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Abstract 

 

Dataflow languages can both provide a high level description and expose inherent parallelism of 

applications. This high level description can be applied to automatically create efficient code and 

schedules based on patterns in the dataflow diagrams and knowledge of the target architecture. 

Our project is focused on taking advantage of any inactivity in threads executing in parallel to 

predict and prefetch state information associated with each instance of a shared node. The 

prefetched state information is associated with the caller of each node.  The prefetch prediction 

method is based on static knowledge of all the callers in an application’s topology. This paper 

identifies classes of dynamically scheduled dataflow models of computation to which the 

prefetch prediction method might apply. We extend the concept of branch prediction to predict 

the caller of shared nodes. We identify applications where acceptable variance on quality of 

service provides possible compelling application spaces. 

 



INTRODUCTION 

Caller prediction is a method for predicting the next caller of a shared functional unit for 

applications executing in parallel and distributed processing systems. Since dataflow models can 

be used to describe these systems, we examine research on the different dataflow models of 

computation. Caller prediction gives us the ability to prefetch state information for a shared 

node. We plan to utilize the existing research on branch prediction for pipelined processors to 

implement our prediction logic. This functionality could allow dedicated hardware to increase 

the locality of state information dependent on the caller. Our research concentrates on 

determining the tradeoffs and potential performance benefits that can be expected from using our 

technique for certain classes of applications. 

 

MODELS OF COMPUTATION 

 

Statically Schedulable 

Statically schedulable models of computation do not need prediction because all 

scheduling decisions are made at compile time, however they can still take advantage of 

prefetching state data. Synchronous dataflow (SDF), computation graphs, and cyclo-static 

dataflow (CSDF) are all powerful models of computation for applications where the schedule is 

known at compile-time [7]. For a valid schedule, it is possible to speed-up the process by simply 

pre-loading actors and their respective internal state data. Figure 1 shows the prefetch nodes 

explicitly in the diagram, however the prefetch nodes could be added implicitly when targeting 

hardware capable of taking advantage of the parallelism exposed in the dataflow graph. 
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Figure 1: Homogeneous SDF graph with prefetch of state information for the shared node D 

 

 The idea of prefetching data is not new. Cahoon and McKinley have researched 

extracting dataflow dependencies from Java applications for the purpose of prefetching state data 

associated with nodes [5]. Wang et al., when exploring how to best schedule loops expressed as 

dataflow graphs, also try to schedule the prefetching of data needed for loop iterations [11].  

 

Dynamically Schedulable 

 While statically schedulable models of computation are common in DSP applications and 

make efficient scheduling easy, the range of applications is very restrictive because no runtime 

scheduling is allowed. Dynamically schedulable models of computation allow runtime decisions, 

but in the process make static prefetch more difficult, if not impossible. In this situation we 

propose a caller prediction scheme that would allow prefetching state information associated 

with a shared node, even though the next caller is not known at compile time. 

As J. T. Buck explains in his thesis, Boolean Dataflow (BDF) is a model of computation 

sometimes requiring dynamic scheduling [3].  The switch and select actors allow conditional 

dataflow statements with semantics for control flow as shown in Figure 2.   
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Figure 2: Homogeneous, quasi-static BDF graph 

 

Scheduling in BDF can be either quasi-static or dynamic [3].  The switch and select 

actors can be combined to create if-then-else structures. More complex control structures can be 

implemented by combining multiple actors. In quasi-static BDF graphs, prefetching could be 

implemented by analyzing the program flow through the switch and select actors, and would not 

require prediction logic. However, for complex graphs requiring dynamic scheduling, caller 

prediction is a possible method for predicting the next caller of a shared node.   

Cyclo-dynamic dataflow, or CDDF, as defined by Wauters et al. [12], extends cyclo-

static dataflow to allow run-time, data-dependent decisions.  Similar to a CSDF, each CDDF 

actor may execute as a sequence of phases f1, f2, f3, f4, …, fn.  During each phase fn, a specific 

code segment may be executed.  In other words, the number of tokens produced and consumed 

by an actor can vary between firings as long as the variations can be expressed in a periodic 

pattern [9].  CDDF allows run-time decisions for determining the code segment corresponding to 

a given phase, the token transfer for a given code segment, and the length of the phase firing 

sequence. The same arguments for using caller prediction for BDF graphs can be extended to 

include CDDF.  
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  Dynamic dataflow, or DDF, extends the BDF model to allow any Boolean expression to 

serve as the firing rule. For example, the switch node in Figure 2 could allow a variable number 

of tokens on one of its inputs before firing [12].  DDF also allows recursion. Recursion is 

possibly too dynamic to support caller prediction, as state information would not only be 

associated with a caller, but also with a recursion depth varying at runtime. DDF requires a run-

time scheduler to determine when an actor becomes executable [12], and is a possible model of 

computation that could benefit from our prefetch prediction method. 

