AM-FM Image Models

Joseph P. Havlicek

Laboratory for Vision Systems Center for Vision and Image Sciences The University of Texas Austin, TX 78712-1084 USA

November 8, 1996

GOAL

• MODEL images as sums of AM-FM functions:

$$t(\mathbf{m}) = \sum_{i=1}^{K} a_i(\mathbf{m}) \exp[j\varphi_i(\mathbf{m})].$$

- ESTIMATE the dominant image modulations.
- COMPUTE multi-component AM-FM image representations.
- RECOVER the essential image structure from the computed representations.

OUTLINE

Introduction

- II. Demodulation
- III. Dominant Component Analysis
- IV. Multi-Component Analysis
- V. Conclusions

AM-FM IMAGE MODELING

Image model:

$$t(\mathbf{m}) = \sum_{i=1}^{K} a_i(\mathbf{m}) \exp[j\varphi_i(\mathbf{m})]$$
$$= \sum_{i=1}^{K} t_i(\mathbf{m})$$

- Each $t_i(\mathbf{m})$ is an AM-FM COMPONENT.
- MODULATING FUNCTIONS of $t_i(\mathbf{m})$:
 - ▶ $a_i(\mathbf{m})$: amplitude modulation function.
 - ▶ $\nabla \varphi_i(\mathbf{m})$: frequency modulation function.

COMPARISON TO DFT

- DFT represents an $N \times N$ image as the sum of N^2 sinusoidal components, each having
 - ► constant amplitude.
 - ► constant frequency.
- Nonstationary structure represented by constructive and destructive INTERFERENCE between STATIONARY components.
- The modulating functions $a_i(\mathbf{m})$ and $\nabla \varphi_i(\mathbf{m})$ are permitted to vary smoothly across the image.
- EACH AM-FM component is capable of capturing SIGNIFICANT nonstationary structure.
- AM-FM model captures essential image structure using MUCH fewer than N^2 components.

1D BACKGROUND

- In 1977, Moorer
 - COMPUTED multi-component AM-FM representations for musical instrument signals.
 - CODED the representations and achieved compression ratios of 43:1.
 - RECONSTRUCTED the signals from the computed representations.
 - ► Assumed harmonically related components.
- 1D Teager-Kaiser operator introduced in 1990.
- Energy Separation Algorithm (ESA) developed by Maragos, Kaiser, & Quatieri (1991).
 - Used by MANY people for AM-FM speech modeling.

1D MULTI-COMPONENT MODELS

- Kumaresan, Sadasiv, Ramalingam, and Kaiser (1992-96):
 - Used Teager-Kaiser operator and matrix invariance properties.
 - ▶ Problems with K > 4 components.
 - ▶ Problems with n > 1 dimensions.
- Lu and Doerschuck (1996).
 - ► Used Kalman filters.
 - ▶ 1D formulation.

2D BACKGROUND

- Bovik, Clark, & Geisler characterized TEXTURE as a CARRIER of region information (1986).
 - MODELED textures as single-component AM-FM functions.
 - SEGMENTED texture using amplitude and phase of Gabor filter response.
- Bovik, et. al., estimated DOMINANT modulating functions via an iterative relaxation algorithm (1992).
 - ► SEGMENTED textures.
 - ► RECONSTRUCTED 3D surfaces.
 - ► Iteration was computationally EXPENSIVE.

2D AM-FM MODELS

- Knutsson, Westin, & Granlund (1994).
 - ► Used lognormal filters.
 - ► Estimated FM for a single component.
- Francos and Friedlander (1995-96).
 - ► Polynomial phase model.
 - Estimated polynomial order and coefficients.
 - Demonstrated on simple synthetics.

