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Abstract

In a two-dimensional pattern matching problem, a known template image has to be located in another
image, irrespective of the template’s position, orientation and size in the image. One way to accomplish
invariance to the changes in the template is by forming a set of feature vectors that encompass all the
variations in the template. Matching is then performed by finding the best similarity between the
feature vector extracted from the image to the feature vectors in the template set. In this report we
introduce a new concept of a Generalized Transform. The Generalized Transform offers a relatively
robust and extremely fast solution to the described matching problem. The application of the
Generalized Transform to scale invariant pattern matching is introduced.



1. Introduction

Pattern matching is an important technique in digital image processing. The evolution of

computer technology has enabled many practical applications based on pattern matching, especially in

industrial automation. An example of a process to be automated is the visual inspection of circuit

boards. Typically, we are interested in finding a missing component in circuit boards on a production

line. The procedure is based on a digital picture of the circuit board. Then one could search for a

predefined template corresponding to the desired component. So given a test image I, we are interested

in finding the location of the template It within this image. Typical test and template images are given

in Figure 1.

To properly define a pattern matching problem, all the valid transformations of the template

should be clearly specified. In a majority of the applications the template will appear shifted, rotated

and scaled in the test image.

Approaches for solving the proposed problem can be divided into two categories: correlation

based solutions and image understanding solutions [BB82, GMO99]. Correlation based solutions

predominantly use a cross correlation to find the potential locations of the template, whereas image

understanding solutions attempt to model the objects observed in the template.

Template
Image It

Test Image I

Figure 1: Pattern matching application Figure 2: Classic Correlation



In this literature survey we present some classical approaches to correlation based pattern

matching. Then we present an innovative approach to the same problem using a statistical sampling

approach. Finally we introduce a new generalized transform, that when used in conjunction with

statistical sampling provides the basis for a robust scaling invariant pattern matching algorithm.

2. Classic Correlation Based Pattern Matching

Traditional pattern matching techniques include normalized cross correlation [BB82] and pyramidal

matching [CC98]. Normalized cross correlation is the most common way to find a template in an

image. The following is the basic concept of correlation: Consider a sub-image w(x,y) of size K × L

within an image f(x,y) of size M × N, where K × M and L × N. The normalized correlation between

w(x,y) and f(x,y) at a point (i,j) is given by
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where i = 0,1, … M – 1, j = 0,1 … N – 1, w  (calculated only once) is the average intensity value of the

pixels in the template w. The variable ),( jif  is the average value of f in the region coincident with the

current location of w. The value of C lies in the range –1 to 1 and is independent of scale changes in the

intensity values of f and w.

Figure 2 illustrates the correlation procedure. Assume that the origin of the image f is at the top left

corner. Correlation is the process of moving the template or sub-image w around the image area and

computing the value C in that area. The maximum value of C indicates the position where w best

matches f. Since the underlying mechanism for correlation is based on a series of multiplication

operations, the correlation process is time consuming. With new technologies such as MMX,

multiplications can be done in parallel, and the overall computation time can be reduced considerably.



The basic normalized cross correlation operation does not meet speed requirements for many

applications [BB82].

Normalized cross correlation is a good technique for finding patterns in an image as long as the

patterns in the image are not scaled or rotated. Typically, cross correlation can detect patterns of the

same size up to a rotation of 5° to 10° [NW99]. Extending correlation to detect patterns that are

invariant to scale changes and rotation is difficult. For scale-invariant matching, you must repeat the

process of scaling or resizing the template and then perform the correlation operation. This adds a

significant amount of computation to the matching process.

A multidimensional Discrete Fourier Transform approach could be used to accelerate the

correlation computation [UK97]. But, usually the size of the template offsets such advantages.

Moreover the lack of robustness to deformations of the template turns out to be the main problem with

correlation.

Another classical approach is to use Principal Component Analysis to extract information from

the template and similarly extract information from the image at each bounding location [UK97]. The

approach is not very successful because the learning phase is very slow (~2 hours) and the matching

phase computationally intensive (lacking real time).

3. Statistical Sampling Based Pattern Matching

Low discrepancy sequences have been successfully used in a variety of applications that require

spatial or multidimensional sampling [C86, NW99]. A low discrepancy sequence can be described as a

sequence that samples a given space as uniformly as possible. Thus, the density of points in relation to

the space volume is almost constant.

Images typically contain a lot of redundant information. Thus, in a correlation based pattern

matching a template image could be subsampled according to a two dimensional low discrepancy

sequence [NW99]. A set S of N coordinates of the template could be formed and the correlation



computed only in relation to these coordinates. Such an algorithm has been proposed in [NW99b] and

successfully used in a variety of applications.

The algorithm has two stages. In the first, possible matches are computed based on a subsampled

correlation. A threshold in the correlation value determines the exclusion or inclusion of a match. In the

second, the edge information of the template is used to accurately locate the potential match indicated

by the first stage. Typically, for a 100 X 100 template, a set of 61 points in enough to provide a robust

correlation basis (160 times faster) for the first stage candidate list generation procedure.

Figure 3: (a) Reference pattern, (b) Sampled pattern (c) Edges Information.

3.1 Shift Invariance

In a pattern matching application where only shift invariance is desired, a Halton low discrepancy

sequence can be used [C86, NW99b]. Typically, 61-70 coordinate points from the template should be

selected.

The selection process starts by generating the subsampling structure, whose first coordinate is

always (0,0) [NW99b]. Then, the offset that should be used to determine the actual set of coordinates is

chosen. The offset should maximize the robustness of the set, so that small pixel coordinate variations

(up to 3 pixels) change the pixel intensities in the chosen coordinates as little as possible.

3.2 Rotation Invariance

The rotation invariant approach could be extended from the shift invariant approach as suggested in

section 2. But there is a more efficient approach that still keeps the spatial subsampling idea. Instead of

using a uniformly distributed sequence, a subsampling (discrete) circle could be used.

Shift Invariant Pattern Matching



Computing the candidate list is then simply computing a full circular cross correlation at each pixel

point. If the chosen sequence of coordinate points is visualized as a 1D sequence of points f(n), the

correlation procedure is defined as ∑
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Figure 4 illustrates the procedure. The computation of the cross correlation can be accelerated if we

assume that a match should always be sufficiently close to the given template. In this case an algorithm

based on a Discrete Fourier Transform (DFT) can be used. The algorithm is presented in Table 1. The

main idea is to explore the spatial distribution of the complex points of the DFTs of the shifted versions

of f(n), given a fixed frequency (Figure 5). If more robustness is required, the proposed procedure can

be extended to include as many frequencies as desired.

Given the signal f(n), choose a frequency k that maximizes )k(F , where F(k) is the DFT of f(n).

Compute and store the vectors ( )))k(F)kIm(exp()),k(F)kRe(exp(
NN
ππ 22

      (at match time)  Compute the DFT at k of g(n)  (sampling  set S, at coordinate (i,j))

      (at match time)  Find the closest vector to ( )))k(GIm()),k(GRe( , in the stored list

Table 1: Algorithm for fast rotation invariant pattern matching

4. Scaling Invariant Pattern Matching

The requirement for scaling invariance might arise in applications where the distance between the

g(n) = f([n+L]g(n) = f([n+L]NN))

Figure 4: Rotation Invariant Pattern Matching

f(n)f(n)

Figure 5: DFT Based Algorithm

|F(k)|f(n) f([n+r] N)

f([n+1]N)



camera and the imaging plane is variable. Usually, in scaling invariance applications the scaling range

is fixed and finite.

A better approach is to proceed as suggested in the rotation invariant case. Given a set S of N

subsampling points, sample scaled versions of the template and use this information to perform a

complete correlation. The scaling factor range ]s,s[ tb  is given as part of the problem specification.

This range can be discretized using a finite number of levels P. The template image is scaled and

sampled at the coordinate locations defined by S and an offset, for each discrete value of the scaling

factor. The offset can be chosen independently for each scale. The result of the proposed operations is a

set of P vectors }f,...,f{F P 10 −=  of length N.

The matching phase consists in sliding the sampling structure defined by S over the test image and

at every location computing the correlation with respect to each of the vectors in F. The best match

indicates the potential scaling factor. A full normalized correlation with respect to the corresponding

scaled template is then computed to obtain the matching score.

We can accelerate the matching process by using an idea similar to the one proposed for the

rotation invariant case. There the vectors if  corresponded to shifted versions of f, and the DFT mapped

them to a circle if a single frequency was used. In the current situation we should define a more generic

transformation that takes the vectors in F to a circle.

5. Generalized Transform

Assume that N vectors (signals) of length N are given. Denote these vectors by if . A matrix A

can be defined, such that 10 fAf = , 21 fAf = , …, 01 fAfN =− , if the matrix B (NxN) formed by setting

each of its columns to the corresponding vector if  is regular (non-singular). Some properties that arise

from the definition of A and B are that:



P1) AB=B’, where B’ is the matrix B with a column-wise shift (i.e. Nmodif 1+  corresponds to the column

i of B’). B is regular and so is B’. Thus 1−= B'BA .

P2) IAN =  (NxN identity). This property implies that all eigenvalues of A are the roots of unity

( ( )kexp
Nk
πλ 2= , k = 0, …, N-1).

P3) The matrix A can be decomposed as 1−= BBVXXA , where V is the NxN diagonal matrix formed by

the eigenvalues kλ  [GL91].

From the stated properties it is clear that the NxN matrix 1−
BX  expresses the desired Generalized

Transform (GT). Theorem 1 proves the shift invariance property for the GT. Theorem 2 shows that if

the vectors if  are shifted versions of each other, then 1−
BX  is the Fourier matrix.

Theorem 1: The matrix 1−
BX  defines a shift invariant transformation for the set of vectors if .

Proof: From the definition of the matrix A, it is clear that 0fAf p
p = . Using property P3 we can write

0
1 fXVXf B

p
Bp

−= , resulting finally in 0
11 fXVfX B

p
pB

−− = , which is the matrix form of the shift

invariance property of the DFT (note that for a DFT )]pn([ff Np += ).

Theorem 2: If the vectors if  are shifted versions of each other (i.e. )]in([ff Ni += ) then 1−
BX  is the

Fourier matrix.

Proof: For the specified set of vectors, B'I'B =  where I’  is the column-wise shifted identity matrix (for

example, for N=3,  
















=

001

100

010

'I ). It is clear then that 'IA = . If we set FXB =−1 , where F is the DFT

matrix [UK97], then VFF'I 1−=  which can be verified true by direct computation.



Choosing a frequency in the GT domain corresponds to selecting a line of the matrix 1−
BX . In

this case too, for a fixed frequency, the set of vectors f maps to points in a circle in the complex plane.

If 0
1 fXg B

−= , then )k(g  is the radius of the circle at frequency k.

For scale and shift invariant pattern matching, the same algorithm presented for the rotation

invariant case can be used, replacing the DFT by the GT. In fact if we allow for rotation of the template

at different scales, a complete pattern matching solution can be built on the GT.

6. Summary

In this project we propose to implement the scale invariant pattern matching mechanism based on this

new transform. We also propose to develop some additional properties of the GT. The GT based

approach is promising from a computational efficiency aspect. Moreover it allows for easy integration

towards a global solution that is able to handle template rotation, scaling and shift.
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