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GOAL

� MODEL images as sums of AM-FM functions:

t(m) =
KX
i=1

ai(m) exp[j'i(m)]:

� ESTIMATE the dominant image modulations.

� COMPUTE multi-component AM-FM image

representations.

� RECOVER the essential image structure from the

computed representations.
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AM-FM IMAGE MODELING

� Image model:

t(m) =
KX
i=1

ai(m) exp[j'i(m)]

=
KX
i=1

ti(m)

� Each ti(m) is an AM-FM COMPONENT.

� MODULATING FUNCTIONS of ti(m):

I ai(m): amplitude modulation function.

I r'i(m): frequency modulation function.



COMPARISON TO DFT

� DFT represents an N �N image as the sum of

N 2
sinusoidal components, each having

I constant amplitude.

I constant frequency.

� Nonstationary structure represented by construc-

tive and destructive INTERFERENCE between

STATIONARY components.

� The modulating functions ai(m) and r'i(m)

are permitted to vary smoothly across the image.

� EACH AM-FM component is capable of capturing

SIGNIFICANT nonstationary structure.

� AM-FM model captures essential image structure

using MUCH fewer than N 2
components.



1D BACKGROUND

� In 1977, Moorer

I COMPUTED multi-component AM-FM rep-

resentations for musical instrument signals.

I CODED the representations and achieved

compression ratios of 43:1.

I RECONSTRUCTED the signals from the

computed representations.

I Assumed harmonically related components.

� 1D Teager-Kaiser operator introduced in 1990.

� Energy Separation Algorithm (ESA) developed by

Maragos, Kaiser, & Quatieri (1991).

I Used by MANY people for AM-FM speech

modeling.



1D MULTI-COMPONENT MODELS

� Kumaresan, Sadasiv, Ramalingam, and Kaiser

(1992-96):

I Used Teager-Kaiser operator and matrix

invariance properties.

I Problems with K > 4 components.

I Problems with n > 1 dimensions.

� Lu and Doerschuck (1996).

I Used Kalman �lters.

I 1D formulation.



2D BACKGROUND

� Bovik, Clark, & Geisler characterized TEXTURE

as a CARRIER of region information (1986).

I MODELED textures as single-component

AM-FM functions.

I SEGMENTED texture using amplitude and

phase of Gabor �lter response.

� Bovik, et. al., estimated DOMINANT modulating

functions via an iterative relaxation algorithm

(1992).

I SEGMENTED textures.

I RECONSTRUCTED 3D surfaces.

I Iteration was computationally EXPENSIVE.



2D AM-FM MODELS

� Knutsson, Westin, & Granlund (1994).

I Used lognormal �lters.

I Estimated FM for a single component.

� Francos and Friedlander (1995-96).

I Polynomial phase model.

I Estimated polynomial order and coe�cients.

I Demonstrated on simple synthetics.



2D TEAGER-KAISER OPERATOR

� Introduced by Yu, Mitra, & Kaiser (1991).

� 2D ESA: Maragos, Bovik, & Quatieri (1992).

I Computationally e�cient.

I Promised to replace iterative relaxation tech-

nique for estimating dominant modulations.

� Havlicek began work on the problem (1992).

� TROUBLE:

I ESA cannot estimate SIGNED frequency.

I SIGN of frequency is important in multi-D:

embodies ORIENTATION.

� A NEW approach was needed.



� Slides Here

1. reptile

2. reptile baseband comp, comp 1

3. reptile comp 2, comp 3

4. reptile

5. reptile comp 4, comp 5

I look at how \fold" is in FM of comps 2, 3.

Also in AM of baseband and comps 4, 5.

Comp 1 is AM-FM harmonic of comp 3.

6. All six reptile components.

7. reptile + 6 comp recon

8. reptile + 43 channelized comp recon



SIGNIFICANCE

� These results are AMAZING!!

� FIRST approach to

I Estimate multi-D multi-component amplitude

and frequency modulations.

