Stabilization and Stability Testing of Multidimensional Recursive Digital Filters

Lecture by Prof. Brian L. Evans
Slides by Niranjan Damera-Venkata

Embedded Signal Processing Laboratory

Dept. of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712-1084
http://signal.ece.utexas.edu

Introduction

- Stability of general IIR filters
- Stability tests
- Graphical root locus techniques
- FFT based cepstral methods
- Stabilization of unstable filters based on
- Double Planar Least Squares Inversion (DPLSI)
- Discrete Hilbert Transform (DHT)

The Transfer Function

$$
H\left(z_{1}, z_{2}\right)=\sum_{n_{1}} \sum_{n_{2}} h\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}
$$

- The z-transform will not converge for all values of $\left(z_{1}, z_{2}\right)$
- If it converges for $z_{1}=e^{j \omega_{1}}, z_{2}=e^{j \omega_{2}}$, then the Discrete-Time Fourier Transform exists and the system is stable.

$$
\left|z_{1}\right|=1 \text { and }\left|z_{2}\right|=1 \Rightarrow \text { Unit Bicircle }
$$

Stability of 2-D LSI Systems

- Bound-Input, Bounded-Output (BIBO) criterion

$$
\text { if }\left|x\left(n_{1}, n_{2}\right)\right|<P<\infty \text { then }\left|y\left(n_{1}, n_{2}\right)\right|<Q<\infty
$$

- Spatial domain necessary and sufficient condition for BIBO stability

$$
\sum_{n_{1}} \sum_{n_{2}}\left|h\left(n_{1}, n_{2}\right)\right|=S<\infty
$$

Implies $H\left(z_{1}, z_{2}\right)$ is analytic on the unit bicircle

- For a rational transfer function

$$
T(z)=\frac{A(z)}{B(z)}
$$

of a causal system, recall that the stability condition is that all roots of $B(z)$ should be inside unit circle

Effect of Numerator Polynomial on Stability:

 [Goodman]- No effect in 1-D case: Use factorization theorem

$$
T(z)=\frac{a\left(z^{-1}-c_{1}\right)\left(z^{-1}-c_{2}\right) \cdots\left(z^{-1}-c_{m}\right)}{b\left(z^{-1}-d_{1}\right)\left(z^{-1}-d_{2}\right) \cdots\left(z^{-1}-d_{n}\right)}
$$

- Situation is not so simple in 2-D

$$
\begin{aligned}
G_{1}(z) & =\frac{\left(1-z_{1}^{-1}\right)^{8}\left(1-z_{2}^{-1}\right)^{8}}{1-0.5 z_{1}^{-1}-0.5 z_{2}^{-1}} \\
G_{2}(z) & =\frac{\left(1-z_{1}^{-1}\right)\left(1-z_{2}^{-1}\right)}{1-0.5 z_{1}^{-1}-0.5 z_{2}^{-1}}
\end{aligned}
$$

- What happens when $z_{1}=z_{2}=1$?
- Note the indeterminate forms
- Goodman established that $G_{1}(z)$ is unstable while $G_{2}(z)$ is stable
- Such singularities are called non-essential singularities of the second kind.
- There is no known method to test for stability in the presence of such singularities

Necessary and Sufficient Conditions for Stability

- Let $\vec{z}=\left\{z_{1}, z_{2}, \ldots, z_{N}\right\}$
- (Shanks and Justice) Let $B(\vec{z})$ be the denominator polynomial of a first quadrant multidimensional recursive digital filter. The filter is stable if and only if $B(\vec{z}) \neq 0$ whenever
$\left|z_{k}\right| \geq 1, k=1,2, \ldots, N$ simultaneously.
Disadvantage: Whole exterior of the unit bicircle must be searched for points of singularity.
- (DeCarlo-Strintzis) $B(\vec{z})$ is stable if and only if

1. $B(\vec{z}) \neq 0$ for $\vec{z} \in T^{n}$ where $T^{n}=\left\{\left|z_{1}\right|=1,\left|z_{2}\right|=1, \ldots\left|z_{N}\right|=1\right\}$ and
2. $B(z, z, \ldots z) \neq 0,|z| \geq 1$

This second condition is equivalent to

$$
B\left(1,1, \ldots, z_{k}, \ldots, 1\right) \neq 0,\left|z_{k}\right| \geq 1, k=1,2 \ldots N
$$

- The DeCarlo-Strintzis Theorem suggests a stability test that consists of N 1-D stability tests plus a search for roots of $B(z)$ over the N dimensional surface $\left|z_{1}\right|=\left|z_{2}\right|=\cdots=\left|z_{N}\right|=1$.

The O'Connor-Huang Mapping Theorem

- How do we test the stability of an NSHP filter?

Consider two sectors $S_{1}\left[\left(M_{1}, N_{1}\right),\left(M_{2}, N_{2}\right)\right]$ and
$S_{2}[(1,0),(0,1)]$, with $D=M_{1} N_{2}-M_{2} N_{1} \neq 0$.
The following is an injective linear map from S_{1} into S_{2}

$$
m=k_{1} m^{\prime}+k_{2} n^{\prime} \quad n=k_{3} m^{\prime}+k_{4} n^{\prime}
$$

with $k_{1}, k_{2}, k_{3}, k_{4}$ defined as:

$$
\begin{aligned}
& k_{1}=\operatorname{sgn}(D) N_{2} \quad k_{2}=-\operatorname{sgn}(D) M_{2} \\
& k_{3}=-\operatorname{sgn}(D) N_{1} \quad k_{4}=\operatorname{sgn}(D) M_{1}
\end{aligned}
$$

- Let $b(m, n)$ be a recursive array with angle of support β. Then $b(m, n)$ is stable if and only if with $K=k_{1} k_{4}-k_{2} k_{3} \neq 0$, the recursive array $g(m, n)=b\left(m^{\prime}, n^{\prime}\right)$ is stable, $\left(m^{\prime}, n^{\prime}\right) \in \beta$
- We need $D \neq 0$ to ensure that we have support in a sector and the two rays (line segments) that define the sector are not colinear.
- Example: $B\left(z_{1}, z_{2}\right)=0.5 z_{1}^{-1} z_{2}+1+0.85 z_{1}+0.1 z_{1} z_{2}+0.5 z_{1}^{2} z_{2}^{-1}$

$$
\begin{array}{ccccc}
(0,0) & \rightarrow(0,0) & (-1,0) & \rightarrow(1,1) \\
(-1,-1) & \rightarrow(2,3) & (1,-1) & \rightarrow(0,1)
\end{array}
$$

So the mapped polynomial to be tested is

$$
M\left(z_{1}, z_{2}\right)=1+0.5 z_{1}^{-1}+0.5 z_{2}^{-1}+0.85 z_{1}^{-1} z_{2}^{-1}+0.1 z_{1}^{-2} z_{2}^{-3}
$$

Root-Locus Techniques

- Consider:

$$
\begin{aligned}
B\left(z_{1}, z_{2}\right)= & 1-1.5 z_{1}-0.6 z_{1}^{2}-1.2 z_{2}+1.8 z_{1} z_{2} \\
& -0.72 z_{1}^{2} z_{2}+0.5 z_{2}^{2}-0.75 z_{1} z_{2}^{2}+0.25 z_{1}^{2} z_{2}^{2}
\end{aligned}
$$

- We can hold z_{1} constant

$$
\begin{aligned}
B\left(\left[z_{1}\right], z_{2}\right)= & \left(1-1.5\left[z_{1}\right]+0.6\left[z_{1}\right]^{2}\right) \\
& +\left(-1.2+1.8\left[z_{1}\right]-0.72\left[z_{1}\right]^{2}\right) z_{2} \\
& +\left(0.5-0.75\left[z_{1}\right]+0.25\left[z_{1}\right]^{2}\right) z_{2}^{2}
\end{aligned}
$$

- Roots of $B\left(\left[z_{1}\right], z_{2}\right)$ with respect to z_{2} are functions of z_{1}
- Plot roots in z_{1} plane. Rootlets must lie completely inside the unit hyperdisk for the filter to be stable.

Cepstrum/2-D cepstral stability tests

- 2-D complex cepstrum of $b(m, n)$

$$
\hat{b}(m, n)=Z^{-1}[\log [Z[b(m, n)]]
$$

- $\hat{b}(m, n)$ is real for a real sequence
- It is called "complex" due to the use of the complex logarithm.

$$
\log z=\log |z|+j \arg (z) \text { if } z \in C
$$

- (Ekstrom) A general recursive digital filter is stable if and only if its 2-D complex-cepstrum exists and has the same minimum angle support as the original sequence.

Stabilization of unstable recursive digital filters

- In the 1-D case this is very simple
- $\left|3 z_{1}^{-1}-1\right|=\left|z_{1}^{-1}-3\right|$, a reflection of the root did not change the magnitude spectrum.
- Factor denominator polynomial and reflect the roots inside the unit circle.
- Fundamental curse of multidimensional digital signal processing: no polynomial factorization algorithm
- Proposed methods
- Double Planar Least Squares Inversion [Shanks, Treitel and Reddy]
- Discrete Hilbert Transform [Read, Treitel, Reddy]

Double Planar Least Squares Inversion

- PLSI of a coefficient array C is an array P such that

1. $C * P \approx U, U$ is the unit pulse array (of all ones)
2. $C * P=G$ such that $U-G$ is minimized in least squares sense.

- Shank's conjecture: Given an arbitrary real, finite array C, any PLSI of C is minimum phase, and the applying PLSI twice to C yields minimum phase with the same magnitude spectrum as C.
- Proof of "modified" Shank's conjecture [Reddy]

Stabilization and Stability Testing Unified: The Multidimensional DHT

- Continuous Hilbert Transform theory involves theory of singular integrals and m-D extensions are very complicated [Besikovitch, Calderon and Zygmund]
- DHT is the relation between the real and imaginary parts of the Fourier Transform of a causal sequence.

$$
\Im m[X(\overrightarrow{\mathbf{f}})]=-j D F T(t(\overrightarrow{\mathbf{i}}) \operatorname{IDFT}\{\Re e[X(\overrightarrow{\mathbf{f}})]\}))
$$

- If we assume that the complex cepstrum is causal,

$$
\Phi(\overrightarrow{\mathbf{f}})=-j D F T(t(\overrightarrow{\mathbf{i}}) I D F T\{\log |X(\overrightarrow{\mathbf{f}})|\}))
$$

- Expression for $t(\overrightarrow{\mathbf{i}})$ very complicated [Damera-Venkata, Venkataraman, Hrishikesh and Reddy] and reduces to $\operatorname{sgn}(i)$ in the 1-D case.

Stabilization via DHT

- To stabilize $b(\vec{i})$

1. Find $\Phi(\overrightarrow{\mathbf{f}})$, the minimum phase response
2. Evaluate $B_{H}(\overrightarrow{\mathbf{f}})=|B(\overrightarrow{\mathbf{f}})| e^{j \Phi(\overrightarrow{\mathbf{f}})}$
3. Take multidimensional inverse FFT
4. Truncate $b_{H}(\vec{i})$ coefficients to same support as $b(\vec{i})$
5. Use a large size FFT for higher coefficient accuracy

Stabilization via DHT: Example

Example: Consider $B\left(z_{1}, z_{2}, z_{3}\right)$ given by:

$$
\begin{aligned}
B\left(z_{1}, z_{2}, z_{3}\right)= & \left(z_{1}-0.5\right)\left(z_{2}+2\right)\left(z_{3}-0.75\right) \\
= & z_{1} z_{2} z_{3}+2 z_{1} z_{3}-0.5 z_{2} z_{3}-0.75 z_{1} z_{2} \\
& -1.5 z_{1}+0.375 z_{2}-z_{3}+0.75
\end{aligned}
$$

$\downarrow_{D H T}$

$$
\begin{aligned}
B_{N T}\left(z_{1}, z_{2}, z_{3}\right)= & 0.375 z_{1} z_{2} z_{3}+0.75 z_{1} z_{3}-0.75 z_{2} z_{3} \\
& -0.5 z_{1} z_{2}-z_{1}+z_{2}-1.5 z_{3}+2 \\
= & \left(0.5 z_{1}-1\right)\left(z_{2}+2\right)\left(0.75 z_{3}-1\right)
\end{aligned}
$$

Useful Theorems: [Damera-Venkata, Venkataraman, Hrishikesh and Reddy]

- Multidimensional minimum phase if it exists is unique
- If the given m-D polynomial $B(\overrightarrow{\mathbf{z}})$ is factorizable, then the transformed polynomial $B_{N T}(\overrightarrow{\mathbf{z}})$ is also factorizable, and the factors of the transformed polynomial are transformed versions of the factors of the given $m-D$ polynomial.
- The m-D polynomial $B_{N T}(\overrightarrow{\mathbf{z}})$ of any causal m-D polynomial $B(\overrightarrow{\mathbf{z}})$, not having zeros on the unit hypercircle is stable.
- Minimum phase polynomials are fixed points of the multidimensional DHT

Stability Testing using the DHT

- It is required to ascertain whether array \mathbf{B} is stable or not.

1. Apply the DHT to obtain array A.
2. Compare arrays \mathbf{B} and \mathbf{A}.

- If $\mathbf{B} \equiv \mathbf{A}$,then \mathbf{B} is a stable array.
- If $B \not \equiv A$, then B is unstable.

Stability Testing Example

$$
\begin{aligned}
B\left(z_{1}, z_{2}, z_{3}\right)= & 0.95 z_{1} z_{2} z_{3}-0.7 z_{1} z_{2} \\
& -0.5 z_{2} z_{3}+2 z_{3} z_{1}-1.5 z_{1} \\
& +0.375 z_{2}-z_{3}+0.75
\end{aligned}
$$

$\downarrow_{D H T}$

$$
\begin{aligned}
A\left(z_{1}, z_{2}, z_{3}\right)= & 0.3563 z_{1} z_{2} z 3 \\
& -0.4727 z_{1} z_{2}-0.7172 z_{2} z_{3} \\
& +0.7545 z_{3} z_{1}-1.0059 z_{1} \\
& +0.9527 z_{2}-1.4971 z_{3}+2.0001
\end{aligned}
$$

$\downarrow_{D H T}$

$$
\begin{aligned}
A^{\prime}\left(z_{1}, z_{2}, z_{3}\right)= & 0.3563 z_{1} z_{2} z 3 \\
& -0.4727 z_{1} z_{2}-0.7172 z_{2} z_{3} \\
& +0.7545 z_{3} z_{1}-1.0059 z_{1} \\
& +.9527 z_{2}-1.4971 z_{3}+2.0001
\end{aligned}
$$

$B\left(z_{1}, z_{2}, z_{3}\right)$ is unstable, while $A\left(z_{1}, z_{2}, z_{3}\right)$ is stable.

