Outline

O2-D Narrowband Signals

O2-D Decimation Systems

OInteractive Design Method

OExample

OConclusion

2-D Narrowband Signals

OImage Processing

Digitized pictures are often oversampled

OVideo Processing
Quincunx decimation has little perceptual effect

OSeismic Processing
Fan filtering

2-D Narrowband Signals

OPictorial Example: Fan Filters

For example, velocity filters for position-time data
If filtering specification includes ω_{1} or ω_{2} axis, periodic extension reveals parallelogram-shaped passbands

2-D Decimation Systems

ONyquist Resampling of Signals with Parallelogram-Shaped Passbands

Using only linear components [Chen \& Vaidyanathan]

2-D Decimation Systems

OUnderlying Theory

- Reported by Chen \& Vaidyanathan at ICASSP '93
- Pick vertices of parallelogram to be rational multiples of π
- Compute rational matrix \mathbf{H} from the vertices
(a) \mathbf{H} maps parallelogram onto square fundamental frequency tile: $-\pi<\omega_{1}<\pi$ and $-\pi<\omega_{2}<\pi$
(b) $\mathbf{H}=\mathbf{L}^{-1} \mathbf{M}$ where \mathbf{L} and \mathbf{M} integer matrices

2-D Decimation Systems

OConverting Theory to an Algorithm

 [Evans \& Sakarya]- Factor $\mathbf{H}=\mathbf{L}^{-1} \mathbf{M}$ using Smith-McMillan form of \mathbf{H}

$$
\begin{aligned}
\mathbf{H} & =\mathrm{U} \Lambda \mathrm{~V}=\mathrm{U} \Lambda_{\mathbf{L}}^{-1} \Lambda_{\mathbf{M}} \mathrm{V} \\
& =\left(\Lambda_{\mathbf{L}} \mathrm{U}^{-1}\right)^{-1}\left(\Lambda_{\mathbf{M}} \mathrm{V}\right)=\mathbf{L}^{-1} \mathbf{M}
\end{aligned}
$$

- Add a modulator to the decimator structure at input To make regions symmetric by shift centers to origin
- Circumscribe arbitrary region with parallelogram Sub-optimal method based on rotated rectangles $\mathrm{O}\left(\mathrm{N}^{2}\right)$

2-D Decimation Systems

OImproved Algorithm

- Find convex hull of arbitrary region first

Using Graham Scan to produce a convex polygon

- Minimal enclosing parallelogram

Two adjacent sides overlap with two polygon edges
Other two adjacent sides intersect polygon vertices

- Circumscribe arbitrary region with parallelogram

Optimal method based on exhaustive search $\mathrm{O}\left(\mathrm{N}^{2}\right)$
Optimal method based on anti-podal pairs $\mathrm{O}(\mathrm{N})$

Interactive Design Method

OInitialization: Sketch Passband

Given empty graph of one period of frequency domain
(a) outline the region of interest using the mouse

(b) copy and paste the selected points to define the vertices of a polygon that represents the region

Interactive Design Method

OStep 1: Circumscribe Passband with Rectangle

Input: polygon (in orange) passband whose vertices are defined by floating-point coordinates
Output: rectangle (in black) whose vertices are defined by floating-point coordinates

Improved Algorithm: computes convex hull

Interactive Design Method

OStep 2: Circumscribe Rectangle with Parallelogram

Input: rectangle (not shown) whose vertices are defined by floating-point coordinates
Output: parallelogram (in black) whose vertices are coordinates that are rational multiples of π

Improved Algorithm: find min. enclosing parallelogram

Interactive Design Method

OStep 3: Shift Parallelogram to Origin

 Shift the center of the parallelogram to the origin Shift vector is the modulation vector $\mathbf{n}_{\mathbf{0}}$
OStep 4: Resample Parallelogram

 Map symmetric parallelogram to square by \mathbf{H}(a) square contains one period of the frequency domain (b) \mathbf{H} is a rational matrix

Interactive Design Method

OExample

\{ shiftVector, upMatrix, downMatrix \} = DesignDecimationSystem[poly, Dialogue -> All, Mod -> 10] Efficiency of parallelogram: 62.6\%

The compression ratio is 8-to-1.
$\mathrm{n}=(0,0)$
$\begin{array}{rr}\mathrm{L}=7 & 1 \\ 2 & 14\end{array}$
$\mathrm{M}=\begin{array}{ll}2 & 14 \\ 0 & 20\end{array}$

Conclusion

OQuick Prototyping of Interactive Design Procedure

- Chen \& Vaidyanathan report theory at ICASSP '93
- Convert theory to an algorithm

Add method to compute bounding parallelogram
Add method to factor rational matrix $\mathbf{H}=\mathbf{L}^{-1} \mathbf{M}$

- Choose environment for rapid implementation

Interpreted programming language
Graphical user interface to sketch passbands

Future Research

O2-D Decimator Design

- Design of 2-D filter
- Based on hexagon spectrum

Hexagons are better for circular passbands

O2-D Filter Bank Design

- Polygonal tiling of the frequency plane

