Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans Discussion of handout on YouTube: <u>http://www.youtube.com/watch?v=7E8_EBd3xK8</u>

Adding Random Variables and Connections with the Signals and Systems Pre-requisite

Problem

A key connection between a Linear Systems and Signals course and a Probability course is that when two independent random variables are added together, the resulting random variable has a probability density function (pdf) that is the convolution of the pdfs of the random variables being added together. That is, if *X* and *Y* are independent random variables and Z = X + Y, then $f_Z(z) = f_X(z) * f_Y(z)$ where $f_R(r)$ is the probability density function for random variable *R* and * is the convolution operation. This is true for continuous random variables and discrete random variables. (An alternative to a probability density function is a probability mass function. They represent the same information but in different formats.)

- a) Consider two fair six-sided dice. Each die, when rolled, generates a number in the range of 1 to 6, inclusive, with each outcome having an equal probability. That is, each outcome is uniformly distributed. When adding the outcomes of a roll of these two six-sided dice, one would have a number between 2 and 12, inclusive.
 - 1) Tabulate the likelihood for each outcome from 2 to 12, inclusive.
 - 2) Compute the pdf of *Z* by convolving the pdfs of *X* and *Y*. Compare the result to the first part of this sub-problem (a)-(1).
- b) Compute the pdf of continuous random variable Z where Z = X + Y and X is a continuous random variable uniformly distributed on [0, 2] and Y is a continuous random variable uniformly distributed on [0, 4]. Assume that X and Y are independent.
- c) A constant value *C* can be modeled as a pdf with only one non-zero entry. Recall that the pdf can only contain non-negative values and that the area under a continuous pdf (or equivalently the sum of a discrete pdf) must be 1.
 - 1) Plot the pdf of a discrete random variable *X* that is a constant of value C.
 - 2) Plot the pdf of a continuous random variable *Y* that is a constant of value C.
 - 3) Using convolution, determine the pdf of a continuous random variable Z where Z = X + Y. Here, X has a uniform distribution on [0, 3] and Y is a constant of value 2. Assume that X and Y are independent.

Solution

(a) (1) Likelihood for each outcome from 2 to 12

Let *X*be the number generated when the first die is rolled and *Y* be the number generated when the second die is rolled. Since each outcome is uniformly distributed for each die, P(X = x) = 1/6 where $x \in \{1, 2, 3, 4, 5, 6\}$ and P(Y = y) = 1/6 where $y \in \{1, 2, 3, 4, 5, 6\}$:

Ζ	$\mathbf{P}(z)$
2	1/36
3	2/36

4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

(2) Adding the two random variables results in another random variable Z = X + Y which takes on values between 2 and 12, inclusive. Since the dice are rolled independently, the numbers generated are independent.

$$p_{Z}(z) = p_{X-Y}(z) = p_{X}(z) * p_{Y}(z) = \sum_{k=1}^{6} p_{X}(k) p_{Y}(z-k).$$
The result of the convolution of P_{X} and P_{Y}

$$0.18 + 0.16 + 0.14 + 0.12 + 0.12 + 0.16 + 0.14 + 0.12 + 0.16 + 0.14 + 0.12 + 0.16 + 0.14 + 0.12 + 0.16 + 0.04 +$$

The convolution of two rectangular pulses of the same length N samples gives a triangular pulse of length 2N-1 samples. Example calculations:

$$p_{z}(2) = p_{x}(1)p_{y}(1) = \frac{1}{36}$$

$$p_{z}(3) = p_{x}(1)p_{y}(2) + p_{x}(2)p_{y}(1) = \frac{2}{36}$$

$$p_{z}(4) = p_{x}(1)p_{y}(3) + p_{x}(2)p_{y}(2) + p_{x}(3)p_{y}(1) = \frac{3}{36}$$

Evaluating the above convolution, we get the same pdf as obtained in the table. The output of the Matlab simulation of the convolution is displayed in the above graph. The *conv* method was used for the convolution. The *stem* method was used for plotting.

(b) X is uniformly distributed on [0, 2]. Therefore $f_X(x) = \frac{1}{2}$ for all $x \in [0,2]$. Similarly, since Y is uniformly distributed on [0, 4], $f_Y(y) = \frac{1}{4}$ for all $y \in [0, 4]$.

$$\int_{0}^{z} f_{\chi}(\lambda) - f_{\chi}(z - \lambda) d\lambda = \frac{z}{8} \qquad 0 \le z \le 2$$

$$f_{X+Y}(z) = f_X(z) * f_Y(z) = \begin{cases} \int_{0}^{2} f_X(\lambda) - f_Y(z-\lambda)d\lambda = \frac{1}{4} \\ \int_{0}^{2} f_X(z) + f_Y(z-\lambda)d\lambda = \frac{1}{4} \end{cases} \qquad 2 \le z \le 4$$

$$\int_{z=40}^{\infty} f_x(\lambda) - f_y(z-\lambda)d\lambda = \frac{6}{8} - \frac{z}{8} \qquad 0 \le z \le 2$$

(c) (1)The answer is a Kronecker (discrete-time) impulse located at x = C.

(2) For a continuous random variable we require that $\int_{-\infty}^{\infty} f_x(x) dx = 1$ and this is satisfied by an continuous impulse (Dirac delta functional) at *C*. Mathematically, $\int_{-\infty}^{\infty} \delta(x - C) dx = 1$

(3) X is uniformly distributed on [0, 3]. Therefore $f_x(x) = \frac{1}{3}$ for all $x \in [0, 3]$. Y has a constant value of 2 and hence $f_y(y) = \delta(y - 2)$. Since X and Y are independent, Z = X + Y implies that

$$f_{X+Y}(z) = f_X(z) * \delta(z-2) = \begin{cases} \frac{1}{3} & 2 \le z \le 5\\ 0 & otherwise \end{cases}$$

This follows from the fact that convolution by $\delta(z-2)$ shifts $f_X(z)$ by 2.