2D TEAGER-KAISER OPERATOR

- Introduced by Yu, Mitra, & Kaiser (1991).
- 2D ESA: Maragos, Bovik, & Quatieri (1992).
 - ► Computationally efficient.
 - Promised to replace iterative relaxation technique for estimating dominant modulations.
- Havlicek began work on the problem (1992).
- TROUBLE:
 - ► ESA cannot estimate SIGNED frequency.
 - SIGN of frequency is important in multi-D: embodies ORIENTATION.
- A NEW approach was needed.

- Slides Here
 - 1. reptile
 - 2. reptile baseband comp, comp 1
 - 3. reptile comp 2, comp 3
 - 4. reptile
 - 5. reptile comp 4, comp 5
 - Iook at how "fold" is in FM of comps 2, 3. Also in AM of baseband and comps 4, 5. Comp 1 is AM-FM harmonic of comp 3.
 - 6. All six reptile components.
 - 7. reptile + 6 comp recon
 - 8. reptile + 43 channelized comp recon

SIGNIFICANCE

- These results are AMAZING!!
- FIRST approach to
 - Estimate multi-D multi-component amplitude and frequency modulations.
 - Estimate multi-D multi-component FM with CORRECT signs.
 - Compute multi-component AM-FM representations for natural images.
 - Reconstruct from estimated modulations (in both 1D & 2D).

APPLICATIONS

- Texture-based scene segmentation. (Bovik, Clark, Geisler; Porat, Zeevi; Havlicek, Harding, Bovik)
- Phase-based computational stereopsis. (Chen, Bovik).
- 3-D shape from texture. (Super, Bovik, Klarquist).

APPLICATIONS...

- Spatio-spectral analysis.
- Texture modeling and synthesis.
- Future:
 - ► Image coding.
 - ► Video coding.
 - ► Multimedia and CD-ROM applications.

OUTLINE

I. Introduction

II. Demodulation

- III. Dominant Component Analysis
- IV. Multi-Component Analysis
- V. Conclusions

REAL-VALUED IMAGES

- The AM-FM model for $t(\mathbf{m})$ is COMPLEX.
- To analyze a REAL-VALUED image $s(\mathbf{m})$, take

 $t(\mathbf{m}) = s(\mathbf{m}) + j\mathcal{H}[s(\mathbf{m})].$

- $\mathcal H$ is the 2D discrete Hilbert transform.
- $t(\mathbf{m})$ is the complex ANALYTIC IMAGE associated with $s(\mathbf{m})$.

$$\blacktriangleright \operatorname{\mathsf{Re}}\left[t(\mathbf{m})\right] = s(\mathbf{m}).$$

- $\mathcal{F}[t(\mathbf{m})]$ is ZERO in quadrants II and III.
- Gives intuitive, physically meaningful interpretations for
 - instantaneous frequency of $s(\mathbf{m})$.
 - first moment of frequency in $s(\mathbf{m})$.

DEMODULATION

- Demodulation algorithm is NONLINEAR.
- Cross-component interference is a PROBLEM if $t(\mathbf{m})$ is MULTI-COMPONENT.
- Use a multiband bank of linear filters $g_p(\mathbf{m})$ to ISOLATE components on a POINTWISE basis.
 - The filters DO NOT need to isolate the components on a GLOBAL scale.
 - ► The response y_p(m) of each filter g_p(m) DOES need to be dominated by only ONE component at each image pixel.
- Suppose that component t_i(m) dominates the response y_p(m) of filter g_p(m) at pixel m.
- GOAL: use the response y_p(m) to estimate the values of the modulating functions a_i(m) and ∇φ_i(m) at pixel m.

DEMODULATION...

- Demodulation algorithm depends on a *quasi*eigenfunction approximation (QEA).
- Suppose G_p is a 2D LSI system.
- Exact response to $t_i(\mathbf{m})$:

$$y_p(\mathbf{m}) = \sum_{\mathbf{p}\in\mathbb{Z}^2} g_p(\mathbf{p})t_i(\mathbf{m}-\mathbf{p}).$$

• QEA:

$$\widehat{y}_p(\mathbf{m}) = t_i(\mathbf{m})G_p[\nabla\varphi_i(\mathbf{m})].$$

- QEA error generally small or negligible if
 - ▶ $g_p(\mathbf{m})$ spatially localized.
 - ► $a_i(\mathbf{m})$ and $\nabla \varphi_i(\mathbf{m})$ are smoothly varying, or LOCALLY COHERENT.