I Estimate multi-D multi-component FM with

CORRECT signs.

I Compute multi-component AM-FM represen-

tations for natural images.

I Reconstruct from estimated modulations (in

both 1D & 2D).



APPLICATIONS

� Texture-based scene segmentation. (Bovik, Clark,

Geisler; Porat, Zeevi; Havlicek, Harding, Bovik)

� Phase-based computational stereopsis. (Chen,

Bovik).

� 3-D shape from texture. (Super, Bovik,

Klarquist).



APPLICATIONS: : :

� Spatio-spectral analysis.

� Texture modeling and synthesis.

� Future:

I Image coding.

I Video coding.

I Multimedia and CD-ROM applications.
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REAL-VALUED IMAGES

� The AM-FM model for t(m) is COMPLEX.

� To analyze a REAL-VALUED image s(m), take

t(m) = s(m) + jH[s(m)]:

� H is the 2D discrete Hilbert transform.

� t(m) is the complex ANALYTIC IMAGE associ-

ated with s(m).

I Re [t(m)] = s(m).

� F[t(m)] is ZERO in quadrants II and III.

� Gives intuitive, physically meaningful interpreta-

tions for

I instantaneous frequency of s(m).

I �rst moment of frequency in s(m).



DEMODULATION

� Demodulation algorithm is NONLINEAR.

� Cross-component interference is a PROBLEM if

t(m) is MULTI-COMPONENT.

� Use a multiband bank of linear �lters gp(m) to

ISOLATE components on a POINTWISE basis.

I The �lters DO NOT need to isolate the

components on a GLOBAL scale.

I The response yp(m) of each �lter gp(m)

DOES need to be dominated by only ONE

component at each image pixel.

� Suppose that component ti(m) dominates the

response yp(m) of �lter gp(m) at pixel m.

� GOAL: use the response yp(m) to estimate the

values of the modulating functions ai(m) and

r'i(m) at pixel m.



DEMODULATION: : :

� Demodulation algorithm depends on a quasi-

eigenfunction approximation (QEA).

� Suppose Gp is a 2D LSI system.

� Exact response to ti(m):

yp(m) =
X
p2Z2

gp(p)ti(m� p):

� QEA:

byp(m) = ti(m)Gp[r'i(m)]:

� QEA error generally small or negligible if

I gp(m) spatially localized.

I ai(m) and r'i(m) are smoothly varying, or

LOCALLY COHERENT.



DEMODULATION ALGORITHM

� Recall:

yp(m) = t(m) � gp(m)

� ti(m) � gp(m):

� Horizontal component of r b'i(m;n):

arcsin

"
yp(m+ 1; n)� yp(m� 1; n)

2jyp(m;n)

#
:

� Amplitude algorithm:

bai(m) =

����� yp(m)

Gp[r b'i(m)]

����� :



FILTERBANK

� Physiology and psychophysics:

I CHANNELS in visual cortex operate at 18

orientations and 4 magnitude frequencies.

I Visual cortical cells function as 2D complex

Gabor �lters.

� For ANALYTIC images t(m), only half of the

orientations need be considered.

� 2D Gabor �lters have OPTIMAL spatio-spectral

localization.



FILTERBANK: : :

� Gabor �lterbank:

I Frequency response Gp(!) is Gaussian.

I Bandwidth = 1 Octave.

� Filterbank channels at 8 orientations and 5

magnitude frequencies.

� One Gaussian baseband channel to capture

low-frequency structure.

� Two special HIGH-FREQUENCY channels.

� Frequency responses of adjacent �lters intersect

at half-peak.

� TOTAL number of channels = 43.



� Slides Here

9. Filterbank in frequency domain.
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DOMINANT COMPONENT ANALYSIS

� At every pixel, estimate the modulating functions

of the component that DOMINATES the local

frequency spectrum at that pixel.

� The dominant component frequencies are the

EMERGENT frequencies which characterize the

local texture structure.

