
 

ECE 445S 

 

Real-Time Digital Signal 

Processing Laboratory 
 

Prof. Brian L. Evans 

Dept. of Electrical and Computer Engineering 

The University of Texas at Austin 

Austin, TX 78712 
 

bevans@ece.utexas.edu 

http://www.ece.utexas.edu/~bevans 

Spring 2024 
 

mailto:bevans@ece.utexas.edu
http://www.ece.utexas.edu/~bevans


Table of Contents
0. Introduction
1. Sinusoidal Generation

§ “Designing Averaging Filters”  
§ “Discrete-Time Periodicity”
§ “Sampling Unit Step Function”

2. Introduction to Digital 
Signal Processors
§ “Trends in Multicore DSPs”
§ “Comparing Fixed- and

Floating-Point DSPs”
3. Signals and Systems
4. Sampling and Aliasing
5. Finite Impulse Resp. Filters
6. Infinite Impulse Response 

Filters
§ “BIBO Stability”
§ “Parallel and Cascade Forms”

7. Interpolation & Pulse 
Shaping

8. Quantization
9. TMS320C6000 Digital 

Signal Processors (DSPs)
10. Data Conversion – Part I
11. Data Conversion – Part II
12. Channel Impairments
13. Digital Pulse Amplitude 

Modulation (PAM)
14. Matched Filtering
15. Quadrature Amplitude 

Modulation Transmitter

16. QAM Receiver
17. Fast Fourier Transform.
Review for Midterm #2

Other Handouts
A. Course Description
B. Instructional Staff/Resources
C. ECE IT Support
D. Matlab
E. Convolution Example
F. Theorem of Linear Systems
G. Raised Cosine Pulse
H. Modulation Example
I. Modulation Summary
J. Noise-Shaped Feedback
K. Sample Midterm Exams
L. Direct Sequence Spreading
M. Symbol Timing Recovery
N. Tapped Delay Line on C6700
O. All-Pass Filters
P. QAM vs. PAM
Q. Four Ways To Filter
R. Intro to Fourier Transforms
S. Adding Random Variables
T. Fourier Transform Property

of Multiplication in Time
U. Time Invariance Property
V. LTI Filters and Frequency 

Selectivity
W. Time Invariance for an 

Integrator
Italics means available on Web only



ECE445S Real-Time DSP Lab Course  
Lecture and Labs 

This course is a four-credit course, with three hours of lecture and three hours of lab per week. 

Lecture will be in ECJ 1.312 on Mondays and Wednesdays, from 10:30am to 12:00pm, from Jan. 17th to Apr. 
29th. Laboratory sections will meet from Jan. 17th to Apr. 26th, in EER 1.810. 

This course does not require a semester project nor does it have a final examination. Final grades will consist 
of pre-lab quizzes, lab reports, homework assignments, in-lecture work, and exams. Exams will be based on 
material covered in lecture, homework, lab sessions and reading assignments. 

Lecture slides (100 MB) and the course reader (120 MB) are available for download. 

Schedule of lecture/lab topics and reading assignments follows. JSK means Johnson, Sethares & 
Klein, Software Receiver Design. UYG means Unsalan, Yucel & Gurhan, DSP Using Arm Cortex-M 
Microcontrollers. 

Week Monday Lecture 
Wednesday 
Lecture 

Major 
Assignment 
Due 

Lab  Reading Assignment 

Jan. 
15th 

DR. MARTIN 
LUTHER KING 
JR. HOLIDAY 

Introduction 

 Review of 
Prerequisites 

Wednesday: JSK ch. 1-2 
Reader handouts A-D & R 

Jan. 
22nd 

Sinusoidal 
Generation 

Sinusoidal 
Generation 

Homework #0 
(Friday 11pm) 

Introduction -
 Tools 

Monday: Pre-lab Reading and JSK 
3.1-3.3, 3.6 & 5.2 
Wednesday: JSK 3.4, 3.5, 3.7; 
Reader handouts H & I; Common 
Signals in Matlab 

Jan. 
29th 

Sinusoidal 
Generation 

Signals and 
Systems 

Lab #1 Report 
(Friday 11pm) 

Sine Wave 
Generation 

Monday: Pre-lab Quiz 
Monday: JSK 4.1-4.5, app. A.2, A.4, 
G.1 & G.2; Reader handouts E & F 
Wednesday: JSK ch. 3-4 

Feb. 
5th 

Signals and 
Systems 

Signals and 
Systems 

Homework #1 
(Friday 11pm) 

Sine Wave 
Generation 

Monday: JSK 5.1-5.2, 7.1-7.2 & app. 
G 

Feb. 
12th 

Finite Impulse 
Response Filters 

FIR Filters 
Lab #2 Report 
(Friday 11pm) 

Digital Filters 

Monday: Pre-lab Quiz 
Monday: JSK 7.1-7.2, app. F & G 

Feb. 
19th 

FIR Filters 
Infinite Impulse 
Response 
Filters 

Homework #2 
(Friday 11pm) 

Digital Filters 

Monday: JSK 5.1-5.2, 6.1-6.3, app. 
A.3; 
Wednesday: Reader handout O 

Feb. 
26th 

IIR Filters IIR Filters 
Homework #3 
(Friday 11pm) 

Digital Filters 

 

Mar. 
4th 

Sampling and 
Aliasing  

Midterm #1 

Midterm #1 
(Wednesday 
noon) 

NO LAB 
SECTIONS 

 

There are several in-lecture assignments throughout the semester.  

Spring break is March 9-16, 2024. 

For the second half of the semester, the schedule of lecture/lab topics follows.  
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Week Monday Lecture 
Wednesday 
Lecture 

Major 
Assignments Due 

Lab  Reading 

Mar. 
18th 

Interpolation and 
Pulse Shaping 

Interpolation and 
Pulse Shaping 

Lab #3 Report 
(Friday 11pm) 

Data 
Scramblers 

Monday: Pre-lab Quiz 
Monday: JSK 6.4-6.6 and 
Reader handout G 

Mar. 
25th 

Digital Pulse 
Amplitude 
Modulation 

Digital Pulse 
Amplitude 
Modulation 

Lab #4 Report 
(Friday 11pm) 
Homework 
#4 (Friday 
11pm) 

Pulse 
Amplitude 
Modulation 

Monday: Pre-lab Quiz 
Monday: JSK 4.6, 8.1 and 8.2; 
Wednesday: JSK 9.1-9.4, app. 
B & E; Reader handout S 

Apr. 
1st 

Digital Pulse 
Amplitude 
Modulation 

Channel 
Impairments 

Homework #5 
(Friday 11pm) 

Pulse 
Amplitude 
Modulation 

Wednesday: JSK 8.3-8.5 and 
ch. 11 & 12; Haykin 4.6, 4.9-
4.12 

Apr. 
8th 

Matched Filtering 

Matched 
Filtering 

Homework #6 
(Friday 11pm) 

Pulse 
Amplitude 
Modulation 

Monday: JSK 5.3-5.4 
Wednesday: JSK 16.1-16.2; 
Reader handout 
I and handout M 

Apr. 
15th 

Quadrature 
Amplitude 
Modulation (QAM) 
Transmitter 

QAM Receiver 

Lab #5 Report 
(Friday 11pm) 

Quadrature 
Amplitude 
Modulation 

Monday: Pre-lab Quiz 
Wednesday: JSK 6.7-6.8, 
10.1-10.4, 13.1-13.3, 16.3-
16.8; Reader handout P 

Apr. 
22nd 

Quantization Review 

Homework #7 
(Friday 11pm) 

Guitar Special 
Effects 

Monday: Pre-lab Quiz 
Monday: JSK 2.13, 3.5 & 8.4 
Wednesday: Reader handout 
J 

Apr. 
29th 

Midterm #2  

FINAL EXAM 
STUDY DAY 

Midterm 
#2 (Monday 
noon) 

NO LAB 
SECTIONS 

 

 

 

 Playlist of lectures recorded in spring 2014  

The following lectures are not scheduled to be presented this semester: Digital Signal Processors - TMS320C6000 

DSP - Advanced Data Conversion - Fast Fourier Transforms - DSL Modems - Analog Sinusoidal Modulation - 

Wireless OFDM Systems - WiMAX - Spread Spectrum Communications. - Modern DSP Processors - Native Signal 

Processing - Algorithm Interoperability - System-level Design - Synchronization in ADSL Modems - Wireless 

1000x  
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ECE445S Real-Time Digital Signal Processing Laboratory - Overview 
Prof.	Brian	L.	Evans	

The	learning	objectives	for	the	Real-Time	Digital	Signal	Processing	Lab	course	are	to		

• build	intuition	for	applying	signal	processing	concepts	
• design	algorithms	with	tradeoffs	in	signal	quality	vs.	run-time	complexity	in	mind	

The	first	objective	is	to	help	students	use	critical	thinking	via	inductive	reasoning	to	put	the	
pieces	together	from	the	pre-requisite	required	courses	to	form	a	big	picture	of	the	field.	
Signal	processing	concepts	enable	a	wide	variety	of	applications	across	science	and	
engineering;	the	same	signal	processing	concepts	apply	to	speech,	audio,	image,	video,	and	
communication	systems,	as	well	as	biomedical	instrumentation	and	geophysical	analysis.	
This	undergraduate	course	provides	practical	insights	into	waveform	generation	and	
filtering,	system	training	and	calibration,	and	communication	transmission	and	reception.	
What	changes	across	applications	in	how	one	measures	the	quality	of	the	signal.	When	
humans	are	the	ultimate	consumer	of	the	information,	speech	and	audio	quality	is	about	
the	perceived	auditory	quality.	Likewise,	image	and	video	quality	is	about	the	perceived	
visual	quality.	When	machine	interpretation	of	the	data	is	ultimate	consumer,	the	signal	
quality	relates	to	the	accuracy	and	precision	of	the	machine	interpretation.	
The	second	objective	relates	to	the	critical	thinking	via	deductive	reasoning	in	designing	
signal	processing	algorithms.	Each	algorithm	can	achieve	a	certain	signal	quality	but	at	a	
certain	implementation	cost.	For	implementation	cost,	this	course	focuses	on	how	fast	the	
algorithm	executes	or	runs	on	the	input	data	to	produce	output	data,	which	is	called	run-
time	complexity.	For	a	given	application,	students	would	evaluate	multiple	algorithms	to	
pick	the	one	with	the	best	tradeoff.	This	is	a	critical	thinking	exercise.	

The	second	objective	introduces	students	to	the	design	and	implementation	of	signal	
processing	systems.	This	introduction	will	help	them	in	the	two-semester	senior	design	
sequence,	for	which	the	Real-Time	Digital	Signal	Processing	Lab	course	is	one	of	seven	lab	
course	pre-requisites.	The	introduction	will	also	help	them	in	courses	across	several	
application	spaces,	including	EE	360K	Digital	Communications,	EE	371Q	Digital	Image	
Processing,	and	EE	374K	Biomedical	Instrumentation,	as	well	as	courses	in	system	design	
and	implementation,	such	as	EE	445M	Embedded	and	Real-Time	Systems.	
As	shown	on	the	right,	students	will	use	mathematical	theory	to	model	
applications.	From	those	models,	they	will	design	algorithms,	
simulate	them	in	MATLAB,	and	map	them	to	embedded	software	in	C.	
They	will	quantify	tradeoffs	in	signal	quality	vs.	run-time	complexity	
in	the	algorithms.	Students	will	connect	application	theory	from	their	
signals	and	systems	course	(EE	313/BME	343)	and	implementation	
skills	from	their	courses	in	programming	(EE	312)	and	embedded	
systems	(EE	319K).	After	the	50%	point	in	the	semester,	students	will	
begin	using	concepts	from	probability	(EE	351K)	to	model	thermal	noise,	
quantization	error,	and	other	statistical	phenomenon	in	applications.	
The	specific	topics	in	this	course	follow:	

System Design Flow 



Digital	signal	processing	algorithms;	simulation	and	real-time	implementation	of	audio	
and	communication	systems;	filters;	pulse	shaping	and	matched	filters;	modulation	and	
demodulation;	adaptive	filters;	carrier	recovery;	symbol	synchronization;	equalization;	
quantization.	

In	the	lab	and	lecture,	the	course	will	cover	

• digital	signal	processing:	signals,	sampling,	filtering,	quantization,	oversampling,	noise	
shaping,	and	data	converters.		

• digital	communications:	Analog/digital	modulation,	analog/digital	demodulation,	pulse	
shaping,	pseudo-noise	sequences,	ADSL	transceivers,	and	wireless	LAN	transceivers.		

• digital	signal	processor	architectures:	Harvard	architecture,	special	addressing	modes,	
parallel	instructions,	pipelining,	and	real-time	programming.		

In	particular,	we	will	quantify	algorithm	tradeoffs	in	signal	quality	vs.	run-time	complexity.		

In	the	lab	component,	students	implement	transceiver	subsystems	in	C	on	a	Texas	
Instruments	TMS320C6748	floating-point	programmable	digital	signal	processor.	The	
C6000	family	is	used	in	DSL	modems,	wireless	LAN	modems,	cellular	basestations,	and	
video	conferencing	systems.	For	professional	audio	systems,	the	C6700	floating-point	sub-
family	empowers	guitar	effects	and	intelligent	mixing	boards.	Students	test	their	
implementations	using	Texas	Instruments	Code	Composer	Studio	software	and	rack	
equipment.	A	voiceband	transceiver	reference	design	and	simulation	is	available.		
In	addition	to	learning	about	transceiver	design	in	the	lab	and	lecture,	students	will	also	
learn	in	lecture	about	the	design	of	modern	analog-to-digital	and	digital-to-analog	
converters,	which	employ	oversampling,	filtering,	and	dithering	to	obtain	high	resolution.	
Whereas	the	voiceband	modem	is	a	single	carrier	system,	lectures	will	also	cover	modern	
multicarrier	modulation	systems,	as	used	in	cellular	LTE	communications	and	Wi-Fi	
systems.	Last,	we	spend	several	lectures	on	digital	signal	processor	architectures,	esp.	the	
architectural	features	adopted	to	accelerate	digital	signal	processing	algorithms.		

For	the	lab	component,	I	chose	a	floating-point	DSP	over	a	fixed-point	DSP.	The	primary	
reason	was	to	avoid	overwhelming	the	students	with	the	severe	fixed-point	precision	
effects	so	that	the	students	could	focus	on	the	design	and	implementation	of	real-time	
digital	communications	systems.	That	said,	floating-point	DSPs	are	used	in	industry	to	
prototype	algorithms,	e.g.	to	see	if	real-time	performance	can	be	met.	If	the	prototype	is	
successful,	then	it	might	be	modified	for	low-volume	applications	or	it	might	be	mapped	
onto	a	fixed-point	DSP	for	high-volume	applications	(where	the	engineering	time	for	the	
mapping	can	potentially	be	recovered).		

Texas	is	a	worldwide	epicenter	for	microprocessors	for	control,	signal	processing,	and	
communication	systems.	Texas	Instruments	(Dallas,	TX)	and	NXP	(Austin,	TX)	are	market	
leaders	in	the	embedded	programmable	microcontroller	market,	esp.	for	the	automotive	
sector.	Texas	Instruments	and	NXP	design	their	microcontrollers	and	digital	signal	
processors	in	Texas.	Qualcomm	designs	their	Snapdragon	processors	in	Austin,	Texas,	
among	other	places.	Cirrus	Logic	designs	the	audio	playback	subsystem	(audio	data	
converter	and	audio	digital	signal	processor	chipsets)	and	microphone	subsystems	for	the	
iPhone	in	Austin.	Apple	designs	its	application	processors	for	the	iPhone	in	Austin.	To	boot,	
Austin	is	a	worldwide	leader	in	ARM-based	digital	VLSI	design	centers.		



Lecture 0 Introduction 1

Introduction

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering

The University of Texas at Austin

ECE 445S Real-Time Digital Signal Processing Lab           Spring 2024

Lecture 0                     http://www.ece.utexas.edu/~bevans/courses/realtime

1

Instructional Staff
• Support learning & growth to reach goals

Mr. Yongjin Eun (he/him)
Lab W 6:30-9:30pm

F 1:00-4:00pm
Office TH 4:30-6:00pm

F 5:00-6:30pm

Mr. Faraz Barati (he/him)

0-2

Welcome

TAs

Office hours: TW 2:00-3:30pm (EER 6.882 & Zoom)

Lecture/lab discussions and assignments
Friday 12-2pm coffee/advising hours (EER O’s Café)
In-class and Canvas announcements

Available in person immediately after lecture

• Prof. Brian L. Evans (he/him)

Lab M 5:00-8:00pm
T 3:30-6:30pm

Office W 4:30-6:00pm
TH 3:00-4:30pm 

2

De-stress Course to Improve Learning

0-3

Homework & pre-lab quizzes help you prepare for lab work
Balanced workload week-to-week (one major deliverable)

Drop lowest homework, lab report, pre-lab quiz, and in-lecture 
assignment to balance workload and handle unexpected events

Always know equivalent letter grade: 90+ A, 86.67-89.99 A-, 
83.34-86.66 B+, 80.00-83.33 B, 76.67-79.99 B-, etc.

• Review pre-requisite course info first 3-4 weeks
• Predictable weekly schedule and workload

• Feedback on assignments by next class meeting

• Access to previous homework & midterm solutions

Welcome

Excused absences: religious observance, military orders, COVID

3

Getting the Most Out of This Course
• Student advice (during Friday coffee hours)

Remove distractions preventing efficiency in work and play
Write down questions in a journal when they arise & ask them
Find mutually beneficial study group of 2-3 persons

• Professor advice
Workload: Choose courses for work-life balance (next slide)
Efficiency: Attend lecture and instructor/TA office hours for 
summaries of hours of reading into minutes of coverage
Lecture: Better focus when in person; use recordings for review
Assignments: start when assigned and make progress each day: 
having more calendar time will allow you to learn info better **

Welcome

** D. Brewer-Deluce, "3 ways to study better, according to cognitive research", The Conversation, Aug. 2020

4

https://theconversation.com/profiles/danielle-brewer-deluce-1057500
https://theconversation.com/3-ways-to-study-better-according-to-cognitive-research-140230
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Related Undergraduate Courses
Comm/SigProc/Networks
Digital Image Processing
Digital Signal Processing

Undergrad ECE courses with 
highest workload ratings?

Comp Arch/Emb. Proc.
Embedded & Real-Time Sys.
Digital Sys. Design (FPGAs)

4.70  460N Computer Arch            F21
4.47 445L Emb Sys Des Lab        Sp22
4.13 445L Emb Sys Des Lab         F21
4.05  461S Operating Systems       F21
3.88  460N Computer Arch            Sp22
3.88  461S Operating Systems       Sp22
3.80  325 Electromagnetic Eng.     Sp22
3.78  422C SW Des & Impl II **   F21
3.77  460R Intro to VLSI Design    F21

** Averaged across all sections that semester. **
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Course Overview

Fields, Waves, Emag Sys.
Antennas & Wireless Prop.

Microwave & RF Eng.

Data Science & Info. Proc.
Data Science Lab
Data Science Principles

5

Real-Time Digital Signal Processing
• Signal carries information

0-6

Course Overview

Audio
mixing board

IP camera

Wi-Fi access 
point

• Signal processing [signalprocessingsociety.org]

Generation, transformation, extraction of information
Algorithms with associated architectures and implementations
Applications related to processing information

• System
Manipulates, changes, records

or transmits signals
Converts a signal into another

• Real-time systems [Prof. Yale N. Patt, UT Austin]

Guarantee delivery of data by a specific time

6

Real-Time DSP Algorithms in Products

0-7

Pro-audio

Amp

Mixing 
board

Course Overview

Consumer audio

Biomedical

Wireless Wearable 
Multichannel EEG

M
ic

ro
sc

op
es

MRI noise 
cancelling 

headphones

Communications

IP camera

Multimedia

Tablets
Picture from Phoenix Automotive

7

Prof. Evans’ Research Projects

DSP    Digital Signal Processor               FPGA  Field Programmable Gate Array

Course Overview

0-8

System Contribution SW release Prototype Funding
Cellular 
(LTE)

full duplex commun. Matlab AT&T Labs
machine learning Python NVIDIA
reconfigurable surface Matlab 6G@UT

Smart grid 
commun.

interference reduction 
real-time testbeds

Matlab Freescale &
TI modems

IBM, 
NXP, TI

Wi-Fi interference reduction Matlab NI FPGA Intel, NI
Underwater large receive array Matlab Lake testbed ARL:UT
Camera image acquisition Matlab DSP/C Intel,Ricoh

video acquisition Matlab Android TI
Display image halftoning Matlab C HP, Xerox

video halftoning Matlab C Qualcomm
Design tools distributed computing Linux/C++ Navy sonar Navy, NI

32 PhD, 13 MS and 
215 BS alumni

8

https://www.featuredphoenixautomotiveinc.com/products/12-8-universal-100-rotation-screen-android-navigation-radio?currency=USD&variant=32878193279079&utm_medium=cpc&utm_source=google&utm_campaign=Google%20Shopping&utm_campaign=gs-2019-08-18&utm_source=google&utm_medium=smart_campaign
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Course Objectives
• Course Objectives

Build intuition for signal processing concepts
Explore design tradeoffs in signal quality vs.

run-time implementation complexity

Course Overview

• Lecture: breadth (3 hours/week)
Building blocks (sinusoids, filters, etc.)
Digital signal processing (DSP) algorithms
Digital communication systems

• Laboratory: depth (3 hours/week)
Translate DSP concepts into software
Design/implement data transceiver 
Test/validate implementation

Measures of 
signal quality?

Run-time 
implementation 

complexity?

9

Design Tradeoffs
• Course Objectives

Build intuition for signal processing concepts
Explore design tradeoffs in signal quality vs.

run-time implementation complexity
• Asymmetric Digital Subscriber

Line (ADSL) Receiver Design
Channel equalizer (filter) gives up to 10x
increase in bit rate vs. not having one
ADSL transmitter sends training data
Eight adaptive design methods for the
channel equalizer in receiver on right
What are the methods with best tradeoff
in bit rate vs. run-time complexity?

Receiver design: bit rate in
Mbps vs. multiplications for eight

channel equalizer training methods

[Data from Figs. 6 & 7 in B. L. Evans et al., 
“Unification and Evaluation of Equalization  
Structures…”, IEEE Trans. Sig. Proc., 2005]

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

4.5 5 5.5 6 6.5 7  

SymMinSSNR

SymMMSE

MinSSNR

SymMinISI

MMSE

MinISI

MDS

DualPath

105 106 107

6.6
6.5
6.4
6.3
6.2
6.1
6.0
5.9
5.8
5.7

Course Overview

10

Design Flow

0-11

Course Overview

Matrices & Matrix 
Computation
Difference & 
differential 
equations
Fourier series

Fourier transforms
Probability
(after midterm #1)

Sampling         Filtering

Modulation    Adaptation

Speech & audio

Image & video
Communications

Builds on courses in 
programming, 
embedded systems, 
and signals & systems

Feed back signal quality 
vs. run-time complexity 
analysis to inform 
algorithm design

11

Required Textbooks
Software Receiver Design, 

Oct. 2011
Design of digital 

communication systems
Convert algorithms into 

Matlab simulations
Bill Sethares 
(Wisconsin)

Rick Johnson 
(Cornell)

Andy Klein 
(West. Wash.)

Digital Signal Processing 
using Arm Cortex-M 

based Microcontrollers
Sep. 2018

Mapping algorithms to C
0-12

Course Overview

M. Erkin 
Yucel

(Yeditepe)

Cem Ünsalan
(Marmara
University)

H. Deniz 
Gurhan

(Yeditepe)

12
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Grading
• Calculation of numeric grades

20% midterm #1
20% midterm #2
14% homework  (drop lowest grade of eight)
  5% in-lecture assignments (drop lowest grade)
  5% pre-lab quizzes (drop lowest grade of six)
36% lab reports (drop lowest grade of seven)

Average GPA 
has been ~3.5

No final 
exam

0-13

Course Overview

• 20% for each midterm exam **
In-person exam (75 minutes to complete a 50-minute exam)
Algorithm tradeoffs in signal quality vs. run-time complexity
Based on in-lecture discussions and homework/lab assignments
Dozens of old exams online and in reader (most with solutions)

** Be sure to submit your own independent work.

13

Grading
• 14% homework – 8 assignments (drop lowest) **

Translate signal processing concepts into Matlab simulations
Evaluate tradeoffs in signal quality vs. run-time complexity

•   5% in-lecture assignments (drop lowest grade)
Helps prepare for the homework assignment due Friday

•   5% pre-lab quizzes – for labs 2-7 (drop lowest) **
10 questions on lecture/lab info taken individually on Canvas

• 36% lab reports – for labs 1-7 (drop lowest)
Work individually on labs 1&7 and in team of two on labs 2-6
Attendance/participation in lab section required and graded

• Course rank in grad school rec letters when helpful
0-14

Course Overview

** Be sure to submit your own independent work.

14
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Lecture 1 Sinusoids 1

Generating Sinusoidal Signals

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering

The University of Texas at Austin

ECE 445S Real-Time Digital Signal Processing Lab           Spring 2024

Lecture 1                      http://www.ece.utexas.edu/~bevans/courses/realtime

1

1-2

Outline
• Bandwidth
• Sinusoidal amplitude modulation

• Sinusoidal generation
• Design tradeoffs

• Communication systems
Wireless communication systems
Software transceiver design

2

1-3

Bandwidth
• Non-zero extent in positive frequencies

Ideal Lowpass Spectrum

fmax-fmax f

Bandwidth fmax

Ideal Bandpass Spectrum

f1 f2
f

–f2 –f1

Bandwidth W = f2 – f1

Bandwidth

• Applies to continuous-time & discrete-time signals
• In practice, spectrum won’t be ideally bandlimited

Thermal noise has “flat” power spectrum from 0 to 1015 Hz
Finite observation time of signal leads to infinite bandwidth

• Alternatives to “non-zero extent”?

3

1-4

Bandwidth of Lowpass Signal in Noise
• How to determine fmax?

ò ³max

max 0

2 Energy 9.0)(min
f

f
dffH

Idealized Lowpass 
Spectrum

fmax-fmax
f

Bandwidth

Lowpass Spectrum 
in Noise

f

ò
¥

=
0

2  )(Energy where dffH

ap
pr

ox
im

at
e

Baseband signal: energy in frequency domain concentrated around DC

Apply threshold and eyeball it
-OR-
Estimate fmax that captures certain

percentage (say 90%) of energy

In practice, (a) use large frequency in place of ¥ and 
(b) integrate measured spectrum numerically 

4
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1-5

Bandwidth of Bandpass Signal in Noise
• How to find W = f2 – f1 ?

Idealized Bandpass Spectrum

f1 f2
f

–f2 –f1

ò
+

-
³

Wf

WfW

c

c

dffH2
1

2
1

2 Energy 9.0)(min

cfWdffH 20 and )(Energy where
0

2 ££= ò
¥

Bandwidth

Bandpass Spectrum In Noise

f
fc- fc

ap
pr

ox
im

at
e

Apply threshold and eyeball it
-OR-
Assume knowledge of fc and

estimate f1 = fc - W/2 and
 f2 =  fc + W/2 that capture 
percentage of energy

In practice, (a) use large frequency in place of ¥ and 
(b) integrate measured spectrum numerically 

5

1-6

Amplitude Modulation by Cosine
• y1(t) = x1(t) cos(wc t)

w

0

Y1(w)
½

-wc - w1 -wc + w1
-wc

wc - w1 wc + w1
wc

½X1(w - wc)½X1(w + wc)

lower sidebands

Sinuosidal Amplitude Modulation

Y1 ω( ) = 1
2π

X1 ω( )* π  δ ω +ωc( )+π  δ ω −ωc( )( )
Assume x1(t) is ideal lowpass signal with bandwidth w1 < wc

Amplitude modulation doubles baseband bandwidth of w1

Y1(w) is real-valued if X1(w) is real-valued

=
1
2
X1 ω +ωc( )+ 1

2
X1 ω −ωc( )

See Slides 1-27, 3-6 and 15-6

w0

1

w1-w1

X1(w)

• What are applications of amplitude modulation?

6

Amplitude Demodulation by Cosine
• How to recover x1(t) from y1(t) = x1(t) cos(wc t) ?

w

0

Y1(w)
½

-wc - w1 -wc + w1
-wc

wc - w1 wc + w1
wc

½X1(w - wc)½X1(w + wc)

Sinuosidal Amplitude Modulation

F{ y1(t) cos(wc t) } = ½ Y1(w + wc) + ½ Y1(w – wc)     

¼X1(w - 2wc)¼X1(w + 2wc)

½ X1(w)

1-7

w

0- 2wc+w1 -w1

-wc
w1 2wc- w1

wc 2wc-2wc
2wc+w1-2wc-w1

½

Homework 0.2

keep

attenuate attenuate

7

Amplitude Modulation by Sine
• y2(t) = x2(t) sin(wc t)

Sinusoidal Amplitude Modulation

Assume x2(t) is ideal lowpass signal with bandwidth w2 < wc

Amplitude modulation doubles baseband bandwidth of w2

Y2(w) is imaginary-valued if X2(w) is real-valued

Y2 ω( ) = 1
2π

X2 ω( )* j  π  δ ω +ωc( )− j  π  δ ω −ωc( )( ) =
j
2
X2 ω +ωc( )− j

2
X2 ω −ωc( )

w0

1

w2-w2

X2(w)

w

Y2(w)
j ½

-wc – w2 -wc + w2
-wc

wc – w2 wc + w2
wc

-j ½X2(w - wc)j ½X2(w + wc)

-j ½

lower sidebands

See Slides 1-15, 3-6 and 15-6

1-8

Homework 0.1

8
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Amplitude Demodulation by Sine
• How to recover x2(t) from y2(t) = x2(t) sin(wc t) ?

Sinusoidal Amplitude Modulation

w

Y2(w)
½ j

-wc – w2 -wc + w2
-wc

wc – w2 wc + w2
wc

-j ½X2(w - wc)j ½X2(w + wc)

-½ j

0
- 2wc+w1

-w1-wc w1

2wc- w1

wc

2wc-2wc
2wc+w1-2wc-w1

w
½

F{ y2(t) sin(wc t) } =  j ½ Y2(w +wc) – j ½ Y2(w –wc)     

-¼X2(w - 2wc)-¼X2(w + 2wc)

½ X2(w)

keep

attenuate attenuate

9

1-10

Sinusoidal Mod/Demod Demo #1
Sinusoidal Amplitude Modulation

• Sinusoid of fixed frequency can model musical note
Middle ‘A’ note on Western scale is at 440 Hz
Signal model x1(t) = cos(2 p f1 t) where f1 = 440 Hz

cos(2 p fc t)

x1(t) y1(t)

cos(2 p fc t)

LPF
y1(t) x1(t)^

v1(t)

• Modulate middle ‘A’ note
y1(t) = x1(t) cos(2 p fc t)
fc is three octaves above f1

Creates audio effect

• Demodulate to try to recover
original ‘A’ note
Listen for frequencies in output
signal that are not in original note

10

Sinusoidal Mod/Demod Demo #1
(½) (½) 

(¼)  (¼)  (¼)  (¼)  

f

X1(f)

f1 2f1-f1 3f1 4f1-2f1 5f1-3f1-4f1-5f1 6f1 7f1 8f1 9f1-6f1-6f1-7f1-8f1-9f1

f

Y1(f)

f1 2f1-f1 3f1 4f1-2f1 5f1-3f1-4f1-5f1 6f1 7f1 8f1 9f1-6f1-6f1-7f1-8f1-9f1
fc- fc

(¼)  (¼)  
(1/8)(1/8)(1/8)(1/8)

f

V1(f)

f1 2f1-f1 3f1 4f1-2f1-3f1-4f1 15f1 17f1-17f1 -15f1
2fc-2fc keep

attenuate attenuate

Sinusoidal Amplitude Modulation

11

Sinusoidal Mod/Demod Demo #1
%%% upconvert.m

%%%

%%% Demonstrates upconversion and downconversion
%%%

%%% by Prof. Brian L. Evans, bevans@ece.utexas.edu

%%% The University of Texas at Austin

%%%

%%% August 28, 2015

%%%
%%% This Matlab script will play three sounds:

%%% (1) low-frequency signal (baseband signal)

%%% (2) modulated signal centered at a higher frequency,

%%% (3) the demodulated signal,

%%% The demodulated signal consists of the baseband

%%% signal plus some higher frequency artifacts.

fs = 44100;          %%% Sampling rate

Ts = 1/fs;           %%% Sampling time

tmax = 10;           %%% Signals last tmax seconds

t = 0 : Ts : tmax;   %%% Vector of time samples

%%% Generate baseband signal
f1 = 440;            %%% Middle 'A' on Western scale

basebandInput = cos(2*pi*f1*t);

%%% Modulate/upconvert baseband signal

%%% to be centered at frequency fc 

fc = 8*f1;           %%% 3 octaves above f1
carrier = cos(2*pi*fc*t);

modulated = basebandInput .* carrier;

%%% Demodulate/downconvert modulated signal

%%% 1. Modulate using the same carrier signal

%%%   (causes gain to be reduced by 1/2)
%%% 2. Apply lowpass filter to extract baseband

%%%   (and multiply by 2 of compensate for step 1)

%%% Use same carrier frequency fc as in modulation

carrier = cos(2*pi*fc*t);

modulateAgain = modulated .* carrier;

FIRlength = floor(fs/(2*f1));

lowpassCoeffs = ones(1, FIRlength) / FIRlength;

basebandOutput = 2*filter(lowpassCoeffs, 1, 
modulateAgain);

%%% Playback signals

sound(basebandInput, fs);
pause(tmax+1);

sound(modulated, fs);

pause(tmax+1);

sound(basebandOutput, fs);
1-12

Sinusoidal Amplitude Modulation

See handout on 
designing 

averaging filters

12
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Sinusoidal Mod/Demod Demo #2
%%% upconvertGong.m

%%%

%%% Demonstrates upconversion and downconversion

%%%

%%% by Prof. Brian L. Evans, bevans@ece.utexas.edu

%%% The University of Texas at Austin

%%%

%%% Original version: August 28, 2015

%%% Current version:  February 5, 2016

%%%

%%% This Matlab script will play three sounds:

%%% (1) low-frequency signal (baseband signal)

%%% (2) upconverted signal centered at a higher 
frequency,

%%% (3) the downconverted signal,

%%% The downconverted signal consists of the baseband

%%% signal plus some higher frequency artifacts.

%%%

%%% Note: The gong.wav file must be on your path.

addpath('/Users/brianevans/Documents/Courses/SDRBook/SRD
-MatlabFiles/SRD - MatlabFiles');

%%% Read gong signal

%%% Dominant frequencies 520 (C5), 630, and 660 Hz 
(E5) from

%%% plotting spectrum: plotspec(basebandInput, 1/fs)

%%% Maximum frequency of interest, f1, is 660 Hz.

[basebandInput, fs] = audioread('gong.wav');

basebandInput = basebandInput';

f1 = 660;

Ts = 1/fs;                    %%% Sampling time

numSamples = length(basebandInput);

n = 1 : numSamples;

t = n * Ts;

tmax = Ts * numSamples;

%%% Upconvert using sinusoidal amplitude modulation

%%% to be centered at frequency fc

fc = 4*f1;

carrier = cos(2*pi*fc*t);

modulated = basebandInput .* carrier;

Sinusoidal Amplitude Modulation

1-13

13

Sinusoidal Mod/Demod Demo #2
%%% Downconvert by sinusoidal amplitude demodulation

%%% 1. Modulate using the same carrier signal

%%%   (causes gain to be reduced by 1/2).

%%%   Assume knowledge of carrier frequency fc

%%%   used in modulation/upconversion.

%%% 2. Apply lowpass filter to extract baseband

%%%   (and multiply by 2 of compensate for step 1).

%%%   Use averaging lowpass filter of length N

%%%   which has null bandwidth B = 2 pi / N.

%%%   In sinusoidal amplitude demodulation, baseband

%%%   bandwith in Hz is f1.  We can the solve for

%%%   N in B = 2 pi / N = 2 pi f1 / fs, which gives

%%%   N = fs / f1 (converted to integer).

carrier = cos(2*pi*fc*t);

modulateAgain = modulated .* carrier; 

FIRlength = floor(fs/f1);

lowpassCoeffs = ones(1, FIRlength) / FIRlength;

basebandOutput = 2*filter(lowpassCoeffs, 1, modulateAgain);

%%% Playback signals

sound(basebandInput, fs);

pause(tmax+1);

sound(modulated, fs);

pause(tmax+1);

sound(basebandOutput, fs);

Sinusoidal Amplitude Modulation

1-14

Baseband 
signal (gong)

Modulated 
signal

Demodulated 
signal

See handout on 
designing 

averaging filters

14

How to Use Bandwidth Efficiently?

1-15

+cos(wc t)

sin(wc t)

x1(t)

x2(t)

s(t)

( ) ( ) ( )( ) ( ) ( )( )cccc XXjXXS wwwwwwwww --+--++= 2211 2
1

2
1

Sinusoidal Amplitude Modulation

• Cosine modulated signal is in theory orthogonal 
to sine modulated signal at transmitter
Receiver separates x1(t) and x2(t) through demodulation

• Quadrature Amplitude 
Modulation (QAM)
Send two baseband signals in 

same transmission bandwidth
Used in LTE, Wi-Fi, cable, …

• Sinusoidal mod doubles 
transmission bandwidth

15
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Lab 2: Sinusoidal Generation
• Sampling

Sinusoidal Generation

• Output waveform
Digital-to-analog (D/A) conversion

• Expected outcomes are to understand 
Signal quality vs. run-time complexity tradeoffs

• Compute sinusoidal waveform
Math library function call
Difference equation
Lookup table

16
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Sampling
• Two-sided discrete-time cosine (or sine) signal with 

fixed-frequency w0 in rad/sample has form 
cos(w0 n)

Sinusoidal Generation

• One-sided continuous-time analog-amplitude 
cosine of frequency f0 in Hz

cos(2 p f0 t)
Sample at rate fs by substituting t = n Ts = n / fs 

cos(2 p (f0 / fs) n)
Discrete-time frequency w0 = 2 p f0 / fs in units of rad/sample
Example: f0 = 1200 Hz and fs = 8000 Hz, w0 = 3/10 p

Homework 0.3 Sampling Theorem?

17

Sampling Theorem
• Continuous-time signal x(t) with frequencies no 

higher than fmax can be reconstructed from its 
samples x(n Ts) if samples taken at rate fs > 2 fmax

• Realistic that x(t) has no freq. content above fmax ? 
• Sampling: Time-Domain Views

Discrete-Time Output
Sampled Analog Output

Models opening/closing of switch 
as multiplication by impulse train

HW 0.3

x(t)

t

Ts

Ts

Sinusoidal Generation

1-18

18

Sampled Analog: Frequency Domain
• Sampling replicates spectrum of continuous-time 

signal at integer multiples of sampling frequency

w

G(w)

ws 2ws-2ws -ws
w

X(w)

2pfmax-2pfmax

maxmaxmax 2222 ifonly  and if gap fffff ss >Û-< ppp

Modulation
by cos(2 ws t)

Modulation
by cos(ws t)

HW 0.3

How to 
recover 
X(w)?

1-19

Sinusoidal Generation

19

1-20

Algorithm #1: C Math Function cos
• Uses double-precision floating-point arithmetic
• No standard in C for internal implementation
• Appropriate for desktop computing

On desktop computer, accuracy is a primary concern, so 
additional computation is often used in C math libraries

In embedded scenarios, implementation resources generally at 
premium, so alternate methods are typically employed

• GNU Scientific Library (GSL) cosine function
Function gsl_sf_cos_e in file specfunc/trig.c
Version 1.8 uses 11th order polynomial over 1/8 of period
20 multiply, 30 add, 2 divide and 2 power calculations per 

output value (additional operations to estimate error)

Design Tradeoffs in Generating Sinusoidal Signals

20

http://www.gnu.org/software/gsl/
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Efficient Polynomial Implementation 
• Use 11th-order polynomial

Direct form a11 x11 + a10 x10 + a9 x9 + ... + a0 
Horner's form minimizes number of multiplications

a11 x11 + a10 x10 + a9 x9 + ... + a0 =
        ( ... (((a11 x + a10) x + a9) x ... ) + a0 

• Comparison
Realization Multiply 

Operations
Addition 

Operations
Memory 

Usage
Direct form 66 10 13
Horner’s form 11 10 12

Design Tradeoffs in Generating Sinusoidal Signals

21
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Algorithm #2: Difference Equation
• Difference equation with input x[n] and output y[n]

y[n] = (2 cos w0) y[n-1] - y[n-2] + x[n] - (cos w0) x[n-1] 
From inverse z-transform of z-transform of cos(w0 n) u[n]
Impulse response gives cos(w0 n) u[n]
Similar difference equation for sin(w0 n) u[n]

Initial conditions 
are all zero

Design Tradeoffs in Generating Sinusoidal Signals

• Implementation complexity
Computation: 2 multiplications and 3 additions per cosine value
Memory Usage: 2 coefficients, 2 previous values of y[n] and

1 previous value of x[n] 

• Drawbacks
Buildup in error as n increases due to feedback
Fixed value for w0

HW 0.4

22
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Differential Equation Drawbacks
• If implemented with exact precision coefficients 

and arithmetic, output would have perfect quality
• Accuracy loss as n increases due to feedback from

Coefficients cos(w0) and 2 cos(w0) are irrational, except when 
cos(w0) is equal to -1, -1/2, 0, 1/2, and 1

Truncation/rounding of multiplication and addition results
• Reboot filter after each period of samples by 

resetting filter to its initial state
Reduce loss from truncating/rounding multiplication-addition
Adapt/update w0 if desired by changing cos(w0) and 2 cos(w0)

Design Tradeoffs in Generating Sinusoidal Signals

23

Algorithm #3: Lookup Table
• Precompute samples offline and store them in table
• Cosine frequency w0 = 2 p f0 / fs = 2 p N / L

Remove common factors between integers N & L
cos(2 p f0 t) has continuous-time period T0 = 1 / f0

cos(2 p (N / L) n) has discrete-time period of L samples

Design Tradeoffs in Generating Sinusoidal Signals

Handout on 
discrete-time 
periodicity

ω0 = 2π 1200 Hz
8000 Hz

= 2π 3
20

N=3 continuous-time periods Discrete-time period of
L=20 samples

24
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Design Tradeoffs
• Signal quality vs. run-time complexity in generating 

cos(w0 n) where w0 = 2 p f0 / fs = 2 p N / L

Algorithm MACs/ 
sample

ROM 
(words)

RAM 
(words)

Quality in 
floating pt.

Quality in 
fixed point

C math 
library call

30 22 1 Second 
Best

N/A

Difference 
equation

2 2 3 Worst Second 
Best

Lookup 
table

0 L 0 Best Best

MAC  Multiplication-accumulation
RAM  Random Access Memory (writeable)      ROM  Read-Only Memory

Design Tradeoffs in Generating Sinusoidal Signals

25

Communication System Structure
• Information sources

Voice, music, images, video, and data (message signal m(t))
Have power concentrated near DC (called baseband signals)

• Baseband processing in transmitter
Lowpass filter message signal (e.g. AM/FM radio broadcast)
Digital: Add redundancy to message bit stream to aid receiver 

in detecting and possibly correcting bit errors

Communication Systems

R
ec

ei
ve

d 
 M

es
sa

ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL

1-26
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Transmitter Analog/RF Front End
Wireless Communication Systems

R
ec

ei
ve

d 
 M

es
sa

ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL

Mixer: Reduce circuit 
complexity by replacing 
multiplication by cosine 
with sampling device 
(single transistor)

cos(2 p fc t)

D/A

fs

LPF LNABPF

BPF selects replica of 
baseband spectrum at fc

LNA Low-Noise Amplifier

Wavelength l = c / fcAntenna Length?
1-27
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Communication Channel Modeling
Wireless Communication Systems

R
ec

ei
ve

d 
 M

es
sa

ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL

Line of sight

Propagation Paths

One bounce

Two bounces

Channel Impairments
• Each path has its own 

attenuation and delay
• Frequency distortion 

due to multiple paths
• Additive thermal 

noise & interference
• More in Lecture 12

1-28

28
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Receiver Analog/RF Front End
Wireless Communication Systems

R
ec

ei
ve

d 
 M

es
sa

ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL

cos(2 p fc t)

A/D

fs

BPFLNA LPF

Mixer: Reduce circuit 
complexity by replacing 
multiplication by cosine 
with sampling device 
(single transistor)
LPF selects replica of 
bandpass spectrum at 
baseband

LNA Low-Noise Amplifier

1-29
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Software Transceiver Design
• Design/implement transceiver

Design/evaluate algorithms for each subsystem
Translate algorithms into real-time software
Test implementations using signal generators & oscilloscopes

Laboratory Transceiver Subsystems 
1 introduction Matlab; DSP board & tools 
2 sinusoidal generation sinusoidal mod/demodulation 
3(a) finite impulse response filter pulse shaping, 90o phase shift 
3(b) infinite impulse response filter transmit and receive filters, 

carrier detection, clock recovery  
4 pseudo-noise generation training sequences 
5 pulse amplitude mod/demodulation training during modem startup 
6 quadrature amplitude mod (QAM) data transmission 
7 digital audio effects not applicable 
 

Software Transceiver Design
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Designing Averaging Filters for Mild Lowpass Filtering and Removal of Harmonics 
 

Prof. Brian L. Evans 
The University of Texas at Austin 

February 8, 2021 
 
In data analysis, e.g. number of new confirmed 
COVID-19 cases in Texas each day as shown on 
the right, we’ll often see a moving average to 
help us discern an underlying trend.  The trend 
in certain segments of the data might show a 
decrease or increase in what’s being measured.  
A moving average averages out, or smoothes 
out, rapid fluctuations in the data.  This is 
equivalent to keeping low frequency 
information and attenuating high frequency 
information in the data. 

For a data sequence x[n], a seven-sample 
moving average can be computed as follows: 

𝑦[𝑛] =
1
7
(	𝑥[𝑛] + 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2] + 𝑥[𝑛 − 3] + 𝑥[𝑛 − 4] + 𝑥[𝑛 − 5] + 𝑥[𝑛 − 6]	) 

for 𝑛 ≥ 0.  The output y[n] is the average of the current data point x[n] and the six previous 
data points.  This difference equation is also known as a seven-coefficient averaging filter. 

Analysis.  We analyze the frequency response for a linear time-invariant (LTI) system using the 
discrete-time Fourier transform.  A necessary condition for a system to be LTI is that the system 
must initially be “at rest”.  In this case, it means that the initial conditions must be zero.  We 
can identify the initial conditions in several ways.  One way is to start computing output values: 

𝑦[0] =
1
7
(	𝑥[0] + 𝑥[−1] + 𝑥[−2] + 𝑥[−3] + 𝑥[−4] + 𝑥[−5] + 𝑥[−6]	) 

The six initial conditions correspond to the six memory locations storing the previous six input 
values.  When n = 0, there are no previous input values.  We initialize the six memory locations 
{	𝑥[𝑛 − 1], 𝑥[𝑛 − 2], 𝑥[𝑛 − 3], 𝑥[𝑛 − 4], 𝑥[𝑛 − 5], 𝑥[𝑛 − 6]	} to zero to make the system be 
initially at rest.  Initializing data variables and arrays to zero is a common programming practice. 