DEMODULATION ALGORITHM

• Recall:

$$y_p(\mathbf{m}) = t(\mathbf{m}) * g_p(\mathbf{m})$$

 $\approx t_i(\mathbf{m}) * g_p(\mathbf{m}).$

• Horizontal component of $\nabla \widehat{\varphi}_i(m,n)$:

$$\arcsin\left[\frac{y_p(m+1,n) - y_p(m-1,n)}{2jy_p(m,n)}\right]$$

• Amplitude algorithm:

$$\widehat{a}_i(\mathbf{m}) = \left| \frac{y_p(\mathbf{m})}{G_p[\nabla \widehat{\varphi}_i(\mathbf{m})]} \right|$$

•

FILTERBANK

- Physiology and psychophysics:
 - CHANNELS in visual cortex operate at 18 orientations and 4 magnitude frequencies.
 - Visual cortical cells function as 2D complex Gabor filters.
- For ANALYTIC images $t(\mathbf{m})$, only half of the orientations need be considered.
- 2D Gabor filters have OPTIMAL spatio-spectral localization.

FILTERBANK...

- Gabor filterbank:
 - ▶ Frequency response $G_p(\boldsymbol{\omega})$ is Gaussian.
 - ▶ Bandwidth = 1 Octave.
- Filterbank channels at 8 orientations and 5 magnitude frequencies.
- One Gaussian baseband channel to capture low-frequency structure.
- Two special HIGH-FREQUENCY channels.
- Frequency responses of adjacent filters intersect at half-peak.
- TOTAL number of channels = 43.

- Slides Here
 - 9. Filterbank in frequency domain.

OUTLINE

- I. Introduction
- II. Demodulation

Dominant Component Analysis

- IV. Multi-Component Analysis
- V. Conclusions

DOMINANT COMPONENT ANALYSIS

- At every pixel, estimate the modulating functions of the component that DOMINATES the local frequency spectrum at that pixel.
- The dominant component frequencies are the EMERGENT frequencies which characterize the local texture structure.
- At each pixel, the dominant component maximizes

$$\Psi_p(\mathbf{m}) = \frac{|y_p(\mathbf{m})|}{\max_{\boldsymbol{\omega}} |G_p(\boldsymbol{\omega})|}.$$

• Apply QEA:

$$\Psi_p(\mathbf{m}) \approx a_i(\mathbf{m}) \frac{\left|G_p[\nabla \varphi_i(\mathbf{m})]\right|}{\max_{\boldsymbol{\omega}} |G_p(\boldsymbol{\omega})|}$$

BLOCK DIAGRAM

- Slides Here
 - 10. Tree + dom comp recon
 - 11. Raffia + dom comp recon
 - 12. Burlap + dom recon

TEXTURE SEGMENTATION

- Apply LoG edge detector to dominant
 - ► Frequency magnitudes.
 - ► Frequency orientations.
 - ► Amplitudes.
- Segment along SIGNIFICANT zero crossings.

- Slides Here
 - 13. MicaBurlap Mag Freq + Seg, $\sigma = 15$, $\tau = 1.5$ PelletBean Mag Freq + Seg, $\sigma = 49$, No τ 14. WoodWood Arg Freq + Seg, $\sigma = 14$, $\tau = 11$

PaperBurlap AM + Seg, $\sigma = 46.5,~{\rm No}~\tau$

APPLICATIONS

- Spatio-spectral analysis.
- Image segmentation.
- Phase-based stereo (Chen, Bovik).
- 3-D shape from texture (Super, Bovik, Klarquist).
- Biologically feasible model of mammalian visual function.