� At each pixel, the dominant component maxi-

mizes

	p(m) =
jyp(m)j

max! jGp(!)j
:

� Apply QEA:

	p(m) � ai(m)

���Gp[r'i(m)]
���

max! jGp(!)j
:
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� Slides Here

10. Tree + dom comp recon

11. Ra�a + dom comp recon

12. Burlap + dom recon



TEXTURE SEGMENTATION

� Apply LoG edge detector to dominant

I Frequency magnitudes.

I Frequency orientations.

I Amplitudes.

� Segment along SIGNIFICANT zero crossings.



� Slides Here

13. MicaBurlap Mag Freq + Seg, � = 15, � = 1:5

PelletBean Mag Freq + Seg, � = 49, No �

14. WoodWood Arg Freq + Seg, � = 14, � = 11

PaperBurlap AM + Seg, � = 46:5, No �



APPLICATIONS

� Spatio-spectral analysis.

� Image segmentation.

� Phase-based stereo (Chen, Bovik).

� 3-D shape from texture (Super, Bovik,

Klarquist).

� Biologically feasible model of mammalian visual

function.
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COMPUTED REPRESENTATIONS

� Recall model: t(m) =
KX
i=1

ai(m) exp[j'i(m)].

� GOAL: compute an AM-FM REPRESENTATION

for t(m) by estimating the modulating functions

of EACH component.

� NOTE: decomposition into components is NOT

unique.



CHANNELIZED COMPONENTS

� Estimate modulating functions for ONE compo-

nent from EACH �lterbank channel.

� M -channel �lterbank ) M -component represen-

tation.

� Consistent with biological vision models.

� Gives good reconstructions.



� Slides Here

15. reptile + recon (channelized comps)

16. ra�a + recon (channelized comps)

17. tree + recon (channelized comps)

18. pebbles + recon (channelized comps)

19. Ocean City, NJ + recon (channelized comps)

20. Celebrity + recon (channelized comps)



CHANNELIZED COMPONENTS: : :

� NOT EFFICIENT:

I Many images have FEWER than M compo-

nents.

I Often, many components are nearly zero over

large regions.

I Single elements of the image structure tend

to be manifest in more than one channelized

component.

� SHOULD be able to get BETTER results with

FEWER components.



IMPROVED REPRESENTATIONS

� Recall model: t(m) =
KX
i=1

ai(m) exp[j'i(m)].

� GOAL 1: compute an AM-FM REPRESENTA-

TION for t(m) by estimating the modulating

functions of EACH component.

� GOAL 2: use fewer than M components.

� At each pixel, must determine

I How many components are present.

I Which �lterbank channel to use for estimating

the modulating functions of each component.



MULTIPLE COMPONENTS

� Order the image pixels with a path function

P :m 7�! k.

� Traverse pixels in order in image.

� Then r'i(k) maps out a path for EACH compo-

nent:

Space Frequency



TRACK PROCESSOR

� Expand modulating functions of ti(m) in Taylor

series to obtain a canonical state-space model.

� Model higher-order derivatives of modulating

functions AND errors in bai(m) and r b'i(m) as

STOCHASTIC PROCESSES.

� Use a Kalman �lter to track the modulating

functions of each component across the �lterbank

channel responses.

I INPUTS the estimated modulating functions

computed from the CHANNEL responses.

I PREDICTS which channel should be used for

estimating the modulating functions of each

component.

I OUTPUTS estimated modulating functions

for each COMPONENT.
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THE NEED FOR POSTFILTERING

� PROBLEM: image phase discontinuities cause

I Abrupt, large-scale excursions in r'i(m).

I Nontrivial QEA errors.

I Absurd amplitude estimates.

� Frequency excursions can be UNBOUNDED.

� If the track processor follows a frequency excur-

sion in ti(m), it

I Rapidly updates from MANY channels.

I Often updates from a channel that is domi-

nated by another component.

I The track of ti(m) is then lost.



EXAMPLE PHASE DISCONTINUITY

� Input: 1D cosine, frequency -0.3 cycles/sample.

