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Abstract 

 

Dataflow languages provide a high-level description that can expose inherent parallelism in 

many applications. This high level description can be applied to automatically create efficient 

code and schedules based on patterns in the dataflow graphs and knowledge of the target 

architecture. When targeting a dataflow graph to custom hardware, it is sometimes advantageous 

to share nodes with similar functionality to save silicon. Any state information associated with 

the caller of the shared node must be stored and subsequently loaded upon firing. If prediction 

logic can predict which caller of a shared node is next, the associated state information can be 

prefetched while other nodes of the graph are executing. While some applications can be entirely 

scheduled at compile time, many multi-channel measurement and control applications require 

some degree of dynamic scheduling. Prefetching in statically scheduled dataflow graphs can be 

done at compile time, while prefetching in dynamically scheduled dataflow graphs requires 

dynamic prediction.   

 



INTRODUCTION 

Many measurement and control applications attempt to accomplish similar tasks on 

multiple channels. When targeting systems to custom hardware, sharing functionality between 

multiple channels can save silicon. Many times these functional units contain state information 

that must be loaded from memory before execution, and prefetching this state information can 

enhance system performance.  The sequence of callers can be determined at compile time if the 

application is statically schedulable.  If the sequence is dynamic in nature, a prediction 

mechanism is necessary to support prefetching. 

Our main objective is to explore the feasibility of caller prediction as a method for 

predicting the next caller of a shared functional unit executing in a parallel processing system. 

Dataflow graphs are good at describing parallelism, and thus are a natural fit for modeling 

systems where the caller prediction mechanism may be beneficial. We examine related work in 

classifying dataflow graphs, and build on the concept of branch prediction in pipelined 

processors to implement our prefetch prediction unit for dynamically scheduled dataflow graphs.   

 

RELATED WORK 

Statically schedulable models of computation do not need prediction because all 

scheduling decisions are made at compile time; however, they can still take advantage of 

prefetching state data. Synchronous dataflow (SDF), computation graphs, and cyclo-static 

dataflow (CSDF) are all powerful models of computation for applications where the schedule is 

known at compile time [3]. For a valid schedule, it is possible to speed-up the process by simply 

pre-loading actors and their respective internal state data. Figure 1 shows the prefetch nodes 
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explicitly in the diagram; however, the prefetch nodes could be added implicitly when targeting 

hardware capable of taking advantage of the parallelism exposed in the dataflow graph. 
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Figure 1: Homogeneous SDF graph with prefetch of state information for the shared node D 

 

 The idea of prefetching data is not new. Cahoon and McKinley have researched 

extracting dataflow dependencies from Java applications for the purpose of prefetching state data 

associated with nodes [2]. Wang et al., when exploring how to best schedule loops expressed as 

dataflow graphs, also try to schedule the prefetching of data needed for loop iterations [5].  

Dynamically Schedulable Models 

 While statically schedulable models of computation are common in signal and image 

processing applications and make efficient scheduling easier, the range of applications is 

restrictive because runtime scheduling is not allowed. Dynamically schedulable models of 

computation, such as Boolean dataflow, dynamic dataflow, and process networks, allow runtime 

decisions, but in the process make static prefetch difficult, if not impossible.  

G, the LabVIEW graphical programming language, requires dynamic scheduling.  

According to Andrade et al., the G model of computation is homogeneous, dynamically 

scheduled, and multidimensional [1]. Local variables, global variables, and other features of G 

make it possible to implement general process networks.  The dynamic, yet structured nature of 

G makes certain subsets well suited to the exploration of prefetch prediction for shared G nodes. 

We used G as our prototyping environment for practical reasons. 

 2



Branch Prediction 

Two-level branch prediction was pioneered by Patt and Yeh to help keep processor 

pipelines full for a greater percentage of the time [7]. This prediction model uses a lookup table 

of saturating two-bit counters that represent the likelihood that a branch will be taken given a 

certain history. As illustrated in Figure 2, the history register consists of data indicating if a 

branch was taken, or not taken, the past n times. A ‘1’ represents a taken branch, and a ‘0’ 

represents a branch not taken. The table therefore has 2n entries. 

Lookup 
Past History 

10110 1 0

 Saturating  
2-bit counters 

 

 Figure 2: Two-level branch prediction 

 A ‘1’ in the counter MSB predicts that a branch will be taken, while a ‘0’ predicts that the 

branch will not be taken. This approach achieves a prediction success rate in the 90% range [4]. 

Patt and Yeh have tabulated the hardware costs to be significant for large history lengths [6].  

 

IMPLEMENTATION 

 Our initial pass at a design of our prediction mechanism borrowed from the two-level 

branch prediction mechanism. Figure 3 shows the overall block diagram architecture. The past 

call history shift register keeps track of the last n calls to a shared node. The values held in the 

shift register are wired directly to a hash function that converts the history entry to a row lookup 

index into the call history table. The call history table has a column for each possible caller of the 

shared node. 

 

 3



Table Lookup 

Table Update 

Actual Caller 

Prediction Greatest Comparison 

Call History Table 

01 …1100

x-1 …1 0 

Update Logic 

n-1… 1 0 

Hash Function For Lookup

Past Call History Register  

 

 

 

 

 

Figure 3: Block diagram of two-level caller prediction 
 
 
Each cell in the call history table is managed by update logic to increment when a prediction is 

correct and decrement when a prediction is incorrect. When a prediction is desired, the column 

values across the history table are compared to find the greatest value. 

 Ideally, there would be a row in the history table for each possible value of the past 

history register. However, the number of rows grows exponentially (xn) with the length of the 

history register. For three callers (x) and a history length of eight (n), the direct map approach 

requires 6561 rows. A hashing function is necessary to eliminate this exponential dependence. 

 In the above predictor model, the maximum number of callers is analogous to a numeric 

base, and each position in the history shift register is analogous to a position in the numeric base. 

For example, for ten possible callers, a history register containing 9,6,2 maps to a lookup index 

of 962 using base 10.  For 11 possible callers, a conversion is performed by evaluating 9*11^2 + 

6*11^1 + 2*11^0. A hardware modulo hash function can convert and multiply the running sum 

by a large prime number during each stage, but would only use the lower k bits of the direct 

mapped result. Hashing introduces collisions, which decrease the prediction accuracy. 

 However, if our application settles to a periodic schedule quickly, and the schedule 

changes infrequently, the need to keep track of past periodic behavior is eliminated.  
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Figure 4: Predictor based on detecting a periodic calling sequence 
 

 A predictor model that determines the current periodic behavior in the current calling 

history is illustrated in Figure 4. The call history shift register in the period predictor is similar to 

the past history register of the two-level predictor. The period predictor first splits the history 

register in half, and then finds the part of the second half which best correlates with the 

beginning of the first half. For example, for a past call history of 12341234, the first equality is 

true, and the period predictor selects 4 as the prediction. Similarly, for a history of 02345602, the 

third equality is true, and period predictor selects 6 as the prediction. These comparisons assume 

that the period of the calling sequence is contained in the history register, and that call prediction 

latency is equal to the length of the history register if the period or the calling sequence changes. 

 

RESULTS 

 We used a simple LabVIEW filtering application (Figure 5) to test our predictor 

models. The timer blocks provide the dynamic sample rate for the analog to digital converters 

(ADCs) and for the digital to analog converters (DACs) on the two independent channels. The 

sample rate also determines which set of coefficients will be loaded into the FIR block for 

filtering. 
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Figure 5: Dynamically scheduled LabVIEW filtering application using a shared FIR block 

 

In the analysis that follows, the ADCs and DACs (blocks A, C, D, and E) take 20 cycles to 

execute, fetching the coefficients and current tap values (blocks F1 and F2) takes 31 cycles, and 

executing the shared FIR filter block (blocks B1 and B2) takes 6 cycles.  

 Figure 6 illustrates a schedule with three parallel threads of execution without prefetch 

prediction.  For our analysis, we assume that loop 1 runs twice as fast as loop 2. 

20 31 6 20 20 31 6 20 31 6 20 =211 cycles 
A F1   C A F1   C       Loop 1 
    B1       B1     B2   FIR Exec 
        D       F2   E Loop 2 

 
Figure 6: Schedule for loop 1 running twice as fast as loop 2 without prefetch prediction 

 

The top row shows the execution time of each block, the second row shows the execution of 

blocks in loop 1, the third row shows when the shared FIR block executes, and the last row 

shows the execution of blocks in loop 2. Fetching occurs inline with the loop executions since 

we do not know which loop will call the FIR block next.  

 On the other hand, prefetch prediction tries to prefetch the data for the next caller while 

other blocks execute, as shown in Figure 7. We have noted a 33% improvement in system speed 

when our predictions are correct. 
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31 6 20 20 6 31 6 20 =140 cycles 

A   C A   C     Loop 1 
F1 B1 F1   B1 F2 B2 F1 FIR Exec 
      D       E Loop 2 

 
Figure 7: Schedule for loop 1 running twice as fast as loop 2 with prefetch prediction 

  

For a period prediction unit with a history register long enough to contain the entire period, our 

predictions will always be correct. If our predictions are incorrect, our sampling schedule would 

shift, and our sampling rate would vary. A varying sample rate is acceptable for many feedback 

control applications, but not for most signal processing applications. 

 Before implementing prefetch prediction, we must examine if the performance 

enhancements outweigh the silicon cost.  We are prototyping using Xilinx Virtex II FPGAs to 

provide the parallel processing for implementing dataflow graphs. The two-level lookup 

prediction approach uses over 500 slices, even without the block memory for the lookup table. 

As a point of reference, a symmetric 32-tap 32-bit FIR filter uses around 400 slices. The 

complexity and size of the two-level predictor makes its current practicality questionable. 

 The simplicity of the period predictor approach yields better implementation results. 

Figure 8 shows the size of the unit for varying history lengths and varying number of callers.  
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Figure 8: Periodic prediction unit size estimates 
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 The size of the periodic predictor is reasonable for a history length of 32 or less, due to 

the special logic and routing resources in the Virtex II FPGA that implement the final mux in 

the period predictor [8]. The latency needed for a prediction is as low as one or two cycles, as 

only the parallel equality tests and the subsequent select are necessary. 

 

CONCLUSION 

The concepts of prefetching and branch prediction serve as the basis for our prefetch 

caller prediction of shared nodes on dataflow graphs. Shared nodes are common in multi-channel 

measurement and control systems. We have examined two mechanisms for implementing caller 

prediction, and have an implementation preference for detecting periodic behavior in the calling 

sequence. We showed a performance improvement of 33% for a simple multi-channel 

application. 
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