OUTLINE

- I. Introduction
- II. Demodulation
- III. Dominant Component Analysis

Nulti-Component Analysis

V. Conclusions

COMPUTED REPRESENTATIONS

• Recall model:
$$t(\mathbf{m}) = \sum_{i=1}^{K} a_i(\mathbf{m}) \exp[j\varphi_i(\mathbf{m})].$$

- GOAL: compute an AM-FM REPRESENTATION for t(m) by estimating the modulating functions of EACH component.
- NOTE: decomposition into components is NOT unique.

CHANNELIZED COMPONENTS

- Estimate modulating functions for ONE component from EACH filterbank channel.
- M-channel filterbank $\Rightarrow M$ -component representation.
- Consistent with biological vision models.
- Gives good reconstructions.

- Slides Here
 - 15. reptile + recon (channelized comps)
 - 16. raffia + recon (channelized comps)
 - 17. tree + recon (channelized comps)
 - 18. pebbles + recon (channelized comps)
 - 19. Ocean City, NJ + recon (channelized comps)
 - 20. Celebrity + recon (channelized comps)

CHANNELIZED COMPONENTS...

- NOT EFFICIENT:
 - Many images have FEWER than M components.
 - Often, many components are nearly zero over large regions.
 - Single elements of the image structure tend to be manifest in more than one channelized component.
- SHOULD be able to get BETTER results with FEWER components.

IMPROVED REPRESENTATIONS

• Recall model:
$$t(\mathbf{m}) = \sum_{i=1}^{K} a_i(\mathbf{m}) \exp[j\varphi_i(\mathbf{m})].$$

- GOAL 1: compute an AM-FM REPRESENTA-TION for t(m) by estimating the modulating functions of EACH component.
- GOAL 2: use fewer than M components.
- At each pixel, must determine
 - ► How many components are present.
 - Which filterbank channel to use for estimating the modulating functions of each component.

MULTIPLE COMPONENTS

- Order the image pixels with a path function $\mathcal{P}: \mathbf{m} \longmapsto k$.
- Traverse pixels in order in image.
- Then $\nabla \varphi_i(k)$ maps out a path for EACH component:

Space

Frequency

TRACK PROCESSOR

- Expand modulating functions of $t_i(\mathbf{m})$ in Taylor series to obtain a canonical state-space model.
- Model higher-order derivatives of modulating functions AND errors in $\hat{a}_i(\mathbf{m})$ and $\nabla \hat{\varphi}_i(\mathbf{m})$ as STOCHASTIC PROCESSES.
- Use a Kalman filter to track the modulating functions of each component across the filterbank channel responses.
 - INPUTS the estimated modulating functions computed from the CHANNEL responses.
 - PREDICTS which channel should be used for estimating the modulating functions of each component.
 - OUTPUTS estimated modulating functions for each COMPONENT.

BLOCK DIAGRAM

THE NEED FOR POSTFILTERING

- PROBLEM: image phase discontinuities cause
 - ▶ Abrupt, large-scale excursions in $\nabla \varphi_i(\mathbf{m})$.
 - ► Nontrivial QEA errors.
 - ► Absurd amplitude estimates.
- Frequency excursions can be UNBOUNDED.
- If the track processor follows a frequency excursion in $t_i(\mathbf{m})$, it
 - ► Rapidly updates from MANY channels.
 - Often updates from a channel that is dominated by another component.
 - ▶ The track of $t_i(\mathbf{m})$ is then lost.