Lee and Parks describe dataflow process networks as a special case of Kahn process 

networks [10].  The dataflow process networks implement multiple concurrent processes by 

using unidirectional FIFO channels for inter-process communication, with non-blocking writes 

to each channel, and blocking reads from each channel.  In the Kahn and MacQueen 

representation, run-time configuration of the network is allowed. While some scheduling can be 

done at compile time, for some applications most actor firings must be scheduled dynamically at 

run-time [10]. 

G, the LabVIEW graphical programming language, contains both dynamically and 

statically scheduled nodes that may be shared.  According to Andrade et al., the G dataflow 

model of computation is homogeneous, dynamically scheduled, and multidimensional [2].  

Locals, globals, and other features of G make it possible to implement general process networks.  

The current implementation of G does not allow recursion.  The dynamic, yet structured nature 

of the G, makes certain applications well suited to the exploration of prefetch prediction for 

shared G nodes.  For practical reasons, we plan to use the G language as a prototyping 

environment for our project. 
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BRANCH PREDICTION 

Most modern general-purpose processors use branch prediction to improve processor 

performance. Branch prediction can be used to keep processor pipelines full for a greater 

percentage of the time by predicting execution flow after a branch. As a result, the processor 

does not wait for the branch to execute before starting to fetch and decode the next instruction. 

Most current branch prediction techniques use past branch history and associated data. 

Two level branch prediction was pioneered by Yale Patt and Tse-Yu Yeh in 1991 [14]. 

This prediction model uses a lookup table of saturating two-bit counters, which represent the 

likelihood that a branch will be taken given a certain history. As illustrated in Figure 3, the 

history register consists of data indicating if a branch was taken, or not taken, the past n times. A 

‘1’ represents a taken branch, and a ‘0’ represents a branch not taken. The table therefore has 2n 

entries. 
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 Figure 3: Two level branch prediction 

 
 A ‘1’ in the MSB of the counter predicts that a branch will be taken, while a ‘0’ predicts 

that the branch will not be taken. This approach achieves a prediction success rate in the 90% 

range on certain applications [8]. Patt and Yeh have also tabulated the hardware costs for this 

method to be significant especially for large history lengths [13]. Hardware costs of prediction 
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are important in our analysis of caller prediction, because if the hardware cost for prediction is 

larger per caller than the shared functional unit, the best solution would be to instantiate separate 

units for each caller. 

 Branch prediction has also been extended to handle indirect jumps, which in C language 

amounts to dereferencing a function pointer, and in C++ amounts to a virtual function call. 

Indirect jump prediction is closer to our caller prediction model because there is a possibility of 

multiple targets. By combining the branch history and the jump from address through a hash 

function, an index into a target cache of recently jumped to addresses can be created. The branch 

history could either consist of a global pattern history of conditional branches, or a record of the 

last n jump to addresses given the jump from address [6]. Our implementation of caller prediction 

will probably use the combination of conditional branch prediction and indirect jump prediction. 

  

APPLICATIONS 

 There are a few characteristics we feel are important to any application taking advantage 

of caller prediction model for prefetching node instance data. Compelling applications cannot 

execute in hard real-time since the prediction logic may be wrong, resulting in jitter. Instead, we 

choose to concentrate on applications where the quality of service (QoS) can vary depending on 

how fast the application is running. Buttazzo et al. point out [4] that these applications are 

common due to the non-deterministic behavior of common low level processor architecture 

components, such as caching, prefetching, and direct memory access (DMA) transfers. 

Buttazzo’s work suggests voice sampling, image acquisition, sound generation, data 

compression, video playback, and certain feedback control systems as application domains that 

can function at varying QoS depending on the execution rate of the application.  
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 Feedback control systems are particularly interesting because they may contain several 

subsystems that share common components. Abdelzaher et al. explore a complex real-time 

automated flight control system that negotiates QoS depending on the load of the system [1]. The 

flight control system consists of a main function that controls the altitude, speed, and bearing of 

the plane, and also contains subsystems for flight control performance. Continuous analysis of all 

of the inputs to achieve optimal control is a large computation task.  However, the task of flying 

a plane can be accomplished with relatively little computation power by carefully reserving 

resources and by tolerating less than optimal control functionality. PID (Proportional-Integral-

Derivative) control is a possible compelling application domain because PID tuning parameters 

are relatively insensitive to rate changes. We hypothesize that many measurement and control 

applications may display similar properties of varying acceptable QoS.     

 

CONCLUSION 

The concepts of prefetching and branch prediction serve as the basis for our prefetch 

caller prediction of shared nodes on dataflow graphs. Prefetch caller prediction can improve 

performance of certain applications when described using dynamically scheduled dataflow 

models of computation.  These applications should be targeted to custom hardware that is able to 

take advantage of the parallelism exposed in the dataflow graphs. One possible application 

domain includes mixed feedback control and measurement systems. Our research is concerned 

with exploring the feasibility of implementing caller prediction for prefetching and classifying 

applications where it makes sense.  
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