There are many ways to find the discrete-time Fourier transform of the seven-coefficient LTI 
averaging filter.  One way is to find the impulse response and then find its discrete-time Fourier 
transform.  The impulse response is the response of a system to a discrete-time impulse: 

ℎ[𝑛] =
1
7
(	𝛿[𝑛] + 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] + 𝛿[𝑛 − 3] + 𝛿[𝑛 − 4] + 𝛿[𝑛 − 5] + 𝛿[𝑛 − 6]	) 

The impulse response h[n] is a rectangular pulse that is seven samples long with amplitude 1/7 
as shown on the next page.  We can find the Fourier transform from the z-transform: 

𝐻(𝑧) =
1
7
(1 + 𝑧!" + 𝑧!# + 𝑧!$ + 𝑧!% + 𝑧!& + 𝑧!')			for		𝑧	 ≠ 0 

Since the region of convergence 𝑧 ≠ 0 includes the unit circle, we can substitute 𝑧 = 	 𝑒(	* : 

𝐻+,-.(𝜔) = 𝐻B𝑒(	*C =
1
7 B1 + 𝑒

!(* + 𝑒!#(* + 𝑒!($* + 𝑒!(%* + 𝑒!(&* + 𝑒!('*C 

Number of new confirmed COVID-19 cases in The 
State of Texas as of Feb. 7, 2021, reported by The 
State of Texas Department of State Health Services. 



We can factor out the middle term (due to the phase shift corresponding to the mid-point of 
the impulse response at sample index (L-1)/2) to reveal that the phase is linear in frequency: 

𝐻+,-.(𝜔) =
1
7 𝑒

!($*B𝑒($* + 𝑒(#* + 𝑒(* + 1 + 𝑒!(* + 𝑒!(#* + 𝑒!($*C 

𝐻+,-.(𝜔) =
1
7
(1 + 2 cos(𝜔) + 2 cos(2𝜔) + 2	cos	(3𝜔))	𝑒!($* = 𝐴(𝜔)	𝑒!($* 

Amplitude 𝐴(𝜔) is a sinc with period 2p and the phase is −3𝜔	which is a line with slope of −3.  
Please note that 𝐴(𝜔) has positive, zero, and negative values, and is not the magnitude.  

The impulse response (on right) is a rectangular pulse of 
7 samples with amplitude 1/7.  The pole-zero plot for H(z) 
shows zeros at angles (frequencies) that are multiples of 
2p/7 rad/sample except at zero.  Magnitude response is 
lowpass with a null bandwidth of 2p/7 rad/sample and 
frequencies at multiples of 2p/7 rad/sample are zeroed 
out except at 0 rad/sample.  Phase response is linear 
except for the discontinuities at frequencies that are  
zeroed out (not passed) by the filter at multiples of 
2p/7 rad/sample except at 0 rad/sample. 

Design a lowpass discrete-time LTI filter with a null 
bandwidth of 60 Hz that eliminates multiples of the 
powerline frequency 60 Hz up to half of the sampling 
rate.  The sampling rate is 420 Hz. 

Answer: The null bandwidth in discrete-time frequency 
is 𝜔/ = 2𝜋 +!

+"
= 2𝜋 '/	01

%#/	01
= #

2
𝜋 rad/sample.  The null 

bandwidth for an LTI averaging filter with L coefficients 
is 2p/L; hence, L = 7.  Averaging filter with 7 coefficients 
will eliminate 60 Hz, 120 Hz, and 180 Hz for a sampling 
rate of 420 Hz. 
 
 
 

Impulse response for LTI averaging 
filter with L coefficients (L = 7 here) 

Poles & zeros of H(z) for LTI averaging 
filter with 7 coefficients in Matlab: 
h = (1/7)*ones(1, 7); zplane(h) 

Phase response for LTI averaging 
filter with 7 coefficients in Matlab.  
Using the highlighted points, the 
slope is estimated to be -3.0002. 

Magnitude response for LTI 
averaging filter with 7 coefficients.  
Magnitude of a periodic sinc.  Zeros 
at multiples of 2p/7 except 0. 

w w 

w = -pi : (2*pi/100000) : pi; 
H = (1/7)*(1 + exp(-j*w) + exp(-j*2*w) + exp(-j*3*w) + exp(-j*4*w) + exp(-j*5*w) + exp(-j*6*w)); 
figure; plot(w, abs(H)); xlim( [-pi, pi] );    %%% plot the magnitude response 
figure; plot(w, phase(H)); xlim( [-pi, pi] );  %%% plot the phase response 
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Accumulator architecture

Load-store architecture

Memory-register architecture

register 
file

on-chip 
memory

1
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Outline

n Embedded processors and systems

n Signal processing applications

n TI TMS320C6000 digital signal processor

n Conventional digital signal processors

n Pipelining

n RISC vs. DSP processor architectures

n Conclusion

2

2 -3

Embedded Processors and Systems

n Embedded system works
4On application-specific tasks
4“Behind the scenes” (little/no direct user interaction)

n Units of consumer products shipped worldwide 2017
1472M  smart phones                72M  DVD/Blu-ray players
259M  PCs/laptops     55M digital media streamers
164M tablets                           47M game consoles
138M  smart TVs                    25M digital still cameras
79M  cars/lt trucks

1B/year smart phones since 2014 and connected TVs since 2018
n How many embedded processors are in each?
n How much should an embedded processor cost?

42015: iPhone6 $676 (16GB) $942 (128GB) w/o contract

9%
10%
24%

3%

0.3%
0.1%

6%

2%

20%

3
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Smart Phone Application Processors

n Standalone app processors (Apple, Samsung)

n Integrated baseband-app processors (Qualcomm)

iPhone5 (10+ cores)
• Touchscreen: Broadcom
(probably 2 ARM cores)
• Apps: Samsung
(2 ARM + 3 GPU cores)
• Audio: Cirrus Logic
(1 DSP core + 1 codec)
•Wi-Fi: Broadcom
• Baseband: Qualcomm
• Inertial sensors:
STMicroelectronicsSource: Statista and Strategy Analytics

42% Qualcomm, 22% Apple, 15% MediaTek, 21% Others.
Samsung LSI and Spreadtrum had next two largest shares.
Others incude Broadcom (Avago), HiSilicon (Huawei), Intel.
40% have eight cores and 14% in 10nm CMOS process

“iPhone 5 Tear Down”

2017 Smartphone AP Market

Qualcomm
Ap ple
MediaTek
Others

4
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Market for Application Processors

n Tablets $  4.2B ‘14, $  2.7B ’15, $  2.1B ’16, $ 2.0B ‘17
n Phones $20.9B ‘14, $20.1B ’15, $21.5B ’16, $20.2B ’17
n 10% revenue of all microprocessors in 2017 (est.)

$400B in revenue for microprocessors in 2017 

Tablet App Processor Market
Statista and Strategy Analytics
(1) Apple 36%, (2) Intel 18%,
(3) Qualcomm 17%, (4) Others 29%.
MediaTek and Samsung LSI had next 
two largest market shares.
Apple, HiSilicon (Huawei), Intel and 
Qualcomm had increase in shipments

Decline in 2015 and 2016 due to strong competition from large screen smartphones

2017 Tablet AP Market

Ap ple
In tel
Qualcomm
Others

5
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Signal Processing Applications

n Embedded system cost & input/output rates
4Low-cost, low-throughput: sound cards, 2G cell

phones, MP3 players, car audio, guitar effects
4Medium-cost, medium-throughput: printers,

disk drives, 3G cell phones, ADSL modems,
digital cameras, video conferencing

4High-cost, high-throughput: high-end printers,
audio mixing boards, wireless basestations,
3-D medical reconstruction from 2-D X-rays

n Embedded processor requirements
4Inexpensive with small area and volume
4Predictable input/output (I/O) rates to/from processor
4Low power (e.g. smart phone uses 200mW average for voice and 

500mW for video; battery gives 5 W-hours)

Single 
DSP

Multiple 
multicore 

DSPs

Multiple DSP  
chips or cores 
+ accelerators

6
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Type of Digital Signal Processor?

Fixed-Point Floating-Point
Per unit cost $2 and up $2 and up
Prototyping time Long Short
Power consumption 10 mw - 1 W 1-3 W
Battery-powered 
products

Cell phones
Digital cameras

Very few

Other products DSL modems
Cellular basestations

Pro & car audio
Medical imaging

Sales volume High Low
Prototyping Convert floating- to fixed-

point; use non-standard C 
extensions; redesign 

algorithms

Reuse desktop 
simulations; feasibility 

check before investing in 
fixed-point design

7
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Program RAM Data RAM
or Cache

Internal Buses

Control Regs

Regs (B0-B15)

Regs (A0-A15)

.D1

.M1

.L1

.S1

.D2

.M2

.L2

.S2

CPU

Addr

Data

External
Memory

-Sync
-Async

DMA

Serial Port

Host Port

Boot Load

Timers

Pwr Down

Modern Digital Signal Processor Example
TI TMS320C6000 Family, Simplified Architecture

8
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Modern DSP: TI TMS320C6000 Architecture

n Very long instruction word (VLIW) of 256 bits
4Eight 32-bit functional units with one cycle throughput

4One instruction cycle per clock cycle

n Data word size and register size are 32 bits
416 (32 on C6400) registers in each of two data paths

440 bits can be stored in adjacent even/odd registers

n Two parallel data paths
4Data unit - 32-bit address calculations (modulo, linear) 

4Multiplier unit - 16 bit ´ 16 bit with 32-bit result
4Logical unit - 40-bit (saturation) arithmetic/compares

4Shifter unit - 32-bit integer ALU and 40-bit shifter

9
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Modern DSP: TI TMS320C6000 Architecture

n Families: All support same C6000 instruction set
C6200 fixed-pt. 150- 300 MHz  printers, DSL (obsolete)
C6400 fixed pt.  500-1200 MHz video, DSL
C6600 floating 1000-1250 MHz basestations (8 cores)
C6700 floating  150-1,000 MHz medical imaging, audio

n TMS320C6748 OMAP-L138 Experimenter Kit
375-MHz CPU (750 million MACs/s, 3000 RISC MIPS)
On-chip: 8 kword program, 8 kword data, 64 kword L2
On-board memory: 32 Mword SDRAM, 2 Mword ROM

10
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Modern DSP: TMS320C6000 Instruction Set

.S Unit
ADD NEG
ADDK NOT
ADD2 OR
AND SET
B SHL
CLR SHR
EXT SSHL
MV SUB
MVC SUB2
MVK XOR
MVKH ZERO

.L Unit
ABS NOT
ADD OR
AND SADD
CMPEQ SAT
CMPGT SSUB
CMPLT SUB
LMBD SUBC
MV XOR
NEG ZERO
NORM

.M Unit
MPY SMPY
MPYH SMPYH

.D Unit
ADD ST
ADDA SUB
LD SUBA
MV ZERO
NEG

Other
NOP IDLE

C6000 Instruction Set by Functional Unit

Six of the eight functional units can perform integer add, subtract, 
and move operations

11
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Modern DSP: TMS320C6000 Instruction Set
Arithmetic

ABS
ADD

ADDA
ADDK
ADD2
MPY

MPYH
NEG

SMPY
SMPYH
SADD
SAT

SSUB
SUB

SUBA
SUBC
SUB2
ZERO

Logical
AND

CMPEQ
CMPGT
CMPLT

NOT
OR
SHL
SHR
SSHL
XOR

Bit
Management

CLR
EXT

LMBD
NORM

SET

Data
Management

LD
MV

MVC
MVK

MVKH
ST

Program
Control

B
IDLE
NOP

C6000 Instruction
Set by Category
(un)signed multiplication
saturation/packed arithmetic 

12
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C5000 vs. C6000 Addressing Modes

ADD #0Fh    mvk .D1 15, A1
add .L1 A1, A6, A6

TI C5000 TI C6000

(implied)   add .L1 A7, A6, A7            

ADD 010h    not supported

ADD *       ldw .D1 *A5++[8],A1

n Immediate
Operand part of instruction

n Register
Operand specified in a 

register
n Direct

Address of operand is part of 
the instruction (added to 
imply memory page)

n Indirect
Address of operand is stored 

in a register 

13
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C6700 Extensions

.S Unit
ABSDP CMPLTSP 
ABSSP RCPDP
CMPEQDP  RCPSP 
CMPEQSP  RSARDP 
CMPGTDP  RSQRSP 
CMPGTSP  SPDP
CMPLTDP

.L Unit
ADDDP INTSP
ADDSP SPINT
DPINT SPTRUNC
DPSP SUBDP
DPTRUNC  SUBSP
INTDP

.M Unit
MPYDP MPYID
MPYI MPYSP

.D Unit
ADDAD LDDW

C6700 Floating Point Extensions by Unit

Four functional units perform IEEE single-precision (SP) and double-
precision (DP) floating-point add, subtract, and move.

Operations beginning with R are reciprocal (i.e. 1/x) calculations.

14

2 -15

Ą ĒÊ 	 MHz MIP S Data  
(kbits ) 

P rogram  
(kbits ) 

Le ve l 2 
(kbits ) 

P rice  Application s  

ǺVWPQ	 150 
167 

1200 
1336 

512 
512 

512 
512 

0 
0 

$  88 
$141 

C6701 EVM board 

ǺVWQQ	 150 
250 

1200 
2000 

32 32 512 n /a  
$  18 

C6711 DSK board 
 

ǺVWQR	 150 1200 32 32 512 $  14  

ǺVWQS	 167 
RRU 
300 

1336 
QXPP 
2400 

32 
SR 
32 

32 
SR 
32 

1000 
QPPP 
1000 

$  19 
D		RU 
$  33 

 
ǺVWQS	Ą ĒÇ 	Ī ŇÏ Òİ 	

ǺVWRR	 250 2000 1000 3072 256 $  10 P rofe ss ion al au dio  

ǺVWRV	 266 2128 2000 3072 256 $  15 P rofe ss ion al au dio  

ǺVWRW	 300 
350 

2400 
2800 

2000 
2000 

3072 
3072 

256 
256 

$  22 
$  30 

C6727 EVM board 
P rofe ss ion al au dio  

ǺVWTX	 300 2400 256 256 2048 $  18 P ro-au dio  and v ide o  
	 SWU	 SPPP	 RUV	 RUV	 RPTX	 D	RP	 ǺVWTX	ĞÇ 	F 	ÆĘĐ 	Ī ŇÏ Òİ Ó	
 
200 
$ 

 

Selected TMS320C6700 Floating-Point DSPs

For more information: http://www.ti.com
Unit price for 100 units.  Prices effective February 1, 2009.

DSK: DSP Starter Kit.  EVM: Evaluation Module.
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Selected TMS320C6000 Fixed-Point DSPs

Ą ĒÊ 	 MHz MIP S Data  
(kbits ) 

P rogram  
(kbits ) 

Le ve l 2 
(kbits ) 

P rice  Application s  

ǺVRPR	 250 
300 

2000 
2400 

1000 2000  $  66 
$  79 

 

ǺVRPS	 250 
300 

2000 
2400 

4000 3000  $  84 
$  84 

m ode m s ban ks  ADSL1 
m ode m s 

ǺVRPT	 200 1600 512 512  $  11  

ǺVTQV	 720 
1000 

5760 
8000 

128 
128 

128 
128 

8000 
8000 

$114 
$227 

ADSL2 mode m s 
3G base station s  

ǺVTQX	 500 
600 

4000 
4800 

128 
128 

128 
128 

5000 
5000 

$  49 
$  49 

 

Ą Đ VTQ	 500 
600 

4000 
4800 

128 
128 

128 
128 

1000 
1000 

$  28 
$  31 

Vide o  con fe re n cin g  

Ą Đ VTR	 500 
720 

4000 
5760 

128 
128 

128 
128 

2000 
2000 

$  37 
$  57 

Vide o  con fe re n cin g  

Ą Đ VTX	 900 7200 512 512 4000 $  64 Vide o  con fe re n cin g  
 
200 
$ 

 

For more information: http://www.ti.com
Unit price is for 100 units.  Prices effective February 1, 2009.

C6416 has Viterbi and Turbo decoder coprocessors.
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C6000 Reference Information for Lab Work

n Code Composer Studio v5
http://processors.wiki.ti.com/index.php/CCSv4

n C6000 Optimizing C Compiler 7.4
http://focus.ti.com/lit/ug/spru187u/spru187u.pdf

n C6000 Programmer's Guide
http://www.ti.com/lit/ug/spru198k/spru198k.pdf

n C674x DSP CPU & Instruction Set Ref. Guide
http://focus.ti.com/lit/ug/sprufe8b/sprufe8b.pdf

n C6748 Board
Logic PD’s ZOOM OMAP-L138 Experimenter Kit
http://www.logicpd.com/products/development-kits/zoom-

omap-l138-experimenter-kit
Download them for reference

TI software 
development 
environment

17
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Conventional Digital Signal Processors

n Low cost: as low as $2/processor in volume
n Deterministic interrupt service routine latency 

guarantees predictable input/output rates
4On-chip direct memory access (DMA) controllers

n Processes streaming input/output separately from CPU
n Sends interrupt to CPU when frame read/written

4Ping-pong buffering
n CPU reads/writes buffer 1 as DMA reads/writes buffer 2
n After DMA finishes buffer 2, roles of buffers switch

n Low power consumption: 10-100 mW
4 TI TMS320C54:     0.48 mW/MHz à 76.8 mW at 160 MHz
4 TI TMS320C5504: 0.15 mW/MHz à 45.0 mW at 300 MHz

n Based on conventional (pre-1996) architecture

18
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Conventional Digital Signal Processors

n Multiply-accumulate in one instruction cycle
n Harvard architecture for fast on-chip I/O

4Separate data memory/bus and program memory/bus
41 read from program memory per instruction cycle
42 reads/writes from/to data memory per inst. cycle

n Instructions to keep pipeline (3-6 stages) full
4Zero-overhead looping (one pipeline flush to set up)
4Delayed branches

n Special addressing modes in hardware
4Bit-reversed addressing (fast Fourier transforms)

4Modulo addressing for circular buffers (e.g. filters)

19
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Conventional Digital Signal Processors

xN-K+1 xN-K+2 xN-1 xN

Data Shifting Using a Linear Buffer
Time Buffer contents Next sample

xN+1

xN+3

xN+2

n=N

n=N+1

n=N+2 xN-K+3 xN-K+4 xN+1 xN+2

xN-K+2 xN-K+3 xN xN+1

Modulo Addressing Using a Circular Buffer
Time Buffer contents Next sample

n=N

n=N+1

n=N+2

xN-2 xN-1 xN-K+1 xN-K+2

xN-K+4

xN+1

xN+2

xN+3

xN-2 xN-1 xN+1 xN-K+2xN

xN-2 xN-1 xN+1 xN+2xN

xN

xN

xN

xN-K+3

xN-K+3 xN-K+4

n Buffers
Used in processing 

streaming data
n Linear buffer

Sort by time index
Update: discard oldest 

data, copy old data 
left, insert new data

n Circular buffer
Oldest data index
Update: insert new 

data at oldest index, 
update oldest index

20
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	 Fixe d-P oin t Floatin g-P oin t 
ǺŇÓÔOĖ ŃĹÔ	 $2 - $79 $2 - $381 
ĂÒĬ ĶĹÔĮ Ĭ ÔÕÒĮ 	 Accumula tor  load-store or  

memory-register  
Ë Į Ĵ ĹÓÔĮ ÒÓ	 2-4 data   

8 address  
8 or  16 da ta   

8 or  16 address  
Ą Ï ÔÏ 	Ĝ ŇÒİ Ó	 16 or  24 bit  in teger  

and fixed-poin t  
32 bit  in teger  and 

fixed/floa t ing-poin t  
É ŃMǺĶĹÑ	
Đ Į Ŀ ŇÒŐ	

2-64 kwords da ta  
2-64 kwords program 

8-64 kwords da ta  
8-64 kwords program 

Ăİ İ ÒĮ ÓÓ	
ĒÑÏ Ĭ Į 	

16-128 kw da ta  
16-64 kw program 

16 Mw — 4Gw da ta  
16 Mw — 4 Gw program 

ǺŇĿ ÑĹŁĮ ÒÓ	 C, C++ compilers; 
poor  code genera t ion  

C, C++ compilers; 
bet ter  code genera t ion  

ÆŎÏ Ŀ ÑŁĮ Ó	 TI TMS320C5000; 
Freescale DSP56000 

TI TMS320C30; 
Analog Devices SHARC 

 

Conventional Digital Signal Processors
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Conventional Digital Signal Processors

n Different on-chip configurations in each family
4Size and map of data and program memory
4A/D, input/output buffers, interfaces, timers, and D/A

n Drawbacks to conventional digital signal processors
4No byte addressing (needed for images and video)
4Limited on-chip memory
4Limited addressable memory on fixed-point DSPs (exceptions 

include Freescale 56300 and TI C5409)
4Non-standard C extensions for fixed-point data type

22
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Pipelining

Pipelining
• Process instruction stream in
stages (as stages of assembly
in manufacturing line)

• Increase throughput
Managing Pipelines
• Compiler or programmer
• Pipeline interlocking

Sequential (Freescale 56000)

Pipelined (Most conventional DSPs)

Superscalar (Pentium)

Superpipelined (TI C6000)

Fetch Read ExecuteDecode

Fetch Decode Read Execute

Fetch Read ExecuteDecode

Fetch Read ExecuteDecode

23

2 -24

n Time-stationary pipeline model
Programmer controls each cycle
Example: Freescale DSP56001 (has X/Y data 

memories/registers)

n Data-stationary pipeline model
Programmer specifies data operations
Example: TI TMS320C30

n Interlocked pipeline
“Protection” from pipeline effects
May not be reported by simulators:

inner loops may take extra cycles

Pipelining: Operation

MAC X0,Y0,A  X:(R0)+,X0 Y:(R4)-,Y0

MPYF *++AR0(1),*++AR1(IR0),R0

D
E
F
G
H
I
J
K
L
L

C
D
E
F
G
H
I
J
K
-
L

B
C
D
E
F
G
H
I
J
K
-
L

A
B
C
D
E
F
G
H
I
J
K
-
L

F D R E
Execute

ReadDecodeFetch

MAC means multiplication-accumulation.

24
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n A control hazard occurs when a 
branch instruction is decoded
4Processor “flushes” the pipeline, or
4Delayed branch (expose pipeline)

n A data hazard occurs because                              
an operand cannot be read yet
4Intended by programmer, or
4Interlock hardware inserts “bubble”
4TI TMS320C5000 (20 CPU & 16 I/O 

registers, one accumulator, and one 
address pointer ARP implied by *)

Pipelining: Control and Data Hazards

LAR  AR2, ADDR ; load address reg.
LACC *- ; load accumulator w/

; contents of AR2

D
E
F
br
G
-
-
X
Y
Y
Z

F D R E
Execute

ReadDecodeFetch

C
D
E
F
br
-
-
-
X
-
Y
Z

BC
D
E
F
br
-
-
-
X
-
Y
Z

A
BC
D
E
F
br
-
-
-
X
-
Y
Z

LAR: 2 cycles to update AR2 & ARP; need NOP after it

25
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n A repeat instruction repeats one 
instruction or block of instructions 
after repeat

n The pipeline is filled with repeated 
instruction (or block of 
instructions)

n Cost: one pipeline flush only

Pipelining: Avoiding Control Hazards

; repeat TBLR inst. COUNT-1 times
RPT COUNT
TBLR *+

High throughput performance of DSPs is 
helped by on-chip dedicated logic for 
looping (downcounters/looping registers)

D
E
F

rpt
X
X
X
X
X
X
X
X

F D R E
Execute

ReadDecodeFetch

C
D
E
F

rpt
-
-
X
X
X
X
X

B
CD
E
F

rpt
-
-
X
X
X
X

AB
CD
E
F

rpt
-
-
X
X
X
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Pipelining: TI TMS320C6000 DSP

n C6000 has deep pipeline
47-11 stages in C6200: fetch 4, decode 2, execute 1-5

47-16 stages in C6700: fetch 4, decode 2, execute 1-10

4Compiler and assembler must prevent pipeline hazards

n Only branch instruction: delayed unconditional
4Processor executes next 5 instructions after branch

4Conditional branch via conditional execution:
[A2] B loop

4Branch instruction in pipeline disables interrupts

4Undefined if both shifters take branch on same cycle
4Avoid branches by conditionally executing instructions

Pentium IV pipeline
has more than 20 stages

Contributions by Sundararajan Sriram (TI)
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RISC vs. DSP: Instruction Encoding

n RISC: Superscalar, out-of-order execution 

n DSP: Horizontal microcode, in-order execution 

Reorder

Load/store

Integer UnitFloating-Point Unit

Load/store

Load/store

AddressMultiplierALU

Memory

Memory

28
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RISC vs. DSP: Memory Hierarchy

n RISC

n DSP

Registers

Out
of 

order

I/D
Cache

Physical
memory

TLB

Registers

DMA Controller

I Cache Internal
memories

External
memories

TLB: Translation Lookaside Buffer

DMA: Direct Memory Access

29

2 -30

Concluding Remarks

n Conventional digital signal processors
4High performance vs. power consumption/cost/volume
4Excel at one-dimensional processing
4Per cycle: 1 16 ´ 16 MAC & 4 16-bit RISC instructions

n TMS320C6000 VLIW DSP family
4High performance vs. cost/volume
4Excel at multidimensional signal processing
4Per cycle: 2 16´16 MACs & 4 32-bit RISC instructions

n Get the best of both worlds
4Assembly language for computational kernels

(possibly wrapped in C callable functions)
4C for main program (control code, interrupt definition)
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1. INTRODUCTION   

ULTI-CORE Digital Signal Processors (DSPs) have 

gained significant importance in recent years due to 

the emergence of data-intensive applications, such as video 

and high-speed Internet browsing on mobile devices, which  

demand increased computational performance but lower 

cost and power consumption. Multi-core platforms allow 

manufacturers to produce smaller boards while simplifying 

board layout and routing, lowering power consumption and 

cost, and maintaining programmability. 

      Embedded processing has been dealing with multi-core 

on a board, or in a system, for over a decade. Until recently, 

size limitations have kept the number of cores per chip to 

one, two, or four but, more recently, the shrink in feature 

size from new semiconductor processes has allowed single-

chip DSPs to become multi-core with reasonable on-chip 

memory and I/O, while still keeping the die within the size 

range required for good yield. Power and yield constraints, 

as well as the need for large on-chip memory have further 

driven these multi-core DSPs to become systems-on-chip 

(SoCs).  Beyond the power reduction, SoCs also lead to 

overall cost reduction because they simplify board design by 

minimizing the number of components required.  

The move to multi-core systems in the embedded space 

is as much about integration of components to reduce cost 

and power as it is about the development of very high 

performance systems. While power limitations and the need 

for low-power devices may be obvious in mobile and hand-

held devices, there are stringent constraints for non-battery 

powered systems as well. Cooling in such systems is 

generally restricted to forced air only, and there is a strong 

desire to avoid the mechanical liability of a fan if possible. 

This puts multi-core devices under a serious hotspot 

constraint. Although a fan cooled rack of boards may be 

able to dissipate hundreds of Watts (ATCA carrier card can 

dissipate up to 200W), the density of parts on the board will 

start to suffer when any individual chip power rises above 

roughly 10W. Hence, the cheapest solution at the board 

level is to restrict the power dissipation to around 10W per 

chip and then pack these chips densely on the board.  

The introduction of multi-core DSP architectures 

presents several challenges in hardware architectures, 

memory organization and management, operating systems, 

platform software, compiler designs, and tooling for code 

development and debug. This article presents an overview 

of existing multi-core DSP architectures as well as 

programming models, software tools, emerging applications, 

challenges and future trends of multi-core DSPs.  

 

2. HISTORICAL PRESPECTIVES: FROM SINGLE-

CORE TO MULTI-CORE 

The concept of a Digital Signal Processor came about in the 

middle of the 1970s.  Its roots were nurtured in the soil of a 

growing number of university research centers creating a 

body of theory on how to solve real world problems using a 

digital computer.  This research was academic in nature and 

was not considered practical as it required the use of state-

of-the-art computers and was not possible to do in real time. 

It was a few years later that a Toy by the name of Speak N 

Spell™  was created using a single integrated circuit to 

synthesize speech.  This device made two bold statements: 

-Digital Signal Processing can be done in real time. 

-Digital Signal Processors can be cost effective. 

This began the era of the Digital Signal Processor. So, what 

made a Digital Signal Processor device different from other 

microprocessors?  Simply put, it was the DSP’s attention to 

doing complex math while guaranteeing real-time 

processing.  Architectural details such as dual/multiple data 

buses, logic to prevent over/underflow, single cycle 

complex instructions, hardware multiplier, little or no 

capability to interrupt, and special instructions to handle 

signal processing constructs, gave the DSP its ability to do 

the required complex math in real time. 

 “If I can’t do it with one DSP, why not use two of 

them?”  That is the answer obtained from many customers 

after the introduction of DSPs with enough performance to 

change the designer’s mind set from “how do I squeeze my 

algorithm into this device” to “guess what, when I divide the 

performance that I need to do this task by the performance 

of a DSP, the number is small.”  The first encounter with 

this was a year or so after TI introduced the TMS320C30 – 

the first floating-point DSP.  It had significantly more 

performance than its fixed-point predecessors.  TI took on 

the task of seeing what customers were doing with this new 

DSP that they weren’t doing with previous ones.  The 

significant finding was that none of the customers were 

using only one device in their system.  They were using 

multiple DSPs working together to create their solutions. 

 As the performance of the DSPs increased, more 

sophisticated applications began to be handled in real time.  

So, it went from voice to audio to image to video 

processing.  Fig. 1 depicts this evolution. The four lines in 

M 
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Fig. 1. Four examples of the increase of instruction cycles per sample 

period. It appears that the DSP becomes useful when it can perform a 

minimum of 100 instructions per sample period. Note that for a video 

system the pixel is used in place of a sample. 

 

 
Fig. 2. Four generations of DSPs show how multi-processing has more 

effect on performance than clock rate. The dotted lines correspond to the 

increase in performance due to clock increases within an architecture. 

The solid line shows the increase due to both the clock increase and the 

parallel processing.  

 

Fig. 1 represent the performance increases of Digital Signal 

Processors in terms of instruction cycles per sample period.   

For example, the sample rate for voice is 8 kHz.  Initial 

DSPs allowed for about 625 instructions per sample period, 

barely enough for transcoding.  As higher performance 

devices began to be available, more instruction cycles 

became available each sample period to do more 

sophisticated tasks.  In the case of voice, algorithms such as 

noise cancellation, echo cancellation and voice band 

modems were able to be added as a result of the increased 

performance made available. Fig. 2 depicts how this 

increase in performance was more the result of multi-

processing rather than higher performance single processing 

elements.  Because Digital Signal Processing algorithms are 

Multiply-Accumulate (MAC) intensive, this chart shows 

how, by adding multipliers to the architecture, the 

performance followed an aggressive growth rate. Adding 

multiplier units is the simplest form of doing 

multiprocessing in a DSP device. 

For TI, the obvious next step was to architect the next 

generation DSPs with the communications ports necessary 

to matrix multiple DSPs together in the same system.  That 

device was created and introduced as the TMS320C40.  

And, as one might suspect, a follow up (fixed-point) device 

was created with multiple DSPs on one device under the 

management of a RISC processor, the TMS320C80. 

The proliferation of computationally demanding 

applications drove the need to integrate multiple processing 

elements on the same piece of silicon.  This lead to a whole 

new world of architectural options: homogeneous multi-

processing, heterogeneous multi-processing, processors 

versus accelerators, programmable versus fixed function, a 

mix of general purpose processors and DSPs, or system in a 

package versus System on Chip integration. And then there 

is Amdahl’s Law that must be introduced to the mix [1-2]. 

In addition, one needs to consider how the architecture 

differs for high performance applications versus long battery 

life portable applications. 

 

3. ARCHITECTURES OF MULTI-CORE DSPs 

In 2008, 68% of all shipped DSP processors were used in 

the wireless sector, especially in mobile handsets and base 

stations; so, naturally, development in wireless 

infrastructure and applications is the current driving force 

behind the evolution of DSP processors and their 

architectures [3].  The emergence of new applications such 

as mobile TV and high speed Internet browsing on mobile 

devices greatly increased the demand for more processing 

power while lowering cost and power consumption. 

Therefore, multi-core DSP architectures were established as 

a viable solution for high performance applications in packet 

telephony, 3G wireless infrastructure and WiMAX [4]. This 

shift to multi-core shows significant improvements in 

performance, power consumption and space requirements 

while lowering costs and clocking frequencies. Fig. 3 

illustrates a typical multi-core DSP platform.   

Current state-of-the-art multi-core DSP platforms can 

be defined by the type of cores available in the chip and 

include homogeneous and heterogeneous architectures. A 

homogeneous multi-core DSP architecture consists of cores 

that are from the same type, meaning that all cores in the die 

are DSP processors. In contrast, heterogeneous architectures 

contain different types of cores. This can be a collection of 

DSPs with general purpose processors (GPPs), graphics 

processing units (GPUs) or micro controller units (MCUs). 



IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009  

3 

 

Another classification of multi-core DSP processors is by 

the type of interconnects between the cores. 

More details on the types of interconnect being used in 

multi-core DSPs as well as the memory hierarchy of these 

multiple cores are presented below, followed by an 

overview of the latest multi-core chips. A brief discussion 

on performance analysis is also included.   

 

3.1 Interconnect and Memory Organization 

As shown in Fig. 4, multiple DSP cores can be connected 

together through a hierarchical or mesh topology. In 

hierarchical interconnected multi-core DSP platforms, data 

transfers between cores are performed through one or more 

switching units. In order to scale these architectures, a 

hierarchy of switches needs to be planned. CPUs that need 

to communicate with low latency and high bandwidth will 

be placed close together on a shared switch and will have 

low latency access to each others’ memory. Switches will be 

connected together to allow more distant CPUs to 

communicate with longer latency. Communication is done 

by memory transfer between the memories associated with 

the CPUs. Memory can be shared between CPUs or be local 

to a CPU. The most prominent type of memory architecture 

makes use of Level 1 (L1) local memory dedicated to each 

core and Level 2 (L2) which can be dedicated or shared 

between the cores as well as Level 3 (L3) internal or 

external shared memory. If local, data is moved off that 

memory to another local memory using a non CPU block in 

charge of block memory transfers, usually called a DMA. 

The memory map of such a system can become quite 

complex and caches are often used to make the memory 

look “flat” to the programmer. L1, L2 and even L3 caches 

can be used to automatically move data around the memory 

hierarchy without explicit knowledge of this movement in 

the program. This simplifies and makes more portable the 

software written for such systems but comes at the price of 

uncertainty in the time a task needs to complete because of 

uncertainty in the number of cache misses [5].  

In a mesh network [6-7], the DSP processors are 

organized in a 2D array of nodes. The nodes are connected 

through a network of buses and multiple simple switching 

units. The cores are locally connected with their “north”, 

“south”, “east” and “west” neighbors. Memory is generally 

local, though a single node might have a cache hierarchy. 

This architecture allows multi-core DSP processors to scale 

to large numbers without increasing the complexity of the 

buses or switching units. However, the programmer 

generally has to write code that is aware of the local nature 

of the CPU. Explicit message passing is often used to 

describe data movement.  

Multi-core DSP platforms can also be categorized as 

Symmetric Multiprocessing (SMP) platforms and 

Asymmetric Multiprocessing (AMP) platforms. In an SMP 

platform, a given task can be assigned to any of the cores 

without affecting the performance in terms of latency.  In an 

AMP platform, the placement of a task can affect the 

latency, giving an opportunity to optimize the performance 

by optimizing the placement of tasks. This optimization 

comes at the expense of an increased programming 

complexity since the programmer has to deal with both 

space (task assignment to multiple cores) and time (task 

scheduling). For example, the mesh network architecture of 

Fig. 4 is AMP since placing dependent tasks that need to 

heavily communicate in neighboring processors will 

significantly reduce the latency. In contrast, in a hierarchical 

interconnected architecture, in which the cores mostly 

communicate by means of a shared L2/L3 memory and have 

to cache data from the shared memory, the tasks can be 

assigned to any of the cores without significantly affecting 

the latency. SMP platforms are easy to program but can 

result in a much increased latency as compared to AMP 

platforms. 

 
Fig.3. Typical multi-core DSP platform. 
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Table 1: Multi-core DSP platforms. 

 TI [8] Freescale [9] picoChip [10] Tilera [11] 
Sandbridge 

[12-13] 

Processor TNETV3020  MSC8156 PC205 TILE64 SB3500 

Architecture Homogeneous Homogeneous Heterogeneous Homogeneous Heterogeneous 

No. of Cores 6 DSPs 6 DSPs 
248 DSPs 

1 GPP 
64 DSPs 

3 DSPs 

1 GPP 

Interconnect 

Topology 
Hierarchical Hierarchical Mesh Mesh Hierarchical 

Applications 

Wireless 

Video 

VoIP 

Wireless Wireless 

Wireless 

Networking 

Video 

Wireless 

 

 

 
Fig.4. Interconnect types of multi-core DSP architectures. 

 

 
Fig.5. Texas Instruments TNETV3020 multi-core DSP processor. 

 

 
Fig.6. Freescale 8156 multi-core DSP processor. 

 

3.2 Existing Vendor-Specific Multi-Core DSP Platforms 

Several vendors manufacture multi-core DSP platforms such 

as Texas Instruments (TI) [8], Freescale [9], picoChip [10], 

Tilera [11], and Sandbridge [12-13]. Table 1 provides an 

overview of a number of these multi-core DSP chips. 

Texas Instruments has a number of homogeneous and 

heterogeneous multi-core DSP platforms all of which are 

based on the hierarchal-interconnect architecture.  One of 

the latest of these platforms is the TNETV3020 (Fig. 5) 

which is optimized for high performance voice and video 

applications in wireless communications infrastructure [8]. 

The platform contains six TMS320C64x+ DSP cores each 

capable of running at 500 MHz and consumes 3.8 W of 

power. TI also has a number of other homogeneous multi-

core DSPs such as the TMS320TCI6488 which has three     
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1 GHz C64x+ cores and the older TNETV3010 which 

contains six TMS320C55x cores, as well as the 

TMS320VC5420/21/41 DSP platforms with dual and quad 

TMS320VC54x DSP cores.  

Freescale's multi-core DSP devices are based on the 

StarCore 140, 3400 and 3850 DSP subsystems which are 

included in the MSC8112 (two SC140 DSP cores), 

MSC8144E (four SC3400 DSP cores) and its latest 

MSC8156 DSP chip (Fig. 6) which contains six SC3850 

DSP cores targeted for 3G-LTE, WiMAX, 3GPP/3GPP2 

and TD-SCDMA applications [9]. The device is based on a 

homogeneous hierarchical interconnect architecture with 

chip level arbitration and switching system (CLASS).  

PicoChip manufactures high performance multi-core 

DSP devices that are based on both heterogeneous (PC205) 

and homogeneous (PC203) mesh interconnect architectures. 

The PC205 (Fig. 7) was taken as an example of these multi-

core DSPs [10]. The two building blocks of the PC205 

device are an ARM926EJ-S microprocessor and the 

picoArray. The picoArray consists of 248 VLIW DSP 

processors connected together in a 2D array as shown in 

Fig. 8. Each processor has dedicated instruction and data 

memory as well as access to on-chip and external memory. 

The ARM926EJ-S used for control functions is a 32-bit 

RISC processor. Some of the PC205 applications are in 

high-speed wireless data communication standards for 

metropolitan area networks (WiMAX) and cellular networks 

(HSDPA and WCDMA), as well as in the implementation of 

advanced wireless protocols.  

Tilera manufactures the TILE64, TILEPro36 and 

TILEPro64 multi-core DSP processors [11]. These are based 

on a highly scalable homogeneous mesh interconnect 

architecture. 

 
 

 

 
 

Fig.7. picoChip PC205 multi-core DSP processor. 

 

 
Fig. 8. picoChip picoArray. 

 

 
Fig. 9. Tilera TILE64 multi-core DSP processor. 

 

The TILE64 family features 64 identical processor 

cores (tiles) interconnected using a mesh network of buses 

(Fig. 9). Each tile contains a processor, L1 and L2 cache 

memory and a non-blocking switch that connects each tile to 

the mesh. The tiles are organized in an 8 x 8 grid of identical 

general processor cores and the device contains 5 MB of on-

chip cache. The operating frequencies of the chip range 

from 500 MHz to 866 MHz and its power consumption 

ranges from 15 – 22 W. Its main target applications are 

advanced networking, digital video and telecom. 

SandBridge manufactures multi-core heterogeneous 

DSP chips intended for software defined radio applications. 

The SB3011 includes four DSPs each running at a minimum 

of 600 MHz at 0.9V. It can execute  up  to  32 independent  



IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009  

6 

 

Table 2: BTDI OFDM benchmark results on various processors for the 

maximum number of simultaneous OFDM channels processed in real time. 

The specific number of simultaneous OFDM channels is given in [17].  

 

 Clock 

(MHz) 

DSP 

cores 

OFDM 

channels 

TI TMS320C6455 1200 1 Lowest 

Freescale MSC8144 1000 4 Low 

Sandbridge SB3500 500 3 Medium 

picoChip PC102 160 344 High 

Tilera TILE64  866 64 Highest 

 

instruction streams while issuing vector operations for each 

stream using an SIMD datapath. An ARM926EJ-S 

processor with speeds up to 300 MHz implements all 

necessary I/O devices in a smart phone and runs Linux OS. 

The kernel has been designed to use the POSIX pthreads 

open standard [14] thus providing a cross platform library 

compatible with a number of operating systems (Unix, 

Linux and Windows). The platform can be programmed in a 

number of high-level languages including C, C++ or Java 

[12-13]. 

 

3.3 Multi-Core DSP Platform Performance Analysis 

Benchmark suites have been typically used to analyze the 

performance among architectures [15]. In practice, 

benchmarking of multicore architectures has proven to be 

significantly more complicated than benchmarking of single 

core devices because multicore performance is affected not 

only by the choice of CPU but also very heavily by the CPU 

interconnect and the connection to memory. There is no 

single agreed-upon programming language for multicore 

programming and, hence, there is no equivalent of the “out 

of the box” benchmark, commonly used in single core 

benchmarks. Benchmark performance is heavily dependent 

on the amount of tweaking and optimization applied as well 

as the suitability of the benchmark for the particular 

architecture being evaluated. As a result, it can be seen that 

single core benchmarking was already a complicated task 

when done well, and multicore benchmarking is proving to 

be exponentially more challenging. The topic of benchmark 

suites for multicore remains an active field of study [16]. 

Currently available benchmarks are mainly simplified 

benchmarks that were mainly developed for single-core 

systems.  

One such a benchmark is the Berkeley Design 

Technology, Inc (BTDI) OFDM benchmark [17] which was 

used to evaluate and compare the performance of some 

single- and multi-core DSPs in addition to other processing 

engines. The BTDI OFDM benchmark is a simplified digital 

signal processing path for an FFT-based orthogonal 

frequency division multiplexing (OFDM) receiver [17]. The 

path consists of a cascade of a demodulator, finite impulse 

response (FIR) filter, FFT, slicer, and Viterbi decoder. The 

benchmark does not include interleaving, carrier recovery, 

symbol synchronization, and frequency-domain 

equalization. 

Table 2 shows relative results for maximizing the 

number of simultaneous non-overlapping OFDM channels 

that can be processed in real time, as would be needed for an 

access point or a base station. These results show that the 

four considered multi-core DSPs can process in real time a 

higher number of OFDM channels as compared to the 

considered single-core processor using this specific 

simplified benchmark. 

However, it should be noted that this application 

benchmark does not necessarily fit the use cases for which 

the candidate processors were designed. In other words, 

different results can be produced using different benchmarks 

since single and multi-core embedded processors are 

generally developed to solve a particular class of functions 

which may or may not match the benchmark in use. At the 

end, what matters most is the actual performance achieved 

when the chips are tested for the desired customer’s end 

solution. 

 

4. SOFTWARE TOOLS FOR MULTI-CORE DSPs 

Due to the hard real-time nature of DSP programming, one 

of the main requirements that DSP programmers insist on 

having is the ability to view low level code, to step through 

their programs instruction by instruction, and evaluate their 

algorithms and “see” what is happening at every processor 

clock cycle. Visibility is one of the main impediments to 

multi-core DSP programming and to real-time debugging as 

the ability to “see” in real time decreases significantly with 

the integration of multiple cores on a single chip. Improved 

chip-level debug techniques and hardware-supported 

visualization tools are needed for multi-core DSPs. The use 

of caches and multiple cores has complicated matters and 

forced programmers to speculate about their algorithms 

based on worst-case scenarios.  Thus, their reluctance to 

move to multi-core programming approaches. For 

programmers to feel confident about their code, timing 

behavior should be predictable and repeatable [5]. Hardware 

tracing with Embedded Trace Buffers (ETB) [18] can be 

used to partially alleviate the decreased visibility issue by 

storing traces that provide a detailed account of code 

execution, timing, and data accesses. These traces are 

collected internally in real-time and are usually retrieved at 

a later time when a program failure occurs or for collecting 

useful statistics.  Virtual multi-core platforms and 

simulators, such as Simics by Virtutech [19] can help 

programmers in developing, debugging, and testing their 

code before porting it to the real multi-core DSP device.  

Operating Systems (OS) provide abstraction layers that 

allow tasks on different cores to communicate. Examples of 

OS include SMP Linux [20-21], TI’s DSP BIOS [22], 

Enea’s OSEck [23]. One main difference between these OS 

is in how the communication is performed between tasks 

running on different cores. In SMP Linux, a common set of 
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tables that reflect the current global state of the system are 

shared by the tasks running on different cores. This allows 

the processes to share the same global view of the system 

state. On the other hand, TI’s DSP/BIOS and Enea’s OSEck 

supports a message passing programming model. In this 

model, the cores can be viewed as "islands with bridges" as 

contrasted with the "global view" that is provided by SMP 

Linux. Control and management middleware platforms, 

such as Enea’s dSpeed [23], extend the capabilities of the 

OS to allow enhanced monitoring, error handling, trace, 

diagnostics, and inter-process communications.   

As in memory organization, programming models in 

multi-core processors include Symmetric Multiprocessing 

(SMP) models and Asymmetric Multiprocessing (AMP) 

models [24]. In an SMP model, the cores form a shared set 

of resources that can be accessed by the OS.  

The OS is responsible for assigning processes to 

different cores while balancing the load between all the 

cores. An example of such OS is SMP Linux [18-19] which 

boasts a huge community of developers and lots of 

inexpensive software and mature tools. Although SMP 

Linux has been used on AMP architectures such as the mesh 

interconnected Tilera architecture, SMP Linux is more 

suitable for SMP architectures (Section 3.1) because it 

provides a shared symmetric view. In comparison, TI’s 

DSP/BIOS and Enea's OSE can better support AMP 

architectures since they allow the programmer to have more 

control over task assignments and execution. The AMP 

approach does not balance processes evenly between the 

cores and so can restrict which processes get executed on 

what cores. This model of multi-core processing includes 

classic AMP, processor affinity and virtualization [23].  

Classic AMP is the oldest multi-core programming 

approach. A separate OS is installed on each core and is 

responsible for handling resources on that core only. This 

significantly simplifies the programming approach but 

makes it extremely difficult to manage shared resources and 

I/O. The developer is responsible for ensuring that different 

cores do not access the same shared resource as well as be 

able to communicate with each other.  

