Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans
Discussion of handout on YouTube: http://www.youtube.com/watch?v=7E8_EBd3xK8

## Adding Random Variables and Connections with the Signals and Systems Pre-requisite

## Problem

A key connection between a Linear Systems and Signals course and a Probability course is that when two independent random variables are added together, the resulting random variable has a probability density function (pdf) that is the convolution of the pdfs of the random variables being added together. That is, if $X$ and $Y$ are independent random variables and $Z=X+Y$, then $f_{Z}(z)=f_{X}(z) * f_{Y}(z)$ where $f_{R}(r)$ is the probability density function for random variable $R$ and $*$ is the convolution operation. This is true for continuous random variables and discrete random variables. (An alternative to a probability density function is a probability mass function. They represent the same information but in different formats.)
a) Consider two fair six-sided dice. Each die, when rolled, generates a number in the range of 1 to 6 , inclusive, with each outcome having an equal probability. That is, each outcome is uniformly distributed. When adding the outcomes of a roll of these two six-sided dice, one would have a number between 2 and 12, inclusive.

1) Tabulate the likelihood for each outcome from 2 to 12 , inclusive.
2) Compute the pdf of $Z$ by convolving the pdfs of $X$ and $Y$. Compare the result to the first part of this sub-problem (a)-(1).
b) Compute the pdf of continuous random variable $Z$ where $Z=X+Y$ and $X$ is a continuous random variable uniformly distributed on $[0,2]$ and $Y$ is a continuous random variable uniformly distributed on $[0,4]$. Assume that $X$ and $Y$ are independent.
c) A constant value $C$ can be modeled as a pdf with only one non-zero entry. Recall that the pdf can only contain non-negative values and that the area under a continuous pdf (or equivalently the sum of a discrete pdf) must be 1 .
3) Plot the pdf of a discrete random variable $X$ that is a constant of value $C$.
4) Plot the pdf of a continuous random variable $Y$ that is a constant of value $C$.
5) Using convolution, determine the pdf of a continuous random variable $Z$ where $Z=X+$ $Y$. Here, $X$ has a uniform distribution on $[0,3]$ and $Y$ is a constant of value 2. Assume that $X$ and $Y$ are independent.

## Solution

(a) (1) Likelihood for each outcome from 2 to 12

Let $X$ be the number generated when the first die is rolled and $Y$ be the number generated when the second die is rolled. Since each outcome is uniformly distributed for each die, $P(X=x)=1 / 6$ where $x$ $\in\{1,2,3,4,5,6\}$ and $P(Y=y)=1 / 6$ where $y \in\{1,2,3,4,5,6\}$ :

| $Z$ | $\mathrm{P}(z)$ |
| :--- | :--- |
| 2 | $1 / 36$ |
| 3 | $2 / 36$ |


| 4 | $3 / 36$ |
| :--- | :--- |
| 5 | $4 / 36$ |
| 6 | $5 / 36$ |
| 7 | $6 / 36$ |
| 8 | $5 / 36$ |
| 9 | $4 / 36$ |
| 10 | $3 / 36$ |
| 11 | $2 / 36$ |
| 12 | $1 / 36$ |

(2) Adding the two random variables results in another random variable $Z=X+Y$ which takes on values between 2 and 12, inclusive. Since the dice are rolled independently, the numbers generated are independent.
$p_{Z}(z)-p_{X+Y}(z)-p_{X}(z)^{*} p_{Y}(z)-\sum_{k=1}^{6} p_{X}(k) p_{y}(z-k)$.


The convolution of two rectangular pulses of the same length $N$ samples gives a triangular pulse of length $2 N-1$ samples. Example calculations:
$p_{z}(\mathbf{2})=p_{x}(\mathbf{1}) p_{y}(\mathbf{1})=\frac{\mathbf{1}}{36}$
$p_{z}(\mathbf{3})=p_{x}(\mathbf{1}) p_{y}(\mathbf{2})+p_{x}(\mathbf{2}) p_{y}(\mathbf{1})=\frac{2}{36}$
$p_{z}(\mathbf{4})=p_{x}(\mathbf{1}) p_{y}(\mathbf{3})+p_{x}(\mathbf{2}) p_{y}(\mathbf{2})+p_{x}(\mathbf{3}) p_{y}(\mathbf{1})=\frac{\mathbf{3}}{36}$
Evaluating the above convolution, we get the same pdf as obtained in the table. The output of the Matlab simulation of the convolution is displayed in the above graph. The conv method was used for the convolution. The stem method was used for plotting.
(b) $X$ is uniformly distributed on $[0,2]$. Therefore $f_{X}(x)-\frac{1}{2}$ for all $x \in[0,2]$. Similarly, since $Y$ is uniformly distributed on $[0,4], f_{Y}(y)-\frac{1}{4}$ for all $y \in[0,4]$.
$f_{X+y}(z)-f_{X}(z) * f_{Y}(z)= \begin{cases}\int_{0} f_{x}(\lambda)-f_{Y}(z-\lambda) d \lambda-\frac{z}{8} & 0 \leq z \leq 2 \\ \int_{0}^{2} f_{X}(\lambda)-f_{Y}(z-\lambda) d \lambda-\frac{1}{4} & 2 \leq z \leq 4 \\ \int_{z-40}^{2} f_{X}(\lambda)-f_{y}(z-\lambda) d \lambda-\frac{6}{8}-\frac{z}{8} & 0 \leq z \leq 2\end{cases}$

(c) (1)The answer is a Kronecker (discrete-time) impulse located at $x=C$.

(2) For a continuous random variable we require that $\int_{-\infty}^{\infty} f_{X}(x) d x=1$ and this is satisfied by an continuous impulse (Dirac delta functional) at $C$. Mathematically, $\int_{-\infty}^{\infty} \delta(x-C) d x=1$

(3) $X$ is uniformly distributed on $[0,3]$. Therefore $f_{X}(x)-\frac{1}{3}$ for all $x \in[0,3]$. $Y$ has a constant value of 2 and hence $f_{\gamma}(y)=\delta(y-2)$. Since $X$ and $Y$ are independent, $Z=X+Y$ implies that $f_{X+Y}(z)-f_{X}(z) * \delta(z-2)- \begin{cases}\frac{1}{3} & 2 \leq z \leq 5 \\ 0 & \text { otherwise }\end{cases}$

This follows from the fact that convolution by $\delta(z-2)$ shifts $f_{X}(z)$ by 2 .

