Stabilization and Stability Testing of Multidimensional Recursive Digital Filters

Lecture by Prof. Brian L. Evans Slides by Niranjan Damera-Venkata

Embedded Signal Processing Laboratory

Dept. of Electrical and Computer Engineering The University of Texas at Austin Austin, TX 78712-1084 http://signal.ece.utexas.edu

Introduction

- Stability of general IIR filters
- Stability tests
 - Graphical root locus techniques
 - FFT based cepstral methods
- Stabilization of unstable filters based on
 - Double Planar Least Squares Inversion (DPLSI)
 - Discrete Hilbert Transform (DHT)

The Transfer Function

$$H(z_1, z_2) = \sum_{n_1} \sum_{n_2} h(n_1, n_2) z_1^{-n_1} z_2^{-n_2}$$

- The z-transform will not converge for all values of (z_1, z_2)
- If it converges for $z_1 = e^{j\omega_1}$, $z_2 = e^{j\omega_2}$, then the Discrete-Time Fourier Transform exists and the system is stable.

$$|z_1| = 1$$
 and $|z_2| = 1 \Rightarrow$ Unit Bicircle

Stability of 2-D LSI Systems

• Bound-Input, Bounded-Output (BIBO) criterion

if
$$|x(n_1, n_2)| < P < \infty$$
 then $|y(n_1, n_2)| < Q < \infty$

• Spatial domain necessary and sufficient condition for BIBO stability

$$\sum_{n_1} \sum_{n_2} |h(n_1, n_2)| = S < \infty$$

Implies $H(z_1, z_2)$ is analytic on the unit bicircle

• For a rational transfer function

$$T(z) = \frac{A(z)}{B(z)}$$

of a causal system, recall that the stability condition is that all roots of B(z) should be inside unit circle

Effect of Numerator Polynomial on Stability:

[Goodman]

• No effect in 1-D case: Use factorization theorem

$$T(z) = \frac{a(z^{-1} - c_1)(z^{-1} - c_2)\cdots(z^{-1} - c_m)}{b(z^{-1} - d_1)(z^{-1} - d_2)\cdots(z^{-1} - d_n)}$$

• Situation is not so simple in 2-D

$$G_1(z) = \frac{(1 - z_1^{-1})^8 (1 - z_2^{-1})^8}{1 - 0.5 z_1^{-1} - 0.5 z_2^{-1}}$$
$$G_2(z) = \frac{(1 - z_1^{-1})(1 - z_2^{-1})}{1 - 0.5 z_1^{-1} - 0.5 z_2^{-1}}$$

- What happens when $z_1 = z_2 = 1$?
 - Note the indeterminate forms
 - Goodman established that $G_1(z)$ is unstable while $G_2(z)$ is stable
 - Such singularities are called non-essential singularities of the second kind.
 - There is no known method to test for stability in the presence of such singularities

Necessary and Sufficient Conditions for Stability

- Let $\vec{z} = \{z_1, z_2, \dots, z_N\}$
- (Shanks and Justice) Let $B(\vec{z})$ be the denominator polynomial of a first quadrant multidimensional recursive digital filter. The filter is stable if and only if $B(\vec{z}) \neq 0$ whenever

 $|z_k| \ge 1, k = 1, 2, \dots, N$ simultaneously.

Disadvantage: Whole exterior of the unit bicircle must be searched for points of singularity.

- (*DeCarlo-Strintzis*) $B(\vec{z})$ is stable if and only if
 - 1. $B(\vec{z}) \neq 0$ for $\vec{z} \in T^n$ where $T^n = \{|z_1| = 1, |z_2| = 1, \dots, |z_N| = 1\}$ and
 - 2. $B(z, z, \dots z) \neq 0, |z| \ge 1$

This second condition is equivalent to

$$B(1, 1, \dots, z_k, \dots, 1) \neq 0, \ |z_k| \ge 1, \ k = 1, 2 \dots N$$

 The DeCarlo-Strintzis Theorem suggests a stability test that consists of N 1-D stability tests plus a search for roots of B(z) over the Ndimensional surface |z₁| = |z₂| = ··· = |z_N| = 1.