In processor affinity, the SMP OS scheduler is modified 

to allow programmers to assign a certain process to a 

specific core. All other processes are then assigned by the 

OS. SMP Linux has features to allow such modifications. A 

number of programming languages following this approach 

have appeared to extend or replace C in order to better allow 

programmers to express parallelism. These include OpenMP 

[25], MPI [26], X10 [27], MCAPI [28], GlobalArrays [29], 

and Uniform Parallel C [30]. In addition, functional 

languages such as Erlang [31] and Haskell [32] as well as 

stream languages such as ACOTES [33] and StreamIT [34] 

have been introduced. Several of these languages have been 

ported to multi-core DSPs. OpenMP is an example of that. It 

is a widely-adopted shared memory parallel programming 

interface providing high level programming constructs that 

enable the user to easily expose an application’s task and 

loop level parallelism in an incremental fashion. Its range of 

applicability was significantly extended by the addition of 

explicit tasking features. The user specifies the 

parallelization strategy for a program at a high level by 

annotating the program code; the implementation works out 

the detailed mapping of the computation to the machine. It 

is the user’s responsibility to perform any code 

modifications needed prior to the insertion of OpenMP 

constructs. In particular, OpenMP requires that 

dependencies that might inhibit parallelization are detected 

and where possible, removed from the code. The major 

features are directives that specify that a well-structured 

region of code should be executed by a team of threads, who 

share in the work. Such regions may be nested. Work 

sharing directives are provided to effect a distribution of 

work among the participating threads [35]. 

Virtualization partitions the software and hardware into 

a set of virtual machines (VM) that are assigned to the cores 

using a Virtual Machine Manager (VMM). This allows 

multiple operating systems to run on single or multiple 

cores. Virtualization works as a level of abstraction between 

the OS and the hardware. VirtualLogix employs 

virtualization technology using its VLX for embedded 

systems [36].  VLX announced support for TI single and 

multi-core DSPs. It allows TI's real-time OS (DSP/BIOS) to 

run concurrently with Linux. Therefore, DSP/BIOS is left to 

run critical tasks while other applications run on Linux. 
 

5. APPLICATIONS OF MULTI-CORE DSPs 

5.1 Multi-core for mobile application processors 

The earliest SoC multi-core in the embedded space was the 

two-core heterogeneous DSP+ARM combination introduced 

by TI in 1997. These have evolved into the complex OMAP 

line of SoC for handset applications. Note that the latest in 

the OMAP line has both multi-core ARM (symmetric 

multiprocessing) and DSP (for heterogeneous 

multiprocessing). The choice and number of cores is based 

on the best solution for the problem at hand and many 

combinations are possible. The OMAP line of processors is 

optimized for portable multimedia applications. The ARM 

cores tend to be used for control, user interaction and 

protocol processing, whereas the DSPs tend to be signal 

processing slaves to the ARMs, performing compute 

intensive tasks such as video codecs. Both CPUs have 

associated hardware accelerators to help them with these 

tasks and a wide array of specialized peripherals allows 

glueless connectivity to other devices. 

This multi-core is an integration play to reduce cost and 

power in the wireless handset. Each core had its own unique 

function and the amount of interaction between the cores 

was limited. However, the development of a 

communications bridge between the cores and a 

master/slave programming paradigm were important 

developments that allowed this model of processing to 

become the most highly used multi-core in the embedded 

space today [37]. 
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Fig.10. The Agere SP2603. 

 

 
Fig. 11. Texas Instruments TCI6487. 

 

 

5.2 Multi-core for Core network Transcoding 

The next integration play was in the transcoding space. In 

this space, the master/slave approach is again taken, with a 

host processor, usually servicing multiple DSPs, that is in 

charge of load balancing many tasks onto the multi-core 

DSP. Each task is independent of the others (except for 

sharing program and some static tables) and can run on a 

single DSP CPU. Fig. 10 shows the Agere SP2603, a multi-

core device used in transcoding applications. 

Therefore, the challenge in this type of multi-core SoC 

is not in the partitioning of a program into multiple threads 

or the coordination of processing between CPUs, but in the 

coordination of CPUs in the access of shared, non CPU, 

resources, such as DDR memory, Ethernet ports, shared L2 

on chip memory, bus resources, and so on. Heterogeneous 

variants also exist with an ARM on chip to control the array 

of DSP cores.  

Such multi-core chips have reduced the power per 

channel and cost per channel by an order of magnitude over 

the last decade. 

 

5.3 Multi-core for Base Station Modems 

Finally, the last five years have seen many multi-core 

entrants into the base station modem business for cellular 

infrastructure. The most successful have been DSP based 

with a modest number of CPUs and significant shared 

resources in memory, acceleration and I/O. An example of 

such a device is the Texas Instruments TCI6487 shown in 

Fig. 11. 

Applications that use these multi-core devices require 

very tight latency constraints, and each core often has a 

unique functionality on the chip. For instance, one core 

might do only transmit while another does receive and 

another does symbol rate processing. Again, this is not a 

generic programming problem. Each core has a specific and 

very well timed set of tasks to perform. The trick is to make 

sure that timing and performance issues do not occur due to 

the sharing of non CPU resources [38]. 

However, the base station market also attracted new 

multi-core architectures in a way that neither handset (where 

the cost constraints and volume tended to favor hardwired 

solutions beyond the ARM/DSP platform) nor transcoding 

(where the complexity of the software has kept “standard” 

DSP multi-core in the forefront) have experienced. 

Examples of these new paradigm companies include 

Chameleon, PACT, BOPS, Picochip, Morpho, Morphics 

and Quicksilver. These companies arose in the late 90s and 

mostly died in the fallout of the tech bubble burst. They 

suffered from a lack of production quality tooling and no 

clear programming model. In general, they came in two 

types; arrays of ALUs with a central controller and arrays of 

small CPUs, tightly connected and generally intended to 

communicate in a very synchronized manner. Fig. 8 shows 

the picoArray used by picoChip, a proponent of regular, 

meshed arrays of processors. Serious programming 

challenges remain with this kind of architecture because it 

requires two distinct modes of programming, one for the 

CPUs themselves and one for the interconnect between the 

CPUs. A single programming language would have to be 

able to not only partition the workload, but also comprehend 

the memory locality, which is severe in a mesh-based 

architecture.  

 

5.4 Next Generation Multi-Core DSP Processors 

Current and emerging mobile communications and 

networking standards are providing even more challenges to 

DSP. The high data-rates for the physical layer processing, 
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as well as the requirements for very low power have driven 

designers to use ASIC designs.  However, these are 

becoming increasingly complex with the proliferation of 

protocols, driving the need for software solutions. 

Software defined radio (SDR) holds the promise of 

allowing a single piece of silicon to alternate between 

different modem standards. Originally motivated by the 

military as a way to allow multinational forces to 

communicate [39], it has made its way into the commercial 

arena due to a proliferation of different standards on a single 

cell phone (for instance GSM, EDGE, WCDMA, Bluetooth, 

802.11, FM radio, DVB). 

SODA [40] is one multi-core DSP architecture designed 

specifically for software-defined radio (SDR) applications.  

Some key features of SODA are the lack of cache with 

multiple DMA and scratchpad memories used instead for 

explicit memory control.  Each of the processors has a 

32x16bit SIMD datapath and a coupled scalar datapath 

designed to handle the basic DSP operations performed on 

large frames of data in communication systems.   

Another example is the AsAP architecture [41] which 

relies on the dataflow nature of DSP algorithms to obtain 

power and performance efficiency. Shown in Fig. 12, it is 

similar to the Tilera architecture at a superficial glance, but 

also takes the mesh network principal to its logical 

conclusion, with very small cores (0.17mm
2
) and only a 

minimal amount of memory per core (128 word program 

and 128 word data).The cores communicate asynchronously 

by doubly clocked FIFO buffers and each core has its own 

clock generator so that the device is essentially clockless. 

When a FIFO is either empty or full, the associated cores 

will go into a low power state until they have more data to 

process. These and other power savings techniques are used 

in a design that is heavily focused on low power 

computation. There is also an emphasis on local 

communication, with each chip connected to its neighbors, 

in a similar manner to the Tilera multi-core. Even within the 

core, the connectivity is focused on allowing the core to 

absorb data rather than reroute it to other cores. The overall 

goal is to optimize for data flow programming with mostly 

local interconnect. Data can travel a distance of more than 

one core but will require more latency to do so. The AsAP 

chip is interesting as a “pure” example of a tiled array of 

processors with each processor performing a simple 

computation. The programming model for this kind of chip 

is however, still a topic of research. Ambric produced an 

architecturally similar chip [42] and showed that, for simple 

data flow problems, software tooling could be developed. 

An example of this data flow approach to multi-core 

DSP design can be found in [43], where the concept of 

Bulk-Synchronous Processing (BSP), a model of 

computation where data is shared between threads mostly at 

synchronization barriers, is introduced. This deterministic 

approach to the mapping of algorithms to multi-core is in 

line with the recommendations made in [44] where it is  

argued that adding parallelism in a non deterministic manner 

(such as is commonly done with POSIX threads [14]) leads 

to systems that are unreasonably hard to test and debug. 

Fortunately, the parallelization of DSP algorithms can often 

be done in a deterministic manner using data flow diagrams. 

Hence, DSP may be a more fruitful space for the 

development of multi-core than the general purpose 

programming space. 

  Sandbridge (see Section 3.2) has also been 

producing DSPs designed for the SDR space for several 

years.  
 

6. CONCLUSIONS AND FUTURE TRENDS 

In the last 2 years, the embedded DSP market has been 

swept up by the general increase in interest in multi-core 

that has been driven by companies such as Intel and Sun.  

One of the reasons for this is that there is now a lot of 

focus on tooling in academia and also a willingness on the 

part of users to accept new programming paradigms. This 

industry wide effort will have an effect on the way multi-

core DSPs are programmed and perhaps architected. But it 

is too early to say in what way this will occur. Programming 

multi-core DSPs remains very challenging. The problem of 

how to take a piece of sequential code and optimally 

partition it across multiple cores remains unsolved. Hence, 

there will naturally be a lot of variations in the approaches 

taken. Equally important is the issue of debug and visibility. 

Developing effective and easy-to-use code development and 

real-time debug tools is tremendously important as the 

opportunity for bugs goes up significantly when one starts to 

deal with both time and space. 

The markets that DSP plays in have unique features in 

their desire for low power, low cost and hard real-time 

processing, with an emphasis on mathematical computation. 

How well the multi-core research being performed presently 

in academia will address these concerns remains to be seen. 

 
Fig.12. The AsAP processor architecture. 
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System developers, especially those who are new to digital signal processors (DSPs),
are sometimes uncertain whether they need to use fixed- or floating-point DSPs for
their systems. Both fixed- and floating-point DSPs are designed to perform the high-
speed computations that underlie real-time signal processing. Both feature system-on-
a-chip (SOC) integration with on-chip memory and a variety of high-speed peripherals
to ensure fast throughput and design flexibility. Tradeoffs of cost and ease of use often
heavily influenced the fixed- or floating-point decision in the past. Today, though, select-
ing either type of DSP depends mainly on whether the added computational capabilities
of the floating-point format are required by the application.

Different numeric formats

As the terms fixed- and floating-point indicate, the fundamental difference between the
two types of DSPs is in their respective numeric representations of data. While fixed-
point DSP hardware performs strictly integer arithmetic, floating-point DSPs support
either integer or real arithmetic, the latter normalized in the form of scientific notation.
TI’s TMS320C62x™ fixed-point DSPs have two data paths operating in parallel, each
with a 16-bit word width that provides signed integer values within a range from –2^15 to
2^15. TMS320C64x™ DSPs, double the overall throughput with four 16-bit (or eight 8-
bit or two 32-bit) multipliers. TMS320C5x™ and TMS320C2x™ DSPs, with architec-
tures designed for handheld and control applications, respectively, are based on single
16-bit data pathss.

By contrast, TMS320C67x™ floating-point DSPs divide a 32-bit data path into two
parts: a 24-bit mantissa that can be used for either for integer values or as the base of
a real number, and an 8-bit exponent. The 16M range of precision offered by 24 bits
with the addition of an 8-bit exponent, thus supporting a vastly greater dynamic range
than is available with the fixed-point format. The C67x™ DSP can also perform calcula-
tions using industry-standard double-width precision (64 bits, including a 53-bit mantis-
sa and an 11-bit exponent). Double-width precision achieves much greater precision
and dynamic range at the expense of speed, since it requires multiple cycles for each
operation.

Comparing Fixed- and Floating-Point DSPs
Does your design need a fixed- or floating-point DSP? 
The application data set can tell you.

By 
Gene Frantz, TI Principal Fellow, Business Development Manager, DSP
Ray Simar, Fellow and Manager of Advanced DSP Architectures



Cost versus ease of use

The much greater computational power offered by floating-point DSPs is normally the
critical element in the fixed- or floating-point design decision. However, in the early
1990s, when TI released its first floating-point DSP products, other factors tended to
obscure the fundamental mathematical issue. Floating-point functions require more
internal circuitry, and the 32-bit data paths were twice as wide as those of fixed-point
DSPs, which at that time integrated only a single 16-bit data path. These factors, plus
the greater number of pins required by the wider data bus, meant a larger die and larg-
er package that resulted in a significant cost premium for the new floating-point
devices. Fixed-point DSPs therefore were favored for high-volume applications like dig-
itized voice and telecom concentration cards, where unit manufacturing costs had to be
kept low.

Offsetting the cost issue at that time was ease of use. TI floating-point DSPs were
among the first DSPs to support the C language, while fixed-point DSPs still needed to
be programmed at the assembly code level. In addition, real arithmetic could be coded
directly into hardware operations with the floating-point format, while fixed-point devices
had to implement real arithmetic indirectly through software routines that added devel-
opment time and extra instructions to the algorithm. Because floating-point DSPs were
easier to program, they were adopted early on for low-volume applications where the
time and cost of software development were of greater concern than unit manufactur-
ing costs. These applications were found in research, development prototyping, military
applications such as radar, image recognition, three-dimensional graphics accelerators
for workstations and other areas.

Today the early differences in cost and ease of use, while not altogether erased, are
considerably less pronounced. Scores of transistors can now fit into the same space
required by a single transistor a decade ago, leading to SOC integration that reduces
the impact of a single DSP core on die size and expense. Many DSP-based products,
such as TI’s broadband, camera imaging, wireless baseband and OMAP™ wireless
application platforms, leverage the advantages of rescaling by integrating more than a
single core in a product targeted at a specific market. Fixed-point DSPs continue to
benefit more from cost reductions of scale in manufacturing, since they are more often
used for high-volume applications; however, the same reductions will apply to floating-
point DSPs when high-volume demand for the devices appears. Today, cost has
increasingly become an issue of SOC integration and volume, rather than a result of
the size of the DSP core itself.

The early gap in ease of use has also been reduced. TI fixed-point DSPs have long
been supported by outstandingly efficient C compilers and exceptional tools that

Cost versus ease of use
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Floating-point accuracy

provide visibility into code execution. The advantage of implementing real arithmetic
directly in floating-point hardware still remains; but today advanced mathematical mod-
eling tools, comprehensive libraries of mathematical functions, and off-the-shelf algo-
rithms reduce the difficulty of developing complex applications—with or without real
numbers—for fixed-point devices. Overall, fixed-point DSPs still have an edge in cost
and floating-point DSPs in ease of use, but the edge has narrowed until these factors
should no longer be overriding in the design decision.

Floating-point accuracy

As the cost of floating-point DSPs has continued to fall, Tthe choice of using a fixed- or
floating-point DSP boils down to whether floating-point math is needed by the applica-
tion data set. In general, designers need to resolve two questions: What degree of
accuracy is required by the data set? and How predictable is the data set?

The greater accuracy of the floating-point format results from three factors. First, the
24-bit word width in TI C67x™ floating-point DSPs yields greater precision than the
C62x™ 16-bit fixed-point word width, in integer as well as real values. Second, expo-
nentiation vastly increases the dynamic range available for the application. A wide
dynamic range is important in dealing with extremely large data sets and with data sets
where the range cannot be easily predicted. Third, the internal representations of data
in floating-point DSPs are more exact than in fixed-point, ensuring greater accuracy in
end results.

The final point deserves some explanation. Three data word widths are important to
consider in the internal architecture of a DSP. The first is the I/O signal word width,
already discussed, which is 24 bits for C67x floating-point, 16 bits for C62x fixed-point,
and can be 8, 16, or 32 bits for C64x™ fixed-point DSPs. The second word width is
that of the coefficients used in multiplications. While fixed-point coefficients are 16 bits,
the same as the signal data in C62x DSPs, floating-point coefficients can be 24 bits or
53 bits of precision, depending whether single or double precision is used. The preci-
sion can be extended beyond the 24 and 53 bits in some cases when the exponent
can represent significant zeroes in the coefficient.

Finally, there is the word width for holding the intermediate products of iterated multiply-
accumulate (MAC) operations. For a single 16-bit by 16-bit multiplication, a 32-bit prod-
uct would be needed, or a 48-bit product for a single 24-bit by 24-bit multiplication.
(Exponents have a separate data path and are not included in this discussion.)
However, iterated MACs require additional bits for overflow headroom. In C62x fixed-
point devices, this overflow headroom is 8 bits, making the total intermediate product
word width 40 bits (16 signal + 16 coefficient + 8 overflow). Integrating the same



proportion of overflow headroom in C67x floating-point DSPs would require 64 interme-
diate product bits (24 signal + 24 coefficient + 16 overflow), which would go beyond
most application requirements in accuracy. Fortunately, through exponentiation the
floating-point format enables keeping only the most significant 48 bits for intermediate
products, so that the hardware stays manageable while still providing more bits of inter-
mediate accuracy than the fixed-point format offers. These word widths are summa-
rized in Table 1 for several TI DSP architectures.

Table 1. Word widths for TI DSPs

Video and audio data set requirements

The advantages of using the fixed- and floating-point formats can be illustrated by con-
trasting the data set requirements of two common signal-processing applications: video
and audio. Video has a high sampling rate that can amount to tens or even hundreds
of megabits per second (Mbps) in pixel data, depending on the application. Pixel data
is usually represented in three words, one for each of the red, green and blue (RGB)
planes of the image. In most systems, each color requires 8 to 12 bits, though
advanced applications may use up to 14 bits per color. Key mathematical operations of
the industry-standard MPEG video compression algorithms include discrete cosine
transforms (DCTs) and quantization, and there is limited filtering.

Audio, by contrast, has a more limited data flow of about 1 Mbps that results from 24
bits sampled at 48 kilosamples per second (ksps). A higher sampling rate of 192 ksps
will quadruple this data flow rate in the future, yet it is still significantly less than video.
Operations on audio data include infinite impulse response (IIR) and intensive filtering.

Video and audio data set requirements
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TI DSP(s) Format

Word Width

Signal I/O Coefficient
Intermediate

result
C25x fixed 16 16 40

C5x™/C62x™ fixed 16 16 40

C64x™ fixed 8/16/32 16 40

C3x™ floating 24 (mantissa) 24 32

C67x™(SP) floating 24 (mantissa) 24 24/53

C67x(DP) floating 53 53 53



Video thus has much more raw data to process than audio. DCTs and quantization are
handled effectively using integer operations, which together with the short data words
make video a natural application for C62x and C64x fixed-point DSPs. The massive
parallelism of the C64x makes it a excellent platform for applications that run multiple
video channels, and some C64x DSP products have been designed with on-chip video
interfaces that provide seamless data throughput.

Video may have a larger data flow, but audio has to process its data more accurately.
While the eye is easily fooled, especially when the image is moving, the ear is hard to
deceive. Although audio has usually been implemented in the past using fixed-point
devices, high-fidelity audio today is transistioning to the greater accuracy of the float-
ing-point format. Some C67x DSP products further this trend by integrating a multi-
channel audio serial port (McASP) in order to make audio system design easier. As the
newest audio innovations become increasingly common in consumer electronics,
demand for floating-point DSPs will also rise, helping to drive costs closer to parity with
fixed-point DSPs.

The wider words (24-bit signal, 24-bit coefficient, 53-bit intermediate product) of C67x
DSPs provide much greater accuracy in audio output, resulting in higher sound quality.
Sampling sound with 24 bits of accuracy yields 144 dB of dynamic range, which pro-
vides more than adequate coverage for the full amplitude range needed in sound
reproduction. Wide coefficients and intermediate products provide a high degree of
accuracy for internal operations, a feature that audio requires for at least two reasons.

First, audio typically use cascaded IIR filters to obtain high performance with minimal
latency., But, in doing so, each filtering stage propagates the errors of previous stages.
So a high degree of precision in both the signal and coefficients are required to mini-
mize the effects of these propagated errors. Second, signal accuracy must be main-
tained, even as it approaches zero (this is necessary because of the sensitivity of the
human ear). The floating-point format by its nature aligns well with the sensitivity of the
human ear and becomes more accurate as floating point numbers  approach 0.  This is
the result of the exponent’s keeping track of the significant zeros after the binary point
and before the significant data in the mantissa. This is in contrast to a fixed point sys-
tem for very small fractional numbers. All of these aspects of floating-point real arith-
metic are essential to the accurate reproduction of audio signals.

Other application areas

The data sets of other types of applications also lend themselves better to either fixed-
or floating-point computations. Today, one of the heaviest uses of DSPs is in wired and
wireless communications, where most data is transmitted serially in octets that are then

Other application areas
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expanded internally for 16-bit processing based on integer operations. Obviously, this
data set is extremely well-suited for the fixed-point format, and the enormous demand
for DSPs in communications has driven much of fixed-point product development and
manufacturing.

Floating-point applications are those that require greater computational accuracy and
flexibility than fixed-point DSPs offer. For example, image recognition used for medicine
is similar to audio in requiring a high degree of accuracy. Many levels of signal input
from light, x-rays, ultrasound and other sources must be defined and processed to cre-
ate output images that provide useful diagnostic information. The greater precision of
C67x signal data, together with the device’s more accurate internal representations of
data, enable imaging systems to achieve a much higher level of recognition and defini-
tion for the user.

Radar for navigation and guidance is a traditional floating-point application since it
requires a wide dynamic range that cannot be defined ahead of time and either uses
the divide operator or matrix inversions. The radar system may be tracking in a range
from 0 to infinity, but need to use only a small subset of the range for target acquisition
and identification. Since the subset must be determined in real time during system
operation, it would be all but impossible to base the design on a fixed-point DSP with
its narrow dynamic range and quantization effects..

Wide dynamic range also plays a part in robotic design. Normally, a robot functions
within a limited range of motion that might well fit within a fixed-point DSP’s dynamic
range. However, unpredictable events can occur on an assembly line. For instance, the
robot might weld itself to an assembly unit, or something might unexpectedly block its
range of motion. In these cases, feedback is well out of the ordinary operating range,
and a system based on a fixed-point DSP might not offer programmers an effective
means of dealing with the unusual conditions. The wide dynamic range of a floating-
point DSP, however, enables the robot control circuitry to deal with unpredictable cir-
cumstances in a predictable manner.

A data set decision

In recent years, as the world of digital signal processing has become much larger,
DSPs have become application-driven. SOC integration means that, along with applica-
tion-specific peripherals, different cores can be integrated on the same device, enabling
DSP products to be tailored for the requirements of specific markets. In this environ-
ment, floating-point capabilities have become another element in the overall DSP prod-
uct mix.

A data set decision
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There are still some differences in cost and ease of use between fixed- and floating-
point DSPs, but these have become less significant over time. The critical feature for
designers is the greater mathematical flexibility and accuracy of the floating-point for-
mat. For application data sets that require real arithmetic, greater precision and a wider
dynamic range, floating-point DSPs offer the best solution. Application data sets that do
not require these computational features can normally use fixed-point DSPs. Once the
data set requirements have been determined, it should no longer be difficult to decide
whether to use a fixed- or floating-point DSP.

A data set decision
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Signals and Systems
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3 - 2

Outline
• Signals

Continuous-time vs. discrete-time
Analog vs. digital
Unit impulse

1

-1
• Continuous-Time System Properties

• Sampling

• Discrete-Time System Properties

2

3 - 3

Many Faces of Signals
• Function, e.g. cos(t) in continuous time or

cos(p n) in discrete time, useful in analysis

u t( ) =
1 for t > 0
1
2

for t = 0

0 for t < 0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Review

• Sequence of numbers, e.g. {1,2,3,2,1} or a sampled 
triangle function, useful in simulation

• Set of properties, e.g. even and causal,
useful in reasoning about behavior

• A piecewise representation, e.g.
 useful in analysis

• A generalized function, e.g. d(t),
 useful in analysis u[n]= 1 for n ≥ 0

0 otherwise

⎧
⎨
⎪

⎩⎪

3

Signals As Functions
• Continuous-time x(t)

Time, t, is any real value
x(t) may be 0 for range of t

3 - 4

Review

Analog Amplitude Signal à Quantizer à Digital Amplitude Signal

Continuous-Time Signal   à Sampler   à Discrete-Time Signal

• Discrete-time x[n]
n Î {...-3,-2,-1,0,1,2,3...}
Integer time index, e.g. n

• Digital amplitude
From discrete set of values

• Analog amplitude
Real or complex value

1

-1

4
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Continuous-Time Unit Impulse
• Mathematical idealism for

an instantaneous event
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• Dirac delta as generalized
function  (a.k.a. functional)
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• Selected properties
Unit area:  
Sifting: 
  provided g(t) is defined at t = 0 

• d(0) is infinity or undefined
(both are defensible answers)  

5

3 - 6

Continuous-Time Unit Impulse
• d(t) under integration

Review

L. B. Jackson, “A correction to impulse invariance,” IEEE Sig. Proc. Letters, Oct. 2000.

• What about?
Assuming f(t) is defined at t=0

δ τ( )  dτ
 −∞

 t
∫ =

1
?

t > 0
t = 0

0 t < 0

$

%
&

'
&

= u(t)

• What about at origin?

u(0) can take any value
Common values: 0, ½, 1

• Other examples

• What about?

By substitution of variables,
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3 - 7

Systems
• Systems operate on signals to produce new signals 

or new signal representations

Review

Squaring function can be used 
in sinusoidal demodulation

Average of current input and 
delayed input is a simple filter

( ) ( ){ }  txTty =

T{•} y(t)x(t)

{ } ][ ][ nxTny =

T{•} y[n]x[n]

• Continuous-time system examples
y(t) = ½ x(t) + ½ x(t-1)
y(t) = x2(t)

• Discrete-time system examples
y[n] = ½ x[n] + ½ x[n-1]
y[n] = x2[n]
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3 - 8

Continuous-Time System Properties
• Let x(t), x1(t), and x2(t) be inputs to a continuous-

time linear system and let y(t), y1(t), and y2(t) be 
their corresponding outputs

Review

Quick test to identify 
some nonlinear systems?

• A linear system satisfies
Additivity: x1(t) + x2(t) Þ y1(t) + y2(t)
Homogeneity: a x(t) Þ a y(t) for any real/complex constant a

• For time-invariant system, shift of input signal by 
any real-valued t causes same shift in output 
signal, i.e. x(t - t) Þ y(t - t), for all t

8
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Why are LTI properties useful?
• An LTI system is uniquely characterized by its 

impulse response
Abstract away implementation details by providing an 
impulse response e.g. to hide intellectual property
Model unknown system (even though it might not be LTI)

• Fourier transform of the impulse response h(t) is 
the frequency response of the system Hfreq(f)

h(t)
x(t) y(t) = h(t) * x(t)Time domain

X(s) Y(s) = H(s) X(s)Laplace domain

Xfreq(f) Yfreq(f) = Hfreq(f) Xfreq(f)Frequency domain
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3 - 10

Is a System Linear or Not?
(•)2 y(t)x(t)• Example:  Squaring block

Does the squaring block pass all-zero input test?

Does the squaring block have homogeneity?
y(t)x(t)

(•)2
a x(t) yscaled(t)

Check to see if yscaled(t) = a y(t) for all constant values of a

y(t) = x2(t)

(a x(t))2 = a x2(t)

yscaled(t) = (a x(t))2

a2 x2(t) = a x2(t) only for a = 0 and a = 1 No
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3 - 11

Is a System Time-Invariant or Not
(•)2 y(t)x(t)• Example:  Squaring block

Does shift in time for input always give same shift on output?
y(t)x(t)

(•)2
x(t-t0) yshifted(t)

Check to see if yshifted(t) = y(t-t0) for all real values of t0

y(t) = x2(t)

(x(t-t0))2 = x2(t-t0)

yshifted(t) = (x(t-t0))2

x2(t-t0) = x2(t-t0) Yes

• All pointwise systems are time-invariant
Output at time t only depends on input at time t

11

Initial Conditions for Linear Systems
• Observe signals and systems starting at time t = 0

( )dtt
 ò ¥- •

x(t) y(t)

C0 is the initial 
condition w/r 
to observation

• Example: Integrator

• Observe integrator for t ³ 0

• System “at rest” is a necessary condition for linearity
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𝑥 𝑢 𝑑𝑢+𝐶$ = 𝑎	𝑦 𝑡 	𝐨𝐧𝐥𝐲	𝐢𝐟	𝑪𝟎 = 𝟎	

Does	𝑦%&'()* 𝑡 = 𝑎	𝑦 𝑡  for all values of 𝑎? 𝑦 𝑡 = $
$

#
𝑥 𝑢 𝑑𝑢+𝐶$

12



Lecture 3 Signals and Systems 4

Init. Cond. for Time-Invariant Systems?
• Observe system for t ³ 0-

Does yshifted(t)	=	y(t-t0)	for all real-valued t0 for 𝑡 ≥ 0! ?
Notation means to include any Dirac delta signals at origin
 

• Handouts for example systems
Time-Invariance for a (Shift) System Under Observation
 Time-Invariance for an Integrator
 

link

link 3 - 13

13

3 - 14

( ) )( Ttxty -=

Continuous-Time System Properties
• Ideal delay by T seconds

T
x(t) y(t)

0a
x(t) y(t) ( ) )(   0 txaty =

0a

x(t) y(t)

Role of initial 
conditions?

• Scale by a constant (a.k.a. gain block)
Two different ways to express it in a block diagram

Linear?  Time-invariant?

Linear?  Time-invariant?

14

( ) ( )å
-

=

-=
1

0
  

M

m
m Tmtxaty

Continuous-Time System Properties
• Tapped delay line M-1 delay blocks

( )tx
T TT

S

( )ty

0a 1-Ma2-Ma1a …

…
( )Ttx - Coefficients a0, a1, …aM-1

Role of initial conditions?

Impulse response h(t) 
lasts (M-1)T seconds:

h t( ) = am  δ t −m T( )
m=0

M−1

∑

Linear? Time-invariant?

y(t) = a0 x(t) + a1 x(t – T) + … + aM-1 x(t – (M-1)T) h(t)

T

(M-1)T
(a1) 

(a0) (aM-1) 

t…

15

Continuous-Time System Properties
• Amplitude Modulation (AM)

y(t) = A x(t) cos(2p fc t)
fc carrier frequency
A is a constant

Ax(t)

cos(2 p fc t)

y(t)

• AM radio if x(t) = 1 + ka m(t) where m(t) is audio to 
be broadcast and |ka m(t)| < 1 (see lecture 19)

Linear?  Time-invariant?

3 - 16

• Linearity: Does system pass all-zero input test?
y(t)x(t)

a x(t) yscaled(t)
y(t) = A x(t) cos(2p fc t)
yscaled(t) = A (a x(t)) cos(2p fc t)

yscaled(t) = a (A x(t) cos(2p fc t)) = a y(t) for all constants a  

16



Lecture 3 Signals and Systems 5

Discrete-Time Signals
• Conversion of signals

Sampling: Continuous-Time to Discrete-Time
Reconstruction: Discrete-Time to Continuous-Time

f0 = 440; 
fs = 24*f0; 
Ts = 1/fs;
tmax = 1/f0;
t = 0 : Ts : tmax; 
x = cos(2*pi*f0*t);
plot(t, x);
figure;
stem(t, x);

cosine at 440 Hz

t

sampling rate: 10560 Hz
sampling period:     94.7 µs

sampling

reconstruction

3 - 17

Review

17

Generating Discrete-Time Signals
• Many signals originate in continuous time

Example: Talking on cell phone
Sampled analog waveform

s(t)

t

Ts

Ts

Review

n

d[n]
1

1-1 2 3-2-3

3 - 18

• Sample continuous-time signal
at equally-spaced points in time
to obtain a sequence of numbers
s[n] = s(n Ts)  for  n Î {…, -1, 0, 1, …}
How to choose sampling period Ts ?

• Using a formula
Discrete-time impulse d[n] on right
How does d[n] look in continuous time?

18

Aliasing Example

3 - 19

• Sample 30 kHz sinusoid using 48 kHz sampling rate

19

3 - 20

Discrete-Time System Properties
• Let x[n], x1[n] and x2[n] be inputs to a linear system
• Let y[n], y1[n] and y2[n] be corresponding outputs
• A linear system satisfies

Additivity: x1[n] + x2[n] Þ y1[n] + y2[n]
Homogeneity: a x[n] Þ a y[n] for any real/complex constant a

• For a time-invariant system, a shift of input signal 
by any integer-valued m causes same shift in output 
signal, i.e. x[n - m] Þ y[n - m], for all m

• Role of initial conditions?

Review

20



Lecture 3 Signals and Systems 6

3 - 21

Why are LTI properties useful?
• An LTI system is uniquely characterized by its 

impulse response
Abstract away implementation details by providing an 
impulse response e.g. to hide intellectual property
Model an unknown system assumed to be LTI

• Fourier transform of the impulse response h[n] is 
the frequency response of the system Hfreq(w)

h[n]
x[n] y[n] = h[n] * x[n]Time domain

X(z) Y(z) = H(z) X(z)Z domain

Xfreq(w) Yfreq(w) = Hfreq(w) Xfreq(w)Frequency domain

21

å
-

=

-=
1

0
][ ][

M

m
m mnxany

Discrete-Time System Properties
• Tapped delay line in discrete time

M-1 delay blocks where
z-1 is delay of 1 sample:][nx

1-z

S

][ny

0a 1-Ma2-Ma1a …

… 1-z1-z
]1[ -nx

See also slide 5-4

Coefficients a0 a1…aM-1 
are impulse response: 

Role of initial 
conditions?

h[n]= am  δ[n−m]
m=0

M−1

∑

• Linear?
Time-invariant?

h[n]

n

-1 2 M-1 M

…
1

a0

a1

aM-1

22

3 - 23

Averaging Filter
• Continuous time

Averages input signal over 
previous T seconds

See Designing 
Averaging 

Filters Handout

Linear?  Time-invariant? Linear?  Time-invariant?
Hint: Tapped delay line with 
am = 1/M for m in [0, M-1]

• Discrete time
Averages current and 
previous M-1 samples

0 T t

h(t)
Impulse response:

n
h[n]

1-1 2 M-1 M

…

0

23

3 - 24

First-Order Difference Filter
• Continuous time

( )×
dt
df(t) y(t)

( ) ( ){ }

( ) ( )
t

ttftf

tf
dt
dty

t D
D--

=

=

®D 0
lim       

[ ] ( ) ( ){ }

( ) ( )

[ ] [ ]1
lim

0

--=

--
=

==

®

=

nfnf
T

TnTfnTf

tf
dt
dnTyny

s

sss

T

nTt
s

s

s

( )×
dt
d̂f[n] y[n]

See also slide 5-19

Linear?  Time-invariant? Linear?  Time-invariant?
Hint: Tapped delay line 
with a0 = 1 and a1 = -1

• Discrete time

24



Lecture 4 Sampling & Aliasing 1

Prof. Brian L. Evans and Mr. Dan Jacobellis
Dept. of Electrical and Computer Engineering

The University of Texas at Austin

Lecture 4                     http://www.ece.utexas.edu/~bevans/courses/realtime

ECE 445S Real-Time Digital Signal Processing Lab           Spring 2024

Sampling and Aliasing

1

4 - 2

Outline

w

G(w)

ws 2ws-2ws -ws

f(t)

t

Ts

Ts

g(t)• Sampling
Time domain views
Frequency domain view
Sampling theorem

• Conclusion

• Aliasing
Sinusoidal example
Bandpass sampling

2

Sampling
• Analog-to-Digital Conversion

Lowpass filter has
stopband frequency
less than ½ fs to reduce
aliasing at sampler output
(enforce sampling theorem)

4 - 3

Sampling – Time Domain View

• Sampling: Time-Domain Views

Analog 
Lowpass 
Filter

Quantizer

Sampler at 
sampling 
rate of fs

x(t)

Discrete-Time Output
Sampled Analog Output

x(t)

t

Ts

Ts
Models opening/closing of switch 
as multiplication by impulse train

HW 0.3

Today Lecture 8

3

Sampled Analog: Frequency Domain
• Sampling replicates spectrum of continuous-time 

signal at integer multiples of sampling frequency

w

G(w)

ws 2ws-2ws -ws
w

X(w)

2pfmax-2pfmax

maxmaxmax 2222 ifonly  and if gap fffff ss >Û-< ppp

Modulation
by cos(2 ws t)

Modulation
by cos(ws t)

Sampling – Frequency Domain View

4 - 4
HW 0.3

How to 
recover 
X(w)?

𝛿!! 𝑡 = $
"#$%

%

𝛿 𝑡 −𝑛𝑇& =
1
𝑇&

1+2	cos 𝜔&	𝑡 + 2	cos(2	𝜔&	𝑡 +⋯)

𝑔 𝑡 = 𝑥 𝑡 	𝛿!! 𝑡 =
1
𝑇&

𝑥 𝑡 +2	𝑥 𝑡 	cos 𝜔&	𝑡 + 2	𝑥 𝑡 	cos(2	𝜔&	𝑡 +⋯)

4



Lecture 4 Sampling & Aliasing 2

Sampling Theorem
• Continuous-time signal x(t) with frequencies no 

higher than fmax can be reconstructed from its 
samples x(n Ts) if samples taken at rate fs > 2 fmax

Nyquist rate = 2 fmax

Nyquist frequency =  fs / 2        maximum frequency captured

• What happens after sampling to fmax = ½ fs ? 
x(t) = cos(2 p fmax t)

y(t) = sin(2 p fmax t)

Sampling - Review

Aliasing

Highest DT 
Frequency

gives y[n] = sin(p n) = 0

• Unrealistic: x(t) has no frequency content above fmax 

5

Sample-and-Hold Reconstruction

• Sampling theorem gives condition for which 
reconstruction is possible but not how to do it

t

x[n]

1 2-1 3

4 5 6 n

0

…

…

x(t)^

0 Ts

1

t

p(t)

4 - 6

• Linear systems approaches for reconstruction
Ideal lowpass filter with two-sided sinc impulse response
No unique filtering approach for reconstruction in practice
Sample-and-hold approach below has efficient implementation

Ts0-Ts 2Ts 3Ts… …

Sampling - Reconstruction

6

Sampling and Oversampling Demo
• As sampling rate increases above Nyquist rate, 

sampled waveform looks more like original

Sampling

link

• Zero crossings: frequency content of a sinusoid
Distance between two zero

crossings: one half period

• DSP First, 2nd ed., ch. 4, sampling/interpolation

With sampling theorem satisfied,
sampled sinusoid crosses zero
right number of times per period

In some applications, frequency
content matters not shape of time-domain waveform

t

7

Aliasing: Sinusoidal Example
• Sample x(t) at fs = 48 kHz

x(t) = cos(2 p f0 t)  where f0 = 30 kHz

Aliasing 

(½) (½) 

f

X(f)

6 kHz12 18 24 30 36 42 48-6-12-18-24-30-36-42-48

(½ fs) (½fs) 

f

Y(f)

6 kHz12 18 24 30 36 42 48-6-12-18-24-30-36-42-48

(½fs) (½fs) 

Reconstruction uses -½ fs < f < ½ fs

x(t) y(t)

fs

See slides 3-19 & 4-4

Y(f) has X(f) plus replicas of X(f) at offsets of multiples of fs

Effective freq. 18 kHz

8



Lecture 4 Sampling & Aliasing 3

Increasing Sampling Rates
• Consider adding speech clip to an audio track

Speech signal s[n] is sampled at 8 kHz
Audio signal r[m] is sampled at 48 kHz

Digital to 
Analog 

Converter

Analog to 
Digital 

Converter

8000 Hz 48000 Hz

s[n]
+

r[m]

FIR
Filter

6
s[n]

+

r[m]

Upsampling Interpolation

• Efficient approach: Interpolate in discrete time

• Inefficient approach: Interpolate in continuous time

4 - 9

9

Increasing Sampling Rates
• Upsampling by L

Copies input sample to output and appends L-1 zeros
Output has L times as many samples as input samples
  FIR

Filter
6

x[n]

Upsampling Interpolation

v[m] y[m]• Audio Demonstration
Plots/plays x[n] which is a
600 Hz cosine sampled at 8000 Hz
Plots/plays v[m]: spectrum is spectrum of x[n] plus L-1 replicas
Interpolation filter fills in inserted zero values in time domain 
and attenuates replicas in frequency domain due to upsampling
Rectangular, triangular and truncated sinc FIR filters used

4 - 10

10

4 - 11

Bandpass Sampling
• Uses aliasing to our benefit
• Reduce sampling rate

Bandwidth f2 – f1

Sampling rate fs > f2 – f1

For replica to be centered
at origin after sampling
fcenter = ½(f1 + f2) = k fs

Ideal Bandpass Spectrum

f1 f2 f–f2 –f1

Sample at fs

Sampled Ideal Bandpass Spectrum

f1 f2 f–f2 –f1

Lowpass filter to 
extract baseband

Aliasing

• Practical issues
Sampling clock tolerance:  fcenter = k fs

Bandpass and lowpass filter designs
Effects of noise

11

Bandpass Sampling Example

Ideal Bandpass Spectrum S(f)

f1 f2 f–f2 –f1

Bandpass sampling
Bandwidth f2 – f1 
fs > f2 – f1

fcenter = ½(f1 + f2) = k fs

Extract IEEE 802.11a
Wi-Fi 2.4 GHz Channel 1

f1 = 2.401 GHz
f2 = 2.423 GHz
Bandwidth = 0.022 GHz
fc = 2.412 GHz

Sampling theorem
fs > 2 f2 e.g.  fs = 4.86 GHz

Bandpass sampling
fs = 0.036 GHz with k = 67
135x more efficient

Aliasing

v(t)s(t)

Sample 
at rate fs

Bandpass 
Filter

r(t) Lowpass 
Filter

m̂(t)

12



Lecture 4 Sampling & Aliasing 4

Software Defined Radio
• Worldwide unlicensed microwave band at 2.4 GHz

Any service can use this band but must follow regulations on 
transmit power, out-of-band leakage, etc.
Services include Bluetooth, Wi-Fi, wireless mice/keyboards, 
ZigBee, baby monitors, wireless microphones/speakers

Aliasing

f

0-f2 -f1-fc f1 f2fc

• Extract band
for processing
f1 = 2.4 GHz
f2 = 2.5 GHz
BW = 0.1 GHz
Bandpass sampling 

with fs = 0.2 GHz

f

0
BW- BW

25x more 
efficient vs. 
fs = 5 GHz

13

4 - 14

Conclusion
• Sampling replicates spectrum of continuous-time 

signal at offsets that are integer multiples of 
sampling frequency

• Sampling theorem gives necessary condition to 
reconstruct the continuous-time signal from its 
samples, but does not say how to do it

• Aliasing occurs due to sampling 
Noise present at all frequencies
A/D converter design tradeoffs to control impact of aliasing

• Bandpass sampling reduces sampling rate 
significantly by using aliasing to our benefit

14

Rolling Shutter Cameras
• Smart phone and point-and-shoot cameras

No (global) hardware shutter to reduce cost, size, weight
Light continuously impinges on sensor array
Artifacts due to relative motion between objects and camera

Figure from a tutorial by Forssen et al. at the 2012 
IEEE Conf. on Computer Vision & Pattern Recognition

Optional

4 - 15

15

• Plucked guitar strings – global shutter camera
String vibration is (correctly) damped sinusoid vs. time

Rolling Shutter Artifacts

C. Jia and B. L. Evans, “Probabilistic 3-D Motion Estimation for Rolling 
Shutter Video Rectification from Visual and Inertial Measurements,” 
IEEE Multimedia Signal Proc. Workshop, 2012.  Link to article.  

Warped frame Compensated using 
gyroscope readings 

(i.e. camera rotation) 
and video features

video

video
• “Guitar Oscillations Captured with iPhone 4”

Rolling shutter (sampling) artifacts but not aliasing effects

• Fast camera motion
Pan camera fast left/right
Pole wobbles and bends
Building skewed

Optional

16



Lecture 5 FIR Filters 1

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering

The University of Texas at Austin

ECE 445S Real-Time Digital Signal Processing Lab    Spring 2024

Lecture 5                     http://www.ece.utexas.edu/~bevans/courses/realtime

Finite Impulse Response Filters

1

5 - 2

Outline
• Many Roles for Filters

• Convolution
• Z-transforms

• Linear time-invariant systems
Transfer functions
Frequency responses

• Finite impulse response (FIR) filters
Filter design
Cascading FIR filters demonstration
Linear phase

2

5 - 3

Many Roles for Filters
• Noise removal

Bandpass filtering to suppress
out-of-band noise (slide 1-5) w

wc- wc

Bandpass Spectrum In Noise

LPF

HPF

x0[m]

x1[m]

x[m]

r[m]x[m] System 
Model 
(Filter)

Equalizer

Goal is to make 
cascade all-pass

• Spectral analysis
Two-channel filter bank on right
Used in interpolation (slide 13-9)

• Spectral shaping
Data conversion (lectures 10/11)
Equalization (slides 6-15 & 16-7)
Carrier frequency/phase recovery
Timing recovery (slide 13-17 & 16-10)

3

5 - 4

Spectral Analysis
• Analysis: decompose signal into frequency bands

Graphic equalizer: apply separate gain to each band
Compression: spend more bits on more important bands

• Synthesis: combine bands into one signal
• Example: Two-band filter bank / wavelet

LPF – averaging:                   x0[m] = ½ x[m] + ½ x[m-1]
HPF – first-order difference: x1[m] = ½ x[m] - ½ x[m-1]
Exact reconstruction of x[m] is possible through synthesis

LPF

HPF

x0[m]

x1[m]

x[m]

Analysis

x0[m]

x1[m]

x[m]
+

Synthesis

4



Lecture 5 FIR Filters 2

5 - 5

y[n]= h[0]x[n]+ h[1]x[n−1]+!+ h[M −1]x[n− (M −1)]

Finite Impulse Response (FIR) Filter
• Same as discrete-time tapped delay line (slide 3-22)

Discrete-time 
convolution

z-1 z-1 z-1…

…

x[n]

S y[n]

h[0] h[1] h[2] h[M-1]

x[n-1]

• Impulse response h[n] has finite extent n = 0,…, M-1

y[n]=  h[m] x[n−m]
m=0

M−1

∑

5

5 - 6

Discrete-time Convolution Derivation
• Output y[n] for input x[n]

y[n] = h[0] x[n] + h[1] x[n-1]

       = ( x[n] + x[n-1] ) / 2
n

h[n]

2
1

Averaging filter 
impulse response

0 1 2 3
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Review

• Any signal can be decomposed
into sum of discrete impulses

• Apply linearity properties

• Apply shift-invariance

• Apply change of variables

6

5 - 7

Convolution Comparison
• Continuous-time convolution of x(t) and h(t)

For each t, compute different (possibly) infinite integral

( ) ( ) ( ) ( ) ( ) ( ) ( )òò
¥

¥-

¥

¥-
-=-=*= llllll dtxhdthxthtxty     

y n[ ] =  x[n]*h[n]= x m[ ]
m=−∞

∞

∑  h n−m[ ] = h m[ ]
m=−∞

∞

∑  x n−m[ ]

Review

• In discrete-time, replace integral with summation

For each n, compute different (possibly) infinite summation

• LTI system
Characterized uniquely by its impulse response
Its output is convolution of the input and its impulse response

7

Convolution Demos
• Signal Processing First Matlab Demonstrations

Continuous-Time  http://dspfirst.gatech.edu/matlab/#cconvdemo 
Discrete-Time       http://dspfirst.gatech.edu/matlab/#dconvdemo

t

1
x(t)

0 Ts 2Ts

Ts

t

1
h(t)

0 Ts

* = y(t)

Ts
t

What about convolving two pulses of different lengths? See Appendix E

• Convolving two signals of finite lengths
Continuous-Time  y(t) = x(t) * h(t)       Ly = Lx + Lh

Discrete-Time       y[n] = x[n] * h[n]     Ly = Lx + Lh − 1

• Convolving two causal signals?

