UNIVERSITY OF TEXAS AT AUSTIN

Dept. of Electrical and Computer Engineering
Mid-Term \#1
Date: October 2, 1996
Course: EE 381K

Name: \qquad
Last,
First

Alias: \qquad

- The exam will last 90 minutes.
- You may use any books during the exam
- The only notes you may use are those taken for this class, which includes course handouts.
- Calculators are allowed.
- You may use any standalone computer system, i.e., one that is not connected to a network.
- All work should be performed on the midterm itself. If more space is needed, then use the backs of the pages.

Problem	Point Value	Your Score	Topic
1	15		2-D Convolution
2	15		2-D DTFT
3	20		2-D Sampling
4	20		2-D DFT
5	20		1-D DST
6	10		1-D Spectrum and 2-D DCT
Total	100		

Problem 1.1 Finite-Extent 2-D Convolution. 15 points.
Determine the two-dimensional convolution of the two sequences $x[n 1, n 2]$ and $h[n 1, n 2]$ sketched below. Both sequences have sample values equal to 1 at the locations indicated by the black dots.

Problem 1.2 Non-Separable 2-D Discrete-Time Fourier Transform. 15 points.
$H\left(\omega_{1}, \omega_{2}\right)$ is 1 in the shaded regions in the figure below and 0 in the unshaded regions. Determine $h\left[n_{1}, n_{2}\right]$.

Hint: You can think of this non-separable frequency response as a modulated version of a separable frequency response.

ω_{1}

Problem 1.3 Elliptic Passband. 20 points.
A two-dimensional bandlimited signal has the elliptic support

$$
H\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \text { if } \frac{\Omega_{1}^{2}}{a^{2}}+\frac{\Omega_{2}^{2}}{b^{2}}<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine a sampling matrix V that will allow $h\left(t_{1}, t_{2}\right)$ to be sampled at a minimum sampling rate without aliasing.
(b) What is the minimum sampling density (in samples per unit area)?

Problem 1.4 Filtering Using the Discrete Fourier Transform. 20 points.
Consider an image $x\left[n_{1}, n_{2}\right]$ of 512×512 pixels to be filtered by a system with an impulse response $h\left[n_{1}, n_{2}\right]$. The sequence $h\left[n_{1}, n_{2}\right]$ is an 11×11 sequence that is zero outside $0 \leq$ $n_{1} \leq 10$ and $0 \leq n_{2} \leq 10$. Compare the computations

$$
\begin{gathered}
y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * * h\left[n_{1}, n_{2}\right] \\
v\left[n_{1}, n_{2}\right]=\mathcal{D} \mathcal{F} \mathcal{T}_{k_{1}, k_{2}}^{-1}\left(\mathcal{D} \mathcal{F} \mathcal{T}_{n_{1}, n_{2}}\left\{x\left[n_{1}, n_{2}\right]\right\} \cdot \mathcal{D} \mathcal{F} \mathcal{T}_{n_{1}, n_{2}}\left\{h\left[n_{1}, n_{2}\right]\right\}\right)
\end{gathered}
$$

where the forward DFT and inverse DFT are 512×512 points in size. For what values of $\left(n_{1}, n_{2}\right)$ does $v\left[n_{1}, n_{2}\right]$ equal $y\left[n_{1}, n_{2}\right]$?

Problem 1.5 1-D Discrete Sine Transform. 20 points.
Develop an algorithm to compute the forward discrete sine transform using an appropriate discrete Fourier transform algorithm. The forward discrete sine transform is defined as

$$
X_{s}[k]=\sum_{n=0}^{N-1} 2 x[n] \sin \frac{(2 n+1) k \pi}{2 N}
$$

Problem 1.6 Potpourri.
(a) Computing the power spectrum of a discrete signal by computer. 5 points.

We want to plot the power spectrum of a discrete signal $x[n]$ that is defined for $n=$ $-2,-1,0,1,2$, The power spectrum is the square of the absolute value of the discrete Fourier transform. How would you compute the power spectrum given that your favorite computer language has a built-in fast Fourier transform (FFT)?

Which DFT coefficient holds the zero frequency (DC) value?
(b) Fast implementations of the discrete cosine transform. 5 points.

1. How did Hyesook's implementation avoid the need of a transform on the input data?
2. To what DFT algorithm is Hyesook's implementation similar?
