Outline

- **●2-D** Narrowband Signals
- **●2-D Decimation Systems**
- **Interactive Design Method**
- **●Example**
- Conclusion

2-D Narrowband Signals

Image Processing

Digitized pictures are often oversampled

•Video Processing

Quincunx decimation has little perceptual effect

Seismic Processing

Fan filtering

2-D Narrowband Signals

•Pictorial Example: Fan Filters

For example, velocity filters for position-time data

If filtering specification includes ω_1 or ω_2 axis, periodic extension reveals parallelogram-shaped passbands

Nyquist Resampling of Signals with Parallelogram-Shaped Passbands

Using only linear components [Chen & Vaidyanathan]

Ounderlying Theory

- Reported by Chen & Vaidyanathan at ICASSP '93
- Pick vertices of parallelogram to be rational multiples of π
- Compute rational matrix H from the vertices
 - (a) **H** maps parallelogram *onto* square fundamental frequency tile: $-\pi < \omega_1 < \pi$ and $-\pi < \omega_2 < \pi$
 - (b) $\mathbf{H} = \mathbf{L}^{-1} \mathbf{M}$ where \mathbf{L} and \mathbf{M} integer matrices

• Converting Theory to an Algorithm [Evans & Sakarya]

• Factor H = L⁻¹ M using Smith-McMillan form of H

$$H = U \Lambda V = U \Lambda_{L}^{-1} \Lambda_{M} V$$
$$= (\Lambda_{L} U^{-1})^{-1} (\Lambda_{M} V) = L^{-1} M$$

• Add a modulator to the decimator structure at input To make regions symmetric by shift centers to origin

• **Circumscribe arbitrary region with parallelogram** Sub-optimal method based on rotated rectangles O(N²)

Improved Algorithm

• Find convex hull of arbitrary region first Using Graham Scan to produce a convex polygon

Minimal enclosing parallelogram

Two adjacent sides overlap with two polygon edges Other two adjacent sides intersect polygon vertices

• Circumscribe arbitrary region with parallelogram

Optimal method based on exhaustive search O(N²) *Optimal* method based on anti-podal pairs O(N)

Initialization: Sketch Passband

Given empty graph of one period of frequency domain (a) outline the region of interest using the mouse

(b) copy and paste the selected points to define the vertices of a polygon that represents the region

• Step 1: Circumscribe Passband with Rectangle

- *Input*: polygon (*in* **orange**) passband whose vertices are defined by floating-point coordinates
- *Output*: rectangle (*in* **black**) whose vertices are defined by floating-point coordinates

Improved Algorithm: computes convex hull

Step 2: Circumscribe Rectangle with Parallelogram

- *Input*: rectangle (*not shown*) whose vertices are defined by floating-point coordinates
- *Output*: parallelogram (*in* **black**) whose vertices are coordinates that are rational multiples of π

Improved Algorithm: find min. enclosing parallelogram

• Step 3: Shift Parallelogram to Origin

Shift the center of the parallelogram to the origin Shift vector is the modulation vector $\mathbf{n_0}$

Step 4: Resample Parallelogram

Map symmetric parallelogram to square by H(a) square contains one period of the frequency domain(b) H is a rational matrix

Step 5: Factor Matrix H into L and M

●Example

{ shiftVector, upMatrix, downMatrix } =
DesignDecimationSystem[
 poly, Dialogue -> All, Mod -> 10]

Efficiency of parallelogram: 62.6%

Conclusion

Quick Prototyping of Interactive Design Procedure

• Chen & Vaidyanathan report theory at ICASSP '93

• Convert theory to an algorithm

Add method to compute bounding parallelogram Add method to factor rational matrix $\mathbf{H} = \mathbf{L}^{-1} \mathbf{M}$

Choose environment for rapid implementation Interpreted programming language Graphical user interface to sketch passbands

Future Research

●2-D Decimator Design

• Design of 2-D filter

• Based on hexagon spectrum

Hexagons are better for circular passbands

●2-D Filter Bank Design

• Polygonal tiling of the frequency plane