8



Lecture 5 FIR Filters 3

5 - 9

Z-transform Definition
• For discrete-time systems, z-transforms play same 

role as Laplace transforms do in continuous-time

[ ]å
¥

-¥=

-=
n

nznhzH   )(

Bilateral Forward z-transform

ò +-=
R

n dzzzH
j

nh 1 )( 
  2

1][
p

Bilateral Inverse z-transform

Review

Inverse transform requires contour integration over closed 
contour (region) R

Contour integration covered in a Complex Analysis course

• Compute forward and inverse transforms using 
transform pairs and properties

9

5 - 10

Three Common Z-transform Pairs
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Finite extent sequences Infinite extent sequence

Review

Region of convergence: entire 
z-plane

• h[n] = d[n-1]

Region of convergence: entire 
z-plane except z = 0

h[n-1] Û z-1 H(z)

Region of convergence for 
summation: |z| > |a|

|z| > |a| is the complement 
of a disk (see next slide)

• h[n] = an u[n]• h[n] = d[n]

10

5 - 11

Region of Convergence
• Region of the complex z-

plane for which forward z-
transform converges

Im{z}

Re{z}
Entire 
plane

Im{z}

Re{z}
Complement 
of a disk

Im{z}

Re{z}
Disk

Im{z}

Re{z}

Intersection 
of a disk and 
complement 
of a disk

• Four possibilities (z = 0 is 
special case that may or 
may not be included)

Review

11

5 - 12

System Transfer Function
• Z-transform of system’s impulse response

Impulse response uniquely represents an LTI system

[ ] [ ] )1(1
1

0
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=

-
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- -+++=== åå M
M

n

n

n

n zMhzhhznhznhzH ...
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=

-
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-+++=== å Mjj
M

n

nj
ez

j eMhehhenhzHeH j ...

Review

• Example: FIR filter with M coefficients (slide 5-5)

Transfer function H(z) is polynomial in powers of z -1
Region of convergence (ROC) is entire z-plane except z = 0

• Since ROC includes unit circle, substitute z = e j w 
into transfer function to obtain frequency response

12
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5 - 13

Example: Ideal Delay
Continuous Time Discrete Time

( ) )( Ttxty -=

T
x(t) y(t)

( ) )( Ttth -= d

( ) TjeH   W-=W

]1[][ -= nxny

1-z
x[n] y[n]

]1[][ -= nnh d

( ) ww  jeH -=

( ) 1 || =WH

( ) TH   W-=WÐ

( ) 1 || =wH

( ) ww  -=ÐH

LTI delay by T seconds

Impulse response

Frequency response

LTI delay by 1 sample

Impulse response

Frequency response

13

5 - 14

Phase Shift in Time Domain
Continuous Time Discrete Time

T
x(t) y(t)

LTI delay by T seconds

Sinusoidal input signal

Sinusoidal output signal

LTI delay by N samples

Sinusoidal input signal

Sinusoidal output signal

x[n] y[n]
𝑧!"

𝑦 𝑡 = 𝑥(𝑡 −𝑇) 𝑦[𝑛] = 𝑥[𝑛−𝑁]

𝑥(𝑡) = cos 2𝜋𝑓!𝑡 𝑥 n = cos 𝜔!𝑛

𝑦(𝑡) = cos 2𝜋𝑓! 𝑡 −𝑇

𝑦(𝑡) = cos 2𝜋𝑓!𝑡 −2𝜋𝑓!𝑇

𝑦[𝑛] = cos 𝜔! 𝑛−𝑁

𝑦[𝑛] = cos 𝜔!𝑛−𝜔!𝑁

Phase shift

14

Linear Time-Invariant Systems
• Fundamental Theorem of Linear Systems

If a complex sinusoid were input into an LTI system, then 
output would be input scaled by frequency response of LTI 
system (evaluated at complex sinusoidal frequency)

Scaling may attenuate complex sinusoid and shift it in phase 
(complex sinusoids are eigenfunctions of LTI systems)

Continuous-time example: see handout F (lowpass RC filter)
Discrete-time derivation: Input x[n] = e j w n  into LTI system
y[n]= e j  ω  n−m( )h[m]

m=−∞

∞

∑

H(w)x[n] * h[n]

H(w) is frequency response (DT Fourier transform of h[n])

= e j  ω  n h[m] e− j  ω  m

m=−∞

∞

∑ = e j  ω  nH ω( )

15

5 - 16

Frequency Response
• Continuous-time

LTI system

( ) ( )
( ) ( )( )ww

wwww ww

  

  )(   )( 

    cos  2

    
jj

njeHjjnjeHjj

eHω neH

eeeHeeeH
jj

Ð+

=+ Ð-Ð-

) cos(2    nee njnj www =+-

][nh
nje   w ( ) njj eeH      ww

( )n cos w ( ) ( )( )ww w    cos  jj eHneH Ð+

)(th
tje   W ( ) tjejH     WW

( ) ( )( )WÐ+WW jHtjH  cos  ( )t cos W

( ) ( ) ( ) ( ) =+=+ --- njjnjjnjjnjj eeHeeHeeHeeH       *          wwwwwwww

• Discrete-time
LTI system

• For real-valued impulse response H(e -j ω) = H*(e j ω)
Input
Output

16



Lecture 5 FIR Filters 5

5 - 17

Frequency Response
• System response to complex sinusoid e j w n for all 

possible frequencies w in radians per sample:

w

|H(w)|

wp wstop-wstop -wp
passband

stopband stopband

w

Ð|H(w)|
Linear
phase

delay)()( kH
d
ddelay =Ð-= w
w

w

Lowpass filter: passes low and attenuates high frequencies
Linear phase / constant group delay: FIR filter whose impulse 

response is symmetric or anti-symmetric about its midpoint

• Not all FIR filters exhibit linear phase

17

5 - 18

FIR Filter Design
• Specify desired piecewise 

constant magnitude resp.

Apass passband tolerance (dB)
 Astop stopband attenuation (dB)

AdB = 20 log10(A)

0

Astop

Apass/2

w

wpass wstop

Passband Stopband
Transition band

p

Lowpass Specification

forbidden

forbidden

forbidden

Achtung!

-Apass/2

dB

• Lowpass filter example
w Î [0, wpass], magdB Î [-Apass/2, Apass/2]
w Î [wstop, p], magdB ≤ Astop

Transition band unspecified but 
should not amplify

• Symmetric (linear phase) 
FIR filter design methods
Windowing
Least squares
Remez (Parks-McClellan)

18

5 - 19

Example: Two-Tap Averaging Filter

]1[
2
1][

2
1][ -+= nxnxny

]1[
2
1][

2
1][ -+= nnnh dd

( ) ww  

2
1

2
1 jeH -+=

( ) ÷÷
ø

ö
çç
è

æ
+=

-+- www
w 2

1
2
1

2
1

2
1 

jjj
eeeH

( ) www 2
1

 
2

cos
j

eH
-

÷
ø
ö

ç
è
æ=

• Input-output relationship

n

h[n] Two-tap averaging filter

½ 

2 31

z-1x[n]

S y[n]

h[0] h[1]

x[n-1]

• Impulse response

• Frequency response

magnitude
∠H (ω) = − 1

2
ω

linear phase

19

5 - 20

Example: First-Order Difference

]1[
2
1][

2
1][ --= nxnxny

]1[
2
1][

2
1][ --= nnnh dd

( ) ww  

2
1

2
1 jeH --=

( ) ÷÷
ø

ö
çç
è

æ
-=

-+- www
w 2

1
2
1

2
1

2
1 

jjj
eeeH

H ω( ) = sin ω
2

⎛

⎝
⎜

⎞

⎠
⎟  j  e

− j1
2
ω

n

h[n] First-order difference

½

2 3- ½

• Input-output relationship

• Impulse response

• Frequency response

amplitude

= sin ω
2

⎛

⎝
⎜

⎞

⎠
⎟  e

jπ
2  e

− j1
2
ω
= sin ω

2
⎛

⎝
⎜

⎞

⎠
⎟   e

j π
2
−
1
2
ω

⎛

⎝
⎜

⎞

⎠
⎟

generalized 
linear phase∠H (ω) = π

2
−
1
2
ω

20



Lecture 5 FIR Filters 6

Complementary Frequency Responses

Averaging filter (lowpass) in white
First-order difference filter (highpass) in yellow/blue

First-order difference has p phase shift at zero mag response frequency

Magnitude 
response

Phase 
response

21

5 - 22

Cascading FIR Filters Demo
• Five-tap discrete-time averaging FIR filter with 

input x[n] and output y[n]

Standard averaging filtering scaled by 5
Lowpass filter (smooth/blur input signal)
Impulse response of {1, 1, 1, 1, 1} removes multiplications

[ ] ]4[]3[]2[]1[][ -+-+-+-+= nxnxnxnxnxny

[ ] ]1[][ --= nxnxny

n

h[n] First-order difference 
impulse response

1

-1
2 3

• First-order difference FIR filter

Highpass filter (sharpens
input signal) 

Impulse response is {1, -1}
removes multiplications

22

Cascading FIR Filters Demo

Apply 1-D five-tap filter across each row to produce 256 x 260 image
and then apply the same 1-D five-tap filter down each column of 256 x 
260 image to produce a 260 x 260 image 

23

5 - 24

Cascading FIR Filters Demo
• DSP First, 2nd ed, ch. 6, cascading FIR Filters

http://dspfirst.gatech.edu/chapters/06firfreq/demos/blockd/index.html

From lowpass filter to highpass filter:
  original image ® blurred image ® sharpened/blurred image
From highpass to lowpass filter:
  original image ® sharpened image ® blurred/sharpened image

• Frequencies that are zeroed out can never be 
recovered (e.g. DC is zeroed out by highpass filter)

• Order of two LTI systems in cascade can be switched 
under the assumption that computations are 
performed in exact precision

24

http://dspfirst.gatech.edu/chapters/06firfreq/demos/blockd/index.html
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5 - 25

Cascading FIR Filters Demo
• Input image is 256 x 256 matrix

Each pixel represented by eight-bit number in [0, 255]
0 is black and 255 is white for monitor display

• Each filter applied along row then column
Averaging filter adds five numbers to create output pixel 

which requires 3 extra bits (worst case) for each pass
Difference filter subtracts two numbers to create output pixel 

which requires 1 extra bit (worst case) for each pass
• Full output precision 16 bits/pixel is maintained

Demonstration uses double-precision floating-point data and 
arithmetic (53 bits of mantissa + sign; 11 bits for exponent)

25

5 - 26

Cascading FIR Filters Demo
• How to compare images pixel by pixel?

Input image is 256 x 256 and output image is 261 x 261

• Unit sample delay example
If observing output y[n], how to 
recover input x[n] exactly?

1-z
x[n] y[n]

n

x[n]

1 

21

2 
3 

…

0

n

y[n]

1 

31

2 
3 

…

0 2

• FIR filters in demo have constant group delay
Remove first 2 rows/columns and last 3 rows/columns

26

5 - 27

Importance of Linear Phase
• Speech signals

Use phase differences in 
arrival to locate speaker

Once speaker is located, ears 
are relatively insensitive to 
phase distortion in speech 
from that speaker

Used in speech compression 
(in cell phones)

• Linear phase crucial
Audio
Images
Communication systems

• Linear phase response 
Need FIR filters
Realizable IIR filters 

cannot achieve linear 
phase response over all 
frequencies

Dd = c Dt

27

Importance of Linear Phase

• For images, vital visual information in phase

5 - 28

Take FFT of image
Set phase to zero
Take inverse FFT

(which is real-valued)

Take FFT of image
Set magnitude to one

Take inverse FFT
Keep imaginary part

Take FFT of image
Set magnitude to one

Take inverse FFT
Keep real part

code

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/05_FIR_Filters/Original%20Image.tif

• Original image is from Matlab  

28
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Takeaways
• Linear time-invariant systems

Uniquely defined by its impulse response
Do not create new frequencies
System must be initially “at rest” (zero initial conditions)

• Some FIR filters have linear phase
FIR coefficients (impulse response) must be either even 
symmetric or odd symmetric about its midpoint
Constant group delay in samples for all input frequencies

• Useful discrete-time FIR filters
Averaging: Lowpass, linear phase
Make all coefficients 1 for efficient multiplier-free version
First-order difference: highpass, linear phase 5 - 29

29
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Infinite Impulse Response Filters

1

6 - 2

Outline
• IIR biquad filter structures S S

XO
O X

• Stability
Bounded-Input Bounded Output
Equalization Example

• IIR filter design

• Conclusion

• IIR filter implementation

• Filter design demos

2

6 - 3

Discrete-Time IIR Filters
• Infinite Impulse Response (IIR) filter has impulse 

response of infinite duration, e.g.

[ ] ][
2
1 nunh

n

÷
ø
ö

ç
è
æ=

Z

H (z) = Y (z)
X (z)

 y[n]− 1
2
y[n−1]= x[n] 

Recursively compute output y[n], n ≥ 0, given y[-1] and x[n]

Y (z) = 1

1− 1
2
z−1
X (z)

• How to implement the IIR filter by computer?
Let x[n] be the input signal and y[n] the output signal,

H (z) =  1
2
⎛

⎝
⎜
⎞

⎠
⎟

n

n=0

∞

∑ z−n =  1
2
z−1⎛

⎝
⎜

⎞

⎠
⎟

n

n=0

∞

∑ =1+ 1
2
z−1 +   . . .  = 1

1− 1
2
z−1

Y (z) = H (z)X (z) Y (z)− 1
2

 z−1  Y (z) = X (z)  y[n]= 1
2
y[n−1]+ x[n]

IIR Biquad Filter Structures

3

6 - 4

Many Equivalent Representations
• Difference equation

][]2[
8
1]1[

2
1][ nxnynyny +-+-=

Sx[n] y[n]
Unit

Delay

Unit
Delay

1/2

1/8

y[n-1]

y[n-2]

21

21

8
1

2
11

1
)(
)()(

)()(
8
1)(

2
1)(

--

--

--
==

++=

zzzX
zYzH

zXzYzzYzzY

Poles at –0.183 and +0.683 

Recursive computation 
needs y[-1] and y[-2]

For the filter to be LTI,
y[-1] = 0 and y[-2] = 0

• Transfer function
Assumes LTI system

• Block diagram 
representation

Second-order filter section 
(a.k.a. biquad) with 2 poles 
and 0 non-trivial zeros

IIR Biquad Filter Structures

4
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IIR Biquad Block Diagrams
• Biquad: short for biquadratic

Transfer function is ratio of two quadratic polynomials

Sx[n]
Unit

Delay

Unit
Delay

v[n-1]

v[n-2]

v[n]

b2

a1

a2

b1

S y[n]b0

• Express above as cascade of two familiar filters
All-pole 
IIR Filter

x[n]
v[n]

FIR 
Filter

y[n]

• Two poles, and zero, one or two non-trivial zeros

6 - 5

all-pole 
section 
from 
previous 
slide

Feedback 
paths

Feedforward 
paths

IIR Biquad Filter Structures

5

6 - 6

IIR Biquad Transfer Function
• Assume LTI system (zero initial conditions)

2
2

1
1

2
2

1
10

1)(
)(

)(
)(

)(
)( )( --

--

--
++

=÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
==

zaza
zbzbb

zV
zY

zX
zV

zX
zYzH

All-pole 
IIR Filter

X(z) V(z) FIR Filter Y(z)

H1(z) H2(z)

V(z) = H1(z) X(z) and Y(z) = H2(z) V(z)
Y(z) = H1(z) H2(z) X(z) and hence H(z) = H1(z) H2(z) 

• Overall transfer function

Real a1, a2 : poles are conjugate symmetric (a ± jb ) or real
Real b0, b1, b2 : zeros are conjugate symmetric or real

IIR Biquad Filter Structures

6

IIR Biquad Difference Equation
• Derive difference equation from transfer function

Take inverse z-transform of both sides:

Collect terms to isolate y[n] on the left-hand side:

• How to convert biquad to a first-order IIR section?

IIR Biquad Filter Structures

How many multiplications and additions per output sample?

7

First-Order Frequency Response
• Pole at p0 = 0.9 and zero at z0 = 0.0

Angle of pole near unit circle 
indicates frequency at which peak 
occurs in magnitude response
Angle of zero on or near unit circle 
indicates frequency at which valley 
occurs in magnitude response

6 - 8

IIR Biquad Filter Structures

8
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Impact of Zeros on Magnitude Resp.

6 - 9

𝐻 𝑒!" = 𝑒!" − 𝑧# 𝑒!" − 𝑧$ 𝑒!" − 𝑧% 	⋯

9

6 - 10

IIR Biquad Frequency Responses
• Magnitude response

Zeros z0 & z1 and poles p0 & p1

|a – b| is distance between
complex numbers a and b
|ejw – p0| is distance from point
on unit circle ejw and pole p0

( )( )
( )( )10

10 )(
pzpz
zzzzCzH

--
--

=

( )( )
( )( )10

10

 
  )(

pepe
zezeCeH jj

jj
j

--
--

= ww

ww
w

10

10

 

 
  )(

pepe

zeze
CeH

jj

jj
j

--

--
=

ww

ww
w

IIR Biquad Filter Structures

10

Frequency Response?

zeroAngle = 15*pi/16;
z0 = exp(j*zeroAngle);
z1 = exp(-j*zeroAngle);
numer = [1 -(z0+z1) z0*z1];

r = 0.9;
poleAngle = pi/16;
p0 = r * exp(j*poleAngle);
p1 = r * exp(-j*poleAngle);
denom = [1 -(p0+p1) p0*p1];

%%% Normalize the DC response
%%% to 1 in linear units by
%%% setting H(z) evaluated
%%% at z = 1 to be 1
C = (denom * [1 1 1]’) / 
(numer * [1 1 1]');

freqz(C*numer, denom);

Re(z)

Im(z)

XO
O X Re(z)

Im(z)

O

O
X

X

zeroAngle = pi/4;
z0 = exp(j*zeroAngle);
z1 = exp(-j*zeroAngle);
numer = [1 -(z0+z1) z0*z1];

r = 0.9;
poleAngle = pi/4;
p0 = r * exp(j*poleAngle);
p1 = r * exp(-j*poleAngle);
denom = [1 -(p0+p1) p0*p1];

%%% Normalize the DC response
%%% to 1 in linear units by
%%% setting H(z) evaluated
%%% at z = 1 to be 1
C = (denom * [1 1 1]') / 
(numer * [1 1 1]');

freqz(C*numer, denom);

Re(z)

Im(z)
O

O

X

X

zeroAngle = pi/4;
rz = 1/0.8;
z0 = rz*exp(j*zeroAngle);
z1 = rz*exp(-j*zeroAngle);
numer = [1 -(z0+z1) z0*z1];

r = 1/rz;
poleAngle = pi/4;
p0 = r * exp(j*poleAngle);
p1 = r * exp(-j*poleAngle);
denom = [1 -(p0+p1) p0*p1];

%%% Normalize the DC response
%%% to 1 in linear units by
%%% setting H(z) evaluated
%%% at z = 1 to be 1
C = (denom * [1 1 1]') / 
(numer * [1 1 1]');

freqz(C*numer, denom);

Lowpass, highpass, bandpass, bandstop, allpass, notch?

Poles have radius r 
Zeros have radius 1/r

Zeros are on 
the unit circle

handout

11

6 - 12

Demonstrations
• DSP First, 2nd ed., ch. 10

IIR filtering tutorial (Link)
Connection between the Z and frequency domains (Link) 
Time/frequency/z domain movies for IIR Filters (Link)

link

IIR filter with one pole 
and a zero at the origin

Movement of Poles

IIR Biquad Filter Structures

12

http://dspfirst.gatech.edu/chapters/08feedbac/demos/recur/index.html
http://dspfirst.gatech.edu/chapters/08feedbac/demos/z2freq/index.html
http://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
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6 - 13

Stability
• A discrete-time LTI system is bounded-input 

bounded-output (BIBO) stable if for any bounded 
input x[n] such that | x[n] | £ B1 < ¥, then the filter 
response y[n] is also bounded | y[n] | £ B2 < ¥

¥<å
¥

-¥=

  |][| nh
n handout

• Proposition: A discrete-time filter with an impulse 
response of h[n] is BIBO stable if and only if

Every finite impulse response LTI system (even after 
implementation) is BIBO stable

A causal infinite impulse response LTI system is BIBO stable 
if and only if its poles lie inside the unit circle

Stability

13

6 - 14

[ ] az
za

nua
Z

n >
-

« - for        
 1

1 1

BIBO Stability
• Rule #1: For a causal sequence, poles are inside the 

unit circle (applies to z-transform functions that 
are ratios of two polynomials)  OR

• Rule #2: Unit circle is in the region of convergence. 
(In continuous-time, imaginary axis would be in 
region of convergence of Laplace transform.)

• Example:

Stable if |a| < 1 by rule #1 or equivalently
Stable if |a| < 1 by rule #2 because |z|>|a| and |a|<1

Stability

14

Equalization
• Design equalizer to compensate frequency distortion

x[m] System 
Model 
(Filter)

LTI 

h[m] 

y[m]
Equalizer

LTI 

g[m] 

Applications: Audio, image and communication systems
Goal: Make cascade all-pass:

• Example: H(z) is an FIR filter
Re(z)

Im(z)

Zeros of H(z) become poles of G(z)

Stability issues? O

O

O

O

O

X

X

X

X

X

all-pass

notch

notch

cancellation

cancellation

Stability

15

IIR Filter Design
• Classical IIR filter design algorithms

Design Method Passband Stopband
Butterworth Monotonic Monotonic
Chebyshev type I Monotonic Ripples
Chebyshev type II Ripples Monotonic
Elliptic Ripples Ripples

• Manual placement of poles and zeros

Cascade of Biquads

• Automated adaptation of pole and zero locations
Center frequency of bandpass resonator HW 1.1(d) & 2.1(d)
Notch filter with parameterized notch frequency HW 3.1(c)

16
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IIR Filter Implementation
• Cascade of biquads for N poles

N even: N/2 conjugate pairs of poles. Cascade of N/2 biquads.
N odd: One real pole and (N-1)/2 conjugate pairs of poles.  

Cascade of first-order filter (real pole) and (N-1)/2 biquads
For M biquads, M! orderings of conjugate pairs of poles and 

for each ordering, M! orderings of conjugate pairs of zeros
Exhaustive search: simulate all combinations to pick best one
Quick pairing: Order biquads in ascending order of quality 

factors (see next slide) and for each each biquad, choose the 
conjugate zero pair that is closest in Euclidean distance

• Single section (single difference equation)
Could make a BIBO stable filter become BIBO unstable

Cascade of Biquads

17

Quality Factors for Digital Biquads

• For poles at a ± j b = r e ± j q, where                    
is pole radius (r < 1 for stability), with y = –2 a:

¥<£
-

-+
= Q

r
yr

Q
2
1     where

)1( 2
)1(

2

222

 22 bar +=

2

2

2

2

1
1 

2
1

1
1 

2
1

b
b

r
rQ

-
+

=
-
+

=

Filter design programs 
use r as approximation 

of quality factor

Real poles: b = 0 and -1 < a < 1, so r = |a| and y = ±2 a and 
Q = ½ (impulse response is C0 an u[n] + C1 n a n u[n])

Poles on unit circle: r = 1 so Q = ¥ (oscillatory response)
Imaginary poles: a = 0 so

r = |b| and y = 0, and
Processors with 16-bit x 16-bit multipliers

and 40-bit accumulators: Qmax » 40

Cascade of Biquads

• Measures sensitivity in pole locations to perturbations

18

6 - 19

Quality Factors for Analog Biquads
• Second-order filter section

Conjugate symmetric poles a ± j b, where a < 0
With no zeros, impulse response is
  which is pure decay when b = 0 and pure sinusoid when a = 0

Q =
a2 + b2

−2a

)      cos( )(  q+= tbeCth ta

• Quality factor: measures sensitivity of
pole locations to perturbations
Real poles: b = 0 so Q = ½ (exponential decay response)
Imaginary poles: a = 0 so Q = ¥ (oscillatory response)
Maximum Q values: 25 for board-level RC circuits, 40 for 

switched capacitor designs, and 80 for analog IC designs
• Classical designs have biquads with high Q factors

Cascade of Biquads

19

6 - 20

IIR Filter as Single Section
• IIR filters have rational transfer functions

M
M

N
N
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m

m
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   ][ ][     ][
01

knxbmnyany
N

k
k

M

m
m -+-= åå

==

• Direct form realization
Dot product of vector of N +1

coefficients and vector of current
input and previous N inputs (FIR section)

Dot product of vector of M coefficients and vector of previous 
M outputs (“FIR” filtering of previous output values)

Computation: M + N + 1 multiply-accumulates (MACs)
Memory: M + N words for previous inputs/outputs and

M + N + 1 words for coefficients

Common IIR Filter Structures

20
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6 - 21

IIR Filter as Single Section

å

å

=

=

-

+-=

M

m
m

N

k
k

mnya

knxbny

1

0

][           

  ][ ][

S
x[n] y[n]

y[n-M]

x[n-1]

x[n-2] b2

b1

b0

Unit
Delay

Unit
Delay

Unit
Delay

x[n-N] bN

Feed-
forward

a1

a2

y[n-1]

y[n-2]

Unit
Delay

Unit
Delay

Unit
Delay

aM

Feedback

M and N may 
be different

Full Precision 
Wordlength of 
y[0] is 2 words. 
Wordlength of 
y[n] increases 

with n for n > 0.

Common IIR Filter Structures

21

Stability As Single Section

6 - 22

• IIR filter design to meet a specification
Manual or automatic placement of poles and zeros
Poles are inside unit circle for stability

• Factored transfer function in poles, zeros and gain
Expanded to obtain coefficients for difference equation
Expansion for feedback coefficients can lead to instability

• Second-order example: zeros z0 & z1, poles p0 & p1

Each addition and multiplication in 64-bit floating point

worst-case loss of one bit
worst-case loss of 53 bits

22

Stability As Single Section

6 - 23

23

MATLAB Filter Designer Demo #1
• Filter design/analysis
• Lowpass filter design 

specification (all demos)
fpass = 9600 Hz
fstop = 12000 Hz
fsampling = 48000 Hz
Apass = 1 dB 
Astop = 80 dB 

• Under analysis menu
Show magnitude, phase and 

group delay responses

• FIR filter – equiripple
Also called Remez Exchange or 

Parks-McClellan design
Minimum order is 50
Change Wstop to 80
Order 100 gives Astop 100 dB
Order 200 gives Astop 175 dB
Order 300 does not converge –

how to get higher order filter?
• FIR filter – Kaiser window

Minimum order 101 meets spec

Cascade of Biquads

24



Lecture 6 IIR Filters 7

MATLAB Filter Designer Demo #2
• IIR filter – elliptic

Use second-order sections
Filter order of 8 meets spec
Achieved Astop of ~80 dB 
Poles/zeros separated in angle 
• Zeros on or near unit circle 

indicate stopband 
• Poles near unit circle indicate 

passband 
• Two poles very close to unit 

circle but still BIBO stable
Show group delay response

• IIR filter – elliptic
Use second-order sections
Increase filter order to 9
Eight complex symmetric 

poles and one real pole:

Same observations on left 

6 - 25

Cascade of Biquads

25

MATLAB Filter Designer Demo #3
• IIR filter – elliptic

Use second-order sections
Increase filter order to 20
Two poles very close to unit 

circle but BIBO stable 

• Single section (Edit menu) 
Oscillation frequency ~9 kHz 
appears in passband
BIBO unstable: two pairs of 
poles outside unit circle 

IIR filter design algorithms return poles-zeroes-gain (PZK format):
Impact on response when expanding polynomials in transfer 
function from factored to unfactored form (see slide 6-25)

Cascade of Biquads

26

MATLAB Filter Designer Demo #4
• IIR filter - constrained 

least pth-norm design
Use second-order sections
Limit pole radii ≤ 0.92 
Order 8 does not meet both 

passband/stopband specs 
for different weights

Filter order might increase but worth 
higher complexity for being more 
robust perturbations in pole locations 6 - 27

Order 9 does indeed meet 
specs using Wpass = 1.5 
and Wstop = 800

Cascade of Biquads

27

Conclusion
FIR Filters IIR Filters

Implementation 
complexity (1)

Higher Lower (sometimes by
factor of four)

Minimum order 
design algorithm

Parks-McClellan (Remez 
exchange) algorithm (2)

Elliptic design algorithm

BIBO stable? Always May become unstable
when implemented (3)

Linear phase If impulse response is 
symmetric or anti-

symmetric about midpoint

No, but phase may made 
approximately linear over 
passband (or other band)

(1) For same piecewise constant magnitude specification
(2) Algorithm to estimate minimum order for Parks-McClellan algorithm by Jim
      Kaiser may be off by 10%.  Search for minimum order is often needed.
(3) Choice of IIR filter structure matters -- use cascade of biquads instead of a
      single section.  Some IIR filter design algorithms can constrain pole locations.

28



Lecture 6 IIR Filters 8

6 - 29

Conclusion
• Keep poles computed by filter design algorithms

Polynomial deflation (rooting) reliable in floating-point
Polynomial inflation (expansion) may degrade roots

• Direct form IIR structures expand zeros and poles
May become unstable for large order filters (order > 12) due 

to degradation in pole locations from polynomial expansion
• Cascade of biquads (second-order sections)

Only poles and zeros of second-order sections expanded
Biquads placed in order of ascending quality factors
Optimal ordering of biquads requires exhaustive search and 

each ordering can be simulated in parallel for speed

29
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Lecture 5 Interpolation & Pulse Shaping 1

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering

The University of Texas at Austin

ECE 445S Real-Time Digital Signal Processing Lab    Spring 2024

Lecture 7                     http://www.ece.utexas.edu/~bevans/courses/realtime

Interpolation and Pulse Shaping

1

7 - 2

Outline

0

1

x

sinc(x)

1-1 2 3-2-3

1 2

3 4 5 6 7 n

][ny

• Conclusion

• Sampling & reconstruction
Data conversion
Interpolation

Pulse shapes
Demonstration

Raised cosine pulse

2

Sampling & Reconstruction
Sampling x(t)

H
ow

 to
 r

ec
on

st
ru

ct
 x

(t)
?

Continuous-Time Analysis

7 - 3fs

3

Data Conversion
• Analog-to-Digital Conversion

Lowpass filter has
stopband frequency
less than ½ fs to reduce
aliasing at sampler output
(enforce sampling theorem)

Analog 
Lowpass 

Filter

Discrete to 
Continuous 
Conversion

fs

Lecture 7

Analog 
Lowpass 

Filter
Quantizer

Sampler at 
sampling 
rate of fs

Lecture 8Lecture 4

• Digital-to-Analog Conversion
Discrete-to-continuous (time) 

conversion could be as
simple as sample and hold

Lowpass filter has stopband
frequency less than ½ fs  to
reduce artificial high frequencies

7 - 4

Sampling & Reconstruction

4



Lecture 5 Interpolation & Pulse Shaping 2

7 - 5

Discrete-to-Continuous Conversion
• Input: sequence of samples y[n]

( )fp      2cos][  0 += nTfA ny s

( )fp      2cos)(~
0 += tfA ty )(~ ty

1 2

3 4 5 6 7 n

][ny

• Output: smooth continuous-time function obtained 
through interpolation (by “connecting the dots”)

If  f0 < ½ fs , then  

would be converted to

Otherwise, aliasing has occurred, and the converter would 
reconstruct a cosine wave whose frequency is equal to 
the aliased positive frequency that is less than ½ fs

Sampling & Reconstruction

5

7 - 6

Discrete-to-Continuous Conversion
• General form of interpolation 

is sum of weighted pulses

• Pulse function p(t)

Pulses overlap in time when longer than sampling period Ts

Pulses generally have unit amplitude and/or unit area

• “Mixed-signal” convolution

Discrete time aligned with continuous time via Ts n

Rectangular, triangular, sinc, truncated sinc, raised cosine, etc.

Discrete-time signal y[n] and continuous-time signal p(t)

that approximates y(t) over frequencies from -½ fs to ½ fs 
Sequence y[n] converted into continuous-time signal !𝑦 𝑡

!𝑦 𝑡 = %
!"#$

$

𝑦 𝑛 	𝑝 𝑡 −𝑇%	𝑛

Sampling & Reconstruction

6

Discrete-to-Continuous Conversion

t

y[n]

1 2-1 3

4 5 6

n0

…

…

y(t)~

0 Ts

1

t

p(t)

• Sample-and-hold reconstruction
Uses lowpass averaging filter p(t)
Has efficient implementation

Ts0-Ts 2Ts 3Ts… …

𝑛 =−1
𝑛 = 0

𝑛 = 1

!𝑦 𝑡 = %
!"#$

$

𝑦 𝑛 	𝑝 𝑡 −𝑇%	𝑛

𝑝 0 = 1
𝑝 𝑇% = 0

𝐷𝑒𝑙𝑎𝑦	𝑖𝑠	𝑇%	𝑛
𝑤𝑖𝑡ℎ	𝑟𝑒𝑠𝑝𝑒𝑐𝑡	𝑡𝑜	𝑡

Sampling & Reconstruction

7

Interpolation From Tables
• Using mathematical tables to

estimate a function value
x f(x)
0 0.0
1 1.0
2 4.0
3 9.0

• Estimate f(1.5) from table
Zero-order hold: take value to be f(1)

to make f(1.5) = 1.0 (“stairsteps”)
No multiplications or additions

Linear interpolation: average values of
nearest two neighbors: f(1.5) = 2.5
2 multiplications and 3 additions per value 

Curve fitting: fit four points to cubic 
polynomial: f(1.5) = x2 = 2.25
43 multiplications to find polynomial
coefficients + 1 multiplication per value

x

f(x)

Sampling & Reconstruction

8



Lecture 5 Interpolation & Pulse Shaping 3

Curve Fitting
• Interpolate over 1 < x < 2 using cubic polynomial

f(x) =       a0 + a1 x + a2 x2 + a3 x3

f(0) = 0 = a0

f(1) = 1 = a0 + a1 + a2 + a3

f(2) = 4 = a0 + 2 a1 + 4 a2 + 8 a3

f(3) = 9 = a0 + 3 a1 + 9 a2 + 27 a3

A• Matlab code to solve for
A = [ 1  0  0  0;
      1  1  1  1;
      1  2  4  8;
      1  3  9 27 ];
b = [ 0; 1; 4; 9 ];
a = A \ b; a2 = 1 and a0 = a1 = a3 = 0 to give f(x) = x2

(2/3)n3 operations to solve 
system of n equations

Sampling & Reconstruction

Link

9

Pulse Shapes
• Zero-order hold

t

1
p1(t)

-½Ts ½Ts 0

Ts

f

|P1(f)|

fs 2fs-2fs-3fs 3fs-fs

• Linear interpolation

t

1
p2(t)

-Ts Ts 0

Ts

f

|P2(f)|

fs 2fs-2fs-3fs 3fs-fs

• Sinc (ideal) interpolation

t0

1

Ts 2Ts 3Ts-Ts-2Ts-3Ts

p3(t)

because

P3(f)

-½fs ½fs

Ts

f

where

where

Sampling & Reconstruction

10

7 - 11

Sampling and Interpolation Demo
• DSP First, 2nd ed., ch. 4, Sampling/interpolation

http://dspfirst.gatech.edu/chapters/04samplin/demos/recon/index.html/

å
¥

-¥=

-=
n

s nTtpnyty )   ( ][)(~

• Design tradeoffs
Which pulse gives the best reconstruction?
Sinc pulse truncated to 4 sampling periods. Why? 
What happens as the sampling rate is increased?
Tradeoffs in signal quality vs. run-time complexity?

Sample sinusoidal signal y(t) to form y[n]
Reconstruct continuous-time

sinusoidal signal using
rectangular, triangular, or
truncated sinc pulse p(t)

Sampling & Reconstruction

11

7 - 12

Raised Cosine Pulse: Time Domain
• Pulse shaping used in communication systems

( )
222    161

   2cos   sinc    )(
tW
tW

T
ttp
s a

ap
-÷÷

ø

ö
çç
è

æ
=

ideal lowpass filter 
impulse response

Attenuation by 1/t2 for 
large t to reduce tail

Simon Haykin, Communication Systems, 3rd ed.

• See handout G in reader on raised cosine pulse

W is bandwidth of an 
ideal lowpass response

a Î [0, 1] rolloff factor
Zero crossings at

t = ± Ts , ± 2 Ts , …

Sampling & Reconstruction

12



Lecture 5 Interpolation & Pulse Shaping 4

7 - 13

Raised Cosine Pulse Spectra
• Pulse shaping used in communication systems

( )

ï
ï
ï

î

ï
ï
ï

í

ì

-<£÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
-
-

-

<£

=

otherwise0

2 ||  if
2 2
 ||sin1

4W
1

|| 0 if
2W
1

)( 11
1

1

fWff
fW
Wf

ff

fP p
sT

W
 2
1

=

W
f11-=a

Simon Haykin, Communication Systems, 3rd ed.

Bandwidth increased
by factor of (1 + a):
(1 + a) W = 2 W – f1

f1 marks transition from
passband to stopband

Bandwidth generally scarce in communication systems

Sampling & Reconstruction

13

7 - 14

Conclusion
• Discrete-to-continuous time conversion involves 

interpolating between known discrete-time samples 
y[n] using pulse shape p(t)

å
¥

-¥=

-=
n

s nTtpnyty )   ( ][)(~

)(~ ty1 2

3 4 5 6 7 n

][ny

• Common pulse shapes
Rectangular for same-and-hold interpolation
Triangular for linear interpolation
Sinc for optimal bandlimited linear interpolation but impractical
Truncated sinc or raised cosine for practical interpolation

• Truncation in time causes smearing in frequency

14
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Quantization

1

8 - 2

Outline
• Resolution

• Quantization
• Quantization error (noise) analysis

• Total harmonic distortion
• Noise immunity in communication systems

• Conclusion
• Digital vs. analog audio (optional)

2

8 - 3

Resolution
• Human eyes

Sample received light on 2-D grid 
Photoreceptor density in retina

falls off exponentially away
from fovea (point of focus)

Respond logarithmically to
intensity (amplitude) of light Foveated grid:

point of focus in middle• Human ears
Respond to frequencies in 20 Hz to 20 kHz range
Respond logarithmically in both intensity (amplitude) of 

sound (pressure waves) and frequency (octaves)
Log-log plot for hearing response vs. frequency 

3

Quantization

• Analog-to-Digital Conversion
Analog 

Lowpass 
Filter

Quantizer

Sampler at 
sampling 
rate of fs

Lecture 8Lecture 4

8 - 4

• Quantization is an interpretation of a continuous 
quantity by a finite set of discrete values

System properties: Linearity
                   Time-Invariance
                              Causality
                               Memory

Lowpass filter has
stopband frequency
less than ½ fs to reduce
aliasing at sampler output
(enforce sampling theorem)

4



Lecture 8 Quantization 2

8 - 5

Uniform Amplitude Quantization
• Round to nearest integer (midtread)

Quantize amplitude to levels {-2, -1, 0, 1}
Step size D for linear region of operation
Represent levels by {00, 01, 10, 11} or

{10, 11, 00, 01} …
Latter is two's complement representation

1
3
3

12
2
3

2
3

2 ==
-

÷
ø
ö

ç
è
æ--

=D

1
3
3

12
)2(1

2 ==
-
--

=D

x

Q[x]

1-2

-2

1

-2

x

Q[x]

1-1

1

2Used in 
slide 8-9

• Rounding with offset (midrise)
Quantize to levels {-3/2, -1/2, 1/2, 3/2}
Represent levels by {11, 10, 00, 01} …
Step size

5

8 - 6

Audio Compact Discs (CDs)
• Analog lowpass filter

Passband 0–20 kHz
Transition band 20–22 kHz
Stopband frequency at 22 kHz (i.e. 10% rolloff)
Designed to control amount of aliasing that occurs at sampler 

output (and hence called an anti-aliasing filter)

Analog 
Lowpass 

Filter
Quantizer

Sample at 
44.1 kHz

16

• Signal-to-noise ratio when quantizing to B bits
1.76 dB + 6.02 dB/bit * B = 98.08 dB

Loose upper bound derived in slides 8-9 to 8-13
Audio CDs have dynamic range of about 95 dB
Noise is quantization error (see slide 8-9)

6

8 - 7

Dynamic Range
• Signal-to-noise ratio in dB

Power Noiselog 10               
 Power   Signallog 10            

Power Noise
Power Signallog 10SNR

10

10

10dB

-=

=

Why 10 log10 ?
For amplitude A,

|A|dB = 20 log10 |A|
With power P µ |A|2 ,

PdB = 10 log10 |A|2

PdB = 20 log10 |A|
• For linear systems,

dynamic range equals SNR
• Lowpass anti-aliasing filter for audio CD format

Ideal magnitude response of 0 dB over passband
Astopband = 0 dB - Noise Power in dB = -98.08 dB 

7

8 - 8

Dynamic Range in Audio
• Sound Pressure Level (SPL)

Reference in dB SPL is 20 µPa
(threshold of hearing)

  40 dB SPL noise in typical living room
120 dB SPL threshold of pain
  80 dB SPL resulting dynamic range

Anechoic room  10 dB
Whisper  30 dB 
Rainfall  50 dB 

Dishwasher  60 dB 
City Traffic  85 dB

Leaf Blower  110 dB 
Siren 120 dB 

Slide by Dr. Thomas D. 
Kite, Audio Precision• Estimating dynamic range

(a) Find maximum RMS output of the linear system with some 
specified amount of distortion, typically 1%

(b)Find RMS output of system with small input signal (e.g.
-60 dB of full scale) with input signal removed from output

(c) Divide (b) into (a) to find the dynamic range

8
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Quantization Error (Noise) Analysis
• Quantization output

Input signal plus noise
Noise is difference of 

output and input signals

QB[ · ]m v

mvmmQq B -=-= ][
LL
1

1
1

»
-

• Signal-to-noise ratio 
(SNR) derivation
Quantize to B bits

Quantization error (noise)

• Uniform midrise quant.

Input in “linear” region:
m Î (-mmax, mmax)

Quantization error (noise) Q 
is uniformly distributed

Quantization levels L = 2B 
large enough so

-2

x

Q[x]

1-1

1

2

Example
mmax = 2V
B = 2 bits
L = 2B =
    4 levels
D = L-1 steps

9

8 - 10

Quantization Error (Noise) Analysis
• Deterministic signal x(t)

w/ Fourier transform X(f)
Power spectrum is square of 

absolute value of magnitude 
response (phase is ignored)

)( )()()( *2 fXfXfXfPx ==

{ }  )(*)( )( )( ** tt -= xxFfXfX

 )(*)()( * ttt -= xxRx

t

1
x(t)

0 Ts

t

Rx(t)

-Ts Ts

Ts

Multiplication in Fourier domain 
is convolution in time domain

Conjugation in Fourier domain is 
reversal & conjugation in time

• Autocorrelation of x(t) 

Maximum value (when it 
exists) is at Rx(0)

Rx(t) is even symmetric,
i.e. Rx(t) = Rx(-t) 

10

8 - 11

Quantization Error (Noise) Analysis
• Two-sided random signal n(t)

Fourier transform may not exist, but power spectrum exists

{ } )(  )( )( )( 2* tdstt =+= tntnERn

{ }  )( )( tnn RFfP =

N = 16384;    % finite no. of samples
gaussianNoise = randn(N,1);
plot( abs(fft(gaussianNoise)) .^ 2 );

approximate 
noise floor

{ } ò
¥

¥-
+=+= dttntntntnERn  )( )( )( )( )( ** ttt

{ } )(*)( )( )( )( )( )( *** ttttt -=-=-=- ò
¥

¥-
nndttntntntnERn

{ } 0  when  0 )( )( )( * ¹=+= ttt tntnERn
2)( s=fPn

time-averaged

• Estimate noise power
spectrum in Matlab

For zero-mean Gaussian random process n(t) with variance s2

11

8 - 12

Quantization Error (Noise) Analysis
• Quantizer step size

L
m

L
m maxmax  2

1
 2

»
-

=D

22
D

££
D

- q

{ }
!

B
Q

zero

QQ

m

QE

22
max

2
2

222

2  
3
1

12

  

-=
D

=

-=

s

µs

B

Q m
PP 2

2
max

maverage,
2

maverage, 2 
3

SNR

 PowerNoise
 PowerSignalSNR

÷÷
ø

ö
çç
è

æ
==

=

s
• Quantization error

q is sample of zero-mean 
random variable Q

Q is uniformly distributed
• Derivation of SNR in 

deciBels on next slide

SNR exponential in B
Adding 1 bit increases SNR 

by factor of 4

• Input power: Paverage,m

12
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Quantization Error (Noise) Analysis
• SNR in dB = constant + 6.02 dB/bit * B

( ) ( )

( ) ( ) BmP

mP

m
P B

 02.6log 20log 10477.0

)2(logB 20log 20log 103log 10

 2 
3

log 10SNR log 10

max10maverage,10

10max10maverage,1010

2
2
max

maverage,
1010

+-+=

+-+=

÷
÷
ø

ö
ç
ç
è

æ
÷÷
ø

ö
çç
è

æ
=

1.76 and 1.17 are common constants used in audio

Loose 
upper 
bound

TI Stereo Codec Signal-to-Noise Ratio Total Harmonic Distortion
Cirrus Logic 
WM8994

ADC 94 dB (15.3 bits) 80 dB (13.0 bits)
DAC 97 dB (15.8 bits) 82 dB (13.3 bits)

TLV320AIC3106
(differential mode)

ADC 92 dB (15.0 bits) 91 dB (14.8 bits)
DAC 99 dB (16.2 bits) 94 dB (15.3 bits)

Using B as the effective number of bits, SNR in dB = 2 + 6 B
WM8994 is on our STM ARM board; TLV320AIC3106 used in previus TI OMAP-L138 board

13

Total Harmonic Distortion + Noise
• A measure of nonlinear distortion in a system

Input is a sinusoidal signal of a single fixed frequency
From output of system, the input sinusoid signal is subtracted
Compute SNR

A/D 
Converter~

1 kHz

D/A 
Converter

~
fs

+

−

Delay

x(t) n(t)
+

• In audio, sinusoidal signal is often at 1 kHz
In “Sweet spot” for human hearing between 0.8 and 1.2 kHz

• Example
“System” is ADC
Calibrated DAC
Signal is x(t)
“Noise” is n(t)

14

8 - 15

Noise Immunity at Receiver Output
• Depends on modulation, average transmit power, 

transmission bandwidth and channel noise
• Analog communications (receiver output SNR)

“When the carrier to noise ratio is high, an increase in the 
transmission bandwidth BT provides a corresponding 
quadratic increase in the output signal-to-noise ratio or 
figure of merit of the [wideband] FM system.”
 – Simon Haykin, Communication Systems, 4th ed., p. 147.

• Digital communications (receiver symbol error rate)
“For code division multiple access (CDMA) spread spectrum 

communications, probability of symbol error decreases 
exponentially with transmission bandwidth BT”
 – Andrew Viterbi, CDMA: Principles of Spread
Spectrum Communications, 1995, pp. 34-36.