The O'Connor-Huang Mapping Theorem

How do we test the stability of an NSHP filter? Consider two sectors S₁[(M₁, N₁), (M₂, N₂)] and S₂[(1,0), (0,1)], with D = M₁N₂ - M₂N₁ ≠ 0. The following is an injective linear map from S₁ into S₂

$$m = k_1 m' + k_2 n'$$
 $n = k_3 m' + k_4 n'$

with k_1, k_2, k_3, k_4 defined as:

$$k_1 = \operatorname{sgn}(D)N_2 \quad k_2 = -\operatorname{sgn}(D)M_2$$
$$k_3 = -\operatorname{sgn}(D)N_1 \quad k_4 = \operatorname{sgn}(D)M_1$$

- Let b(m, n) be a recursive array with angle of support β. Then b(m, n) is stable if and only if with K = k₁k₄ − k₂k₃ ≠ 0, the recursive array g(m, n) = b(m', n') is stable, (m', n') ∈ β
- We need $D \neq 0$ to ensure that we have support in a sector and the two rays (line segments) that define the sector are not collinear.
- Example: $B(z_1, z_2) = 0.5z_1^{-1}z_2 + 1 + 0.85z_1 + 0.1z_1z_2 + 0.5z_1^2z_2^{-1}$ $(0, 0) \rightarrow (0, 0) \quad (-1, 0) \rightarrow (1, 1)$ $(-1, -1) \rightarrow (2, 3) \quad (1, -1) \rightarrow (0, 1)$

So the mapped polynomial to be tested is

$$M(z_1, z_2) = 1 + 0.5z_1^{-1} + 0.5z_2^{-1} + 0.85z_1^{-1}z_2^{-1} + 0.1z_1^{-2}z_2^{-3}$$

Root-Locus Techniques

• Consider:

$$B(z_1, z_2) = 1 - 1.5z_1 - 0.6z_1^2 - 1.2z_2 + 1.8z_1z_2$$
$$-0.72z_1^2z_2 + 0.5z_2^2 - 0.75z_1z_2^2 + 0.25z_1^2z_2^2$$

• We can hold z_1 constant

$$B([z_1], z_2) = (1 - 1.5[z_1] + 0.6[z_1]^2) + (-1.2 + 1.8[z_1] - 0.72[z_1]^2) z_2 + (0.5 - 0.75[z_1] + 0.25[z_1]^2) z_2^2$$

- Roots of $B([z_1], z_2)$ with respect to z_2 are functions of z_1
- Plot roots in z_1 plane. Rootlets must lie completely inside the unit hyperdisk for the filter to be stable.

Cepstrum/2-D cepstral stability tests

• 2-D complex cepstrum of b(m, n)

$$\hat{b}(m,n) = Z^{-1}[\log[Z[b(m,n)]]$$

- $\hat{b}(m,n)$ is real for a real sequence
- It is called "complex" due to the use of the complex logarithm.

$$\log z = \log |z| + j \arg(z)$$
 if $z \in C$

• (*Ekstrom*) A general recursive digital filter is stable if and only if its 2-D complex-cepstrum exists and has the same minimum angle support as the original sequence.

Stabilization of unstable recursive digital filters

- In the 1-D case this is very simple
- $|3z_1^{-1} 1| = |z_1^{-1} 3|$, a reflection of the root did not change the magnitude spectrum.
- Factor denominator polynomial and reflect the roots inside the unit circle.
- Fundamental curse of multidimensional digital signal processing: no polynomial factorization algorithm
- Proposed methods
 - Double Planar Least Squares Inversion [Shanks, Treitel and Reddy]
 - Discrete Hilbert Transform [Read, Treitel, Reddy]

Double Planar Least Squares Inversion

- PLSI of a coefficient array C is an array P such that
 - 1. $C*P\approx U$, U is the unit pulse array (of all ones)
 - 2. C * P = G such that U G is minimized in least squares sense.
- Shank's conjecture: Given an arbitrary real, finite array C, any PLSI of C is minimum phase, and the applying PLSI twice to C yields minimum phase with the same magnitude spectrum as C.
- Proof of "modified" Shank's conjecture [Reddy]