EXAMPLE PHASE DISCONTINUITY

- Input: 1D cosine, frequency -0.3 cycles/sample.
- Phase discontinuity of π radians at k=256.
- f(k) is estimated frequency (1D).
- Octave filters with center frequencies of 0.217, 0.306 cycles/sample

POSTFILTERS

- Natural images are expected to contain phase discontinuities:
 - ► Occlusions.
 - Surface discontinuities, defects, deformations.
 - ► Shadows and specularities.
 - ► Noise.
- SOLUTION: Post-process the estimated modulating functions delivered by g_p(**m**) with a low-pass Gaussian smoothing filter P_p(ω).
- Postfiltered channel model:

- Slides Here
 - 21. reptile + recon (baseband + 5 tracked comps)
 - 22. straw + recon (baseband + 8 tracked comps)
 - 23. recons of 2 tracked straw comps
 - 24. recons of 2 tracked straw comps
 - 25. pellets + recon (baseband + 12 tracked comps)
 - 26. recons of 2 tracked pellets comps
 - 27. recons of 2 tracked pellets comps
 - 28. burlap + recon (baseband + 8 tracked comps)
 - 29. recons of 2 tracked burlap comps
 - 30. raffia + recon (baseband + 8 tracked comps)
 - 31. ice + recon (baseband + 12 tracked comps)

APPLICATIONS

- Nonstationary spatio-spectral analysis.
- Image and video coding.
- Current track processor has difficulty with
 - Regionally supported structure
 - ▶ images containing multiple textured objects.
- Investigation of IMPROVED tracking approaches is ongoing.

OUTLINE

- I. Introduction
- II. Demodulation
- III. Dominant Component Analysis
- IV. Multi-Component Analysis

V. Conclusions

CONTRIBUTION

- Developed a NEW theory of multidimensional AM-FM signal modeling.
 - ► Applicable in ARBITRARY dimensions.
 - ► Continuous AND discrete theories.
- FIRST to:
 - estimate multi-D multi-component AM-FM.
 - ▶ estimate multi-D FM with CORRECT signs.
 - comprehensively treat multi-D analytic signal.
 - ► treat multi-D QEA theory.
- Developed two computational paradigms in 2D.
 FIRST to:
 - compute multi-component AM-FM representations for natural images.
 - reconstruct from estimated modulations (in both 1D & 2D).

CONCLUSIONS

- Estimated dominant image modulations.
- Computed AM-FM representations.
- Reconstructed from the representations.
- USEFUL in PRACTICAL engineering systems:
 - ► Texture segmentation.
 - ► Phase based computational stereopsis.
 - ► 3D shape from texture.
 - Spatio-spectral analysis.
- Future work:
 - Improved tracking approaches.
 - ► Color images.
 - ► Video and color video.
 - ► Image and video coding.

MODEL AMBIGUITIES

- Suppose $s(\mathbf{m})$ is a real-valued image.
- Real model: $s(\mathbf{m}) = a(\mathbf{m}) \cos[\varphi(\mathbf{m})]$.

► Take

$$a_{1}(\mathbf{m}) = s_{\max} = \sup_{\mathbf{m}} |s(\mathbf{m})|$$

$$\varphi_{1}(\mathbf{m}) = \arccos [s(\mathbf{m})/s_{\max}]$$

$$a_{2}(\mathbf{m}) = |s(\mathbf{m})|$$

$$\varphi_{2}(\mathbf{m}) = \arccos [\operatorname{sgn} s(\mathbf{m})]$$

► Then,

$$s(\mathbf{m}) = a_1(\mathbf{m}) \cos[\varphi_1(\mathbf{m})]$$

= $a_2(\mathbf{m}) \cos[\varphi_2(\mathbf{m})].$

The decomposition into components also is NOT unique.

QEA ERROR

• The ERROR in the QEA is

$$\varepsilon(\mathbf{m}) = |y_p(\mathbf{m}) - \widehat{y}_p(\mathbf{m})|.$$

• Write a vector component-wise using angle brackets: $\mathbf{m} = [m_1 \ m_2 \ \dots \ m_n]^T = \langle m_k \rangle_k$.