� Phase discontinuity of � radians at k=256.

� f(k) is estimated frequency (1D).

� Octave �lters with center frequencies of 0.217,

0.306 cycles/sample

0 256 512
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

f(
k)

0 256 512
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

f(
k)

240 248 256 264 272
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

t(
k)



POSTFILTERS

� Natural images are expected to contain phase

discontinuities:

I Occlusions.

I Surface discontinuities, defects, deformations.

I Shadows and specularities.

I Noise.

� SOLUTION: Post-process the estimated modulat-

ing functions delivered by gp(m) with a low-pass

Gaussian smoothing �lter Pp(!).

� Post�ltered channel model:

AMP

FREQ
ALG

ALG p â 

ϕ^ 
t(m) Gp Pp

P



� Slides Here

21. reptile + recon (baseband + 5 tracked comps)

22. straw + recon (baseband + 8 tracked comps)

23. recons of 2 tracked straw comps

24. recons of 2 tracked straw comps

25. pellets + recon (baseband + 12 tracked

comps)

26. recons of 2 tracked pellets comps

27. recons of 2 tracked pellets comps

28. burlap + recon (baseband + 8 tracked comps)

29. recons of 2 tracked burlap comps

30. ra�a + recon (baseband + 8 tracked comps)

31. ice + recon (baseband + 12 tracked comps)



APPLICATIONS

� Nonstationary spatio-spectral analysis.

� Image and video coding.

� Current track processor has di�culty with

I Regionally supported structure

I images containing multiple textured objects.

� Investigation of IMPROVED tracking approaches

is ongoing.
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CONTRIBUTION

� Developed a NEW theory of multidimensional

AM-FM signal modeling.

I Applicable in ARBITRARY dimensions.

I Continuous AND discrete theories.

� FIRST to:

I estimate multi-D multi-component AM-FM.

I estimate multi-D FM with CORRECT signs.

I comprehensively treat multi-D analytic signal.

I treat multi-D QEA theory.

� Developed two computational paradigms in 2D.

FIRST to:

I compute multi-component AM-FM represen-

tations for natural images.

I reconstruct from estimated modulations (in

both 1D & 2D).



CONCLUSIONS

� Estimated dominant image modulations.

� Computed AM-FM representations.

� Reconstructed from the representations.

� USEFUL in PRACTICAL engineering systems:

I Texture segmentation.

I Phase based computational stereopsis.

I 3D shape from texture.

I Spatio-spectral analysis.

� Future work:

I Improved tracking approaches.

I Color images.

I Video and color video.

I Image and video coding.



MODEL AMBIGUITIES

� Suppose s(m) is a real-valued image.

� Real model: s(m) = a(m) cos['(m)].

I Take

a1(m) = smax = sup
m
js(m)j

'1(m) = arccos [s(m)=smax]

a2(m) = js(m)j

'2(m) = arccos [sgn s(m)]

I Then,

s(m) = a1(m) cos['1(m)]

= a2(m) cos['2(m)]:

� The decomposition into components also is NOT

unique.



QEA ERROR

� The ERROR in the QEA is

"(m) = jyp(m)� byp(m)j :

� Write a vector component-wise using angle

brackets: m = [m1 m2 : : : mn]
T = hmkik.

� Let amax = supm2Zn ai(m).

� Then

"(m) �

�
jjgpjj`1 � jgp(0)j

�
L
1(ai)

+ amax
D
�k(gp)

ET
k

D
S

1
k('i)

E
k
:

� Provides a uniform global bound on the error.

� The functionals L
1(ai) and S

1
k('i) quantify the

GLOBAL SMOOTHNESS of ti(m).

� The functionals jjgpjj`1 and �k(gp) quantify the

SPREAD, or LOCALIZATION, of gp(m).



ERROR BOUND FUNCTIONALS

� Let Pm
denote the set of vector-valued paths

�(s) through R
n
such that EACH component of

�(s) is a polynomial in s of degree m or less.