15

8 - 16

Conclusion
• Amplitude quantization approximates its input by 

a discrete amplitude taken from finite set of values
• Loose upper bound in signal-to-noise ratio of a 

uniform amplitude quantizer with output of B bits
Best case: 6 dB of SNR gained for each bit added to quantizer
Key limitation: assumes large number of levels L = 2B

• Best case improvement in noise immunity for 
communication systems
Analog: improvement quadratic in transmission bandwidth
Digital: improvement exponential in transmission bandwidth

16
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8 - 17

Handling Overflow
• Example: Consider set of integers {-2, -1, 0, 1} 

Represented in two's complement system {10, 11, 00, 01}.
Add (–1) + (–1) + (–1) + 1 + 1
Intermediate computations are – 2, 1, –2, –1 for wraparound 

arithmetic and –2, –2, –1, 0 for saturation arithmetic

• Saturation: When to use it?
If input value greater than maximum,

set it to maximum; if less than minimum, set it to minimum
Used in quantizers, filtering, other signal processing operators

• Wraparound: When to use it?
Addition performed modulo set of integers
Used in address calculations, array indexing

Native support in 
MMX and DSPs

Standard two’s 
complement 

behavior

Optional

17

8 - 18

Digital vs. Analog Audio
• An audio engineer claims to notice differences 

between analog vinyl master recording and the 
remixed CD version. Is this possible?
When digitizing an analog recording, the maximum voltage 

level for the quantizer is the maximum volume in the track
Samples are uniformly quantized (to 216 levels in this case 

although early CDs circa 1982 were recorded at 14 bits)
Problem on a track with both loud and quiet portions, which 

occurs often in classical pieces
When track is quiet, relative error in quantizing samples grows
Contrast this with analog media such as vinyl which responds 

linearly to quiet portions 

Optional

18

8 - 19

Digital vs. Analog Audio
• Analog and digital media response to voltage v

• For a large dynamic range
Analog media: records voltages above V0 with distortion
Digital media: clips voltages above V0 to V0 

• Audio CDs use delta-sigma modulation
Effective dynamic range of 19 bits for lower frequencies but 

lower than 16 bits for higher frequencies
Human hearing is more sensitive at lower frequencies 
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Data Conversion

Slides by Prof. Brian L. Evans, Dept. of ECE, UT Austin, and 
Dr. Thomas D. Kite, Audio Precision, Beaverton, OR 
tomk@audioprecision.com 
Dr. Ming Ding, when he was at the Dept. of ECE, UT Austin, 
converted slides by Dr. Kite to PowerPoint format
Some figures are from Ken C. Pohlmann, Principles of Digital 
Audio, McGraw-Hill, 1995.

1

10 - 2

Image Halftoning
• Handout J on noise-shaped feedback coding

Different ways to perform one-bit quantization (halftoning)
Original image has 8 bits per pixel original image (pixel values 

range from 0 to 255 inclusive)

No noise 
shaping

No noise 
shaping

• Pixel thresholding: Same threshold at each pixel
Gray levels from 128-255 become 1 (white)
Gray levels from 0-127 become 0 (black) 

• Ordered dither: Periodic space-varying thresholding
Equivalent to adding spatially-varying dither (noise)

at input to threshold operation (quantizer)
Example uses 16 different thresholds in a 4 ´ 4 mask
Periodic artifacts appear as if screen has been overlaid 

2

10 - 3

Image Halftoning
• Error diffusion: Noise-shaping feedback coding

Contains sharpened original plus high-frequency noise
Human visual system less sensitive to high-frequency noise 

(as is the auditory system)
Example uses four-tap Floyd-Steinberg noise-shaping

(i.e. a four-tap IIR filter)
• Image quality of halftones

Thresholding (low): error spread equally over all freq.
Ordered dither (medium): resampling causes aliasing
Error diffusion (high): error placed into higher frequencies

• Noise-shaped feedback coding is a key principle in 
modern A/D and D/A converters 

3

10 - 4

Digital Halftoning Methods

Clustered Dot Screening
AM Halftoning

Blue-noise Mask
FM Halftoning 1993

Dispersed Dot Screening
FM Halftoning

Green-noise Halftoning
AM-FM Halftoning 1992

Error Diffusion
FM Halftoning 1975

Direct Binary Search
FM Halftoning 1992

4

mailto:tomk@audioprecision.com
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10 - 5

Screening (Masking) Methods
• Periodic array of thresholds smaller than image

Spatial resampling leads to aliasing (gridding effect)
Clustered dot screening produces a coarse image that is more 

resistant to printer defects such as ink spread
Dispersed dot screening has higher spatial resolution

256*
32
31,

32
29,

32
27,

32
25,

32
23,

32
21,

32
19,

32
17,

32
15,

32
13,

32
11,

32
9,

32
7,

32
5,

32
3,

32
1

Thresholds

þ
ý
ü

î
í
ì

=
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10 - 6

Error Diffusion
Halftone

Grayscale Error Diffusion
• Shapes quantization error (noise)

into high frequencies
• Type of sigma-delta modulation
• Error filter h(m) is lowpass

b(m)
+

_

_

+e(m)

x(m)

difference threshold

compute 
error (noise)

shape
error (noise)

u(m)

)(mh

current pixel

weights

3/16

7/16

5/16 1/16

Floyd-Steinberg filter h(m)

Spectrum

6
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Old-Style A/D and D/A Converters
• Used discrete components (before mid-1980s)

Analog 
Lowpass 

Filter
Quantizer

Sampler at 
sampling 
rate of fs

Analog 
Lowpass 

Filter

Discrete to 
Continuous 
Conversion

fs

• A/D Converter
Lowpass filter has

stopband frequency
of ½ fs or less

• D/A Converter
Lowpass filter has

stopband frequency
of ½ fs or less

Discrete-to-continuous
conversion could be as
simple as sample and hold

7
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A B

C D
Pohlmann Fig. 3-5 Two examples of passive Chebyshev lowpass filters and their 
frequency responses. A. A passive low-order filter schematic. B. Low-order filter 
frequency response. C. Attenuation to -90 dB is obtained by adding sections to
increase the filter’s order.  D. Steepness of slope and depth of attenuation are improved.

Cost of Multibit Conversion Part I:
Brickwall Analog Filters

8
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Pohlmann Fig. 4-3 An example of a low-level linearity measurement of a D/A 
converter showing increasing non-linearity with decreasing amplitude.

Cost of Multibit Conversion Part II:
Low- Level Linearity

9

Solutions
• Oversampling eases analog filter design

Also creates spectrum to put noise at inaudible frequencies
• Add dither (noise) at quantizer input

Breaks up harmonics (idle tones) caused by quantization
• Shape quantization noise into high frequencies

Auditory system is less sensitive at higher frequencies
• State-of-the-art in 20-bit/24-bit audio converters

Oversampling 64x  256x  512x
Quantization 8 bits  6 bits  5 bits
Additive dither 2-bit D PDF 2-bit D PDF 2-bit D PDF
Noise shaping 5th  / 7th order  5th  / 7th order  5th  / 7th order
Dynamic range 110 dB  120 dB  120 dB

10
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A. A brick-wall filter must  
sharply bandlimit the 
output spectra.
 
B. With four-times 
oversampling, images 
appear only at the 
oversampling frequency.

C. The output sample/hold 
(S/H) circuit can be used to 
further suppress the 
oversampling spectra.

Solution 1: Oversampling

Pohlmann Fig. 4-15 Image spectra of nonoversampled and oversampled reconstruction.
Four times oversampling simplifies reconstruction filter.

11

10 - 12

Pohlmann Fig. 2-8 Adding dither at quantizer input alleviates effects of quantization error. 
A. An undithered input signal with amplitude on the order of one LSB.
B. Quantization results in a coarse coding over two levels. C. Dithered input signal.
D. Quantization yields a PWM waveform that codes information below the LSB.

Solution 2: Add Dither

12
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A  A 1 kHz sinewave with amplitude of 
one-half LSB without dither produces a 
square wave. 

C Modulation carries the encoded 
sinewave information, as can be seen 
after 32 averagings.

B Dither of one-third LSB rms amplitude is 
added to the sinewave before quantization, 
resulting in a PWM waveform.

D Modulation carries the encoded 
sinewave information, as can be seen after 
960 averagings.

Pohlmann Fig. 2-9 Dither permits encoding of information below the least significant bit. 
Vanderkooy and Lipshitz.

Time Domain Effect of Dither

13

10 - 14

undithered dithered undithered dithered

Pohlmann Fig. 2-10 Computer-simulated quantization of a low-level 1- kHz sinewave 
without, and with dither. A. Input signal. B. Output signal (no dither). C. Total error signal 
(no dither). D. Power spectrum of output signal (no dither). E. Input signal. F. Output signal 
(triangualr pdf dither). G. Total error signal (triangular pdf dither). H. Power spectrum of 
output signal (triangular pdf dither) Lipshitz, Wannamaker, and Vanderkooy

Frequency Domain Effect of Dither

14
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We have a two-bit DAC and four-bit input signal words.  Both are unsigned.

1 sample
delay

Input
signal
words

To
DAC

4 2

2 2

Assume input = 1001 constant

Adder Inputs              Output
Time  Upper  Lower     Sum   to DAC
   1      1001       00        1001     10
   2      1001       01        1010     10
   3      1001       10        1011     10
   4      1001       11        1100     11

Periodic

Average output = 1/4(10+10+10+11)=1001
4-bit resolution at DC!

Going from 4 bits down to 2 bits increases 
noise by ~ 12 dB.  However, the shaping 
eliminates noise at DC at the expense of  
increased noise at high frequency.

added
noise

f

12 dB
(2 bits)

If signal is in
this band, you are
better off!

Let’s  hope this is
above the passband!
(oversample)

Solution 3: Noise Shaping

15

Putting It All Together
• A/D converter samples at fs and quantizes to B bits
• Sigma delta modulator implementation

Internal clock runs at M fs

FIR filter expands wordlength of b[m] to B bits

b[m]+
_

_

+e[m]

v[m]

][mh

dither

quantizer

x[m]x(t)
Sample 
and hold

M fs

FIR 
Filter   M

10 - 16

16



Lecture 12 Channel Impairments 1

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering

The University of Texas at Austin

ECE 445S Real-Time Digital Signal Processing Lab    Spring 2024

Lecture 12                    http://www.ece.utexas.edu/~bevans/courses/realtime

Channel Impairments

1

12 - 2

Communication System Structure
• Information sources

Voice, music, images, video, and data (baseband signals)
• Transmitter

Signal processing block lowpass filters message signal
Carrier circuits block upconverts baseband signal and bandpass 

filters to enforce transmission band

Review

basebandbaseband bandpass bandpass baseband baseband

R
ec

ei
ve

d 
 

M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL

2

12 - 3

Communication Channel
• Transmission medium 

Wireline (twisted pair, coaxial, fiber optics) 
Wireless (indoor/air, outdoor/air, underwater, space) 

• Propagating signals degrade over distance
• Repeaters can strengthen signal and reduce noise

Simple repeater is a bandpass filter and power amplifier 

Review

basebandbaseband bandpass bandpass baseband baseband

R
ec

ei
ve

d 
 

M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL

Light 
painting

Wi-Fi demo

3

Impairment: Additive Thermal Noise

12 - 4
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Lecture 12 Channel Impairments 2

Impairment: LTI Effects
• Wired linear time-invariant (LTI) effects

Resistor-inductor-capacitor (RLC) model of wired channel
LTI system must be “at rest”– initial conditions must be zero 
(initial current across inductors and voltage across capacitors)

• Second-order case
Linear constant-coefficient differential
equation (with zero initial conditions)
Impulse response is a damped sinusoid

R L C

−

+ +

−

x(t) y(t)
t = 0 : 0.001 : 1;
h = exp(-5*t) .* cos(2*pi*t);
plot(t, h);
xlabel('t'); ylabel('h(t)');

t

h(t)

Impulse Response Derivation

5

Impairment: LTI Effects
• Wireless LTI effects due to wave propagation

Reflection, absorption, and scattering

12 - 6

Line of 
Sight

Two 
Bounces

6

12 - 7

Impairment: LTI Effects
• Linear time-invariant effects

Distortion in frequency: due to channel frequency response
Spreading in time: due to channel impulse response

Th t

)(th

1

Tb t

)(1 tx

A

Model channel as 
LTI system; then 
approximate the 
infinite impulse 

response as finite; 
further approximate 
using rect. pulse for 

timing analysis

Communication
Channel

input output

x(t) y(t)

Tb

)(0 tx

-A
t

)(0 ty

-A Th

t
Th+TbTh

Assume Th < Tb

t

)(1 ty

Th+TbTh

A Th

Bit of ‘0’ or ‘1’

7

Impairment: LTI Effects
Spreading 

Effect

Wired/wireless physical medium is IIR

t

h(t) Model as
FIR by
truncating
impulse
response

8



Lecture 12 Channel Impairments 3

Impairment: Phase Jitter
• Linear time-varying effects: Phase jitter

Sinusoid at same fixed frequency experiences different phase 
shifts when passing through channel

Visualize phase jitter in periodic waveform by plotting it over 
one period, superimposing second period on the first, etc.

12 - 9

fc = 1;
Tc = 1 / fc;
fs = 100*fc;
Ts = 1/fs;
t = Ts : Ts : Tc;
numPeriods = 10;
figure;
hold on;
for i = 1 : numPeriods
phase = 0.05*randn(1, length(t));

  plot(t, cos(2*pi*fc*t + phase));
  pause(1);
end
hold off;

9

Impairment: Phase Jitter
• Linear time-varying effects: Phase jitter

Transmission of two-level sinusoidal amplitude modulation
Bit of value ‘1’ becomes an amplitude of +1
Bit of value ‘0’ becomes an amplitude of -1

Visualize by superimposing each period on first (eye diagram)

12 - 10

fc = 1;
Tc = 1 / fc;
fs = 100*fc;
Ts = 1/fs;
t = Ts : Ts : Tc;
numPeriods = 10;
figure;
hold on;
for i = 1 : numPeriods
  symAmp = round(2*(randn() > 0) - 1);
  phase = 0.05*randn(1, length(t));
  plot(t, symAmp*cos(2*pi*fc*t + phase));
  pause(1);
end
hold off;

10

Impairment: Additive Interference
• Nonlinear effects

Harmonics: due to quantization, voltage rectifiers, squaring 
devices, power amplifiers, etc.

Additive noise: arises from many sources in transmitter, 
channel, and receiver (e.g. thermal noise)

Additive interference: arises from other systems operating in 
transmission band

Spectrogram of emissions from 
a microwave oven in unlicensed 
2.4 GHz band sweeping across 
IEEE 802.11g channels 1, 6, 11

[Nassar, Lin & Evans, 2011]

Keysight Wi-Fi demo

11
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Measurement taken on a wall power plug in an 
apartment in Austin, Texas, on March 20, 2011

Impairment: Additive Interference

Home Powerline
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Measurement taken on a wall power plug in an 
apartment in Austin, Texas, on March 20, 2011

Impairment: Additive Interference

Home Powerline
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Spectrally-Shaped
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Narrowband Interference

Measurement taken on a wall power plug in an 
apartment in Austin, Texas, on March 20, 2011

Impairment: Additive Interference

Home Powerline
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Narrowband Interference

Periodic and 
Asynchronous
Interference

Measurement taken on a wall power plug in an 
apartment in Austin, Texas, on March 20, 2011

Impairment: Additive Interference

Home Powerline
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Impairment: Fading
• Same as wireline channel impairments plus others
• Fading: multiplicative noise

Talking on a mobile phone and reception fades in and out
Represented as time-varying gain that follows a particular 

probability distribution

• Model #4: fading, LTI effects additive noise, and 
additive interference

FIR +

noise

+

interference

0a

fading

16
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Digital Pulse Amplitude
Modulation (PAM)

1

13 - 2

Outline
• Introduction

FIR 0

FIR 1

FIR L-1

• Pulse shaping

• Pulse shaping filter bank

• Design tradeoffs

• Symbol clock recovery

2

Introduction
• Convert bit stream into pulse stream

4-level PAM 
Constellation 

Map

d

-d

3d

-3d

00

01

10

11

symbol 
of bits

symbol 
ampl.

Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)
baseband 
waveform

Discrete-to-Continuous Time
Conversion (Interpolation)

• M-level PAM or simply M-PAM (M = 2J)
Symbol period is Tsym and bit rate is J fsym

Interpolation pulse shape gTsym(t) per slide 7-6
d is a voltage

( )symT
k

k Tktgats
sym

   )(* -= å
¥

-¥=

Group stream of bits into symbols of J bits
Map symbol of bits to unique amplitude
Convert from discrete-time to continuous-time

13 - 3

3

2-PAM Transmission
• 2-PAM example (right)

Truncated raised cosine pulse 
gTsym(t) with peak of 1

What are d and Tsym ?
Max amplitude depends on d?

• Highest frequency ½ fsym 

Alternating symbol amplitudes +d, -d, +d, … which is d cos(p n)
Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)
baseband 
waveform

Discrete-to-Continuous Time
Conversion (Interpolation)

( )symT
k

k Tktgats
sym

   )(* -= å
¥

-¥=

13 - 4
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Baseband PAM Transmission Code

13 - 5

% Baseband PAM Signal Generation
% by Prof. Brian L. Evans
% The University of Texas at Austin
% Spring 2018
%
% m is sample index
% n is symbol index
 
% Simulation parameters
N = 25;     % Number symbol periods

% Pulse shape g[m]
Ng = 4;     % Number symbol periods
L = 20;     % Samples/symbol period
f0 = 1/L;
midpt = Ng*L/2;
m = (-midpt) : (midpt-1);
g = sinc(f0*m);

% Adjust for group delay
N = N + (Ng/2);
 
% M-level PAM symbol amplitudes
d = 1;
M = 2;
ioffset = M + 1;
symAmp = (2*randi(M,[1,N]) - ioffset)*d;

% Discrete-time baseband PAM signal
mmax = N*L;
v = zeros(1,mmax);
v(1:L:end) = symAmp;  % interpolation
s = conv(v, g);   % pulse shaping
slength = length(s);  % trim result
s = s(midpt+1:slength-midpt+1);
 
% Interpretation in continuous time
Tsym = 4;       % Symbol period in sec
fsym = 1/Tsym;  % Symbol rate in Hz
fs = L*fsym;    % Sampling rate in Hz
Ts = 1/fs;      % Sampling time in sec

% Plots
Mmax = length(s);
m = 0 : (Mmax-1);
t = m*Ts;
Nmax = Mmax / L;
n = 0 : (Nmax-1);
figure;
plot(t,s);
hold on;
stem(n*Tsym,symAmp);
hold off;
xlim( [0 (Nmax-(Ng/2))*Tsym-Ts] );
ymax = Ng * (M-1) * d / 2;
ylim( [-ymax ymax] );
xlabel('Time (ms)');
title('Baseband PAM Signal s(t)');

5

4-PAM Transmission
• 4-PAM example (right)

Truncated raised cosine pulse 
gTsym(t) with peak of 1

What are d and Tsym ?
Max amplitude depends on d?

• Highest frequency ½ fsym 

Alternating symbol amplitudes +d, -d, +d, ... or +3d, -3d, +3d, ... 

Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)
baseband 
waveform

Discrete-to-Continuous Time
Conversion (Interpolation)

( )symT
k

k Tktgats
sym

   )(* -= å
¥

-¥=
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6

PAM Transmission
• Convert baseband processing to discrete time

])( [  ]  [* mknLgamLns
symT

k
k +-=+ å

¥

-¥=

Pulse
shaper

gTsym[m]
L

• Sample at sampling time Ts : let t = (n L + m) Ts

L samples per symbol period Tsym i.e. Tsym = L Ts

n is the index of the current symbol period being transmitted
m is a sample index within nth symbol (i.e., m = 0, 1, …, L-1)

Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)

baseband 
waveform

D/A

fs
s*[i]

@fs@fs@fsym@fsym

fs = L fsym

7

PAM Transmission
Derivation of s*[Ln + m] expression on previous slide

13 - 8

8
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Digital Interpolation Example

• Upsampling by 4 (denoted by   L)
Output input sample followed by 3 zeros
Four times samples on output as input
Increases sampling rate by factor of 4

Digital Audio 4x Oversampling Filter

16 bits
44.1 kHz

28 bits
176.4 kHz4 FIR Filter16 bits

176.4 kHz

1 2

Input to Upsampler by 4

n

0

n’

Output of Upsampler by 4

1 2 3 4 5 6 7 80

1 2

Output of FIR Filter

3 4 5 6 7 8
n’

0

FIR fills in zero values
• FIR interpolation filter (lowpass)

Prior to upsampling, fmax is 22.05 kHz
At filter input, wmax = 2 p fmax / fs = p / 4 = p / L 
Filter specifications: wstop < p / 4 and wpass = 0.9 wstop

9

PAM Transmission Example

13 - 10

Fa
ll 

20
21
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id

te
rm

 #
2
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Filter Bank Example #1
• Avoid multiplying by and storing inserted 0 samples
• Pulse shape g[m] lasts 2 symbols (8 samples; L = 4)

s[m] = x[m] * g[m] s[0] = a0 g[0]
s[1] = a0 g[1]
s[2] = a0 g[2]
s[3] = a0 g[3]

s[4] = a0 g[4] + a1 g[0]
s[5] = a0 g[5] + a1 g[1]
s[6] = a0 g[6] + a1 g[2]
s[7] = a0 g[7] + a1 g[3]

L polyphase filters 
operating at symbol rate

Filter 
Bank

encoding ↑4 g[m]
bits …a2a1a0 …000a1000a0

s[m]x[m]

{g[0],g[4]}

{g[1],g[5]}

{g[2],g[6]}

{g[3],g[7]}

s[m]

…,s[4],s[0]

…,s[5],s[1]

…,s[6],s[2]

…,s[7],s[3]

…a2a1a0

m=0

Commutator
(Periodic)

11
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Filter Bank Example #2 24 samples 
in pulse

L = 4 samples 
per symbol

Polyphase filter 0 impulse 
response is first sample of
the pulse shape and every 

Lth sample after that

Polyphase filter 0 has only one non-zero sample.

Ng = 6 symbol 
periods/pulse

12
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Filter Bank Example #2

Polyphase filter 1 impulse 
response is second sample of 

the pulse shape and every 
Lth sample after that

24 samples 
in pulse

L = 4 samples 
per symbol

Ng = 6 symbol 
periods/pulse

13
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Filter Bank Example #2

Polyphase filter 2 impulse 
response is third sample of 
the pulse shape and every 

Lth sample after that

24 samples 
in pulse

L = 4 samples 
per symbol

Ng = 6 symbol 
periods/pulse

14
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Filter Bank Example #2

Polyphase filter 3 impulse 
response is fourth sample of 

the pulse shape and every 
Lth sample after that

24 samples 
in pulse

L = 4 samples 
per symbol

Ng = 6 symbol 
periods/pulse

15
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Pulse Shaping Design Tradeoffs
Computation 

in MACs/s
Memory 

size in 
words

Memory 
reads in 
words/s

Memory 
writes in 
words/s

Direct 
structure
(slide 13-9)

(L Ng)(L fsym)

Filter bank 
structure
(slide 13-12)

L Ng fsym

fsym symbol rate
L samples/symbol
Ng duration of pulse shape in symbol periods

16
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Pulse Shaping Design Tradeoffs
• FIR filter with N coefficients to compute output

Read current input value x[n]
Read pointer to newest input sample in circular buffer
Read previous N-1 input values
Read N filter coefficients h
Compute the output value y[n]
Write current input value to circular buffer to oldest sample
Write (update) the newest pointer in circular buffer
Write output value

• N multiplications-additions, 2N + 1 reads, 3 writes

y[n]=  h[m] x[n−m]
m=0

N−1

∑

17
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Pulse Shaping Design Tradeoffs
• Direct structure (slide 13-9)

FIR filter has L Ng coefficients (N = L Ng)
FIR filter: N multiplications-additions, 2N + 1 reads, 3 writes
FIR filter runs at sampling rate L fsym

Upsampler reads at symbol rate and writes at sampling rate

• Filter bank structure (slide 13-9)
L polyphase FIR filters with Ng  coefficients each
FIR filter: Ng multiplications-additions, 2Ng + 1 reads, 3 writes
Each polyphase FIR filter runs at symbol rate fsym

Commutator reads and writes at sampling rate L fsym

18
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Digital Pulse Amplitude
Modulation (PAM)

1
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Outline
• Introduction

FIR 0

FIR 1

FIR L-1

• Pulse shaping

• Pulse shaping filter bank

• Design tradeoffs

• Symbol clock recovery

2

Introduction
• Convert bit stream into pulse stream

4-level PAM 
Constellation 

Map

d

-d

3d

-3d

00

01

10

11

symbol 
of bits

symbol 
ampl.

Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)
baseband 
waveform

Discrete-to-Continuous Time
Conversion (Interpolation)

• M-level PAM or simply M-PAM (M = 2J)
Symbol period is Tsym and bit rate is J fsym

Interpolation pulse shape gTsym(t) per slide 7-6
d is a voltage

( )symT
k

k Tktgats
sym

   )(* -= å
¥

-¥=

Group stream of bits into symbols of J bits
Map symbol of bits to unique amplitude
Convert from discrete-time to continuous-time

13 - 3

3

2-PAM Transmission
• 2-PAM example (right)

Truncated raised cosine pulse 
gTsym(t) with peak of 1

What are d and Tsym ?
Max amplitude depends on d?

• Highest frequency ½ fsym 

Alternating symbol amplitudes +d, -d, +d, … which is d cos(p n)
Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)
baseband 
waveform

Discrete-to-Continuous Time
Conversion (Interpolation)

( )symT
k

k Tktgats
sym

   )(* -= å
¥

-¥=
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Baseband PAM Transmission Code
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% Baseband PAM Signal Generation
% by Prof. Brian L. Evans
% The University of Texas at Austin
% Spring 2018
%
% m is sample index
% n is symbol index
 
% Simulation parameters
N = 25;     % Number symbol periods

% Pulse shape g[m]
Ng = 4;     % Number symbol periods
L = 20;     % Samples/symbol period
f0 = 1/L;
midpt = Ng*L/2;
m = (-midpt) : (midpt-1);
g = sinc(f0*m);

% Adjust for group delay
N = N + (Ng/2);
 
% M-level PAM symbol amplitudes
d = 1;
M = 2;
ioffset = M + 1;
symAmp = (2*randi(M,[1,N]) - ioffset)*d;

% Discrete-time baseband PAM signal
mmax = N*L;
v = zeros(1,mmax);
v(1:L:end) = symAmp;  % interpolation
s = conv(v, g);   % pulse shaping
slength = length(s);  % trim result
s = s(midpt+1:slength-midpt+1);
 
% Interpretation in continuous time
Tsym = 4;       % Symbol period in sec
fsym = 1/Tsym;  % Symbol rate in Hz
fs = L*fsym;    % Sampling rate in Hz
Ts = 1/fs;      % Sampling time in sec

% Plots
Mmax = length(s);
m = 0 : (Mmax-1);
t = m*Ts;
Nmax = Mmax / L;
n = 0 : (Nmax-1);
figure;
plot(t,s);
hold on;
stem(n*Tsym,symAmp);
hold off;
xlim( [0 (Nmax-(Ng/2))*Tsym-Ts] );
ymax = Ng * (M-1) * d / 2;
ylim( [-ymax ymax] );
xlabel('Time (ms)');
title('Baseband PAM Signal s(t)');

5

4-PAM Transmission
• 4-PAM example (right)

Truncated raised cosine pulse 
gTsym(t) with peak of 1

What are d and Tsym ?
Max amplitude depends on d?

• Highest frequency ½ fsym 

Alternating symbol amplitudes +d, -d, +d, ... or +3d, -3d, +3d, ... 

Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)
baseband 
waveform

Discrete-to-Continuous Time
Conversion (Interpolation)

( )symT
k

k Tktgats
sym

   )(* -= å
¥

-¥=

13 - 6

6

PAM Transmission
• Convert baseband processing to discrete time

])( [  ]  [* mknLgamLns
symT

k
k +-=+ å

¥

-¥=

Pulse
shaper

gTsym[m]
L

• Sample at sampling time Ts : let t = (n L + m) Ts

L samples per symbol period Tsym i.e. Tsym = L Ts

n is the index of the current symbol period being transmitted
m is a sample index within nth symbol (i.e., m = 0, 1, …, L-1)

Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)

baseband 
waveform

D/A

fs
s*[i]

@fs@fs@fsym@fsym

fs = L fsym

7

PAM Transmission
Derivation of s*[Ln + m] expression on previous slide

13 - 8

8
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13 - 9

Digital Interpolation Example

• Upsampling by 4 (denoted by   L)
Output input sample followed by 3 zeros
Four times samples on output as input
Increases sampling rate by factor of 4

Digital Audio 4x Oversampling Filter

16 bits
44.1 kHz

28 bits
176.4 kHz4 FIR Filter16 bits

176.4 kHz

1 2

Input to Upsampler by 4

n

0

n’

Output of Upsampler by 4

1 2 3 4 5 6 7 80

1 2

Output of FIR Filter

3 4 5 6 7 8
n’

0

FIR fills in zero values
• FIR interpolation filter (lowpass)

Prior to upsampling, fmax is 22.05 kHz
At filter input, wmax = 2 p fmax / fs = p / 4 = p / L 
Filter specifications: wstop < p / 4 and wpass = 0.9 wstop

9

PAM Transmission Example

13 - 10

Fa
ll 

20
21

 M
id

te
rm

 #
2

10

Filter Bank Example #1
• Avoid multiplying by and storing inserted 0 samples
• Pulse shape g[m] lasts 2 symbols (8 samples; L = 4)

s[m] = x[m] * g[m] s[0] = a0 g[0]
s[1] = a0 g[1]
s[2] = a0 g[2]
s[3] = a0 g[3]

s[4] = a0 g[4] + a1 g[0]
s[5] = a0 g[5] + a1 g[1]
s[6] = a0 g[6] + a1 g[2]
s[7] = a0 g[7] + a1 g[3]

L polyphase filters 
operating at symbol rate

Filter 
Bank

encoding ↑4 g[m]
bits …a2a1a0 …000a1000a0

s[m]x[m]

{g[0],g[4]}

{g[1],g[5]}

{g[2],g[6]}

{g[3],g[7]}

s[m]

…,s[4],s[0]

…,s[5],s[1]

…,s[6],s[2]

…,s[7],s[3]

…a2a1a0

m=0

Commutator
(Periodic)

11

13 - 12

Filter Bank Example #2 24 samples 
in pulse

L = 4 samples 
per symbol

Polyphase filter 0 impulse 
response is first sample of
the pulse shape and every 

Lth sample after that

Polyphase filter 0 has only one non-zero sample.

Ng = 6 symbol 
periods/pulse

12
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13 - 13

Filter Bank Example #2

Polyphase filter 1 impulse 
response is second sample of 

the pulse shape and every 
Lth sample after that

24 samples 
in pulse

L = 4 samples 
per symbol

Ng = 6 symbol 
periods/pulse

13

13 - 14

Filter Bank Example #2

Polyphase filter 2 impulse 
response is third sample of 
the pulse shape and every 

Lth sample after that

24 samples 
in pulse

L = 4 samples 
per symbol

Ng = 6 symbol 
periods/pulse

14

13 - 15

Filter Bank Example #2

Polyphase filter 3 impulse 
response is fourth sample of 

the pulse shape and every 
Lth sample after that

24 samples 
in pulse

L = 4 samples 
per symbol

Ng = 6 symbol 
periods/pulse

15

13 - 16

Pulse Shaping Design Tradeoffs
Computation 

in MACs/s
Memory 

size in 
words

Memory 
reads in 
words/s

Memory 
writes in 
words/s

Direct 
structure
(slide 13-9)

(L Ng)(L fsym)

Filter bank 
structure
(slide 13-12)

L Ng fsym

fsym symbol rate
L samples/symbol
Ng duration of pulse shape in symbol periods

16
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Pulse Shaping Design Tradeoffs
• FIR filter with N coefficients to compute output

Read current input value x[n]
Read pointer to newest input sample in circular buffer
Read previous N-1 input values
Read N filter coefficients h
Compute the output value y[n]
Write current input value to circular buffer to oldest sample
Write (update) the newest pointer in circular buffer
Write output value

• N multiplications-additions, 2N + 1 reads, 3 writes

y[n]=  h[m] x[n−m]
m=0

N−1

∑

17

13 - 18

Pulse Shaping Design Tradeoffs
• Direct structure (slide 13-9)

FIR filter has L Ng coefficients (N = L Ng)
FIR filter: N multiplications-additions, 2N + 1 reads, 3 writes
FIR filter runs at sampling rate L fsym

Upsampler reads at symbol rate and writes at sampling rate

• Filter bank structure (slide 13-9)
L polyphase FIR filters with Ng  coefficients each
FIR filter: Ng multiplications-additions, 2Ng + 1 reads, 3 writes
Each polyphase FIR filter runs at symbol rate fsym

Commutator reads and writes at sampling rate L fsym

18
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ECE 445S Real-Time Digital Signal Processing Lab    Spring 2024

Lecture 15                    http://www.ece.utexas.edu/~bevans/courses/realtime

Quadrature Amplitude Modulation 
(QAM) Transmitter

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering

The University of Texas at Austin

1

15 - 2

Introduction
• Digital Pulse Amplitude Modulation (PAM)

Modulates digital information (symbols) onto amplitude of pulse
May be later upconverted (e.g. to radio frequency)

• Digital Quadrature Amplitude Modulation (QAM)
Two-dimensional extension of digital PAM
Baseband signal requires sinusoidal amplitude modulation
May be later upconverted (e.g. to radio frequencies)

• Digital QAM modulates digital information onto 
pulses that are modulated onto
Amplitudes of a sine and a cosine, or equivalently
Amplitude and phase of single sinusoid

2

Baseband PAM Transmitter
• Bit stream to continuous-time pulse stream

Group stream of bits into symbols of J bits
Map symbol of J bits to unique symbol amplitude
Interpolate from discrete-time to continuous-time

Serial/
Parallel1 J

bit 
stream

J bits per 
symbol

Map to PAM
constellation an

symbol 
amplitude

s*(t)

baseband 
waveform

Discrete-to-Continuous Time
Conversion (Interpolation)

( )symT
k

k Tktgats
sym

   )(* -= å
¥

-¥=

Pulse
shaper

gTsym[m]
LSerial/

Parallel1 J
Map to PAM
constellation an s*(t)D/A

fs
@fs@fs@fsym@fsym

fs = L fsym

4-PAM Map

d

-d

3d

-3d

00

01

10

11

symbol 
of bits

symbol 
ampl.

Review

L samples/symbol 
(upsampling factor)

15 - 3

3

Amplitude Modulation by Cosine
• y1(t) = x1(t) cos(wc t)

Review

( ) ( ) ( )cc XXY wwwww -++= 111 2
1

2
1

15 - 4
• Demodulation: modulation then lowpass filtering

Assume x1(t) is an ideal lowpass signal with bandwidth w1

Assume w1 < wc

Y1(w) is real-valued if X1(w) is real-valued

w
0

1

w1-w1

X1(w)

Baseband signal

½

Upconverted signal

w
0

Y1(w)

½

-wc - w1 -wc + w1
-wc

wc - w1 wc + w1
wc

½X1(w - wc)½X1(w + wc)
1

See Slides 1-6 and 1-7

4
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Amplitude Modulation by Sine
• y2(t) = x2(t) sin(wc t)

Review

( ) ( ) ( )cc XjXjY wwwww --+= 222 22

w
0

1

w2-w2

X2(w)

Baseband signal

• Demodulation: modulation then lowpass filtering

Assume x2(t) is an ideal lowpass signal with bandwidth w2

Assume w2 < wc

Y1(w) is imaginary-valued if X1(w) is real-valued

w

Y2(w)

j ½

-wc – w2 -wc + w2
-wc

wc – w2 wc + w2
wc

-j ½X2(w - wc)j ½X2(w + wc)

-j ½Upconverted signal

See Slides 1-8 and 1-9
15 - 5

5

How to Use Bandwidth Efficiently?

+cos(wc t)

sin(wc t)

x1(t)

x2(t)

s(t)

( ) ( ) ( )( ) ( ) ( )( )cccc XXjXXS wwwwwwwww --+--++= 2211 2
1

2
1

• Cosine modulated signal is in theory orthogonal 
to sine modulated signal at transmitter

Receiver separates x1(t) and x2(t) through demodulation

Send two baseband signals in 
same transmission bandwidth

Called Quadrature Amplitude 
Modulation (QAM)

Used in DSL, cable, Wi-Fi, LTE

• Sinusoidal mod doubles 
transmission bandwidth

6

QAM Transmitter Architecture #1
• Use D/A converter for each baseband PAM channel

i[n]

q[n]

Map to 2-D 
constellation

Serial/
parallel

converter1

Bits

J

Index

D/A power consumption ∝ 𝑓!	2"!4-level QAM 
Constellation

I

Q

d

d

-d

-d

+
s(t)

sin 2𝜋𝑓!𝑡

cos 2𝜋𝑓!𝑡

4-QAM is 2-PAM in the in-phase dimension 
and 2-PAM in the quadrature dimension

0001

1011

Pulse
shaper

gTsym[m]
L D/A

fs

Pulse
shaper

gTsym[m]
L D/A

B1

B1

where	𝐵, 	≥
𝐽
2

7

QAM Transmitter Architecture #2
• Use only one D/A converter

Pulse
shaper

gTsym[m]

Pulse
shaper

gTsym[m]

Serial/
parallel

converter1

Bits

J

Index
Map to 2-D 
constellation

i[n]

q[n]

L

L

4-level QAM 
Constellation

I

Q

d

d

-d

-d

0001

1011

D/A power consumption ∝	𝑓!	2""

4-QAM is 2-PAM in the in-phase dimension 
and 2-PAM in the quadrature dimension

+
cos(w0 m)
sin(w0 m)

s[m]

D/A
s(t)

fs

B2

where	𝐵- ≥ 𝐽

B1

B1

8
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Comparison for 64-QAM (J=6 bits)

Serial/
parallel

converter1

Bits

6

Index
+

s(t)

sin 2𝜋𝑓!𝑡
cos 2𝜋𝑓!𝑡

D/A

fs

D/A

i[n] and q[n] are 8-PAM
symbol amplitudes, e.g.
{ -7, -5, -3, -1, 1, 3, 5, 7 } for 
d = 1 which needs 4 bits

Map to 2-D 
constellation

i[n]

q[n]

4

4

Pulse
shaper

gTsym[m]

Pulse
shaper

gTsym[m] 4+Bp

4+Bp

Upsampling copies 
input sample to output 

and then L-1 zeros, 
and repeats

L
4

4
L

+
cos(w0 m)
sin(w0 m)

s[m]

D/A
s(t)

fs

B2

4+ Bp +Bf

4+ Bp+Bf

Bf fractional bits for each sinusoidal value

#1

#2FIR filtering using Ng L 
coefficients has Ng non-
zero multiplications due 
to upsampling.  With C-
bit FIR coefficients, 
FIR output will have

Bp = 𝐶+ log#	𝑁$
additional bits in worst 
case (see next slide)

9

Wordlength Needed for Pulse Shaping

10

15 - 11

Performance Analysis of PAM
• If we sample matched filter output at correct time 

instances, nTsym, without any ISI, received signal
)()()( symsymsym nTvnTsnTx +=

dianTs nsym )12()( -== for i = -M/2+1, …, M/2

v(nT) ~ N(0; s2/Tsym)

4-level PAM 
Constellation

d

-d

-3 d

3 d

• Matched filter has impulse response gr(t)

where transmitted signal is

v(t) output of matched filter Gr(w) for input of
channel additive white Gaussian noise N(0; s2)

Gr(w) passes frequencies from -wsym/2 to wsym/2 ,
where wsym = 2 p  fsym = 2p / Tsym

11

15 - 12

Performance Analysis of PAM
• Decision error

for inner points

-7d -5d -3d -d d 3d 5d 7d

O- I I I I I I O+

÷
ø
ö

ç
è
æ=>= symsymI TdQdnTvPeP
s

 2))(()(

÷
ø
ö

ç
è
æ=>=

- symsymO TdQdnTvPeP
s

))(()(

÷
ø
ö

ç
è
æ=>=-<=

+ symsymsymO TdQdnTvPdnTvPeP
s

))(())(()(

P(e) = M − 2
M

PI (e)+
1
M
PO+ (e)+

1
M
PO− (e)

8-level PAM 
Constellation

• Decision error
for outer points 

• Symbol error probability

=
2(M −1)
M

Q d
σ

Tsym
⎛

⎝
⎜

⎞

⎠
⎟

12
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15 - 13

Performance Analysis of QAM
• If we sample matched filter outputs at correct time 

instances, nTsym, without any ISI, received signal
)()()( symsymsym nTvnTsnTx +=

dkjdibjanTs nnsym )12( )12( )( -+-=+=

)( )()( symQsymIsym nTvjnTvnTv +=
4-level QAM 
Constellation

I

Q

d

d

-d

-d

• Transmitted signal

where i,k Î { -1, 0, 1, 2 } for 16-QAM
• Noise

For error probability analysis, assume noise terms independent 
and each term is Gaussian random variable ~ N(0; s2/Tsym) 

In reality, noise terms have common source of additive noise in 
channel

13

15 - 14

Performance Analysis of 16-QAM
• Type 1 correct detection

))(&)(()(1 dnTvdnTvPcP symQsymI <<=

( ) ( )dnTvPdnTvP symQsymI <<= )( )(

( )( ) ( )( )dnTvPdnTvP symQsymI >->-= )(1 )(1

2

21 ÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ-= symT
dQ
s

)(2 TdQ
s

)(2 TdQ
s

3

3

3

3

2 2

2

2

2 2

2

2
11

1 1

I

Q

16-QAM

1 - interior decision region
2 - edge region but not corner

3 - corner region

Assume statistical independence of
vI (nTsym ) and vQ (nTsym )

14
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Performance Analysis of 16-QAM
• Type 2 correct detection

))(&)(()(2 dnTvdnTvPcP symQsymI <<=

))(())(( dnTvPdnTvP symQsymI <<=

÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ-÷÷

ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ-= symsym TdQTdQ

ss
211

))(&)(()(3 dnTvdnTvPcP symQsymI -><=

))(())(( dnTvPdnTvP symQsymI -><=
2

1 ÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ-= symT
dQ
s

3

3

3

3

2 2

2

2

2 2

2

2
11

1 1

I

Q

16-QAM

1 - interior decision region
2 - edge region but not corner

3 - corner region

• Type 3 correct detection

15

Performance Analysis of 16-QAM
• Probability of correct detection

22

1
16
421

16
4)( ÷÷

ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ-+÷÷

ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ-= symsym TdQTdQcP

ss

 211
16
8

÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ-÷÷

ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ-+ symsym TdQTdQ

ss

÷
ø
ö

ç
è
æ+÷

ø
ö

ç
è
æ-= symsym TdQTdQ

ss
2

4
931

÷
ø
ö

ç
è
æ-÷

ø
ö

ç
è
æ=-= symsym TdQTdQcPeP

ss
2

4
93)(1)(

• Symbol error probability (lower bound)

• What about other rectangular QAM constellations?

16
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Examples
• Determine decision regions 

for the receiver
Draw boundaries at midpoint of 
every pair of constellation points

• Rectangular constellations
PAM in I and Q dimensions
I and Q axes become boundaries
Gray coding always possible

𝑃%&'( 𝑒 = 1−𝑃))) 𝑐 = 2𝑞	 − 𝑞#

𝑃*&'( 𝑐 = %
*
𝑃)) 𝑐 + %

*
𝑃))) 𝑐

𝑞 = 𝑄
𝑑
𝜎 𝑇+,- 15 - 17𝑃*&'( 𝑒 = 1− 𝑃*&'( 𝑐 = .

#𝑞	 −
/
#𝑞

#

17

15 - 18

Average Power Analysis
• Assume each symbol is equally likely
• Assume energy in pulse shape is 1
• 4-PAM constellation

Amplitudes are in set { -3d, -d, d, 3d }
Total power 9 d2 + d2 + d2 + 9 d2 = 20 d2

Average power per symbol 5 d2

• 4-QAM constellation points
Points are in set { -d – jd, -d + jd, d + jd, d – jd }
Total power 2d2 + 2d2 + 2d2 + 2d2 = 8d2

Average power per symbol 2d2

4-level PAM 
Constellation

d

-d

-3 d

3 d

4-level QAM 
Constellation

I

Q

d

d

-d

-d

18
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1

16 - 2

Introduction
• Channel impairments

Linear and nonlinear distortion of transmitted signal
Additive noise (often assumed to be Gaussian)

• Mismatch in transmitter/receiver analog front ends
• Receiver subsystems to compensate for impairments

Fading    Automatic gain control (AGC)
Additive noise   Matched filters
Linear distortion   Channel equalizer
Carrier mismatch   Carrier recovery
Symbol timing mismatch  Symbol clock recovery

2

16 - 3

Baseband QAM

L samples/symbol
m sample index
n symbol index

Receiver

Transmitter

Downconverted 
signal r1(t)
Carrier recovery 
is not shown

A/D

Symbol
Clock

Recovery

LPF

LPF

Carrier 
DetectAGC

X

X

r1(t) r(t) r[m] Channel
Equalizer

L

L

QAM Demodulationc(t)

2 cos(wc m)

-2 sin(wc m)

i [m]

q[m]

][̂ni

][ˆ nq

i[n] gT[m]L

+
cos(wc m)

q[n] gT[m]L

sin(wc m)
Serial/
parallel

converter1

Bits
Map to 2-D 
constellationJ

Pulse shapers
(FIR filters)

Index
s[m]

D/A
s(t)

fs

!i [m]

!q[m]

3

Automatic Gain Control
• Scales input voltage to A/D converter

Increase/decrease gain for low/high r1(t)

16 - 4

c(t) = 2 f0 +ε
f−128 + f127 +ε

c(t −τ ) = 2c0 +εN
c−128 + c127 +εN

c(t −τ )

• A/D converter with 8-bit signed output
When gain c(t) is zero, A/D output is 0
When gain c(t) is infinity, A/D output is -128 or 127
f-128, f0, f127 represent how frequently outputs -128, 0, 127 occur
fi = ci / N where ci is count of times i occurs in last N samples
Update #1:  c(t) = (1 + 2 f0 – f-128 – f127) c(t – t)

Update #2:

Constant e > 0 prevents division by zero

A/D

AGC

r1(t) r(t) r[m]

c(t)

fs

4
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Channel Equalizer
• Mitigates linear distortion in channel
• When placed after A/D converter

Time domain: shortens channel impulse response
Frequency domain: compensates channel distortion over entire 

discrete-time frequency band instead of transmission band

• Ideal channel
Cascade of delay D and gain g
Impulse response:  impulse delayed by D with amplitude g
Frequency response: allpass and linear phase (no distortion)
Undo effects by discarding D samples and scaling by 1/g

16 - 5

z-D g

5

Channel Equalizer
• IIR equalizer

Ignore noise nm

Set error em to zero
H(z) W(z) = g z-D

W(z) = g z-D  / H(z)

Issues?  See slide 6-15.

• FIR equalizer
Adapt equalizer coefficients when transmitter sends training 

sequence to reduce measure of error, e.g. square of em

16 - 6

Discrete-Time Baseband System

z-D 

h + w
-

xm ym emrm

nm

+

EqualizerChannel

g

Ideal Channel

+

Receiver 
generates

xm 

Training 
sequence

6

Adaptive FIR Channel Equalizer
• Simplest case: w[m] = d[m] + w1 d[m-1]

Two real-valued coefficients w/ first coefficient fixed at one

J LMS[m]= 1
2
e2[m]

w1[m+1]= w1[m]−µ
∂J LMS[m]
∂w1 w1=w1[m]

w1[m+1]= w1[m]−µ  e[m] y[m−1]

]1[ ][][
][ ][
][][][

1 -+=
D-=

-=

mywmymr
mxgms

msmrme

z-D 

h + w
-

xm ym emrm

nm

+

EqualizerChannel

g

Ideal Channel

+

Receiver 
generates

xm 

Training 
sequence

sm

Using least mean squares (LMS)

• Derive update equation for w1 during training

Step size 0 < µ < 1

7

Adaptive FIR Channel Equalizer
• General case: Adapt N real coefficients w0, w1, … wN-1

• Derive coefficient update equations during training

• Vector form:
16 - 8

8
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16 - 9

Carrier Detection
• Detect energy of received signal (always running)

c is a constant where 0 < c < 1 and r[m] is received signal
Let x[m] = r2[m].  What is the transfer function?
What values of c to use?