• Let
$$a_{\max} = \sup_{\mathbf{m} \in \mathbb{Z}^n} a_i(\mathbf{m})$$
.

• Then

$$\varepsilon(\mathbf{m}) \leq \left(||g_p||_{\ell^1} - |g_p(\mathbf{0})| \right) \mathfrak{L}^1(a_i) + a_{\max} \left\langle \boldsymbol{\Delta}_k(g_p) \right\rangle_k^T \left\langle \mathfrak{S}_k^1(\varphi_i) \right\rangle_k.$$

- Provides a uniform global bound on the error.
- The functionals $\mathfrak{L}^1(a_i)$ and $\mathfrak{S}_k^1(\varphi_i)$ quantify the GLOBAL SMOOTHNESS of $t_i(\mathbf{m})$.
- The functionals $||g_p||_{\ell^1}$ and $\Delta_k(g_p)$ quantify the SPREAD, or LOCALIZATION, of $g_p(\mathbf{m})$.

ERROR BOUND FUNCTIONALS

- Let P^m denote the set of vector-valued paths $\sigma(s)$ through \mathbb{R}^n such that EACH component of $\sigma(s)$ is a polynomial in s of degree m or less.
- Then the functional $\mathfrak{L}^1(a_i)$ may be expressed as

$$\mathfrak{L}^{1}(a_{i}) = \sup_{\boldsymbol{\sigma}\in P^{1}} \left| \int_{\boldsymbol{\sigma}} \nabla a_{i}(\mathbf{x}) \cdot d\mathbf{x} \right|.$$

ERROR BOUND FUNCTIONALS...

• Let
$$\varphi_{i,x_k}(\mathbf{x}) = \frac{\partial}{\partial x_k} \varphi_i(\mathbf{x}).$$

• Then

$$\mathfrak{S}_k^1(\varphi_i) = \sup_{\boldsymbol{\sigma}\in P^1} \int_{\boldsymbol{\sigma}} |\nabla\varphi_{i,x_k}(\mathbf{x})| \, ds.$$

• In the *n*-dimensional discrete ℓ^q -space, $||g_p||_{\ell^q}$ is the usual norm of g_p with respect to the counting measure:

$$||g_p||_{\ell^q} = \left\{ \sum_{\mathbf{m}\in\mathbb{Z}^n} |g_p(\mathbf{m})|^q \right\}^{\frac{1}{q}}$$

• When q = 1, $||g_p||_{\ell^q}$ is the absolute sum of $g_p(\mathbf{m})$.

ERROR BOUND FUNCTIONALS...

• Generalized energy moment functional $\boldsymbol{\Delta}_k(g_p)$:

$$\boldsymbol{\Delta}_{k}(g_{p}) = \sum_{\mathbf{m}\in\mathbb{Z}^{n}}\left|\mathbf{m}\mathbf{e}_{k}^{T}\mathbf{m}\right|\left|g_{p}(\mathbf{m})\right|,$$

- ▶ \mathbf{e}_k : unit vector in x_k direction.
- Note: $\left|\mathbf{m}\mathbf{e}_{k}^{T}\mathbf{m}\right| = |m_{k}||\mathbf{m}|.$

UNFILTERED DEMODULATION

- Amplitude: $a_i(\mathbf{m}) = |t_i(\mathbf{m})|$.
- Let e_1 be a horizontal unit vector and e_2 be a vertical unit vector.
- Let k = 1 or k = 2.
- Then, $\mathbf{e}_k^T \nabla \varphi_i(\mathbf{m})$ is one component of $\nabla \varphi_i(\mathbf{m})$.
- Let $h_k(\mathbf{m}) = \delta(\mathbf{m} + n_1 \mathbf{e}_k) + q\delta(\mathbf{m} + n_2 \mathbf{e}_k).$
- Let $n_1 = 1$ and $n_2 = q = -1$. Apply QEA:

$$\mathbf{e}_k^T \nabla \widehat{\varphi}_i(\mathbf{m}) = \arcsin\left[\frac{t_i(\mathbf{m} + \mathbf{e}_k) - t_i(\mathbf{m} - \mathbf{e}_k)}{2jt_i(\mathbf{m})}\right]$$