Stabilization and Stability Testing Unified: The Multidimensional DHT

- Continuous Hilbert Transform theory involves theory of singular integrals and m-D extensions are very complicated [Besikovitch, Calderon and Zygmund]
- DHT is the relation between the real and imaginary parts of the Fourier Transform of a causal sequence.

$$\Im m \Big[X(\vec{\mathbf{f}}) \Big] = -jDFT \left(t(\vec{\mathbf{i}})IDFT \left\{ \Re e \Big[X(\vec{\mathbf{f}}) \Big] \right\}) \right)$$

• If we assume that the complex cepstrum is causal,

$$\Phi(\vec{\mathbf{f}}) = -jDFT\left(t(\vec{\mathbf{i}})IDFT\left\{\log|X(\vec{\mathbf{f}})|\right\})\right)$$

 Expression for t(i) very complicated [Damera-Venkata, Venkataraman, Hrishikesh and Reddy] and reduces to sgn(i) in the 1-D case.

Stabilization via DHT

- To stabilize $b(\vec{i})$
 - 1. Find $\Phi(\vec{\mathbf{f}})$, the minimum phase response
 - 2. Evaluate $B_H(\vec{\mathbf{f}}) = |B(\vec{\mathbf{f}})| e^{j\Phi(\vec{\mathbf{f}})}$
 - 3. Take multidimensional inverse FFT
 - 4. Truncate $b_H(\vec{i})$ coefficients to same support as $b(\vec{i})$
 - 5. Use a large size FFT for higher coefficient accuracy

Stabilization via DHT: Example

Example: Consider $B(z_1, z_2, z_3)$ given by:

$$B(z_1, z_2, z_3) = (z_1 - 0.5)(z_2 + 2)(z_3 - 0.75)$$

= $z_1 z_2 z_3 + 2 z_1 z_3 - 0.5 z_2 z_3 - 0.75 z_1 z_2$
 $-1.5 z_1 + 0.375 z_2 - z_3 + 0.75$

 \downarrow_{DHT}

$$B_{NT}(z_1, z_2, z_3) = 0.375z_1z_2z_3 + 0.75z_1z_3 - 0.75z_2z_3$$
$$-0.5z_1z_2 - z_1 + z_2 - 1.5z_3 + 2$$
$$= (0.5z_1 - 1)(z_2 + 2)(0.75z_3 - 1)$$

Useful Theorems: [Damera-Venkata, Venkataraman, Hrishikesh and Reddy]

- Multidimensional minimum phase if it exists is unique
- If the given m-D polynomial B(z) is factorizable, then the transformed polynomial B_{NT}(z) is also factorizable, and the factors of the transformed polynomial are transformed versions of the factors of the given m-D polynomial.
- The m-D polynomial B_{NT}(**z**) of any causal m-D polynomial B(**z**), not having zeros on the unit hypercircle is stable.
- Minimum phase polynomials are fixed points of the multidimensional DHT

Stability Testing using the DHT

- It is required to ascertain whether array **B** is stable or not.
 - 1. Apply the DHT to obtain array \mathbf{A} .
 - 2. Compare arrays **B** and **A**.
 - If $\mathbf{B} \equiv \mathbf{A}$, then \mathbf{B} is a stable array.
 - If $\mathbf{B} \not\equiv \mathbf{A}$, then **B** is unstable.

Stability Testing Example

$$B(z_1, z_2, z_3) = 0.95z_1z_2z_3 - 0.7z_1z_2$$
$$-0.5z_2z_3 + 2z_3z_1 - 1.5z_1$$
$$+0.375z_2 - z_3 + 0.75$$

 \downarrow_{DHT}

$$A(z_1, z_2, z_3) = 0.3563z_1z_2z_3$$

-0.4727z_1z_2 - 0.7172z_2z_3
+0.7545z_3z_1 - 1.0059z_1
+0.9527z_2 - 1.4971z_3 + 2.0001

 \downarrow_{DHT}

$$A'(z_1, z_2, z_3) = 0.3563z_1z_2z_3$$

-0.4727z_1z_2 - 0.7172z_2z_3
+0.7545z_3z_1 - 1.0059z_1
+.9527z_2 - 1.4971z_3 + 2.0001

 $B(z_1, z_2, z_3)$ is unstable, while $A(z_1, z_2, z_3)$ is stable.