• If receiver is not currently receiving a signal
If energy detector output is larger than a large threshold, 

assume receiving transmission
• If receiver is currently receiving signal, then it 

detects when transmission has stopped
If energy detector output is smaller than a smaller threshold, 

assume transmission has stopped

][ )1(]1[ ][ 2 mrcmpcmp -+-=

9

16 - 10

Symbol Clock Recovery
• Two single-pole bandpass filters in parallel

One tuned to upper Nyquist frequency wu  = wc + 0.5 wsym 
Other tuned to lower Nyquist frequency wl  = wc – 0.5 wsym

Bandwidth is B/2 (100 Hz for 2400 baud modem)

twtw  ) sin(][ symsymnv »= ωsym  τ <<1when

][ ]1[ ][ nvnpnp ab +-= Lowpass 
IIR filter

Pole 
locations?

See Reader 
handout M

• A recovery method
Multiply upper bandpass filter output with conjugate of lower 

bandpass filter output and take the imaginary value
Sample at symbol rate to estimate timing error t

Smooth timing error estimate to compute phase advancement

10

Baseband QAM Demodulation
• Recovers baseband in-phase/quadrature signals
• Assumes perfect AGC, equalizer, symbol recovery
• QAM modulation followed by lowpass filtering

Receiver fmax = 2 fc + B and fs > 2 fmax

• Lowpass filter has other roles
Matched filter
Anti-aliasing filter

• Matched filters
Maximize SNR at downsampler output
Hence minimize symbol error at downsampler output

16 - 11

LPF

LPF

X

X

2 cos(wc m)

-2 sin(wc m)

x[m]

i [m]

q[m]

11

16 - 12

Baseband QAM Demodulation
• QAM baseband signal ) sin( ][) cos( ][][ mmqmmimx cc ww -=

)cos(][2][̂ mmxmi cw=
)2sin(][)2cos(][][ mmqmmimi cc ww -+=

)sin(][2][ˆ mmxmq cw-= )(sin][2)sin()cos(][2 2 mmqmmmi ccc www +-=
)2cos(][)2sin(][][ mmqmmimq cc ww --=

)2cos1(
2
1cos2 qq += qqq 2sinsincos2 = )2cos1(

2
1sin2 qq -=

baseband high frequency component centered at 2 wc

high frequency component centered at 2 wcbaseband

• QAM demodulation
Modulate and lowpass filter to obtain baseband signals

12
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Review	for	Midterm	#2

19 August 2023

Prof. Brian L. Evans

EE 445S Real-Time Digital Signal Processing Laboratory

1

2

Outline

¨ Course objectives

¨ Design flow

¨ Signal processing

¨ Communication systems

¨ Communication system tradeoffs

¨ Symbol timing recovery

2

Course Overview

¨ Objectives
Build intuition for signal processing concepts
Explore design tradeoffs in signal quality vs.

run-time implementation complexity
¨ Asymmetric Digital Subscriber

Line (ADSL) Receiver Design
FIR channel equalizer gives up to 10x
increase in bit rate vs. not having one
ADSL transmitter sends training data
Eight adaptive channel equalizer design 
methods shown on right
Three have best tradeoffs in bit rate vs.
run-time computational complexity

Receiver design: bit rate in
Mbps vs. multiplications for eight

channel equalizer training methods

[Data from Figs. 6 & 7 in B. L. Evans et al., 
“Unification and Evaluation of Equalization  

Structures…”, IEEE Trans. Sig. Proc., 2005]
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3

Signal	Quality	Measures

¨ Signal-to-noise ratio:  SNR = !"#$%&	()*+,
-)".+	()*+,

Thermal noise (modeled as Gaussian) in Rx analog/RF front end
Quantization noise (modeled as uniform) in data converters

¨ Communication Systems
PAM/QAM Bit rate: 𝐽	𝑓/01
PAM Bit error rate ∝ 𝑄 𝐶2 𝑆𝑁𝑅
PAM Error vector magnitude squared (/𝑎3 − 𝑎3)4 

¨ Data Converters
Signal-to-noise ratio
Total harmonic distortion plus noise (lecture slide 8-14)

4

Estimated 
Rx symbol
amplitude

Nearest Tx 
Constellation Point or 

Training Symbol

4
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Design	Flow
5

Matrices
Fourier series
Difference & 
differential equations
Fourier transforms
Probability

Sampling       Filtering
Modulation    Adaptation

Speech & audio
Image & video
Communications

Builds on courses in 
programming, 
embedded systems, 
and signals & systems

Feedback run-time 
complexity analysis

Feedback run-time 
complexity analysis

5

Signal	Processing	Building	Blocks
¨ Signals

Impulse
Sinusoids
Exponentials
Rectangular Pulse
Triangular Pulse
Sinc & Raised Cosine
Chirp
Pseudo-noise
Impulse train
Noise

¨ Systems
Adder & gain/multiplier
Ideal delay
FIR & IIR filters
Pointwise nonlinearities 
(squarer, absolute value, etc.)
Signal generation (sinusoidal)
Samplers & up/downsampling
Quantizers
Modulators/demodulators
Adaptation (steepest descent)
Fast Fourier transform

6

6

7

7

Increasing	Sampling	Rate

¨ Upsampling by L denoted as   L
Outputs input sample followed by L-1 zeros
Increases sampling rate by factor of L

¨ Finite impulse response (FIR) filter g[m]
Fills in zero values generated by upsampler
Bandwidth p / L
Every Lth sample of g[m] is zero
Multiplies by zero L-1 out of every L times

¨ Represented as rate changing FIR block

m

Output of Upsampler by 4

1 2 3 4 5 6 7 80

1 2

Output of FIR Filter

3 4 5 6 7 8
m

0

1 2

Input to Upsampler by 4

n
0

g[m]4
1 4 1 1

FIR
1 4

1 input sample produces 
4 output samples

7

8

8

Polyphase	Filter	Bank

¨ Filter bank (right) avoids multiplication by zero
Split filter g[m] into L shorter polyphase filters operating at the 

lower sampling rate (no loss in output precision)
Saves factor of L in multiplications and previous inputs stored 

and increases parallelism by factor of L 

g[m]L

Oversampling filter a.k.a. 
sampler + pulse shaper a.k.a. 

linear interpolator

Multiplies by zero 
(L-1)/L of the time

1 L

g0[n]

g1[n]

gL-1[n]

s(Ln)

s(Ln+1)

s(Ln+(L-1))

L1

8
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9

Decreasing	Sampling	Rate

¨ Finite impulse response (FIR) filter g[m]
Lowpass filter to enforce sampling theorem
Bandwidth is p / L

¨ Downsampling by L denoted as   L
Inputs L samples
Outputs first sample and discards L-1 samples
Decreases sampling rate by factor of L

¨ Represented as rate changing FIR block

4
4 1

g[m]
1 1

1 2

Input to Downsampler

3 4 5 6 7 8
m

0

1 2

Output of Downsampler

n
0

FIR
4 1

4 input samples produce 1 
output sample

9

10

10

Polyphase	Filter	Bank	Form

y[1] = v[L] = h[0] s[L] + h[1] s[L-1] + … + h[L-1] s[1] + h[L] s[0]

¨ Filter bank only computes values output by downsampler
Split filter h[m] into L shorter polyphase filters operating at the 

lower sampling rate (no loss in output precision)
Reduces multiplications and increases parallelism by factor of L

Undersampling filter a.k.a. 
Matched filter + sampling a.k.a.

linear decimator

Outputs discarded 
(L-1)/L of the time

h0[n]

h1[n]

hL-1[n]

s(Ln)

s(Ln+1)

s(Ln+(L-1))

1M

s[m]

y[n]

h[m] L

1L

s[m] y[n]v[m]

10

11

11

Communication	Systems
¨ Message signal is information to be sent

Information may be voice, music, images, video, data
Low frequency (baseband) signal centered at DC

¨ Transmitter baseband processing includes lowpass filtering 
to enforce transmission band

¨ Transmitter analog/RF front end includes digital-to-analog 
converter, analog/RF upconverter, and transmit filter

Re
ce

iv
ed

  M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVERs(t) r(t)CHANNEL

11

12

12

Communication	Systems
¨ Propagating signals experience

attenuation & spreading w/ distance
¨ Receiver analog/RF front end includes receive filter, carrier 

recovery, analog/RF downconverter, automatic gain control 
and analog-to-digital converter

¨ Receiver baseband processing extracts/enhances baseband 
signal

Model the 
environment

Re
ce

iv
ed

  M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVERs(t) r(t)CHANNEL

12
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13
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Quadrature	Amplitude	Modulation
Transmitter Baseband 
Processing i[n] gT[m]L

+cos(w0 m)

q[n] gT[m]L

sin(w0 m)

Serial/
parallel

converter1
Bits

Map to 2-D 
constellationJ

L samples per symbol 
(upsampling)

Pulse 
shaper

(FIR filter)

Index

Re
ce

iv
ed

  M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVERs(t) r(t)CHANNEL

In-phase i[n] and quadrature q[n] symbol amplitudes each come from PAM constellation 

13

Transmitter	Analog/RF	Front	End

Re
ce

iv
ed

  M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVERs(t) r(t)CHANNEL

Mixer: Reduce circuit 
complexity by replacing 
multiplication by cosine 
with sampling device 
(single transistor)

cos(2 p fc t)

D/A

fs

LPF LNABPF

BPF selects replica of 
baseband spectrum at fc

LNA Low-Noise Amplifier

Wavelength l = c / fcAntenna Length?

14

14

Communication	Channel	Modeling

Re
ce

iv
ed

  M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL

Line of sight

Propagation Paths

One bounce

Two bounces

Channel Impairments
• Each path has its own 

attenuation & delay
• Frequency distortion 

due to multiple paths
• Additive thermal 

noise & interference
• More in Lecture 12

15

15

Receiver	Analog/RF	Front	End

Re
ce

iv
ed

  M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL

cos(2 p fc t)

A/D

fs

BPFLNA LPF

Mixer: Reduce circuit 
complexity by replacing 
multiplication by cosine 
with sampling device 
(single transistor)
LPF selects replica of 
bandpass spectrum at 
baseband

LNA Low-Noise Amplifier

16

16
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Baseband	Equivalent	Channel
¨ Baseband discrete-time channel model

¤ Combines transmitter carrier circuits, physical channel and 
receiver carrier circuits

¤ One model uses cascade
of gain, FIR filter, and
additive noise

¤ Fast simulation

0a FIR +

noise

Re
ce

iv
ed

  M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL
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Quad.	Amplitude	Demodulation

iest[n]hopt[m] L

cos(w0 m)

hopt[m] L

-sin(w0 m)
L samples per symbol 

(downsampling)

Matched 
filter

(FIR filter)

qest[n]

Parallel/
serial

converter
J

Bits

Decision
Device 1

Symbol

heq[m]
Channel 
equalizer 
(FIR filter)

Receiver Baseband 
Processing

Re
ce

iv
ed

  M
es

sa
ge

M
es

sa
ge Baseband

Processing
Analog/RF 
Front End

Transmission 
Medium

Analog/RF 
Front End

Baseband
Processing

TRANSMITTER RECEIVER
s(t) r(t)CHANNEL
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19

QAM	Signal	Quality
¨ Assumptions

¤ Each symbol is equally likely
¤ Channel only consists of additive noise

n White Gaussian noise with zero mean
and variance s2 in in-phase and
quadrature components

n Total noise power of 2s2 
¤ Carrier frequency and phase recovery
¤ Symbol timing recovery

¨ Probability of symbol error
¤ Constellation spacing of 2d
¤ Symbol duration of Tsym

3

3

3

3

2 2

2

2

2 2

2

2
11

1 1

I

Q

16-QAM

SNR  toalproportion is 

4
93)( 2

sym

symsym

Td

TdQTdQeP

s

ss
÷
ø
ö

ç
è
æ-÷

ø
ö

ç
è
æ=

19

Communication	System	Tradeoffs

¨ What happens to signal quality and run-time implementation 
complexity if PAM system parameter in first column increases?
Indicate increase, decrease, or blank to mean no effect
Assume other parameters in first column are not changing

20

Parameter Transmission 
Bandwidth

Bit Rate Symbol 
Error Rate

Tx Power 
Consumption

Run-Time 
Complexity

B bits in A/D 
output & D/A input

? ? increase

2d constellation 
spacing in Volts

decrease increase

fsym  symbol rate
in Hz

increase increase increase increase

J bits/symbol increase increase increase increase

L samples/symbol decrease increase

𝑁! symbol periods 
in pulse shape

decrease increase

Fall 2020 
Midterm #2.4

20

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2020.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2020.pdf
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Symbol	Timing	Recovery

¨ Consider a baseband PAM system using a rect. pulse shape
¨ Matched filter impulse response is also a rectangular pulse

¨ Receiver needs to find the symbol timing offset t

¨ Develop adaptive method to update t in nth symbol period

21

Spring 2021 
Midterm #2.1

when there is no noise
k can be 
negative

21

Symbol	Timing	Recovery

¨ Maximize power at received symbol amplitude 𝑦(𝑛𝑇/01 + 𝜏)

¨ Objective function:  𝐽 𝑦 𝑡 = 5
4
𝑦4(𝑡)

𝑦 𝑡 = 𝑔 𝑡 ∗ ℎ 𝑡

6"(8)

+𝑤 𝑡 ∗ ℎ 𝑡

3(8)

𝑛(𝑡) is Gaussian random signal with 0 mean and variance :
#

;$%&
 

Average noise power :
#

;$%&
 is constant regardless of sampling time

𝜏 𝑛 + 1 = 𝜏 𝑛 + 𝜇	 ?
𝑑
𝑑𝜏 	𝐽 	𝑦 𝑛𝑇/01 + 𝜏 	

<=< 3

𝜏 𝑛 + 1 = 𝜏 𝑛 + 𝜇	𝑦 𝑛𝑇/01 + 𝜏[𝑛] 	 ?
𝑑
𝑑𝑡 𝑦(𝑡) 8=3;$%&><[3]

22

Spring 2021 
Midterm #2.1

?

22

Symbol	Timing	Recovery

¨ A differentiator circuit can be as implemented as an
RC circuit where the output is tapped across the resistor
RL circuit where the output is tapped across the inductor

¨ For h(t) being a rectangular pulse, we simplify derivative of 
y(t) by using a linear time-invariant model of differentiation 
with impulse response v(t) per JSK Appendix G.2:

A
A8 𝑦(𝑡) = 𝑣(𝑡) ∗ ℎ(𝑡) ∗ 𝑥(𝑡 ) = 𝑣 𝑡 ∗ ℎ 𝑡 ∗ 𝑥(𝑡)
              = 𝛿(𝑡) − 𝛿 𝑡 − 𝑇/01 ∗ 𝑥(𝑡) = 𝑥(𝑡) − 𝑥 𝑡 − 𝑇/01

¨ How to handle many symbols?
Send bits 11
What is y2(t)?

23

Spring 2021 
Midterm #2.1

Tsym t

kTsym

y(𝑡)

2Tsym 3Tsym

23
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Data	Conversion
¨ Analog-to-Digital

¨ Quantize to B bits
Quantization error = noise
SNRdB » C0 + 6.02 B
Dynamic range » SNR

¨ Digital-to-Analog

¨ A/D and D/A lowpass filter
fstop < ½ fs

fpass £ 0.9 fstop

Astop = SNRdB

Apass = 20 log10(1-D) where
D is quantizer step size: 
mmax is max quantizer voltage

Analog 
Lowpass 

Filter

Discrete to 
Continuous 
Conversion

fs

Analog 
Lowpass 

Filter
Quantizer

Sample at 
rate of fs

noise
dB

signal
dBdB

noisesignal
dB

dB

PP

PP

-=

-=

=

SNR

log10log10SNR
Power Noise
Power Signallog10SNR

1010

10

B B

2mmax

2B −1

24

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2021.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2021.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2021.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2021.pdf
https://en.wikipedia.org/wiki/Differentiator
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2021.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2021.pdf


ECE445S Real-Time Digital Signal Processing Lab (Spring 2024)

Lecture: MW 10:30am–12:00pm in ECJ 1.312
Instructor: Prof. Brian L. Evans, bevans@ece.utexas.edu (He/His/Him)
Office Hours: MW 2:00–3:30pm in EER 6.882 and immediately after lecture
Lab Sections: M 6:30–9:30pm (Barati) T 5:00–8:00pm (Barati)
(EER 1.810) W 6:30–9:30pm (Eun) F 1:00–4:00pm (Eun)
TA Office Hours: Mr. Faraz Barati (he/him), W 4:30–6:00pm, TH 3:00–4:30pm

Mr. Yongjin Eun (he/him), TH 4:30–6:00pm, F 5:00–6:30pm
TA E-mail: faraz.barati@utmail.utexas.edu and ye2259@utmail.utexas.edu
Course Web Page: http://users.ece.utexas.edu/˜bevans/courses/realtime

This course covers discrete-time signal processing algorithms and translating them into sys-
tem simulations and embedded real-time software. A goal is to understand design tradeoffs in
signal quality vs. run-time implementation complexity. Applications include audio, commu-
nications, and image processing. Great way to build breadth and depth in signal processing.

Prerequisites
ECE312/312H C Programming and 319K/319H Intro to Embedded Systems with a grade of
at least C- in each; BME343 or ECE313 Signals and Systems with a grade of at least C-; credit
with a grade of at least C- or registration for BME/ECE333T Engineering Communication;
and credit with a grade of at least C- or registration for BME335/ECE351K Probability.

Topical Outline
Digital signal processing algorithms; simulation and real-time implementation of audio and
communication systems; filters; pulse shaping and matched filters; modulation and demodu-
lation; adaptive filters; carrier recovery; symbol synchronization; equalization; quantization.

Order of Lecture Topics
Sinusoidal Generation - Signals & Systems - Finite Impulse Response Filters - Infinite Im-
pulse Response Filters - Sampling & Aliasing - Interpolation & Pulse Shaping - Digital
Pulse Amplitude Modulation (PAM) - Channel Impairments - Matched Filtering - Digital
Quadrature Amplitude Modulation (QAM) - Quantization - Data Conversion

Order of Laboratory Topics
Simulation Tools - Sinusoidal Generation - Filters - Pseudonoise Sequences & Data Scram-
blers - Digital PAM Transceivers - Digital QAM Transceivers - Guitar Effects

Required Textbooks
1. C. R. Johnson Jr., W. A. Sethares and A. G. Klein, Software Receiver Design, Oct. 2011,
ISBN 978-0521189446. Paperback. Matlab code. Free Download from UT Libraries.
2. C. Unsalan, M. E. Yucel, and H. D. Gurhan, Digital Signal Processing using Arm Cortex-
M based Microcontrollers, Arm Educational Media, Sep. 14, 2018, ISBN 978-1-911531-15-9,
354 pages. Request free download.
3. B. L. Evans, ECE445S Real-Time DSP Lab Course Reader. Free download.

Supplemental Text

http://users.ece.utexas.edu/~bevans
mailto:bevans@ece.utexas.edu
mailto:faraz.barati@utmail.utexas.edu
mailto:ye2259@utmail.utexas.edu
http://users.ece.utexas.edu/~bevans/courses/realtime
http://www.amazon.com/Software-Receiver-Design-Digital-Communication/dp/0521189446/ref=sr_1_2_title_0_main?s=books&ie=UTF8&qid=1316700521&sr=1-2#_
http://www.ece.utexas.edu/~bevans/courses/realtime/homework/SRD-MatlabFiles.zip
https://ebookcentral-proquest-com.ezproxy.lib.utexas.edu/lib/utxa/detail.action?docID=774955&pq-origsite=primo
https://www.arm.com/resources/ebook/digital-signal-processing
https://www.arm.com/resources/ebook/digital-signal-processing
https://www.arm.com/resources/ebook/digital-signal-processing
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CourseReaderFall2022.pdf


4. J. H. McClellan, R. W. Schafer, and M. A. Yoder, Signal Processing First, ISBN 978-
0130909992, 2003. On-line demonstrations.

Grading
14% Homework, 20% Midterm #1, 20% Midterm #2, 5% In-Lecture Work, 5% Pre-lab
quizzes, 36% Lab reports. Lab work is performed in person; lab attendance and participation
is required and comprises 25% of the lab report grade. In-class midterm exams are on
Wednesday, Mar. 6th, and Monday, Apr. 29th. There is no final exam.

Assignment of letter grades is below; no rounding will be applied. Although there aren’t any
extra credit assignments, other options for flexibility are described next.

90.00–100.00 A 86.67–89.99 A- 83.34–86.66 B+
80.00–83.33 B 76.67–79.99 B- 73.34–76.66 C+
70.00–73.33 C 66.67–69.99 C- etc.

Flexibility
Each student will be able to drop the lowest grade in each of the following categories: home-
works, in-lecture assignments, pre-lab quizzes, and lab reports. This will give flexibility when
something unexpected happens not covered by these policies, and allow you to strategically
use grade drops to balance your course workload and other commitments. Please let me
know if you face difficulties this semester in accessing course resources or completing work.

Critical Thinking
I am interested in the critical thinking process you use when solving a problem. Please
provide rationale and justification. For homework and exams, I use the following rubric:

• 3/3 points. Correct rationale/justification and correct results

• 2/3 points. Correct rationale/justification but incorrect results.

• 1/3 points. Some progress; errors in rationale/justification even if results are correct.

• 0/3 points. Answer is blank, or only repeated/reworded the question, or gave an
incorrect answer without justification, or never really “got going” towards a solution.

Regrade Requests
Request for regrading an assignment must be made in writing within one (1) week of the
graded assignment being made available to students in the class.

Learning and Growth
Throughout the course, your learning and growth in theory and practice of the engineering
profession are important to me. We all need accommodations because we all learn differently,
and the current pandemic makes accommodations all the more important. If there are aspects
of this course that prevent you from learning or exclude you, please let me know as soon as
possible. Together we will develop strategies to meet your needs and course requirements.
I also encourage you to reach out to the resources available through UT. Many are on this
syllabus. I am happy to connect you with a person or Center if you would like.

Use of AI Generated Content
This course encourages students to explore the use of generative artificial intelligence (GAI)
tools such as ChatGPT for all assignments and assessments, except for the two midterm

http://users.ece.gatech.edu/~mcclella
http://www.rose-hulman.edu/~yoder
http://dspfirst.gatech.edu/
http://dspfirst.gatech.edu/


exams. Any such use must be appropriately acknowledged and cited. It is each student’s
responsibility to assess the validity and applicability of any GAI output that is submitted;
you bear the final responsibility. Violations of this policy will be considered violations of
the campus academic integrity. We draw your attention to the fact that different classes
at UT Austin could implement different AI policies, and it is the student’s responsibility to
conform to expectations for each course. The use of generative artificial intelligence tools on
two midterm exams is prohibited.

Examples of Content Input-and Output AI Generation with Associated Tools:

Content Input-Output Tool
Text In, Text Out ChatGPT, GPT-3, GPT-4
Text In, Image Out DALL-E, Midjourney, Stable Diffusion
Image In, Text Out GPT-4, BLIP
Text In, Video Out RunwayML, Decorum
Multimedia In, Image Out Stable Diffusion, Midjourney, Deforum
Parameters In, Audio (Music) Out Boomy, AIVA

Academic Integrity
Discussion of homework questions is encouraged. Please submit your own independent home-
work solutions, lab 1 and 7 reports, pre-lab quizzes, and midterm exams. For labs 2–6,
students work in teams of two, and each team would submit one report. Collaboration is al-
lowed for in-lecture assignments, but each person must submit their own assignment. For all
homework, in-lecture assignments, and lab reports, cite your sources of information. When
providing answers on midterm exams, be sure to cite your sources of information as part of
your justification for your answers.

Each student is expected to abide by the UT Honor Code: “As a student of The University
of Texas at Austin, I shall abide by the core values of the University and uphold academic
integrity.” If you use words or ideas that are not your own (or that you have used in
a previous class), you must cite your sources. Otherwise, you might be in violation of the
university’s academic integrity policies. Please see Student Conduct and Academic Integrity.

Texas Senate Bill 17
Texas Senate Bill 17, the recent law that outlaws diversity, equity, and inclusion programs
at public colleges and universities in Texas, does not in any way affect content, instruction
or discussion in a course at public colleges and universities in Texas. Expectations and
academic freedom for teaching and class discussion have not been altered post-SB 17, and
students should not feel the need to censor their speech pertaining to topics including race
and racism, structural inequality, LGBTQ+ issues, or diversity, equity, and inclusion.

Use of Electronics
Please focus the use of electronics on the content during lecture and lab sessions to maximize
your own learning and support the learning environment for others.

Video Recordings
Video recording of class activities are reserved for students and TAs in this class only for
educational purposes and are protected by FERPA laws if any students are identifiable in

https://deanofstudents.utexas.edu/conduct/
https://capitol.texas.gov/tlodocs/88R/billtext/pdf/SB00017F.pdf
https://registrar.utexas.edu/staff/ferpa


the video. Video recordings should not be shared outside the class in any form. Students
violating this university policy could face misconduct proceedings.

Food Pantry and Career Clothes Closet
UT Outpost (UA9 Building, 2609 University Avenue) is equipped with a food pantry, and a
career clothing closet, to ensure every Longhorn has access to professional clothes for job and
internship interviews. Emergencies and financial hardships can interfere with student success
beyond the classroom, and this program will serve as an additional resource for students.
This resource is from Student Emergency Services in the Office of the Dean of Students.

Disability and Access
The university is committed to creating an accessible and inclusive learning environment
consistent with university policy and federal and state law. Please let me know if you expe-
rience any barriers to learning so I can work with you to ensure you have equal opportunity
to participate fully in this course. If you are a student with a disability, or think you may
have a disability, and need accommodations please contact Disability & Access (formerly
Services for Students with Disabilities). Here are some examples of the types of diagnoses
and conditions that can be considered disabilities: Attention-Deficit/Hyperactivity Disor-
ders (ADHD), Autism, Blind & Visually Impaired, Brain Injuries, Deaf & Hard of Hearing,
Learning Disabilities, Medical Disabilities, Physical Disabilities, Psychological Disabilities
and Temporary Disabilities. Please refer to the D&A website for contact and more infor-
mation. If you are already registered with D&A, please deliver your Accommodation Letter
to me as early as possible in the semester so we can discuss your approved accommodations
and needs in this course.

Mental Health Counseling
College can be stressful and sometimes we need a little help. Luckily, we have a wealth of
resources and dedicated people ready to assist you, and treatment does work. The Counseling
and Mental Health Center provides counseling, psychiatric, consultation, and prevention
services that facilitate academic and life goals and enhance personal growth and well-being.
Counselors are available Monday-Friday 8am-5pm by phone (512-471-3515) and Zoom.

Alternatively, you can talk to Ms. Alexandra Okeke, LPC, right here in the College of
Engineering. Ms. Okeke is our CARE Counselor and she can be reached at 512-471-3741.

If you are experiencing a mental health crisis (e.g. depression or anxiety), please call the
Mental Health Center Crisis line at 512-471-CALL(2255). Call even if you aren’t sure you’re
in a full-blown crisis, but sincerely need help. Staff are there to help you.

Student Rights and Responsibilities

• You have a right to a learning environment that supports mental and physical wellness.

• You have a right to respect.

• You have a right to be assessed and graded fairly.

• You have a right to freedom of opinion and expression.

• You have a right to privacy and confidentiality.

• You have a right to meaningful and equal participation, to self-organize groups to
improve your learning environment.

https://deanofstudents.utexas.edu/emergency/utoutpost.php
https://deanofstudents.utexas.edu/emergency
https://deanofstudents.utexas.edu
https://diversity.utexas.edu/disability/
https://diversity.utexas.edu/disability/about-disabilities/
https://diversity.utexas.edu/disability/adhd
https://diversity.utexas.edu/disability/adhd
https://diversity.utexas.edu/disability/students-with-austism-spectrum-disorders/
https://diversity.utexas.edu/disability/visual-impairments/
https://diversity.utexas.edu/disability/traumatic-brain-injuries/
https://diversity.utexas.edu/disability/deaf-and-hard-of-hearing/
https://diversity.utexas.edu/disability/learning-disabilities/
https://diversity.utexas.edu/disability/medical-disabilities/
https://diversity.utexas.edu/disability/physical-disabilities/
https://diversity.utexas.edu/disability/psychological-disabilities-2/
https://diversity.utexas.edu/disability/temporary-disabilities/
https://diversity.utexas.edu/disability/
https://cmhc.utexas.edu/index.html
https://cmhc.utexas.edu/index.html
https://cmhc.utexas.edu/CARE-cockrell-engineering.html
https://cmhc.utexas.edu/CARE.html


• You have a right to learn in an environment that is welcoming to all people. No student
shall be isolated, excluded or diminished in any way.

With these rights come responsibilities, you are responsible for

• taking care of yourself, managing your time, and communicating with the teaching
team and others if things start to feel out of control or overwhelming.

• acting in a way worthy of respect and respectful of others.

• creating an inclusive environment and speaking up when someone is excluded.

• holding yourself accountable to these standards, holding each other to these standards,
and holding the teaching team accountable as well.

Your experience with this course is directly related to the quality of the energy that you
bring to it, and your energy shapes the quality of your peers’ experiences.

Personal Pronoun Use
Professional courtesy and sensitivity are especially important with respect to individuals
and topics dealing with differences of race, culture, religion, politics, sexual orientation,
gender, gender expression, gender variance, and nationalities. Class rosters are provided to
the instructor with the student’s legal name, unless they have added a “preferred name”
with the Gender and Sexuality Center. Canvas provides an opportunity to select a pronoun
preference. I will gladly honor your request to address you by a name that is different from
what is on the roster, and by the gender pronouns you use (she/he/they/ze, etc).

Official Correspondence
UT Austin considers e-mail as an official mode of university correspondence. You are re-
sponsible for following course-related information on the course Canvas site.

Q Drop Policy
If you would like to drop a class after the 12th class day, you’ll need to execute a Q drop before
the Q-drop deadline, which is Monday, April 4th. Under Texas law, you are only allowed six
Q drops while you are in college at any public Texas institution. More information.

Religious Holy Days
In accordance with section 51.911 of the Texas Education code and University policies on
class attendance, a student who misses classes or other required activities, including exam-
inations, for the observance of a religious holy day should inform the instructor as far in
advance of the absence as possible so that arrangements can be made to complete an as-
signment within a reasonable period after the absence. A reasonable accommodation does
not include substantial modification to academic standards, or adjustments of requirements
essential to any program of instruction. Students and instructors who have questions or
concerns about academic accommodations for religious observance or religious beliefs may
contact the Office for Inclusion and Equity. The University does not maintain a list of
religious holy days.

Absence for Military Service
In accordance with section 51.9111 of the Texas Education code and University policies on
class attendance, a student is excused from attending classes or engaging in other required
activities, including exams, if they are called to active military service of a reasonably brief

http://diversity.utexas.edu/genderandsexuality/publications-and-resources
https://cio.utexas.edu/policies/university-electronic-mail-student-notification-policy
http://www.utexas.edu/ugs/csacc/academic/adddrop/qdrop
https://texas.public.law/statutes/tex._educ._code_section_51.911
https://catalog.utexas.edu/general-information/academic-policies-and-procedures/attendance/
https://catalog.utexas.edu/general-information/academic-policies-and-procedures/attendance/
https://equity.utexas.edu/
https://texas.public.law/statutes/tex._educ._code_section_51.9111
https://catalog.utexas.edu/general-information/academic-policies-and-procedures/attendance/
https://catalog.utexas.edu/general-information/academic-policies-and-procedures/attendance/


duration. The maximum time for which the student may be excused has been defined by
the Texas Higher Education Coordinating Board as “no more than 25 percent of the total
number of class meetings or the contact hour equivalent (not including the final examination
period) for the specific course or courses in which the student is currently enrolled at the
beginning of the period of active military service.” The student will be allowed a reasonable
time after the absence to complete assignments and take exams.
https://healthyhorns.utexas.edu/coronavirus vaccination.html,
Safety Information
If you have concerns about the safety or behavior of students, TAs, Professors, or others,
call the Behavioral Concerns Advice Line at 512-232-5050. Your call can be anonymous. If
something doesn’t feel right, it probably isn’t. Trust your instincts and share your concerns.

Occupants of buildings are required to evacuate buildings when a fire alarm is activated.
Alarm activation or announcement requires exiting and assembling outside.

• Familiarize yourself with all exit doors of each classroom and building you may occupy.
The nearest exit door may not be the one you used when entering the building.

• Students requiring assistance in evacuation shall inform their instructor in writing
during the first week of class.

• In the event of an evacuation, follow the instruction of faculty or class instructors.
Do not re-enter a building unless given instructions by the following: Austin Fire
Department, UT Austin Police Department, or Fire Prevention Services.

• Information regarding emergency evacuation routes and emergency procedures.

More safety information.

Sanger Learning Center
More than one-third of undergraduates use the Sanger Learning Center each year to improve
their academic performance. All students are welcome to join their classes and workshops
and make appointments for their private learning specialists, peer academic coaches, and
tutors. For more information, see the Sanger Web site or call 512-471-3614 (JES A332).

Title IX Reporting
Title IX is a federal law that protects against sex and gender-based discrimination, sexual
harassment, sexual assault, sexual misconduct, dating/domestic violence and stalking at
federally funded educational institutions. UT Austin is committed to fostering a learning
and working environment free from discrimination in all its forms where all students, faculty,
and staff can learn, work, and thrive. When sexual misconduct occurs in our community,
the university can:

1. Intervene to prevent harmful behavior from continuing or escalating.

2. Provide support and remedies to students and employees who have experienced harm
or have become involved in a Title IX investigation.

3. Investigate and discipline violations of the university’s relevant policies.

http://www.utexas.edu/emergency
http://www.utexas.edu/safety
http://www.utexas.edu/ugs/slc


Faculty members and certain staff members are considered “Responsible Employees” or
“Mandatory Reporters,” which means that they are required to report violations of Title IX
to the Title IX Coordinator at UT Austin. I am a Responsible Employee and must
report any Title IX related incidents that are disclosed in writing, discussion, or one-
on-one. Before talking with me, or with any faculty or staff member about a Title IX related
incident, be sure to ask whether they are a responsible employee. If you want to speak with
someone for support or remedies without making an official report to the university, email
advocate@austin.utexas.edu. For more info about reporting options and resources, visit the
campus resources page or e-mail the Title IX Office at titleix@austin.utexas.edu.

Campus Carry
“The University of Texas at Austin is committed to providing a safe environment for students,
employees, university affiliates, and visitors, and to respecting the right of individuals who
are licensed to carry a handgun as permitted by Texas state law.” More information.

Land Acknowledgment
I would like to acknowledge that we are meeting on the Indigenous lands of Turtle Island,
the ancestral name for what now is called North America. Moreover, I would like to ac-
knowledge the Alabama-Coushatta, Caddo, Carrizo/Comecrudo, Coahuiltecan, Comanche,
Kickapoo, Lipan Apache, Tonkawa and Ysleta Del Sur Pueblo, and all the American Indian
and Indigenous Peoples and communities who have been or have become a part of these
lands and territories in Texas. (Pronounciation guide)

References
In the section Use of AI Generated Content, the wording is from Harvard University, and the
table of Generative AI tools is from the UT AI Tools Taskforce - Arts & Design Subcommit-
tee. This syllabus uses wording suggested by Prof. Mary Steinhardt and effective syllabus
template from the Faculty Innovation Center at UT Austin. The above Land Acknowledg-
ment was drafted by a faculty Committee on Land Acknowledgment and passed by the UT
Austin Faculty Council on September 21, 2020, and approved by the UT Austin President.

mailto:advocate@austin.utexas.edu
https://titleix.utexas.edu/campus-resources
https://titleix.utexas.edu/campus-resources
mailto:titleix@austin.utexas.edu
http://campuscarry.utexas.edu/students
https://liberalarts.utexas.edu/nais/land-acknowledgement/audio-and-av-guides.php
https://facultyinnovate.utexas.edu/effective-syllabus
https://facultyinnovate.utexas.edu/effective-syllabus
https://utexas.app.box.com/s/gayera25jdwsdg01umdxxybb1dvk102o


Handout B: Instructional Staff and Web Resources

1 Background of the Instructors

Brian L. Evans is Professor of Electrical and Computer Engineering at UT Austin. He is an IEEE
Fellow “for contributions to multicarrier communications and image display”. At the undergraduate
level, he teaches Linear Systems and Signals and Real-Time Digital Signal Processing Lab. His
BSEECS (1987) degree is from the Rose-Hulman Institute of Technology, and his MSEE (1988)
and PhDEE (1993) degrees are from the Georgia Institute of Technology. He joined UT Austin in
1996. His first programming experience on digital signal processors was in Spring of 1988.

Teaching assistants (TAs) will run lab sections, grade lab reports, answer e-mail and hold office
hours. TAs are Mr. Yunseong Cho and Mr. Dan Jacobellis. Mr. Cho researches in next-generation
cellular communication systems, and Mr. Jacobellis researches acoustics, signal processing, pattern
recognition, and parallel computing. An undergraduate grader will grade homework assignments.

2 Supplemental Information
Wireless Networking & Communications Seminars.
You can search Google scholar to find papers and patent applications on the topic.
Sometimes, an article found on Google scholar is only available through a specific database, e.g.

IEEE Explore. You can access these databases from an on-campus computer. If you are off campus,
then you can access these databases by first connecting to www.lib.utexas.edu, then selecting the
database under Research Tools, and finally logging in using your UT EID.

Industrial
• Circuit Cellar Magazine http://www.circuitcellar.com
• Electronic Design Magazine http://electronicdesign.com
• Embedded Systems Design Magazine http://www.eetimes.com/design/embedded
• Inside DSP http://www.bdti.com/insideDSP
• Sensors Magazine http://www.sensorsmag.com
• Sensors & Transducers Journal http://www.sensorsportal.com/HTML/DIGEST/New Digest.htm

Academic
• IEEE Communications Magazine
• IEEE Computer Magazine
• EURASIP Journal on Advances in Signal Processing
• IEEE Signal Processing Magazine
• IEEE Transactions on Communications
• IEEE Transactions on Computers
• IEEE Transactions on Signal Processing
• Journal on Embedded Systems
• Proc. IEEE Real-Time Systems Symposium
• Proc. IEEE Workshop on Signal Processing Systems
• Proc. Int. Workshop on Code Generation for Embedded Processors

3 Web Resources (by Ms. Ankita Kaul)
MIT OpenCourseWare:
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-341-discrete-time-signal-
processing-fall-2005/

http://www.wncg.org/events/seminars
http://scholar.google.com
http://ieeexplore.ieee.org/
http://www.circuitcellar.com
http://electronicdesign.com
http://www.eetimes.com/design/embedded
http://www.bdti.com/insideDSP
http://www.sensorsmag.com
http://www.sensorsportal.com/HTML/DIGEST/New_Digest.htm
http://asp.eurasipjournals.com
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-341-discrete-time-signal-processing-fall-2005/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-341-discrete-time-signal-processing-fall-2005/


*Advantages: Exceptional Lecture Notes! The readings are more in depth than lecture material,
but still quite fascinating.
*Disadvantages: The homework assignments and solutions were Advantages for practice, but many
problems outside the scope of the 445S class

UC-Berkeley DSP Class Page:
http://www-inst.eecs.berkeley.edu/ ee123/fa09/#resources
*Advantages: The articles and applets under ’Resources’ are quite interesting and useful
*Disadvantages: Seemingly no actual Berkeley work actually on website, everything taken from
other sources . . .

Carnegie Mellon DSP Class Page:
http://www.ece.cmu.edu/ ee791/
*Advantages: Lectures had a lot of Matlab code for personal demonstration purposes
*Disadvantages: The lecture notes themselves are far more math-y than the context of 445S - still
interesting though

Purdue DSP Class Lecture Notes Page:
http://cobweb.ecn.purdue.edu/ ipollak/ee438/FALL04/notes/notes.html
*Advantages: the notes are super simple and easy to understand
*Disadvantages: only covers f̃irst half of 445S coursework

Doing a search on Apple’s iTunes U[niversity] for DSP provided numerous FREE lectures from
MIT, UNSW, IIT, etc. for download as well.

Youtube Video Resources:
http://www.youtube.com/watch?v=7H4sJdyDztI&feature=related
Ŝignal Processing Tutorial: Nyquist Sampling Theorem and Anti-Aliasing (Part 1)
*Advantages: visuals
*Disadvantages: . . . a bit slow

http://www.youtube.com/watch?v=Fy9dJgGCWZI
Ŝampling Rate, Nyquist Frequency, and Aliasing
*Advantages: visualization of basic concepts
*Disadvantages: very short, would have liked more explanation

http://www.youtube.com/watch?v=RJrEaTJuX A&feature=related
Ŝimple Filters Lecture, IIT-Delhi Lecture
*Advantages: explanations of going to and from magnitude/phase
*Disadvantages: watch out for lecturer’s accent

http://www.youtube.com/watch?v=Xl5bJgOkCGU&feature=channel
F̂IR Filter Design, IIT-Delhi Lecture
*Advantages: significantly deeper explanations of math than in class
*Disadvantages: lecturer’s accent, video gets stuck about 30 seconds in

http://www.youtube.com/watch?v=vyNyx00DZBc
D̂igital Filter Design
*Advantages: information - especially on design TRADEOFFs
*Disadvantages: sound quality, better off just reading slides while he lectures

http://www-inst.eecs.berkeley.edu/~ee123/fa09/#resources
http://www.ece.cmu.edu/~ee791/
http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html
http://www.youtube.com/watch?v=7H4sJdyDztI\&feature=related
http://www.youtube.com/watch?v=Fy9dJgGCWZI
http://www.youtube.com/watch?v=RJrEaTJuX_A\&feature=related
http://www.youtube.com/watch?v=Xl5bJgOkCGU\&feature=channel
http://www.youtube.com/watch?v=vyNyx00DZBc


Handout C: ECE IT Support

ECE Teaching Labs for various courses are located in the basement and first-floor of the
Engineering Education and Research Center (EERC) Building. The computing facilities in
the ECE teaching labs are available when officially scheduled lab sections are not meeting
in them. The ECE teaching labs are open Mondays–Thursdays from 9:00am to 10:00pm,
Fridays 9:00am to 7:00pm, and Saturdays 10:00am to 6:00pm. More information about the
ECE teaching labs is available at http://www.ece.utexas.edu/it/labs.

1 Available Hardware

The ECE Department has about 200 workstations, including Unix workstations and
Windows machines, for student use. In addition to the workstations in the ECE teaching
labs, several Linux and Windows workstations are available for remote connection. For more
information, see http://www.ece.utexas.edu/it/remote-linux.

2 Available Software on the Unix Workstations

The following programs are installed on all of the ECE workstations unless otherwise
noted.
• Matlab is a number crunching tool for matrix-vector calculations which is well-suited for
algorithm development and testing. It comes with a signal processing toolbox (FFTs, filter
design, etc.). It is run by typing matlab. Matlab is licensed to run on the Windows PCs
in the ECE LRC, as well as Unix machines luigi, mario and princess in the ECE LRC. On
the Unix machines, be sure to type module load matlab before running Matlab. For more
information about using Matlab, please see Appendix D in this reader.
• Mathematica is a environment for solving algebraic equations, solving differential and dif-
ference equations in closed-form, performing indefinite integration, and computing Laplace,
Fourier, and other transforms. The command-line interface is run by typing math. The
graphical user interface is run by typing mathematica. On ECE LRC machines, Mathe-
matica is only licensed to run on sunfire1.
• The GNU C compiler gcc and GNU C++ compiler g++ are available.
• LabVIEW software environment, which is a graphical programming environment that is
useful for signal processing and communication systems developed at National Instruments,
is also installed. LabVIEW’s Mathscript facility can execute many Matlab scripts and func-
tions. We have a site license for LabVIEW that allows faculty, staff and students to install
LabVIEW on their personally-owned computers. For more information, see

http://users.ece.utexas.edu/˜bevans/courses/realtime/homework/index.html#labview

http://www.ece.utexas.edu/it/labs
http://www.ece.utexas.edu/it/remote-linux
http://users.ece.utexas.edu/~bevans/courses/realtime/homework/index.html#labview
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Introduction to Computation in Matlab 
 

Prof. Brian L. Evans, Dept. of ECE, The University of Texas, Austin, Texas USA 
 
Matlab’s forte is numeric calculations with matrices and vectors.  A vector can be defined as 

vec = [1 2 3 4]; 

The first element of a vector is at index 1.  Hence, vec(1) would return 1.  A way to generate a 
vector with all of its 10 elements equal to 0 is 

zerovec = zeros(1,10); 
Two vectors, a and b, can be used in Matlab to represent the left hand side and right hand side, 
respectively, of a linear constant-coefficient difference equation: 

a(3) y[n-2] + a(2) y[n-1] + a(1) y[n] = b(3) x[n-2] + b(2) x[n-1] + b(1) x[n] 

The representation extends to higher-order difference equations.  Assuming zero initial 
conditions, we can derive the transfer function.   The transfer function can also be represented 
using the two vectors a (negated feedback coefficients) and b (feedforward coefficients).  For the 
second-order case, the transfer function becomes 

H (z) = b(1)+b(2)z
−1 +b(3)z−2

a(1)+ a(2)z−1 + a(3)z−2
 

We can factor a polynomial by using the roots command. 
 
Here is an example of values for vectors a and b: 

a = [ 1   6/8    1/8]; 
b = [ 1     2      3  ]; 

For an asymptotically stable transfer function, i.e. one for which the region of convergence 
includes the unit circle, the frequency response can be obtained from the transfer function by 
substituting z = exp(j ω).  The Matlab command freqz implements this substitution: 

[h, w] = freqz(b, a, 1000); 
The third argument for freqz indicates how many points to use in uniformly sampling the points 
on the unit circle.  In this example, freqz returns two arguments:  the vector of frequency 
response values h at samples of the frequency domain given by w.  One can plot the magnitude 
response on a linear scale or a decibel scale: 

plot(w, abs(h)); 
plot(w, 20*log10(abs(h))); 

The phase response can be computed using a smooth phase plot or a discontinous phase plot: 

plot(w, unwrap(angle(h))); 
plot(w, angle(h)); 

One can obtain help on any function by using the help command, e.g. 
help freqz 
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As an example of defining and computing with matrices, the following lines would define a 2 x 3 
matrix A, then define a 3 x 2 matrix B, and finally compute the matrix C that is the inverse of the 
transpose of the product of the two matrices A and B:  

A = [1 2 3; 4 5 6];  
B = [7 8; 9 10; 11 12];  

C = inv((A*B)'); 

Matlab Tutorials, Help and Training 

Here are excellent Matlab tutorials: 

https://stat.utexas.edu/training/software-tutorials#matlab 
http://www.mathworks.com/academia/student_center/tutorials/mltutorial_launchpad.html  

The following Matlab tutorial book is a useful reference:  

Duane C. Hanselman and Bruce Littlefield, Mastering MATLAB, ISBN 9780136013303, 
Prentice Hall, 2011. 

A full version of Matlab is available for your personal computers via a university site license 

http://www.ece.utexas.edu/it/software 

and scroll down to “MATLAB”.  Although the first few computer homework assignments will 
help step you through Matlab, it is strongly suggested that you take the free short courses that the 
Department of Statistics and Data Sciences will be offering.  The schedule of those courses is 
available online at  

https://stat.utexas.edu/training/software-short-courses  

Technical support is provided through free consulting services from the Department of Statistics 
and Data Sciences. Simple queries can be e-mailed to stat.consulting@austin.utexas.edu. For 
more complicated inquiries, please go in person to their offices located in GDC 7.404. You can 
walk in or schedule an appointment online. 