� Then the functional L
1(ai) may be expressed as

L
1(ai) = sup

�2P 1

����Z
�
rai(x) � dx

���� :



ERROR BOUND FUNCTIONALS: : :

� Let 'i;xk(x) =
@

@xk
'i(x).

� Then

S
1
k('i) = sup

�2P 1

Z
�
jr'i;xk(x)j ds:

� In the n-dimensional discrete `q-space, jjgpjj`q is

the usual norm of gp with respect to the counting

measure:

jjgpjj`q =

8<: X
m2Zn

jgp(m)jq

9=;
1

q

:

� When q = 1, jjgpjj`q is the absolute sum of

gp(m).



ERROR BOUND FUNCTIONALS: : :

� Generalized energy moment functional �k(gp):

�k(gp) =
X
m2Zn

���meTkm��� jgp(m)j ;

I ek: unit vector in xk direction.

I Note:

���meTkm��� = jmkjjmj.



UNFILTERED DEMODULATION

� Amplitude: ai(m) = jti(m)j.

� Let e1 be a horizontal unit vector and e2 be a

vertical unit vector.

� Let k = 1 or k = 2.

� Then, eTkr'i(m) is one component of r'i(m).

� Let hk(m) = �(m+ n1ek) + q�(m+ n2ek).

� Let n1 = 1 and n2 = q = �1. Apply QEA:

eTkr b'i(m) = arcsin

"
ti(m+ ek)� ti(m� ek)

2jti(m)

#

� Let n1 = q = 1 and n2 = �1. Apply QEA:

eTkr b'i(m) = arccos

"
ti(m+ ek) + ti(m� ek)

2ti(m)

#

� Together, these algorithms place the estimated

frequencies to within 2� radians.



STATE-SPACE MODEL

� Let � denote continuous arc length along P.

� Restrict the derivatives of the modulating func-

tions of ti(�) to the 1D lattice:

a0i(k) =
@

@k
ai(k) =

@

@�
ai(�)

�����
�=k

� Expand the modulating functions in �rst-order

Taylor series, e.g.

ai(k + 1) = ai(k) + a0i(k)

+

Z k+1

k
(k + 1� �)a00i (�)d�:

� Expand the derivatives of the modulating func-

tions in zeroth-order Taylor series, e.g.

a0i(k + 1) = a0i(k) +

Z k+1

k
a00i (�)d�:



STATE-SPACE MODEL: : :

� Consider ai(x) and 'i(x) to be homogeneous,

m.s. di�erentiable random �elds; let 'i(x) be

quadrant symmetric.

� Model the six Taylor series integrals with six

noise processes | ua(k), u'x(k), u'y(k); �a(k),

�'x(k), �'y(k) | called Modulation Acceler-

ations or MA's (local averages of modulating

function second derivatives).

� Model errors in �ltered demodulation algorithm

with uncorrelated Measurement Noises (MN's)

na(k), n'x(k), and n'y(k).



STATE-SPACE MODEL: : :

� Rearrange the six Taylor series and write together

to obtain the statistical state-space component

model266666664

ai(k + 1)

a0

i
(k + 1)

'x
i
(k + 1)

'x0

i
(k + 1)

'
y

i
(k + 1)

'
y0

i
(k + 1)

377777775
=

266666664

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 1
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377777775

266666664

ai(k)

a0

i
(k)

'x
i
(k)

'x0

i
(k)

'
y

i
(k)

'
y0

i
(k)

377777775
+

266666664

ua(k)

�a(k)

u'x(k)

�'x(k)

u'y (k)

�'y (k)

377777775

Y(k) =

264 ai(k)

'x
i
(k)

'
y

i
(k)

375
� Observation equation:264 ba(k)c'x(k)c'y(k)

375 =

264 ai(k)

'x
i
(k)

'
y

i
(k)

375+

264 na(k)

n'x (k)

n'y (k)

375



PATH FUNCTION

� The TRACK PROCESSOR processes image pixels

in the order speci�ed by P:


