limy

x[ny,ng| =

0 otherwise
IL-JK # 0
X(z1,20) = W 23,2 25);



Z-transform of Linear Mappings I

e Linear mapping

wlmy, ma] ny = Imy + Jmg,ny = Kmy + Limy

x[ny,ng| =

0 otherwise
IL-JK # 0
X(z1,20) = Wizl 23,2 25)

Notice the regular insertion of zeros

e This is upsampling by upsampling matrix
I J
R =
K L

where det R =1L — JK # 0

e Frequency response X (w) of an upsampler to input W (w)

X, (w) = X(R'w)

Let z; = €?¥1 and zy, = €7%2

X(z1,20) =Wz 23,2 25)

X (edr, el2) = W (eHTr iR edTwn gilen)
I K
R' =

J L



Inverse z-transform I

xlng,ny| =

21,22 n1 ! ZileIdZQ

c2 Jey

X(z,22) = — 1—bz‘1 la[ + b <1
1 2

e Choose ROC that includes the unit bicircle.

1 21" 2y
TNy, ng| = —— dz1dz
(11, 72 2#]272?{1 zlzg—az’Q—bzl e
TLl ZTLZ
= 1 2 ZleQ
27'('] c2 Jey
= 1 % an% Ldzld@
(275)2 Jes 29 — b o 21—

2—b

e The inner integral (with respect to z;) is the inverse z-transform of a

az
first-order system with a pole at 2
Z9 —
1 252 azy >”1
ring,ng| = , u(ny)dz
[, ma) 2#]%@2’2—5(2’2—[) (n1)dz
1 Z;l1+n2
= a™uln % dz
[ 1]27Tj e (20 — bymt1
(711 + 712)'

= ———=a"b"u[ny, ny|
n1!n2!

e What does this tell us about other examples? very little

e Consider an example:

1
H(z1,2) = 1 -1 —1_—1
1 —az " —bzy  —czy 2
B(e™', %) = 1—ae 7" —bz, " —ce 72, !
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Setting B(e’“!, 25) = 0 and solving gives

B b+ ce I

22

1 — ae~iw

This is a bilinear transformation which must map circles into circles.
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Figure 6: Bilinear transform
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