Running Matlab in Unix 

On the Unix machines in the ECE Learning Resource Center, you can run Matlab by typing  

module load matlab 
matlab 

When Matlab begins running, it will automatically execute the commands in your Matlab 
initialization file, if you have one. On Unix systems, the initialization file must be 
~/matlab/startup.m where ~ means your home directory. 
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Handout F: Fundamental Theorem of Linear Systems

Theorem: Let a linear time-invariant system g has an ef (t) denote the complex sinusoid

ej2πft. Then, g(ef(.), t) = g(ef(.), 0)ef(t) = c ef(t).

Example: Analog RC Lowpass Filter

x(t) R

C
y(t)

Figure 1: A First-Order Analog Lowpass Filter

The impulse response for the circuit in Fig. 1, i.e. the output measured at y(t) when

x(t) = δ(t), is

h(t) =
1

RC
e−

1

RC
tu(t)

For a complex sinusoidal input, x(t) = ef (t) = ej2πft,

y(t) =
∫

∞

−∞

x(t − λ)h(λ) dλ

=
∫

∞

−∞

ej2πf(t−λ) 1

RC
e−

1

RC
λu(λ) dλ

= ej2πft

[

1

RC

∫

∞

−∞

e−j2πfλe−
1

RC
λ dλ

]

=

[

1
RC

j2πf + 1
RC

]

ej2πft

= g(ef(.), 0) ef(t)

So, g(ef(.), 0) = H(f), which is the transfer function of the system.
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EE445S Real-Time Digital Signal Processing Laboratory

Handout G: Raised Cosine Pulse

Section 7.5, pp. 431–434, Simon Haykin, Communication Systems, 4th ed.

We may overcome the practical difficulties encounted with the ideal Nyquist channel

by extending the bandwidth from the minimum value W = Rb/2 to an adjustable value

between W and 2W . We now specify the frequency function P (f) to satisfy a condition

more elaborate than that for the ideal Nyquist channel; specifically, we retain three terms of

(7.53) and restrict the frequency band of interest to [−W, W ], as shown by

P (f) + P (f − 2W ) + P (f + 2W ) =
1

W
,−W ≤ f ≤ W (1)

We may devise several band-limited functions to satisfy (1). A particular form of P (f) that

embodies many desirable features is provided by a raised cosine spectrum. This frequency

characteristic consists of a flat portion and a rolloff portion that has a sinusoidal form, as

follows:

P (f) =































1

2W
for 0 ≤ |f | < f1

1

4W

(

1 − sin
π(|f | − W )

2W − 2f1

)

for f1 ≤ |f | < 2W − f1

0 for |f | ≥ 2W − f1

(2)

The frequency parameter f1 and bandwidth W are related by

α = 1 −
f1

W
(3)

The parameter α is called the rolloff factor; it indicates the excess bandwidth over the ideal

solution, W . Specifically, the transmission bandwidth BT is defined by 2W −f1 = W (1+α).

The frequency response P (f), normalized by multiplying it by 2W , is shown plotted in

Fig. 1 for three values of α, namely, 0, 0.5, and 1. We see that for α = 0.5 or 1, the function

P (f) cuts off gradually as compared with the ideal Nyquist channel (i.e., α = 0) and is

therefore easier to implement in practice. Also the function P (f) exhibits odd symmetry

with respect to the Nyquist bandwidth W , making it possible to satisfy the condition of (1).

The time response p(t) is the inverse Fourier transform of the function P (f). Hence, using

the P (f) defined in (2), we obtain the result (see Problem 7.9)

p(t) = sinc(2Wt)
(

cos 2παWt

1 − 16α2W 2t2

)

(4)

which is shown plotted in Fig. 2 for α = 0, 0.5, and 1. The function p(t) consists of the

product of two factors: the factor sinc(2Wt) characterizing the ideal Nyquist channel and a



second factor that decreases as 1/|t|2 for large |t|. The first factor ensures zero crossings of

p(t) at the desired sampling instants of time t = iT with i an integer (positive and negative).

The second factor reduces the tails of the pulse considerably below that obtained from the

ideal Nyquist channel, so that the transmission of binary waves using such pulses is relatively

insensitive to sampling time errors. In fact, for α = 1, we have the most gradual rolloff in that

the amplitudes of the oscillatory tails of p(t) are smallest. Thus, the amount of intersymbol

interference resulting from timing error decreases as the rolloff factor α is increased from

zero to unity.
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Figure 1: Frequency response for the raised cosine function.

The special case with α = 1 (i.e., f1 = 0) is known as the full-cosine rolloff characteristic,

for which the frequency response of (2) simplifies to

P (f) =















1

4W

(

1 + cos
πf

2W

)

for 0 < |f | < 2W

0 if |f | ≥ 2W

Correspondingly, the time response p(t) simplifies to

p(t) =
sinc(4Wt)

1 − 16W 2t2
(5)

The time response exhibits two interesting properties:

1. At t = ±Tb/2 = ±1/4W , we have p(t) = 0.5; that is, the pulse width measured at half

amplitude is exactly equal to the bit duration Tb.

2. There are zero crossings at t = ±3Tb/2, ±5Tb/2,... in addition to the usual zero

crossings at the sampling times t = ±Tb,±2Tb, . . .

2



These two properties are extremely useful in extracting a timing signal from the received

signal for the purpose of synchronization. However, the price paid for this desirable prop-

erty is the use of a channel bandwidth double that required for the ideal Nyquist channel
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Figure 2: Time response for the raised cosine function.
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EE445S Real-Time Digital Signal Processing Laboratory

Handout I: Analog Sinusoidal Modulation Summary

Many ways exist to modulate a message signal m(t) to produce a modulated (transmitted)
signal x(t). For amplitude, frequency, and phase modulation, modulated signals can be expressed
in the same form as

x(t) = A(t) cos(2πfct + Θ(t))

where A(t) is a real-valued amplitude function (a.k.a. the envelope), fc is the carrier frequency,
and Θ(t) is the real-valued phase function. Using this framework, several common modulation
schemes are described below. In the table below, the amplitude modulation methods are dou-
ble sideband larger carrier (DSB-LC), DSB suppressed carrier (DSB-SC), DSB variable carrier
(DSB-VC), and single sideband (SSB). The hybrid amplitude-frequency modulation is quadra-
ture amplitude modulation (QAM). The angle modulation methods are phase and frequency
modulation.

Modulation A(t) Θ(t) Carrier Type Use
DSB-LC Ac [1 + kam(t)] Θ0 Yes Amplitude AM radio
DSB-SC Acm(t) Θ0 No Amplitude
DSB-VC Acm(t) + ε Θ0 Yes Amplitude

SSB Ac

√
m2(t) + [m(t) ? h(t)]2 arctan(−m(t)?h(t)

m(t)
) No Amplitude † Marine radios

QAM Ac

√
m2

1(t) + m2
2(t) arctan(−m2(t)

m1(t)
) No Hybrid Satellite

Phase Ac Θ0 + kp m(t) No Angle Underwater
modems

Frequency Ac 2πkf

∫ t
0 m(t) dt No Angle FM radio

TV audio

† h(t) is the impulse response of a bandpass filter or phase shifter to effect a cancellation of one
pair of redundant sidebands. For ideal filters and phase shifters, the modulation is amplitude
modulation because the phase would not carry any information about m(t).

Each analog TV channel is allocated a bandwidth of 6 MHz. The picture intensity and color
information are transmitted using vestigal sideband modulation. Vestigal sideband modulation
is a variant of amplitude modulation (not shown above) in which the upper sideband is kept and
a fraction of the lower sideband is kept, or vice-versa. In an analog TV signal, the audio portion
is frequency modulated.

The following quantity is known as the complex envelope

x̃(t) = A(t) ej Θ(t) = xI(t) + j xQ(t)

where xI(t) is called the in-phase component and xQ(t) is called the quadrature component. Both
xI(t) and xQ(t) are lowpass signals, and hence, the complex envelope x̃(t) is a lowpass signal.
An alterative representation for the modulated signal x(t) is

x(t) = <e{x̃(t) ej2πfct}
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The University of Texas at Austin
Dept. of Electrical and Computer Engineering

Midterm #1

Date: March 9, 2006 Course: EE 345S Arslan
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Last, First

• The exam is scheduled to last 75 minutes.
• Open books and open notes.  You may refer to your homework assignments and 

the homework solution sets.
• Calculators are allowed.
• You may use any standalone computer system, i.e. one that is not connected to a 

network.
• Please turn off all cell phones, pagers, and personal digital assistants (PDAs).
• All work should be performed on the quiz itself.  If more space is needed, then 

use the backs of the pages.
• Fully justify your answers.  

Problem Point Value Your score Topic
1 20 Digital Filter Analysis
2 20 IIR Filter
3 20 Sampling and Reconstruction
4 20 Linear Systems
5 20 Assembly Language

Total 100
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Problem 1.1 Digital Filter Analysis.  20 points.

A  causal  discrete-time  linear  time-invariant  filter  with  input  x[k]  and  output  y[k]  is 
governed by the following difference equation:

y[k] = -0.7 y[k-1] + x[k] - x[k-1]

(a) Draw the block diagram for this filter.  4 points.

(b) What are the initial conditions and what values should they be assigned?  4 points.

(c) Find the equation for the transfer function in the z-domain including the region of 
convergence.  4 points.

(d) Find the equation for the frequency response of the filter.  4 points.

(e) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass?  Why?  4 points.
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Problem 1.2 IIR filtering.  20 points.   
For the system shown below  

The input signal ( )x t  to the Continuous-to-Discrete converter is 

( )  4 cos(500 ) -3cos([(2000 / 3) ]x t t tπ π= +

The transfer function for the linear, time-invariant (LTI) system is ( )H z  

( ) ( ) ( ) ( )
( ) ( )

1 / 2 1 / 2 1

2 /3 1 2 / 3 1

1 1 1

1 0.9 1 0.9

j j

j j

z e z e z
H z

e z e z

π π

π π

− − − −

− − −

− − −
=

− −

If 1000sf =  samples/sec, determine an expression for ( )y t , the output of the Discrete-to-
Continuous converter.  

K - 9

C-to-D D-to-C
LTI 

System
H(z)

( )x t [ ]x n [ ]y n ( )y t

1/ sT f= 1/ sT f=



Problem 1.3. Sampling and Reconstruction.  20 points.

Suppose that a discrete-time signal x[n] is given by the formula

[ ] ( )7/2.0cos10 π−π= nnx

and that it was obtained by sampling a continuous-time signal at a sampling rate of fs = 2000 
samples/sec.

a) Determine two different continuous-time signals x1(t) and x2(t) whose samples are equal to 
x[n]; i.e. find x1(t) and x2(t) such that x[n] = x1(nTs) = x2(nTs)

 
b) If x[n] is given by the equation above, what signal will be reconstructed by an ideal D-to-C 

converter operating at sampling rate 2000 samples/sec? That is, what is the output y(t) in the 
following figure if x[n] is as given above?

K - 10

D-to-C
T

s
 = 1/f

s

x[n] y(t)



Problem 1.4. Linear Systems.  20 points.

Two stable discrete-time linear time-invariant (LTI) filters are in cascade as shown below.

a) Show that the end-to-end system from x[k] to y[k] is equivalent to the following system 
where the order of the systems have been replaced, or give a counter-example. 10 points

b) What practical considerations have to be taken into account when switching the order of two 
systems in practice? 10 points

K - 11

][kx
h1[n]

][ky
h2[n]

][kx
h2[n]

][ky
h1[n]



Problem 1.5 Assembly Language.  20 points.
Consider the discrete-time linear time-

invariant filter with x[n] and output y[n] shown on 
the right. Assume that the input signal x[n] and 
the coefficient a represent complex numbers. 

(a) Write the difference equation for this filter. Is 
this an FIR or IIR filter?  4 point.

(b) Sketch the pole-zero plot for this filter.  4 points.

(c) Write a linear TI C6700 assembly language routine to implement the difference equation. 
Assume that the address for x is in A4 and the address to y is in A5.  Assume that the input 
and output data as well as the coefficient consist of single precision floating point complex 
numbers.  Assume that the assembler will insert the correct number of no-operation (NOP) 
instructions to prevent pipeline hazards.  12 points.

K - 12

Σx[n] y[n]

Unit 
Delay

a  y[n-1]
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Problem 1.1 Digital Filter Analysis.  25 points. 

A causal discrete-time linear time-invariant filter with input x[k] and output y[k] is governed by 

the following difference equation 

y[k] = a
2
 y[k – 2] + (1 – a) x[k] 

where a is a real-valued constant with 0 < a < 1. 

Note: The output is a combination of the current input and the output two samples ago. 

(a) Is this a finite impulse response filter or infinite impulse response filter?  Why? 2 points. 

The current output y[k] depends on previous output y[k-2].  Hence, the filter is IIR. 

(b) Draw the block diagram for this filter.  4 points. 

 
(c) What are the initial conditions and what values should they be assigned?  4 points. 

y[0] = a
2
 y[–2] + (1 – a) x[0]       Hence, the initial conditions are y[-1] and y[-2], 

y[1] = a
2
 y[–1] + (1 – a) x[1]       i.e., the initial values of the memory locations for 

y[2] = a
2
 y[0]   + (1 – a) x[2]       y[k – 1] and y[k – 2].  These initial conditions should 

                                                 be set to zero for the filter to be linear & time-invariant  

(d) Find the equation for the transfer function in the z-domain including the region of convergence.  

5 points. 

Take the z-transform of both sides of the difference equation: 

Y(z) = a
2
 z

-2
 Y(z) + (1 – a) X(z) 

Y(z) – a
2
 z

-2
 Y(z) = (1 – a) X(z) 

(1  – a
2
 z

-2
) Y(z) = (1 – a) X(z) 

)1)(1(

1

1

1

)(

)(
)(

1122 −−− +−
−=

−
−==

azaz

a

za

a

zX

zY
zH   Hence, poles are located at z = a and z = –a. 

Since the system is causal, the region of convergence is |z| > a. 

(e) Find the equation for the frequency response of the filter.  5 points. 

System is stable because the two poles are located inside the unit circle since 0 < a < 1. 

Because the system is stable, we can convert the transfer function to a frequency response: 

ωωω
221

1
)()(

jezfreq
ea

a
zHH j −= −

−==  

(f) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass?  Why?  What value of the 

parameter a would you use?  5 points. 

Poles are at angles 0 rad/sample (low frequency) and ππππ rad/sample (high frequency). 

When a ≈≈≈≈ 0, the filter is close to allpass. 

When a ≈≈≈≈ 1, the filter is bandstop.  Poles close to the unit circle indicate the passband(s).   

Σ x[k] y[k] 

Delay 

Delay 

a2 

y[k-1] 

y[k-2] 
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Problem 1.2 Upconversion. 30 points. 

You’re the owner of The Zone AM radio station (AM 1300 kHz), and you’ve just bought KLBJ (AM 

590 kHz).   As a temporary measure, you decide to broadcast the same content (speech/audio) over 

both stations. 

Carrier frequencies for AM radio stations are separated by 10 kHz.  The speech/audio content is 

limited to a bandwidth of 5 kHz. 

 
The output y(t) should contain an AM radio signal at carrier frequency 590 kHz and an AM radio 

signal at carrier frequency 1300 kHz.  The input x(t) = 1 + ka m(t), where m(t) is the speech/audio 

signal to be broadcast.  Since m(t) could come from an audio CD, the bandwidth of m(t) could be as 

high as 22 kHz.  Note:  Filter #1 is anti-aliasing filter.  Filter #2 is a two-passband bandpass filter. 

 

(a) Continuous-Time Analysis.  15 points. 

1) Specify a passband frequency, passband deviation, stopband frequency, and stopband 

attenuation for filter #1.  Speech/audio bandwidth for AM radio is limited to 5 kHz.  

Filter #1 enforces this requirement (see homework problems 2.3 and 3.3).  Assuming 

the ideal passband response is 0 dB, Apass = -1 dB and Astop = -90 dB.   The 90 dB of 

comes from the dynamic range of the audio CD.  Also, fstop < 5 kHz.  We’ll choose 

fpass = 4.3 kHz and fstop = 4.8 kHz.  The transition region is roughly 10% of fpass. 

2) Give the sampling rate fs of the sampler.  We want to produce replicas of filter #1 output 

centered at 590 kHz and 1300 kHz.  Also fs > 2 fmax and fmax = 4.8 kHz.  So, fs = 10 kHz. 

3) Draw the spectrum of w(t).  Each lobe below is 2 fmax wide. 

 
4) Give the filter specifications to design filter #2.  Filter #2 passbands are 585.7−594.3 kHz 

and 1295.7−1304.3 kHz, and stopbands are 0−585 kHz, 595−1295 kHz, and greater 

than 1305 kHz.  These bands have counterparts in negative frequencies. 

5) Draw the spectrum of y(t).  Each lobe below is 2 fmax wide. 

 

f 

Y(f) 

Sampler at 

sampling 

rate of fs 

x(t) Filter #1  

h1(t) 

Filter #2 

h2(t) 

y(t) 
 

w(t) 
 

f 

W(f) 

fs 2fs −2fs −fs 

590 kHz 1300 kHz −590 kHz −1300 kHz 
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The block diagram for the system is repeated here for convenience: 

 

 
 

(b) Discrete-Time Implementation.  15 points. 

1) Give a second sampling rate to convert the continuous-time system to a discrete-time 

system.  There are two conditions on the second sampling rate, as seen in homework 

problem 3.2.  First, we’ll need to pick a second sampling rate fs2 for x(t), w(t), and y(t) 

that minimizes aliasing.  The maximum frequencies of interest for x(t) and y(t) are 22 

kHz and 1305 kHz, respectively.  In theory, w(t) is not bandlimited.  Second, we’ll 

need to pick the second sampling rate to be an integer multiple of fs.  In summary, 

fs2 > 2 (1305 kHz)   and  fs2 = k fs, where k is an integer 

2) Would you use a finite impulse response (FIR) or infinite impulse response (IIR) filter for 

filter #1?  Why?  In audio, phase is important.  AM radio stations generally broadcast 

single-channel audio.  (AM stereo had gains in popularity in the 1990s, but has been in 

decline due to digital radio.)  Assuming single-channel transmission, filter #1 should 

have linear phase.  Hence, filter #1 should be FIR.  

3) What filter design method would you use to design filter #1?  Why? 

I would use the Parks-McClellan (Remez exchange) algorithm to design the shortest 

linear phase FIR filter. 

4) Would you use a finite impulse response (FIR) or infinite impulse response (IIR) filter for 

filter #2?  Why?   As per part (2), filter #2 should have linear phase, and hence be FIR.  

Also, filter #2 is a multiband bandpass filter.  It is not clear how to use classical IIR 

filter design methods to design such a filter. 

5) What filter design method would you use to design filter #2?  Why?  Through homework 

assignments, we have designed multiband FIR filters using the Parks-McClellan 

(Remez exchange) algorithm.  The Kaiser window method is for lowpass FIR filters.  

The FIR Least Squares method could be used.  I would use the Parks-McClellan 

(Remez exchange) algorithm to design the shortest multiband linear phase FIR filter. 

 

Sampler at 

sampling 

rate of fs 

x(t) Filter #1  

h1(t) 

Filter #2 

h2(t) 

y(t) 
 

w(t) 
 



 

K -  29 

Problem 1.3 Digital Filter Design. 25 points. 

Consider the following cascade of two causal discrete-time linear time invariant (LTI) filters with 

impulse responses h1[n] and h2[n], respectively: 

 

 
 

Filter #1 has the following impulse response: 

 
 

The (group) delay through filter #1 is ½ sample.  Note: Filter #1 is a first-order difference filter. 

Design filter #2 so that it satisfies all three of the following conditions: 

   a. Cascade of filter #1 and filter #2 has a bandpass magnitude response, 

   b. Cascade of filter #1 and filter #2 has (group) delay that is an integer number of samples, and 

   c. Filter #2 has minimum computational complexity. 

Group delay is defined as the negative of the derivative (with respect to frequency) of the phase 

response.  As discussed in lecture, a linear phase FIR filter with N coefficients has a group delay 

of (N-1)/2 samples for all frequencies.  So, a first-order difference filter has a delay of ½ samples. 

As we saw in the mandrill (baboon) image processing demonstration, a cascade of a highpass 

filter (first-order differencer) and a lowpass filter (averaging filter) has a bandpass response, 

provided that there is overlap in their passbands. 

A two-tap averaging filter has a group delay of ½ samples.  A cascade of a first-order difference 

filter and a two-tap averaging filter would have a group delay of 1 sample. 

A two-tap averaging filter with coefficients equal to one would only require 1 addition per 

output sample.  No multiplications required.  This is indeed low computational complexity. 

h2[n] = 
�

[n] + 
�

[n-1] 

x[n] 

Filter #1  

h1[n] 

Filter #2 

h2[n] y[n] w[n] 

n 

h1[n] 
1 

-1 
2 3 
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Problem 1.4. Potpourri.  20 points. 

 

Please determine whether the following claims are true or false and support each answer with a brief 

justification.  If you give a true or false answer without any justification, then you will be awarded 

zero points for that answer. 

 

(a) The automatic order estimator for the Parks-McClellan (a.k.a. Remez Exchange) algorithm always 

gives the shortest length FIR filters to meet a piecewise constant magnitude response specification.  

4 points.  False, for two different reasons.  First, the Parks-McClellan algorithm designs the 

shortest length linear phase FIR filters with floating-point coefficients to meet a piecewise 

constant magnitude response specification.  Second, the automatic order estimator is an 

important but nonetheless empirical formula developed by Jim Kaiser.  It can be off the 

mark by as much as 10%.  Sometimes, the order returned by the automatic order estimator 
does not meet the filter specifications.  

(b) All linear phase finite impulse response (FIR) filters have even symmetry in their coefficients.  

Assume that the FIR coefficients are real-valued.  4 points.  False.  It true that FIR filters that 

have even symmetry in their coefficients (about the mid-point) have linear phase.  However, 

as mentioned in lecture, FIR filters with coefficients that have odd symmetry (about the mid-

point) also have linear phase. 

(c) If  linear phase finite impulse response (FIR) floating-point filter coefficients were converted to 

signed 16-bit integers by multiplying by 32767 and rounding the results to the nearest integer, the 

resulting filter would still have linear phase.  4 points.  True.  An FIR filter has linear phase if 

the coefficients have either odd symmetry or even symmetry about the mid-point.  

Multiplying the coefficients by a constant does not change the symmetry about the mid-point.  

In addition, round(−x) = −round(x).  Hence, rounding does not affect symmetry either. 

(d) Floating-point programmable digital signal processors are only useful in prototyping systems to 

determine if a fixed-point version of the same system would be able to run in real time.  

4 points.  False, due to the word “only”.  It is true that floating-point programmable DSPs are 

useful in feasibility studies become committing the design time and resources to map a 

system into fixed-point arithmetic and data types.  Beyond that, however, floating-point 

programmable DSPs are commonly used in low-volume products (e.g. sonar imaging systems 

and radar imaging systems) and in high-end audio products (e.g. pro-audio, car audio, and 

home entertainment systems). 

(e) In the TMS320C6000 family of programmable digital signal processors, consider an equivalent 

fixed-point processor and floating-point processor, i.e. having the same clock speed, same on-chip 

memory sizes and types, etc.  The fixed-point processor would have lower power consumption.  4 

points.  This one could go either way.  True.  If the data types in a floating-point program 

were converted from 32-bit floats to 16-bit short integers, and the floating-point 

computations were converted to fixed-point computations, then the fixed-point processor 

would consume less power.  The fixed-point processor would only need to load from on-chip 

memory half as often, and multiplication (addition) would take 2 cycles (1 cycle) instead of 4 

cycles.  Fixed-point multipliers and adders take far fewer gates than their floating-point 

counterparts, which saves on power consumption.  False.  If a floating-point program were 

run by emulating floating-point computations to the same level of precision on a fixed-point 

processor, then the fixed-point processor would actually consume more power. 
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Problem 1.1 Digital Filter Analysis.  25 points. 

A causal discrete-time linear time-invariant filter with input x[k] and output y[k] is 

governed by the following equation 

y[k] = x[k] + a x[k-1] + x[k-2] 

where a is a real-valued constant with 1 ≤ a ≤ 2. 

(a) Is this a finite impulse response filter or infinite impulse response filter?  Why? 2 points. 

 

 

 

(b) Draw the block diagram for this filter.  4 points. 

 

 

 

 

 

 

(c) What are the initial conditions and what values should they be assigned?  4 points. 

 

 

 

 

(d) Find the equation for the transfer function in the z-domain including the region of 

convergence.  5 points. 

 

 

 

 

 

 

 

 

(e) Find the equation for the frequency response of the filter.  5 points. 

 

 

 

 

 

 

(f) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass?  Why?  5 points. 
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Problem 1.2 Sinusoidal Generation. 25 points. 

Some programmable digital signal processors have a ROM table in on-chip memory that 

contains values of cos(θ) at uniformly spaced values of θ. 

Consider the array c[n] of cosine values taken at one degree increments in θ and stored in ROM: 








= nnc
180

cos][
π

  for n = 0, 1, ..., 359. 

(a) If the array c[n] were repeatedly sent through a digital-to-analog (D/A) converter with a 

sampling rate of 8000 Hz, what continuous-time frequency would be generated?  5 points. 

 

 

 

(b) How would you most efficiently use the above ROM table c[n] to compute s[n] given below.   

5 points. 








= nns
180

sin][
π

 for n = 0, 1, ..., 359? 

 

 

 

 

(c) How would you most efficiently use the above ROM table c[n] to compute d[n] given below. 

5 points. 








= nnd
90

cos][
π

 for n = 0, 1, ..., 179 

 

 

 

(d) How would you most efficiently use the above ROM table c[n] to compute x[n] given below. 

10 points. 








= nnd
360

cos][
π

 for n = 0, 1, ..., 719 
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Problem 1.3 Digital Filter Design. 30 points. 

Consider the following cascade of two causal discrete-time linear time invariant (LTI) filters 

with impulse responses h1[n] and h2[n], respectively: 

 

 
 

(a) Poles (X) and zeros (O) for filter #1 are shown below.  Assume that the poles have radii of 

0.9, and the zeros have radii of 1.2.  Is filter #1 a lowpass, highpass, bandpass, bandstop, 

allpass or notch filter?  Why?  10 points. 

 

(b) Give the transfer function for H1(z).  5 points. 

 

(c) Design filter #2 by placing the minimum number of poles and zeros on the pole-zero 

diagram below so that the cascade of filter #1 and filter #2 is allpass.  10 points. 

 
(d) Give the transfer function H2(z).  5 points.

x[n] 

Filter #1  

h1[n] 

Filter #2 

h2[n] y[n] w[n] 

Re(z) 

Im(z) 

X X 

O 

O 

H1(z) 

Re(z) 

Im(z) H2(z) 
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Problem 1.4. Potpourri.  20 points. 

 

Please determine whether the following claims are true or false and support each answer with a 

brief justification.  If you give a true or false answer without any justification, then you will 

be awarded zero points for that answer. 

 

(a) Assume that a particular linear phase finite impulse response (FIR) filter design meets a 

magnitude specification and that no lower-order linear phase FIR filter exists to meet the 

specification.  The linear phase FIR filter will always have the lowest implementation 

complexity on the TI TMS320C6713 programmable digital signal processor among all filters 

that meet the same specification.  5 points. 

 

 

 

 

 

 

(b) Consider the cascade of two discrete-time linear time-invariant systems shown below. 

 
If the order of the filters in cascade is switched, then the relationship between x[n] and y[n] 

will always be the same as in the original system.  5 points. 

 

 

 

 

 

 

(c) Continuous-time analog signals conform nicely to the Nyquist Sampling Theorem because 

they are always ideally bandlimited.  5 points. 

 

 

 

 

 

 

 

(d) If 
�
[n] were input to a discrete-time system and the output were also 

�
[n], then system could 

only be the identity system, i.e. the output is always equal to the input.  5 points. 

 

 

 

 

x[n] 

Filter #1  

h1[n] 

Filter #2 

h2[n] y[n]  
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Problem 1.1 Digital Filter Analysis.  28 points. 

A causal discrete-time linear time-invariant filter with input x[n] and output y[n] is governed by 
the following equation, where a is real-valued, 

y[n] = x[n] – a2 x[n-2] 

(a) Is this a finite impulse response filter or an infinite impulse response filter?  Why? 2 points. 
The impulse response can be computed by letting the input be discrete-time impulse, 

i.e. x[n] = δδδδ[n].  The response (output) is h[n] = δδδδ[n] – a2 δδδδ[n-2].  The impulse response is 
finite in extent (3 samples in extent).  Hence, the filter is a finite impulse response filter. 

(b) Draw the block diagram for this filter.  4 points.  Adapting a tapped delay block diagram, 
 
 
 
 
 
 
 
 

(c) What are the initial conditions? What values should they be assigned and why?  4 points. 

y[0] = x[0] −−−− a2 x[-2]       Hence, the initial conditions are x[-1] and x[-2], 

y[1] = x[1] −−−− a2 x[-1]       i.e., the initial values of the memory locations for 

y[2] = x[2] −−−− a2 x[0]        x[n– 1] and x[n – 2].  These initial conditions should 
                               be set to zero for the filter to be linear & time-invariant  

(d) Find the equation for the transfer function of the filter in the z-domain including the region of 
convergence.  5 points.  Taking z-transform of both sides of difference equation gives 

Y(z) = X(z) −−−− a2 z-2 X(z), which gives Y(z) = (1 −−−− a2 z-2) X(z):  221
)(

)(
)( −−== za

zX

zY
zH    

Two zeros at z=a and z=–a, and two poles at origin.  ROC is entire z plane except origin. 

(e) Find the equation for the frequency response of the filter. 5 points.  Since the ROC includes 
the unit circle, we can convert the transfer function to a frequency response as follows: 

ω
ωω 221)()( j

ezfreq eazHH j

−

=
−==  

(f) For this part, assume that 0.9 < a < 1.1.  Draw the pole-zero diagram. Would the frequency 
selectivity of the filter be best described as lowpass, bandpass, bandstop, highpass, notch, or 
allpass?  Why?  8 points.   Zeros on or near the unit circle indicate the stopband.  There 

are two zeros at z = a and z = –a, which correspond to 

frequencies ωωωω = 0 rad/sample and ωωωω = ππππ rad/sample, 
respectively.  This corresponds to a bandpass filter. 

 

z-1 z-1 x[n] 

+ 

-a2 

x[n-1] x[n-2] 

y[n] 

Re(z) 

Im(z) 

O O 
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Problem 1.2 Filter Design Tradeoffs. 30 points. 

Consider the following filter specification for a narrowband lowpass discrete-time filter: 

• Sampling rate fs of 1000 Hz 

• Passband frequency fpass of 10 Hz with passband ripple of 1 dB 

• Stopband frequency fstop of 40 Hz with stopband attenuation of 60 dB 

Evaluate the following filter implementations on the C6700 digital signal processor in terms of 
linear phase, bounded-input bounded-output (BIBO) stability, and number of instruction cycles 
to compute one output value.  Assume that the filter implementations below use only single-
precision floating-point data format and arithmetic, and are written in the most efficient C6700 
assembly language possible. 

(a) .Finite impulse response (FIR) filter of order 83 designed using the Parks-McClellan 
algorithm and implemented as a tapped delay line.  9 points.   Problem implies that the 
Parks-McClellan algorithm has converged.   After convergence, the Parks-McClellan 
algorithm always gives an FIR filter whose impulse response is even symmetric about 
the midpoint, which guarantees linear phase over all frequencies.  

Linear phase:  In passband?   Yes, see above. 

In stopband?   Yes, see above. 

BIBO stability:  YES or NO.   Why?  An FIR filter is always BIBO stable.  Each 
 output sample is a finite sum of weighted current and previous 
input samples.  Each weight is finite in value, and each input 
sample is finite in value.  A finite sum of finite values is bounded. 

Instruction cycles: 83+1+28 = 112 cycles, by means of Appendix N in course reader. 

(b) Infinite impulse response (IIR) filter of order 4 designed using the elliptic algorithm and 
implemented as cascade of biquads.  One pole pair has radius 0.992 and quality factor 3.9. 
The other has radius 0.9785 and quality factor of 0.8.  9 points.  Homework problem 3.3 
concerned the design of IIR filters using the elliptic design algorithm.  The solution to 
homework problem 3.3 plotted magnitude and phase response of an elliptic design. 

Linear phase:  In passband?  Approximate linear phase over some of passband 

In stopband?  Approximate linear phase over some of stopband 

BIBO stability:  YES or NO.   Why?   Yes, the poles are inside the unit circle.  The 
    quality factors are quite low; hence, the poles are unlikely to  
    become BIBO unstable when implemented. 

Instruction cycles: 2 (5 + 28) = 66 cycles by means of Appendix N in course reader.  
(An efficient implementation could overlap the implementation 
for biquad #2 after data reads are finished for biquad #1, which 
would save 11 instruction cycles.) 
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(c) IIR filter with 2 poles and 62 zeros.  Poles were manually placed to correspond to 10 Hz and 
have radii of 0.95.  Zeros were designed using the Parks-McClellan algorithm with the above 
specifications.  Implementation is a tapped delay line followed by all-pole biquad.  12 points. 

Linear phase:  In passband?   Approximate linear phase over some of passband 

In stopband?   Approximate linear phase over some of stopband 

BIBO stability:  YES or NO.   Why?   Yes, the poles are inside the unit circle.  The 
    quality factor is quite low; hence, the poles are unlikely to  
    become BIBO unstable when implemented. 

Instruction cycles: (62+1+28) + (2 + 28) = 121 cycles by means of Appendix N in 
course reader.  (An efficient implementation can remove the 
second 28 cycles of overhead to give a total of 93 cycles.) 

Pole locations:  Angle of first pole: ωωωω0 = 2 ππππ f0 / fs = 2 ππππ (10 Hz) / (1000 Hz). 

Pole locations are at 0.95 exp(j ωωωω0) and  0.95 exp(-j ωωωω0). 

 

Matlab code to design the filter for part (c), which was not required for the test: 

numerCoeffs = firpm(62, [0 .02 0.08 1], [1 1 0 0]) / 165; 

denomCoeffs = conv([1 -0.95*exp(j*2*pi*10/1000)], [1 -0.95*exp(-j*2*pi*10/1000)]); 

freqz(numerCoeffs, denomCoeffs) 
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Problem 1.3 Downconversion.  24 points. 

Consider the bandpass continuous-time 
analog signal x(t).  Its spectrum is shown 
on the right.  The signal x(t) was formed 
through upconversion.  Our goal will be 
to recover the baseband message signal 
m(t) by processing x(t) in discrete time. 

Let B be the bandpass bandwidth in Hz of x(t) given by B = f2 – f1 
       fc be the carrier frequency in Hz given by fc = ½ (f1 + f2) where fc > 2 B. 
       fs be the sampling rate in Hz for sampling x(t) to produce x[n] 

      ωpass be the passband frequency of a discrete-time filter in rad/sample 

      ωstop be the stopband frequency of a discrete-time filter in rad/sample 

(a) Downconversion method #1.  12 points, 

Uses sinusoidal amplitude demodulation. 

Give formulas for ω0, ωpass, ωstop and fs. 

Analyze in continuous-time first. 

 

s

c

f

f
πω 20 =          )2/2(2 Bff cs +>  

sf

B 2/
2pass πω =      

s

c

f

ff 1
stop 2

+
= πω   

(b)  
(c) Downconversion method #2.  12 points. 

Uses a squaring device.  Assume that output values of the lowpass filter are non-negative. 

Give formulas for ωpass, ωstop and fs. 

Analyze in continuous time first. 

W(f) = X(f) * X(f) 

sf

B
πω 2pass =  

s

c

f

Bf −
=

2
2stop πω  

 

)2(2 Bff cs +>  

f 

X(f) 

f1 f2 –f2 –f1 

)   cos( 0 nω

][nx ][nv
Lowpass 

filter 

][ˆ nm

][nx ][nw Lowpass 
filter (·)2 ][ˆ nm ( )•

f 
V(f) 

fc+f1 
fc+f2 

B/2 –B/2 – fc – f1 

– fc – f2 

f 
W(f) 

2fc – B 

2fc+B 
B –B – 2fc +B 

– 2fc – B 
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Problem 1.4. Potpourri.  18 points. 

Please determine whether the following claims are true or false.  If you believe the claim to be 
false, then provide a counterexample.  If you believe the claim to be true, then give supporting 
evidence that may include formulas and graphs as appropriate.  If you give a true or false answer 
without any justification, then you will be awarded zero points for that answer.  If you answer 
by simply rephrasing the claim, you will be awarded zero points for that answer. 

(a) Consider an infinite impulse response (IIR) filter with four complex-valued poles (occurring 
in conjugate symmetric pairs) and no zeros.  When implemented in handwritten assembly on 
the C6713 digital signal processor using only single-precision floating-point data format and 
arithmetic, a cascade of four first-order IIR sections would be more efficient in computation 
than implementing the filter as a cascade of two second-order IIR sections. 9 points. 

False. Assume input x[n] is real-valued. Poles located at p1, p2, p3 and p4.  Outputs for 
the four first-order sections follow: 
y1[n] = x[n] + p1  y1[n-1] 
y2[n] = y1[n] + p2  y2[n-1] 
y3[n] = y2[n] + p3  y3[n-1] 
y4[n] = y3[n] + p4  y4[n-1] 
For the cascade of first-order sections, the final output value can be calculated as 
y4[n] = x[n] + p1  y1[n-1] + p2  y2[n-1] + p3  y3[n-1] + p4  y4[n-1] 
Cascade of biquads has real-valued feedback coefficients.  Its final output value is 
v2[n] = x[n] + b1  v1[n-1] + b2  v1[n-2] + b3  v2[n-1] + b4  v2[n-2] 

Case #1:  All poles are real-valued.  Cascade of first-order sections requires the same 
execution time as a tapped delay line with five coefficients, or 33 instruction cycles, 
according to Appendix N in course reader.  Same goes for the cascade of biquads. 

Case #2:  Poles are complex-valued and occur in conjugate symmetric pairs.  Cascade 
of biquads still takes 33 instruction cycles.  For cascade of first-order sections, the 
first section output x[n] + p1 y1[n-1] is complex-valued.  In subsequent sections, the 
complex-valued multiply-add operation will require four times the number of real-
valued multiply-add operations.  Cascade of biquads will hence require fewer cycles. 
 

(b) Consider implementing an infinite impulse response (IIR) filter solely in single-precision 
floating-point data format and arithmetic.  There are no conditions under which the 
implemented filter would be linear and time-invariant.  9 points. 

False.  Counterexample:  y[n] = x[n] + y[n-1]  where y[-1] = 0 and x[n] = δδδδ[n].  The 
system passes the all-zero test.  The system is linear and time-invariant only for a 
limited set of input signals. 

True.  Although a necessary condition for linear and time-invariance is that the initial 
conditions are zero, exact precision calculations in IIR filters require increasing 
precision as n increases in the worst case. (This is mentioned in lecture 6 slides when 
the block diagram for each of the three IIR direct form structures was discussed).  
Eventually, the increase in precision will exceed the precision of the single-precision 
floating-point data format.  The clipping that results will cause linearity to be lost. 
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 The exam is scheduled to last 50 minutes. 

 Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 

 Calculators are allowed. 

 You may use any standalone computer system, i.e. one that is not connected to a 

network.  Please disable all wireless connections on your computer system(s). 

 Please turn off all cell phones. 

 No headphones allowed. 

 All work should be performed on the quiz itself.  If more space is needed, then use 

the backs of the pages. 

 Fully justify your answers.  If you decide to quote text from a source, please give 

the quote, page number and source citation. 

 

 

 

 

Problem Point Value Your score Topic 

1 28  Discrete-Time Filter Analysis 

2 24  Improving Signal Quality 

3 24  Filter Bank Design 

4 24  Potpourri 

Total 100   

 

 

Discussion of the solutions is available at 

http://www.youtube.com/watch?v=HRX3x45CSIA&list=PLaJppqXMef2ZHIKM4vpwHIAWy

Rmw3TtSf 

http://www.youtube.com/watch?v=HRX3x45CSIA&list=PLaJppqXMef2ZHIKM4vpwHIAWyRmw3TtSf
http://www.youtube.com/watch?v=HRX3x45CSIA&list=PLaJppqXMef2ZHIKM4vpwHIAWyRmw3TtSf










K-98



K-99



K-100



K-101



K-102



 
The University of Texas at Austin 

Dept. of Electrical and Computer Engineering 
Midterm #1 

 
Date: March 13, 2015     Course: EE 445S Evans 

 
 
 
 

Name:     Corneil & Bernie      
Last,      First   

 
 
 
 
 

x The exam is scheduled to last 50 minutes. 
x Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
x Calculators are allowed. 
x You may use any standalone computer system, i.e. one that is not connected to a 

network.  Please disable all wireless connections on your computer system(s). 
x Please turn off all cell phones. 
x No headphones allowed. 
x All work should be performed on the quiz itself.  If more space is needed, then use 

the backs of the pages. 
x Fully justify your answers.  If you decide to quote text from a source, please give 

the quote, page number and source citation. 
 
 
 
 

Problem Point Value Your score Topic 
1 28  Discrete-Time Filter Analysis 
2 24  Discrete-Time Filter Design 
3 24  Audio Effects System 
4 24  Potpourri 

Total 100   
 

 

K-103



K-104



Problem 1.1 Al-Alaoui Differentiator (more information) 

Using the following Matlab code, 

C = 3/7; 
feedforwardCoeffs = C*[1 -1]; 
feedbackCoeffs= [1 (1/7)]; 
[H, w] = freqz(feedforwardCoeffs, feedbackCoeffs); 
figure(1); plot(w, abs(H)); 
figure(2); plot(w, angle(H)); 

 

       Magnitude Response (Linear Scale)                  Phase Response (Radians) 

The Al-Alaoui Differentiator was first reported in the following article: 

M. A. Al-Alaoui, “Novel Digital Integrator and Differentiator”, IEE Electronic Letters, vol. 29, no. 4, 
Feb. 18, 1993. 

Here are the magnitude and phase plots for the traditional differentiator: 

C = 1/2; 
feedforwardCoeffs = C*[1 -1]; 
 [H, w] = freqz(feedforwardCoeffs); 
figure(1); plot(w, abs(H)); 
figure(2); plot(w, angle(H)); 

 

         Magnitude Response (Linear Scale)                      Phase Response (Radians) 
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1.3 Audio Effects System 

Here is the Matlab code to test the solution in part (a) for an input of a sinusoid at 440 Hz: 

f0 = 440; 
fs = 44100; 
Ts = 1 / fs; 
time = 1; 
n = 1 : time*fs; 
w0 = 2*pi*f0/fs; 
x = cos(w0*n); 
v = x + x.^4; 
y = filter( [1 -1], [1 -0.95], v); 
plotspec(y, Ts); 

 
The frequencies at f0, 2 f0 and 4 f0 are visible in the spectrum (bottom plot above). 

One can playback the audio signal without and with DC removal.  The Matlab command sound assumes 
that the vector of samples to be played is in the range of [-1, 1] inclusive. 

sound(v, fs);                %%% without DC removal 

sound(y, fs);                %%% with DC removal 

To avoid clipping of amplitude values outside of the range [-1, 1], try 

sound(v / max(abs(v)), fs);                %%% without DC removal 

sound(y / max(abs(y)), fs);                %%% with DC removal 

To hear the effect of DC offset, try 

sound(v + 10, fs); 
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Problem 1.1 Filter Analysis.  28 points. 
A discrete-time linear time-invariant (LTI) filter is described by the following transfer function 

𝐻 𝑧 = 𝑏! +   𝑏!  𝑧!! + 𝑏!  𝑧!! + 𝑏!  𝑧!! 
where b0, b1, b2 and b3 are the filter coefficients. 

(a) Give a formula in discrete time for the impulse response h[n]. 
Plot h[n]. 3 points. [See Lecture slide 5-9; Homework 1.1 & 2.1] 

𝒉 𝒏 = 𝒃𝟎  𝜹[𝒏]+   𝒃𝟏  𝜹[𝒏− 𝟏]+ 𝒃𝟐  𝜹[𝒏− 𝟐]+ 𝒃𝟑  𝜹[𝒏− 𝟑] 
 

(b) Is the filter a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? 3 points. 

FIR filter.  There are no poles in the transfer function other than artificial poles at the 
origin.  Also, from the answer to part (c) below, the output only depends on current and 
previous input values— there is no feedback.              [See Lectures 5&6; Homeworks 1,2&3; Lab 3] 

(c) Give a formula in discrete time for the output y[n] in terms of the input x[n] including the initial 
conditions. 3 points.                                   [See Lecture slides 3-9, 5-4, 5-6 & 5-11; Homeworks 1&2; Lab 3] 

𝒚 𝒏 = 𝒃𝟎  𝒙[𝒏]+   𝒃𝟏𝒙[𝒏− 𝟏]+ 𝒃𝟐  𝒙[𝒏− 𝟐]+ 𝒃𝟑  𝒙[𝒏− 𝟑] 

Initial conditions must be zero to satisfy LTI properties:  𝒙 −𝟏 = 𝒙 −𝟐 =   𝒙 −𝟑 =   𝟎 
(d) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

[See Lecture slides 3-15 & 5-4] 
 

(e) Give a formula for the discrete-time frequency response of the filter.  3 points. 
[See Lecture slide 5-11, 5-12, 5-13, 5-14, 5-17 & 5-18; Homework 2.1] 
 

Substituting z = exp(j ω) into H(z) is valid because the region of convergence of H(z) is z ≠ 0 
which includes the unit circle. Another justification is that all FIR filters are BIBO stable. 
 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯 𝒆𝒋𝝎 = 𝒃𝟎 +   𝒃𝟏  𝒆!𝒋𝝎 + 𝒃𝟐  𝒆!𝟐𝒋𝝎 + 𝒃𝟑  𝒆!𝟑𝒋𝝎 
 

(f) Give all possible conditions on the coefficients for the filter to have constant group delay. 6 points. 
[See Lecture slides 5-15, 5-17 & 5-18; Homework 1.3, 2.1, 2.3 & 3.2] 
 

1. Filter coefficients are even symmetric w/r to their midpoint, i.e. 𝒃𝟎 = 𝒃𝟑  𝐚𝐧𝐝  𝒃𝟏 = 𝒃𝟐 
2. Filter coefficients are odd symmetric w/r to their midpoint, i.e. 𝒃𝟎 = −𝒃𝟑  𝐚𝐧𝐝  𝒃𝟏 = −𝒃𝟐 

 

(g) Using only values of +1 and -1, give values for the filter coefficients for a lowpass magnitude 
response.  4 points                                  [See Lecture slides 3-8, 3-14, 5-15, 5-17 & 5-18; Homework 2.1(a)] 
 

1. Filter coefficients are all +1.  Gives an averaging filter scaled by 4.  Lowpass.  –OR– 
2. Filter coefficients are all -1.  Gives an averaging filter scaled by -4.  Lowpass. 



Problem 1.2 Sampling.  24 points. 
Consider a two-sided continuous-time cosine signal with frequency f0 in Hz given by 

𝑥 𝑡 = cos(2𝜋𝑓!𝑡) 

(a) Plot the continuous-time Fourier transform of x(t). 6 points.  𝑿 𝒇 = 𝟏
𝟐
𝜹 𝒇+ 𝒇𝟎 +   𝟏

𝟐
𝜹 𝒇− 𝒇𝟎  

 
(b) Plot the continuous-time Fourier transform of the result of sampling x(t) at a sampling rate of fs 

assuming that the Sampling Theorem has been satisfied, i.e. fs > 2 f0. 6 points. 
 