• Let $n_1 = q = 1$ and $n_2 = -1$. Apply QEA:

$$\mathbf{e}_k^T \nabla \widehat{\varphi}_i(\mathbf{m}) = \arccos \left[\frac{t_i(\mathbf{m} + \mathbf{e}_k) + t_i(\mathbf{m} - \mathbf{e}_k)}{2t_i(\mathbf{m})} \right]$$

• Together, these algorithms place the estimated frequencies to within 2π radians.

STATE-SPACE MODEL

- Let ρ denote continuous arc length along \mathcal{P} .
- Restrict the derivatives of the modulating functions of $t_i(\rho)$ to the 1D lattice:

$$a'_i(k) = \left. \frac{\partial}{\partial k} a_i(k) = \frac{\partial}{\partial \rho} a_i(\rho) \right|_{\rho=k}$$

• Expand the modulating functions in first-order Taylor series, *e.g.*

$$a_i(k+1) = a_i(k) + a'_i(k) + \int_k^{k+1} (k+1-\rho)a''_i(\rho)d\rho.$$

• Expand the derivatives of the modulating functions in zeroth-order Taylor series, *e.g.*

$$a'_i(k+1) = a'_i(k) + \int_k^{k+1} a''_i(\rho) d\rho.$$

STATE-SPACE MODEL...

- Consider a_i(x) and φ_i(x) to be homogeneous,
 m.s. differentiable random fields; let φ_i(x) be quadrant symmetric.
- Model the six Taylor series integrals with six noise processes — u_a(k), u_{φx}(k), u_{φy}(k); ν_a(k), ν_{φx}(k), ν_{φy}(k) — called Modulation Accelerations or MA's (local averages of modulating function second derivatives).
- Model errors in filtered demodulation algorithm with uncorrelated Measurement Noises (MN's) n_a(k), n_{\varphi_x}(k), and n_{\varphi_y}(k).

STATE-SPACE MODEL...

 Rearrange the six Taylor series and write together to obtain the statistical state-space component model

$$\begin{bmatrix} a_{i}(k+1) \\ a_{i}'(k+1) \\ \varphi_{i}^{x}(k+1) \\ \varphi_{i}^{x'}(k+1) \\ \varphi_{i}^{y'}(k+1) \\ \varphi_{i}^{y'}(k+1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{i}(k) \\ a_{i}'(k) \\ \varphi_{i}^{x}(k) \\ \varphi_{i}^{y'}(k) \\ \varphi_{i}^{y'}(k) \end{bmatrix} + \begin{bmatrix} u_{a}(k) \\ u_{\varphi_{x}}(k) \\ u_{\varphi_{x}}(k) \\ u_{\varphi_{y}}(k) \\ \nu_{\varphi_{y}}(k) \end{bmatrix}$$
$$\mathbf{Y}(k) = \begin{bmatrix} a_{i}(k) \\ \varphi_{i}^{x}(k) \\ \varphi_{i}^{y}(k) \\ \varphi_{i}^{y}(k) \end{bmatrix}$$

$$\begin{bmatrix} \widehat{a}(k) \\ \widehat{\varphi^{x}}(k) \\ \widehat{\varphi^{y}}(k) \end{bmatrix} = \begin{bmatrix} a_{i}(k) \\ \varphi_{i}^{x}(k) \\ \varphi_{i}^{y}(k) \end{bmatrix} + \begin{bmatrix} n_{a}(k) \\ n_{\varphi_{x}}(k) \\ n_{\varphi_{y}}(k) \end{bmatrix}$$

PATH FUNCTION

• The TRACK PROCESSOR processes image pixels in the order specified by \mathcal{P} :