𝑿𝒔𝒂𝒎𝒑𝒍𝒆𝒅 𝒇 = 𝒇𝒔  (  …+ 𝑿 𝒇+ 𝒇𝒔 + 𝑿 𝒇 + 𝑿 𝒇− 𝒇𝒔 +⋯ ) 

 
(c) Plot the continuous-time Fourier transform of x(t) sampled at a sampling rate of fs assuming that 

f0 < fs < 2 f0, which would not satisfy the Sampling Theorem. 6 points.  Let fs = 1.5f0 below. 

 
(d) In part (c), give a formula for the continuous-time frequency that would result after trying to 

reconstruct x(t) from its sampled version. 6 points. 
 

Sampling theorem says fs > 2 fmax or equivalently fmax < ½ fs.  Apparent frequency is fs – f0. 
 

Alternate response: Reconstruction applies a lowpass filter that passes frequencies from -½ 
fs to ½ fs which means that the frequency that would result is fs – f0.  
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Problem 1.3 Filter Design.  27 points. 
People suffering from tinnitus, or ringing of the ears, hear a tone in their ears even when the 
environment is quiet.  The tone is generally at a fixed frequency in Hz, denoted as fc. 
Filtering music to remove as much as possible an octave of frequencies from f1 to f2 that contains fc as 
its center frequency can provide relief of tinnitus symptoms. 
 

This problem will ask you to design a sixth-order discrete-time infinite impulse response (IIR) filter to 
remove the octave of frequencies.  The sampling rate is fs where fs > 4 f2. 
[See Lecture 6 in-class discussion on tinnitus; Homework 1.2(c) solution for discussion of octaves] 

(a) Give formulas for f1 and f2 in terms of fc given that fc = ½ (f1+ f2). 6 points. 
 

To cover an octave of frequencies, f2 = 2 f1. 
Coupled with fc = ½ (f1+ f2), we have f1 = (2/3) fc and f2 = (4/3) fc 
 

(b) Give formulas for discrete-time frequencies ω1, ωc and ω2 that correspond to continuous-time 
frequencies f1, fc and f2, respectively.  3 points.                             [See Lecture slide 1-10; Homework 0.4] 

𝝎𝟏 = 𝟐𝝅
𝒇𝟏
𝒇𝒔
  𝐚𝐧𝐝  𝝎𝒄 = 𝟐𝝅

𝒇𝒄
𝒇𝒔
  𝐚𝐧𝐝  𝝎𝟐 = 𝟐𝝅

𝒇𝟐
𝒇𝒔

 

(c) Give formulas in terms of ω1, ωc and ω2 for the pole and zero locations for the sixth-order discrete-
time IIR filter.  Assume that the gain is one.  12 points.              [See Lecture 6-6, 6-7 & 6-8 slides; Lab 3] 
 

A sixth-order discrete-time IIR filter has six poles and six zeros.  Here, the gain C is 1. 
Zeros have to be real-valued or occur in conjugate symmetric pairs.  Same with the poles. 
 

Filter should attenuate frequencies between ω1 and ω2 as well as between -ω2 and -ω1. 
Bandstop filter.  Zeros on or near the unit circle indicate the stopband. 
Poles inside and near the unit circle indicate the passband(s). 
 

Zeros would be at frequencies ω1, ωc and ω2 as well as their negative values. 
Because fs > 4 f2 , ω2 will be between 0 and π/2 . 
 

𝐙𝐞𝐫𝐨𝐬: 𝒆𝒋𝝎𝟐 , 𝒆𝒋𝝎𝒄 , 𝒆𝒋𝝎𝟏 , 𝒆!𝒋𝝎𝟏 , 𝒆!𝒋𝝎𝒄 , 𝒆!𝒋𝝎𝟐 

𝐏𝐨𝐥𝐞𝐬: 𝒓𝒆𝒋
𝟏
𝟐 𝝎𝟏 , 𝒓, 𝒓𝒆!𝒋

𝟏
𝟐 𝝎𝟏 , 𝒓𝒆!𝒋

𝟒
𝟑 𝝎𝟐 ,−𝒓  𝐚𝐧𝐝  𝒓𝒆𝒋

𝟒
𝟑 𝝎𝟐   𝐰𝐡𝐞𝐫𝐞  𝒓 = 𝟎.𝟗 

 

(d) Draw the pole-zero diagram.  6 points.  Example plotted for fc = 6000 Hz and fs = 44100 Hz. 

  

[Lecture 5-13, 5-14, 6-6, 6-7, 6-19, 6-20 & 6-21 slides; Lecture 6 demos; Homework 3.1&3.3; Lab 3] 



Problem 1.4.  Potpourri.  21 points. 
(a) Oversampling generally gives a higher signal quality but at a higher implementation complexity.  

If we increase the sampling rate by a factor of K, analyze the increase in implementation 
complexity for finite impulse response (FIR) filtering in terms of 
 

1. Multiplication operations per second. 3 points.     [See Lecture slide 5-4; Reader Handout N; Lab 3] 
 

FIR filter of N coefficients requires N multiplication operations to compute one output 
sample given a new input sample. Filter runs at the sampling rate fs and hence 
computes N fs multiplications/s. If the sampling rate is increased by a factor of K, then 
the multiplication operations will increase by a factor of K.  
 

2. Memory reads per second. 3 points.           [See Lecture slides 5-4 & 5-24; Reader Handout N; Lab 3] 
 

FIR filter must read N coefficients and N current/previous input values in computing 
one output sample. Filter runs at the sampling rate fs and hence reads 2 N fs words/s.  If 
the sampling rate is increased by a factor of K, then the memory reads per second will 
increase by a factor of K.  
 

(b) In lab #2, you implemented a cosine generator on the digital signal processing board in lab using a 
lookup table to store one period of values for           [See Lecture slides 1-10 to 1-16; Homework 0.4; Lab 2] 
 

𝑥[𝑛] = cos(𝜔!𝑛) 
 

1. Assuming the sampling theorem has been satisfied, i.e. fs > 2 f0, give the range of values that 
ω0 can take. Please be sure to include negative, zero and positive frequencies.  3 points. 
𝝎𝟎 = 𝟐𝝅 𝒇𝟎

𝒇𝒔
  𝐚𝐧𝐝  𝒇𝟎 <

𝟏
𝟐
  𝒇𝒔 which means that  −𝝅 < 𝝎𝟎 < 𝝅 

Note: The discrete-time frequency domain is periodic with period 2 π . 
 

2. What is the discrete-time period in samples for x[n]? 3 points. 
𝝎𝟎 = 𝟐𝝅 𝒇𝟎

𝒇𝒔
= 𝟐𝝅 𝑵

𝑳
 where N and L are integers with common factors removed. 

Discrete-time periodicity is L.  See Discrete Time Periodicity handout from Lecture 1. 
 

3. Describe a way to use a smaller lookup table to save memory.  3 points. 
 

If the discrete-time period L is even, the cosine could be computed over half of the 
period and the half can be determined through symmetry. 
 

If the discrete-time period L is a multiple of four, cosine could be computed over one-
fourth of the period and the rest of the samples can be determined through symmetry. 
 

If the discrete-time period L is a multiple of eight, cosine could be computed over one-
eighth of the period and the rest of the samples can be determined through symmetry. 
 

(c) If discrete-time signal cos(ω0 n) is input to a squaring block, what discrete-time frequencies will 
appear on the output?  6 points.                                            [See Lecture slides 3-7 & 3-8; Homework 1.3] 
 

Output will have a component of 0 frequency (DC) and a component at a frequency of 2 ω0: 

𝒄𝒐𝒔𝟐 𝝎𝟎𝒏 =
𝟏
𝟐+

𝟏
𝟐 𝒄𝒐𝒔 𝟐𝝎𝟎𝒏  

If 2 ω0 > π , then the component at 2 ω0 will alias. Consider cos(πn) = (-1)n. Output of the 
squaring block is 1, which has discrete-time frequency components of 0, 2π , etc. 
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Problem 1.1 Filter Analysis.  28 points.  
Consider the following causal finite impulse response (FIR) linear time-invariant (LTI) filter with 
input x[n] and output y[n] described by 

 y[n] = x[n] - a x[n-1] 

(a) Give a formula for the impulse response h[n].  Plot h[n].  3 points. 

Input an impulse signal: x[n] = δ[n].  
Impulse response is h[n] = δ[n] – a δ[n-1].  

(b) What are the initial conditions?  What are their values?  3 points. 
Compute output samples at n = 0, 1, etc., to reveal the initial conditions 

y[0] = x[0] - a x[-1]   which gives an initial condition of x[-1]. 
y[1] = x[1] - a x[0]   which does not reveal any additional initial conditions. 

System must be at rest at n = 0 for LTI properties to hold.  Hence, x[-1] = 0. 
(c) Draw the block diagram of the FIR filter relating input x[n] and output y[n]. 6 points. 

 
(d) Give a formula for the discrete-time frequency response of the FIR filter.  4 points. 

With h[n] = δ[n] – a δ[n-1], H(z) = 1 – a z-1 for z ≠ 0.  Since the region of convergence z ≠ 0 
includes the unit circle, we can compute 𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯 𝒆𝒋𝝎 = 𝟏− 𝒂𝒆!𝒋𝝎 . 

(e) Does the FIR filter have linear phase?  If yes, then give the conditions on the coefficient a for the 
filter to have linear phase.  If no, then show that the coefficients cannot meet the conditions for 
linear phase. 6 points 

In order for an FIR filter to have linear phase, its impulse response would need to be either 
even or odd symmetric about the midpoint.  This would mean a = -1 or a = 1, respectively.  
Although not expected as an answer, a = 0 would give a zero phase response. 

(f) If parameter a were real-valued, what are all of the possible frequency selectivities that the FIR 
filter could provide: lowpass, highpass, bandpass, bandstop, allpass, notch?  6 points 

Transfer function H(z) = 1 – a z-1 has a zero at z = a.  Location of zero indicates stopband. 

We can rewrite 𝑯 𝒛 = 𝒛!𝒂
𝒛
  ,  which has an artificial pole at z = 0. 

Allpass response when a ≈  0.  Highpass response a > 0.5.  Lowpass response a < -0.5. 
Note:  Lowpass averaging filter when a = –1.  Highpass first-order difference when a = 1. 

 
 

   

n 

1 2 3 -1 

1 

-a h[n] 
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Problem 1.2 Mixers.  24 points. 
Mixing provides an efficient implementation in analog continuous-time circuits for sinusoidal 
amplitude modulation of the form 

s(t) = m(t) cos(2 π fc t) 

where m(t) is the baseband message signal with bandwidth W, and 
fc is the carrier frequency such that fc > W 
 
 
 
 
 
 

 
(a) Give the passband and stopband frequencies for the lowpass filter.  3 points. 

fpass = W.  
fstop could be 1.1 W or ½ fs.  Using 1.1W would give 10% rolloff from passband to stopband. 
 

(b) Give the passband and stopband frequencies for the bandpass filter.  3 points 
fpass1 = fc – W and fpass2 = fc + W.  Width of passband is 2W.  10% of that would be 0.2W. 
fstop1 = fpass1 – 0.2W and fstop2 = fpass2 + 0.2W to give 10% rolloff from passband to stopband. 
 

(c) Draw the spectrum for m(t), x(t), and s(t).  You do not need to draw the spectrum for v(t). 9 points. 
Baseband signal m(t) has bandwidth of W; X(f) will have replicas of M(f) due to sampling. 
 
 
 

 

 
For a replica of M(f) 
to be centered at fc, 
fc = l fs where l is an 
integer.  The width 
of each band of X(f) 
and S(f) is 2W. 
 

(d) In order to simulate the mixer in discrete-time, e.g. in MATLAB, we use discrete-time filters for 
the lowpass and highpass filters and replace the sampling block with an upsampling block. 
 
 
 
 

HW 0.2 0.3 1.3 2.2 2.3 3.1 3.3 Labs #2 and #3 
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i. Give the constraints on the sampling rate to convert the mixer to discrete time.  6 points. 
 

In addition to fs for the sampler in the mixer, we now have a second sampling rate fs2 
for converting the mixer to discrete time. The highest frequency of interest in the 
mixer is fc + W. Hence, fs2 > 2 (fc + W). The sampling rate fs will be used for signals v(t) 
and m(t) as well as the lowpass filter. The upsampler by L will convert an input 
sampling rate of fs to an output sampling rate of fs2 where L = fs2 / fs.  Hence, fs2 = L fs2. 
 

ii. Determine the upsampling factor.  3 points.  L = fs2 / fs 

 
  

% MATLAB code for midterm #1 
% problem 1.2(d) for Fall 2017 
% 
% Programmer: Prof. Brian L. Evans 
% The University of Texas at Austin 
% Date: October 23, 2017 
% 
% Mixer 
% s(t) = m(t) cos(2 pi fc t) 
% 
% v(t)     m(t)         x(t)     s(t) 
% ---> LPF ---> Sampler ---> BPF ---> 
% 
% System Parameters 
% In Continuous Time 
W  =  300;     % Message bandwidth Hz 
fs = 1000;     % Sampling rate Hz 
k  =   15;     % kth replica at fc 
fc = k*fs;     % Carrier frequency Hz 
% In Discrete Time 
L =   4*k;     % Upsampling factor 
fs2 = L*fs;    % For x(t) and s(t) 
% fs sampling rate for v(t) and m(t) 
% fs2 > 2 (fc + W) and fs2 = L fs 
% Since fc > W, fs2 >= 4 fc 
 
% Time reference for v(t) and m(t) 
Ts = 1/fs; 
Tmax = 1; 
t1 = Ts : Ts : Tmax; 
N1 = length(t1); 
n1 = 1 : N1; 
  
% Generate v(t) as chirp to have all 
% discrete-time frequencies by  
% increasing instantaneous frequency 
% from 0 to pi. 
fstep = (fs/2) / Tmax; 
wstep = pi*fstep*(Ts^2); 
v = cos(wstep*n1.^2); 
 

% Lowpass filter 
% Truncated sinc pulse 
fpass = W; 
npass = -100 : 100; 
hlpf = sinc(2*(fpass/fs)*npass); 
hlpf = hlpf / sum(abs(hlpf).^2); 
  
% Message signal 
m = filter(hlpf, 1, v); 
  
% Upsample by L 
N2 = L*N1; 
x = zeros(1, N2); 
x(1:L:N2) = m; 
  
% Bandpass filter centered with 
% passband fc - W to fc + W 
% 1. Design lowpass prototype 
% 2. Modulate by cos(2 pi fc t) 
fpass = W; 
npass = -4*L : 4*L; 
hprot = sinc(2*(fpass/fs2)*npass); 
wc = 2*pi*fc/fs2; 
hbpf = hprot .* cos(wc*npass); 
hbpf = hbpf / sum(abs(hbpf).^2); 
  
s = filter(hbpf, 1, x); 
freqz(s); 



 
Problem 1.3 Filter Design.  24 points.  

Some audio systems split an audio signal in three frequency bands for 
playback over sub-wolfer, wolfer, and tweeter speaker elements. 

The block diagram on the right performs the split in discrete time: 
x1[n] contains sub-wolfer frequencies 20-200 Hz. 

X2[n] contains wolfer frequencies 200-2,000 Hz. 
X3[n] contains tweeter frequencies 2,000-20,000 Hz. 

Assume that the sampling rate is 48000 Hz. 
Each bandpass filter should have group delay of less than 10 ms. 

(a) Give passband ripple and stopband attenuation values for these filters.  6 points. 
 

Apass = 1 dB and Astop = 80 dB based on homework problems 2.3 and 3.3 on filter design for 
audio applications.  (We’ll explore these settings in lecture 8 on quantization.  For example, 
in an A/D converter with B bits, the stopband attenuation would be 6 B + 2 dB.) 

 

(b) Give passband and stopband discrete-time frequencies to design the bandpass filter h2[n].  6 points. 
Seek 10% rolloff from stopband1 to passband1, and from passband2 to stopband2.  
Convert continuous-time frequency f0 in Hz to discrete-time frequency ω0 = 2 π  f0 / fs. 
Answer #1:  fstop1 = 20 Hz, fpass1 = 200 Hz, fpass2 = 2000 Hz, fstop2 = 2180 Hz.  This would give 
ω stop1 = 0.000833π , ωpass1 = 0.00833π , ωpass2 = 0.0833π , ω stop2 = 0.0908π , all in rad/sample. 

Answer #2:  fcutoff1 = 200 Hz and fcutoff2 = 2000 Hz, which could mean fstop1 = 110 Hz, fpass1 = 
290 Hz, fpass2 = 1910 Hz, fstop2 = 2090 Hz to give slightly more than 10% rolloffs.  This would 
give ω stop1 = 0.00458π , ωpass1 = 0.0121π , ωpass2 = 0.0796π , ω stop2 = 0.0871π , all in rad/sample. 

(c) Draw the pole-zero diagram for a fourth-order infinite impulse response (IIR) bandpass filter h2[n].  
6 points. 

 
(d) For a linear phase finite impulse response (FIR) filter, indicate the maximum length that would still 

meet the group delay constraint. The maximum length would apply to all three filters.  6 points. 
A group delay of 10ms means (0.01s)(48000 samples/s) = 480 samples. 
A linear phase FIR filter with N coefficients has a group delay of (N-1)/2 samples. 

Poles near the unit circle indicate the passband(s). 
Zeros on/near the unit circle indicate stopband(s). 
Poles occur in conjugate symmetric pairs or are real-
valued; same goes for zeros. 
Try to keep zeros and poles away from eachother. 
Many possible answers. 
Answer: Four poles at passband frequencies and their 
negatives.  p0 = r exp(j ωpass1);  p1 = r exp(-j ωpass1); 
p2 = r exp(j ωpass2);  p3 = r exp(-j ωpass2).  Use r = 0.9.   
Put zero at z = 1 to enforce stopband1, and other three 
zeros to enforce stopband2.  SEE MATLAB CODE BELOW.  
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So, N = 961 samples.  (For lower group delay, use discrete-time IIR filters.) 
MATLAB Code and Plots for 1.3(c) 
% Four poles 
wpass1 = 0.0121*pi; 
wpass2 = 0.0796*pi; 
r = 0.9; 
p0 = r * exp(j*wpass1); 
p1 = r * exp(-j*wpass1); 
p2 = r * exp(j*wpass2); 
p3 = r * exp(-j*wpass2); 
denom1 = [1 –(p0+p1) p0*p1]; 
denom2 = [1 –(p2+p3) p2*p3]; 
denom = conv(denom1, denom2); 
  
% Four zeros 
zeroAngle = pi/3; 
z0 = exp(j*zeroAngle); 
z1 = exp(-j*zeroAngle); 
numer1 = [1 –(z0+z1) z0*z1]; 
z2 = 1;     %% at 0 rad/sample 
z3 = -1;    %% at pi rad/sample 
numer2 = [1 –(z2+z3) z2*z3]; 
numer = conv(numer1, numer2); 
  
%%% Normalize response in middle 
%%% of the passband 
w0 = (wpass1 + wpass2)/ 2; 
Hresp = freqz(numer, denom, [w0 w0]); 
C = 1 / abs(Hresp(1)); 
  
%%% Plot pole-zero diagram 
figure; zplane(C*numer, denom); 
  
%%% Plot frequency response 
figure; freqz(C*numer, denom); 
 

  Group delay is ~15 samples in the passband. 



Problem 1.4.  Potpourri.  24 points.  
(a) Consider a linear time-invariant (LTI) system that has bounded-input bounded-output stability. To 

measure its frequency response, one could input a discrete-time unit impulse δ[n] for –∞ < n < ∞, 
find the output signal h[n], and take the discrete-time Fourier transform of h[n]. In practice, we 
cannot go back to n = –∞ or wait until n = ∞.  Give a practical method using a finite-length 
discrete-time input signal to estimate the frequency response of the LTI system. 12 points. 

For an unknown BIBO stable LTI system, we seek to find its frequency response 𝑯𝒇𝒓𝒆𝒒 𝝎 . 
In the frequency domain, 𝒀𝒇𝒓𝒆𝒒 𝝎 = 𝑯𝒇𝒓𝒆𝒒 𝝎   𝑿𝒇𝒓𝒆𝒒 𝝎 . 
We seek to compute 𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝒀𝒇𝒓𝒆𝒒 𝝎   /  𝑿𝒇𝒓𝒆𝒒 𝝎 . 
Since the discrete-time frequency domain is periodic with period 2π , we need a finite-
length signal x[n] whose frequency response 𝑿𝒇𝒓𝒆𝒒 𝝎  has all frequencies from -π  to π  in it 
and does not equal zero at any frequency value so as to avoid a division by zero error. 
A two-sided discrete-time cosine signal cos(ω0 n) has frequency components at ω0 and –ω0. 
Use a chirp signal that linearly sweeps all frequencies from 0 to π . 
 

(b) Consider the following method to compute a cosine value by using a Taylor series at θ = 0: 

cos(θ ) = (−1)n

(2n)!n=0

∞

∑ θ 2n =1− 1
2
θ 2 +

1
24
θ 4 −...  

Suppose that 10 non-zero terms were kept in the series expansion (i.e. n = 0, 1, 2, … 9). 
 

i. How would you minimize the number of multiplications?   6 points.  

Factor the polynomial into Horner’s form (lecture slide 1-12) to minimize the 
number of multiplications: 

a18 x18 + a16 x16 + a14 x14 + ... + a0 = ( ... (((a18 x2 + a16) x2 + a14) x2 ... ) x2 + a0 

Number of multiplications reduces from 90 to 9. 

Number of additions remains the same at 9. 
ii. Please complete the last row of entries for the new method.  6 points. 

 
Method Multiplication-

Add Operations 
ROM (words) RAM (words) Quality in floating 

point 

C math library call 30 22 1 Second best 

Difference equation 2 2 3 Worst 

Lookup table 0 L 0 Best 

Taylor series 9 10 1 Second best 

L is the smallest discrete-time period for the cosine signal. 
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Problem 1.1 Filter Analysis.  28 points.  
Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n] and output 
y[n] described by 

 y[n] = a1 y[n-1] + x[n] + b1 x[n-1] + b2 x[n-2] 
for n ≥ 0, where coefficients a1, b1 and b2 are real-valued constants. 

(a) What are the initial conditions and their values?  Why?  3 points. 
Let n = 0:  y[0] = a1 y[-1] + x[0] + b1 x[-1] + b2 x[-2]. 
Let n = 1:  y[1] = a1 y[0] + x[1] + b1 x[0] + b2 x[-1]. 
From the above, the initial conditions are y[-1], x[-1] and x[-2]. 
The initial conditions have to be zero to guarantee linearity and time-invariant properties. 

(b) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 
Any of the three IIR direct forms could be used here, e.g. from Lecture Slide 6-9 

 
(c) Derive a formula for the transfer function in the z-domain.  4 points. 

Take the z-transform of both sides of the difference equation using the knowledge that all 
of the initial conditions are zero (Lecture Slide 6-8): 
Y(z) = a1 z -1 Y(z) + X(z) + b1 z -1 X(z) + b2 z -2 X(z) 

(1 - a1 z -1) Y(z) = (1 + b1 z -1 + b2 z -2) X(z) 

𝑯 𝒛 =
𝒀(𝒛)
𝑿(𝒛) =

𝟏+ 𝒃𝟏𝒛!𝟏 + 𝒃𝟐𝒛!𝟐

𝟏− 𝒂𝟏𝒛!𝟏
  for   𝒛 > |𝒂𝟏| 

(d) Give the conditions on a1, b1 and b2 for the filter to be bounded-input bounded-output (BIBO) 
stable. 4 points. 

Pole must be inside the unit circle (Lecture Slides 6-12 & 6-13):    𝒂𝟏   < 𝟏 
A zero only plays a role in BIBO stability if it cancels a pole that leads to BIBO instability.  
If either zero equals a1, the filter is in theory BIBO stable for any value of a1 although an 
implementation of the original difference equation may not be BIBO stable. 

(e) Give a formula for the discrete-time frequency response of the filter.  4 points. 
When the LTI system is BIBO stable according to part (d), 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯(𝒛) 𝒛!𝒆𝒋𝝎 =
𝟏+ 𝒃𝟏𝒆!𝒋𝝎 + 𝒃𝟐𝒆!𝟐𝒋𝝎

𝟏− 𝒂𝟏𝒆!𝒋𝝎
 

(f) Give numeric values for coefficients a1, b1 and b2 to design a lowpass filter that also eliminates 
frequencies at ω = 2π/3 and ω = −2π/3 in the stopband.  Draw the pole-zero diagram.  7 points 

Zeros are at 𝒛𝟎 = 𝒆𝒋𝟐𝝅/𝟑   and 𝒛𝟏 = 𝒆!𝒋𝟐𝝅/𝟑   
𝟏− 𝒛𝟎𝒛!𝟏 𝟏− 𝒛𝟏𝒛!𝟏 = 𝟏− 𝒛𝟎 + 𝒛𝟏 𝒛!𝟏 + 𝒛𝟎𝒛𝟏𝒛!𝟐 

So, 𝒃𝟏 = − 𝒛𝟎 + 𝒛𝟏 = −𝟐 𝐜𝐨𝐬 𝟐𝝅
𝟑

= 𝟏 and 𝒃𝟐 = 𝒛𝟎𝒛𝟏 = 𝟏 
Passband is centered at ω  = 0.  Pole is at 𝒂𝟏 = 𝟎.𝟗  𝒆𝒋𝟎 = 𝟎.𝟗 

Trivial pole at z = 0 not shown 
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Problem 1.2 Mixers.  24 points. 
Mixing provides an efficient implementation in analog continuous-time circuits for sinusoidal 
amplitude demodulation of the form 

 
Here, r(t) is the received bandpass signal of the form r(t) = m(t) cos(2 π fc t) where 
    m(t) is the baseband message signal with bandwidth W, and 
    fc is the carrier frequency such that fc > W 

 
(a) Give the passband and stopband frequencies for the bandpass filter.  3 points. 

The bandpass filter passes the transmission band frequencies [fc – W, fc + W] and 
attenuates out-of-band frequencies as much as possible to improve the signal-to-noise ratio. 
Passband frequencies are fc – W and fc + W.  Stopband frequencies are fc – 1.2 W and fc + 
1.2 W to allow each transition bandwidth to be 10% of the passband bandwidth. 

(b) Give the passband and stopband frequencies for the lowpass filter.  3 points 
fpass = W and fstop = 1.1 W to allow transition bandwidth be 10% of the passband bandwidth. 

(c) Draw the spectrums for s(t), v(t) and 𝑚(𝑡). You do not need to draw the spectrum for r(t). 9 points. 
s(t) is a bandpass signal. Sampling replicates S(f) at offsets of integer multiples of sampling 
rate fs.  Each band in V(f) and S(f) is 2W wide.  𝒎(𝒕) is the estimated baseband signal. 
 

 
 

 
 

 
 

 
 
 

 
 

(d) In order to simulate the mixer in discrete-time, e.g. in MATLAB, we use discrete-time filters for 
the lowpass and highpass filters and replace the sampling block with a downsampling block. 

 
 
 

V(f) 
fc+W ^ 

For bandpass sampling, 
fc = k fs where k is an 
integer and fs > 2 W. 

We had discussed 
connections between 
downsampling and 
downconversion in 
class on Feb. 23rd when 
going over solutions for 
homework #2 and I had 
followed the discussion 
with an announcement 
on Canvas on Feb. 25th 
(see page 5 below). 
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2017 Midterm #1. 



i. Give the constraints on the sampling rate to convert the mixer to discrete time.  6 points. 
We have two sampling rates at play.  Sampling rate fs is used for the sampler in the 
continuous-time circuit for downconversion using mixing.  Sampling rate fs2 is used 
to convert the overall system to discrete time. 

(1) Nyquist-Shannon Sampling Theorem gives 𝒇𝒔𝟐 > 𝟐   𝒇𝒄 +𝑾  and 

(2) The downsampler by L will convert the sampling rate for the input signal of fs2 to 
a lower sampling rate on the output of fs where L = fs2 / fs .  Hence, fs2 = L fs . 

Sampling rate fs2 is used for signals r(t) and s(t) and the bandpass filter.  Sampling 
rate fs is used for signals v(t) and 𝒎(𝒕) and the lowpass filter. 

ii. Determine the downsampling factor.  3 points.  L = fs2 / fs  
% MATLAB code for midterm #1 
% problem 1.2(d) for Spring 2018 
% 
% Programmer: Prof. Brian L. Evans 
% The University of Texas at Austin 
% Date: March 18, 2018 
% 
% Sinusoidal amplitude modulation 
% r(t) = m(t) cos(2 pi fc t) 
%                                ^ 
% r(t)     s(t)         v(t)     m(t) 
% ---> BPF ---> Sampler ---> LPF ---> 
% fs2      fs2           fs      fs 
 
% System Parameters 
%   Continuous Time 
W  =   300;    % Message bandwidth Hz 
fs =  1000;    % Sampling rate in Hz 
k  =    15;    % kth replica at fc 
fc =  k*fs;    % Carrier frequency Hz 
%   Discrete Time 
L =    4*k;    % Downsampling factor 
fs2 = L*fs;    % Sampling rate #2  
%   fs2 > 2 (fc + W) and fs2 = L fs 
%   With W < fc, fs2 = L fc, L >= 4 
 
% Simulation Parameters 
%   Bandpass signal amplitudes have 
%   near-zero mean, and downsampling  
%   by keeping every Lth sample gives 
%   values close to zero.  Floating 
%   point calculations lose accuracy 
%   when values are below eps, where 
%   eps is the largest positive value 
%   for which 1.0 + eps = 1.0. In my 
%   MATLAB, eps is 2.2204 x 10^(-16). 
SimGain = 3.69*10^11; 
 
% Time ref for m(t), r(t) & s(t) 
Tmax = 10; Ts2 = 1/fs2; 
t2 = Ts2 : Ts2 : Tmax; 
N2 = length(t2);  n2 = 1 : N2; 
 

% Baseband message w/ frequencies 0 to W 
fpass = W;  npass = -100*L : 100*L; 
hprot = sinc(2*(fpass/fs2)*npass); 
hprot = hprot / sum(abs(hprot).^2); 
noise = randn(1, N2); 
m = filter(hprot, 1, noise); 
% r[n2] = m[n2] cos(wc n2) 
wc = 2*pi*fc/fs2; 
r = m .* cos(wc*n2); 
 
% DOWNCONVERSION BY DOWNSAMPLING 
% Design bandpass filter with 
% passband from fc - W to fc + W 
% 1. Design lowpass prototype 
% 2. Modulate by cos(2 pi fc t) 
fpass = W;  npass = -10*L : 10*L; 
hprot = sinc(2*(fpass/fs2)*npass); 
wc = 2*pi*fc/fs2; 
hbpf = hprot .* cos(wc*npass); 
hbpf = hbpf / sum(abs(hbpf).^2); 
  
% Design lowpass filter with passband 
% frequency using truncated sinc pulse 
fpass = W;  npass = -100 : 100; 
hlpf = sinc(2*(fpass/fs)*npass); 
hlpf = hlpf / sum(abs(hlpf).^2); 
  
% Signal processing steps 
r = SimGain * r; 
s = filter(hbpf, 1, r);     % Bandpass 
v = s(1:L:end);             % Downsample 
mhat = filter(hlpf, 1, v);  % Lowpass 
  
% Compare message signals 
plotspec(m, Ts2); 
title('Original message signal'); 
Ts = 1/fs; figure; 
plotspec(mhat, Ts); 
title('Estimated message signal'); 
PowerInOrgMessage = sum(abs(m.^2)) 
PowerInEstMessage = sum(abs(mhat.^2)) 
SimGain 



The comments in the MATLAB code for the Simulation Parameters indicate that a very wide 
range of amplitude values is needed for downconversion using downsampling, e.g. 11 orders of 
magnitude in the above simulation.  This is reflected in the SimGain parameter.  The reason is 
that the downsampling operation samples many amplitude values that are very close to zero.  
This also means that the approach is very sensitive to additive noise and interference that are in 
the transmission band. 
 
 
Beginning of the class Canvas announcement sent on Feb. 25, 2018: 
On Friday in lecture, a student asked about the connection between downconversion and downsampling and the connection 
between upconversion and upsampling.  Downsampling can be used as a method for downconversion, and upsampling can 
be used as a method for upconversion.  Downsampling and upsampling change the sampling rate through discrete-time 
methods, and were introduced on homework #2. 

On Friday, I worked out how to perform upconversion and downconversion in continuous time using sampling.  The 
sinusodial [sinusoidal] amplitude modulation approach to upconversion involves a message signal being input into a 
lowpass filter followed by multiplication by cos(2 pi fc t) followed by bandpass filtering to produce a bandpass 
transmission. In the sampling approach, the multiplication by cos(2 pi fc t) is replaced by sampling at fs where fc = m fs 
where m is a positive integer and fs > 2 B where B is the baseband bandwidth.  The sampling approach to upconversion 
uses aliasing to its advantage. 

Similarly, the sinusodial [sinusoidal] amplitude demodulation approach for downconversion a receives a bandpass signal, 
then applies bandpass filtering, multiplication by cos(2 pi fc t) and lowpass filtering to give an estimate of the message 
signal.  In the sampling approach, multiplication by cos(2 pi fc t) is replaced by sampling at fs where fc = m fs where m is a 
positive integer and fs > 2 B where B is the baseband bandwidth.  The sampling approach to downconversion, which is also 
known as bandpass sampling, uses aliasing to its advantage. 

Lecture slides 4-12 and 4-13 also describe the continuous-time analysis.  Problem 1.4 on Midterm #1 in Fall 2013 and 
Problem 1.4 on Midterm #1 in Fall 2012 describe upconversion using sampling, and Problem 1.4(d) on Midterm #1 in Fall 
2013 describes downconversion through sampling. 

For a discrete-time approach, we'll use fs2 as the overall sampling rate.  In this case, we will be oversampling by choosing 
fs2 > 2 fmax where fmax = fc + B where B is the bandwidth in Hz of the baseband message signal in continuous time. 

For the upsampling approach to upconversion, the discrete-time baseband message signal would be upsampled and then 
bandpass filtered in discrete time to keep the replica that is centered at wc = 2 pi fc / fs2.  One possible upsampling factor is 
L = fs2 / fc where L is an integer.  Please see problem 1.2(d) on the Spring 2017 Midterm #1 Exam. 

For the downsampling approach to downconversion, the received discrete-time bandpass signal centered at discrete-time 
frequency wc = 2 pi fc / fs2 would be downsampled and then lowpass filtered in discrete time to extract the discrete-time 
baseband signal.  One possible downsampling factor is M = fs2 / fc where M is an integer.  Please see Problem 1.3 on 
Midterm #1 in Spring 2012. 

End of the class Canvas announcement sent on Feb. 25, 2018. 
 
Please note that the solution for Problem 1.3(b) on Spring 2012 Midterm is related to Problem 
1.2(d) above with the following specific settings: 

B = 2 W 
fs2 = M fc 

Due to bandpass sampling in Problem 1.2(d) above, fc = k fs where k is an integer, so 
fs2 = M fc = M (k fs) = (M k) fs 
L = M k  



 
Problem 1.3 Filter Design.  24 points.  

Every time that a particular tone at continuous-time frequency f0 in Hz is detected, a particular audio 
effects system plays the tone at frequency f0 and a tone at frequency 3 f0. 

Assume that 20 Hz < f0 < 5000 Hz and that the sampling rate is fs > 6 f0. 
The audio effects system will be running continuously.  When frequency f0 is not present, the audio 
effects system could generate very low volume sounds. 
(a) Design a second-order discrete-time linear time-invariant (LTI) infinite impulse response (IIR) 

filter to detect frequency f0 by giving formulas for the locations of the two poles and two zeros of 
the filter.  Normalize the gain at continuous-time frequency f0 to be 1.  9 points. 
Bandpass filter centered at 𝝎𝟎 = 𝟐𝝅 𝒇𝟎

𝒇𝒔
 where 𝝎𝟎 ∈ (−

𝝅
𝟑
, 𝝅
𝟑
) since 𝒇𝒔 > 𝟔𝒇𝟎 . 

Poles are located at 𝒑𝟎 = 𝟎.𝟗𝒆𝒋𝝎𝟎 and 𝒑𝟏 = 𝟎.𝟗𝒆!𝒋𝝎𝟎 to ensure BIBO stability. 
Place both zeros at z = -1 as in part (b) when the poles are close to z = 1 because 𝝎𝟎 ≈ 𝟎, or 

place the zeros at z = 1 and z = -1 for a more selective bandpass filter, or 
use the zeros for the bandpass resonator at z = 0 and z = cos(ω0) from homework 2.1(d). 

The transfer function for a second-order IIR filter (biquad) from Lecture Slide 6-6 is 

𝑯 𝒛 = 𝑪
(𝟏− 𝒛𝟎𝒛!𝟏)(𝟏− 𝒛𝟏𝒛!𝟏)
(𝟏− 𝒑𝟎𝒛!𝟏)(𝟏− 𝒑𝟏𝒛!𝟏)

  for   𝒛 >   𝟎.𝟗 

To normalize the gain at frequency 𝝎𝟎, we substitute 𝒛 = 𝒆𝒋𝝎𝟎   into H(z) and solve for C. 

(b) Draw the pole-zero diagram for the poles and 
zeros given in part (a).  6 points. 
 
 
 

 
 

 
 
 
 

(c) When the discrete-time IIR filter outputs a tone at continuous-time frequency f0, what additional 
signal processing step(s) would you apply to the filter output to generate tones at continuous-time 
frequencies f0 and 3 f0?  9 points.  Let the IIR filter output be y[n] and y[n] ≈  cos(ω0 n). 

Solution #1: Modulate y[n] by 𝐜𝐨𝐬 𝟐𝝎𝟎𝒏  to produce discrete-time frequencies ω0 and 3ω0. 
Solution #2: Input y[n] into a cubing block to give y3[n].  That is, y3[n] = y[n] y[n] y[n].  In the 
frequency domain, 𝒀 𝒆𝒋𝝎  is a pair of Dirac deltas located at -ω0 and ω0 with area π .  
𝟏
𝟐𝝅
𝒀 𝒆𝒋𝝎 ∗ 𝒀 𝒆𝒋𝝎  gives Dirac deltas at -2ω0, 0, and 2ω0.  

𝟏
𝟐𝝅
( 𝟏
𝟐𝝅
𝒀 𝒆𝒋𝝎 ∗ 𝒀 𝒆𝒋𝝎 ) ∗ 𝒀 𝒆𝒋𝝎  

gives Dirac deltas at -3ω0, -ω0, ω0, and 3ω0.  Or, 𝐜𝐨𝐬𝟑(𝝎𝟎𝒏) =
𝟑
𝟒
𝐜𝐨𝐬 𝝎𝟎𝒏 + 𝟏

𝟒
𝐜𝐨𝐬 𝟑𝝎𝟎𝒏 . 

Solution #3:  Sinusoidal demodulation by cos(ω0 n) and sinusoidal modulation by cos(3 ω0 n). 

HW 2.1 2.2 2.3 3.1 3.2 & 3.3 Lab #3 
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f0 = 440; fs = 8*f0; 
z0 =  -1; z1 = -1;   % Try z0 = 1 
numer = [1 -(z0+z1) z0*z1]; 
r = 0.90; w0 = 2*pi*f0/fs; 
p0 = r*exp(j*w0); p1 = r*exp(-j*w0); 
denom = [1 -(p0+p1) p0*p1]; 
%%% Normalize response at f0 to 1 
z = exp(j*w0); zv = [1 z^(-1) z^(-2)]; 
C = (denom * zv') / (numer * zv'); 
figure; zplane(C*numer, denom); 
figure; freqz(C*numer, denom); 
 



Problem 1.4.  Potpourri.  24 points.  
(a) Consider a discrete-time infinite impulse response (IIR) filter that is causal, linear time-invariant 

(LTI), and bounded-input bounded-output (BIBO) stable and that is defined in terms of its poles, 
zeros and gain.  When implementing the filter in 32-bit IEEE floating-point arithmetic and data: 

i. Describe how an implementation could cause the filter to become BIBO unstable. 6 points. 
Assume that the poles, zeros and gain are represented in 32-bit IEEE floating-point, 
which uses 24 bits of mantissa + sign and 8 bits for the exponent. 
When expanding the factored form of the transfer function in the z-domain to an 
unfactored form using 32-bit IEEE floating-point arithmetic, one would compute 

𝑯 𝒛 = 𝑪
(𝟏− 𝒛𝟎𝒛!𝟏)(𝟏− 𝒛𝟏𝒛!𝟏)
(𝟏− 𝒑𝟎𝒛!𝟏)(𝟏− 𝒑𝟏𝒛!𝟏)

  =𝑪
𝟏− (𝒛𝟎 + 𝒛𝟏)𝒛!𝟏 + 𝒛𝟎𝒛𝟏𝒛!𝟐

𝟏− (𝒑𝟎 + 𝒑𝟏)𝒛!𝟏 + 𝒑𝟎𝒑𝟏𝒛!𝟐
 

The feedback coefficient −(𝒑𝟎 + 𝒑𝟏) would lose one bit of accuracy in the worst case 
due to a carry bit, and the feedback coefficient 𝒑𝟎𝒑𝟏 would lose 24 bits of accuracy in 
the mantissa in the worst case.  Using cascade of biquads helps reduce loss of accuracy. 
Converting an Mth-order IIR filter into a single section would cause a loss of 24(M-1) 
bits of accuracy in the worst case for the feedback coefficient in front of the z-M term. 
Due to the loss of accuracy in the feedback coefficients, factoring the denominator to 
find the new location of poles may reveal that some of the poles have moved onto or 
outside the unit circle.  Please see Lecture Slides 6-20 and 6-23.  

ii. Describe how an implementation could cause the loss of LTI properties.  6 points. 
By setting one or more of the initial conditions to a value other than zero. 

iii. Give an example of a particular causal, LTI, BIBO stable discrete-time IIR filter for which its 
causal, LTI and BIBO stable properties are preserved when the filter is implemented in 32-bit 
IEEE floating-point arithmetic and data.  6 points. 
Let’s consider a first-order, causal, LTI, BIBO stable, 
discrete-time IIR filter: y[n] = 0.5 y[n-1] + 0.5 x[n]. 
For LTI, y[-1] = 0.0.  If x[0] = 2.0 and x[n] = 1.0 for 
n > 1, then y[n] = 1.0 for n ≥  0. 

(b) For a finite impulse response (FIR) filter with N coefficients, what 
is the increase in the number of multiplication-addition operations if the input signal, FIR 
coefficients and output signal were complex-valued instead of real-valued?  6 points. 

1 complex multiplication (a + jb) (c + jd) = (ac – bd) + j (bc + ad) would take 4 real-valued 
multiplications and 2 real-valued additions. 
1 complex addition (a + jb) + (c + jd) = (a + c) + j (b + d) would take 2 real-valued additions. 
1 complex multiplication-addition would take 4 real-valued multiplication-additions. 
An FIR filter with N coefficients would take N multiplication-additions to compute one 
output value. 
A complex-valued FIR filter would take 4 times as many real-valued multiplication-additions 
to compute one output value. 

N = 1000; 
x = ones(1, N); 
x(1) = 2; 
a = [1 -0.5]; 
b = [0.5]; 
y = filter(b, a, x); 
sum(abs(y - 1.0))^2 
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Problem 1.1 Filter Analysis.  28 points. 
Consider the following causal linear time-invariant (LTI) discrete-time filter 
with input x[n] and output y[n] described by 

 y[n] = x[n] + a x[n-2] + a2 x[n-4] 

for n ≥ 0, where a is a real-valued coefficient where 0 < a < 1. 
(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  Why?  3 points. 

FIR filter.   Any of the following reasons would provide sufficient justification: 
1. The impulse response extends for 5 samples from n = 0 to n = 4, which is finite in duration. 
2. The output y[n] does not depend on previous output values; i.e., there is no feedback. 
3. In the transfer function in the z-domain in part (d), the only poles are trivial pole at z = 0. 

(b) What are the initial conditions and their values?  Why?  6 points. 
Let n=0:  y[0] = x[0] + a x[-2] + a2 x[-4].  x[0] is first input value and not an initial condition. 
Let n=1:  y[1] = x[1] + a x[-1] + a2 x[-3]. 
Let n=2:  y[2] = x[2] + a x[0] + a2 x[-2].  The initial conditions are x[-1], x[-2], x[-3], and x[-4]. 
The initial conditions have to be zero for linearity and time-invariant properties to hold. 
Note: A causal system does not depend on future input values or future output values. 

(c) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 
(d) Derive a formula for the transfer function in the z-domain.  4 points. 

Z-transform both sides of difference equation, knowing that all initial conditions are zero: 
Y(z) = X(z) + a z -2 X(z) + a2 z -4 X(z) which means 𝑯 𝒛 = 𝒀(𝒛)

𝑿(𝒛)
= 𝟏+ 𝒂 𝒛!𝟐 + 𝒂𝟐 𝒛!𝟒 for 𝒛 ≠ 𝟎 

(e) Give a formula for the discrete-time frequency response of the filter.  3 points. 
We can convert the transfer function H(z) into the discrete-time frequency domain by 
substituting z = exp(j ω) because FIR LTI systems are always Bounded-Input Bounded-
Output stable, or equivalently, because the region of convergence includes the unit circle: 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯(𝒛) 𝒛!𝒆𝒋𝝎 = 𝟏+ 𝒂 𝒆!𝟐𝒋𝝎 + 𝒂𝟐 𝒆!𝟒𝒋𝝎 

(f) Does the filter have linear phase over all frequencies?  Why or why not?  6 points. 
An FIR has linear phase if its impulse response is even or odd symmetric about its midpoint. 

The impulse response has values 1, 0, a, 0, a2. Because 0 < a < 1, neither odd symmetry nor even 
symmetry about the midpoint (n = 2) is possible.
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Problem 1.2 Minimum Phase FIR Filters.  27 points.  
Minimum phase finite impulse response (FIR) filters have 
shorter length and lower group delay compared with linear phase FIR 
filters that meet the same magnitude specification. 

We will use an algorithm by Herrman and Schüssler to convert an odd-
length linear phase FIR filter to a minimum phase FIR filter. 

Consider a linear phase FIR filter has the causal three-point impulse response h[n] given above. Filter 
order M is 2. The filter is lowpass with stopband attenuation Αstop = 0.2 in linear units (–13.9794 dB). 

(a) What is the group delay in samples through the linear phase FIR filter h[n]?  3 points. 
Group delay is defined as − 𝒅

𝒅𝝎
∡𝑯𝒇𝒓𝒆𝒒(𝝎) where 𝑯𝒇𝒓𝒆𝒒(𝝎) is the frequency response. 

For an N-point FIR filter with even or odd symmetry about the midpoint of its impulse 
response, the group delay is a constant value of  𝑵!𝟏

𝟐
= 𝑴

𝟐
= 𝟏 sample. 

This corresponds to the index of the midpoint in the impulse response.  

(b) Please implement the steps in the Herrman and Schüssler algorithm below.  
i. Compute the impulse response for a linear phase FIR filter g[n] = Αstop δ[n – (M/2)] + h[n] 

where Αstop is in linear units.  Plot g[n].  6 points. 
𝒈 𝒏 = 𝟎.𝟐 𝜹 𝒏− 𝟏 + 𝒉 𝒏 =  𝜹 𝒏 + 𝟐 𝜹 𝒏− 𝟏 + 𝜹 𝒏− 𝟐  

 

ii. Compute G(z).  6 points. 

𝑮 𝒛 = 𝟏+ 𝟐 𝒛!𝟏 + 𝒛!𝟐 

𝑮 𝒛 = 𝟏+ 𝒛!𝟏 𝟐 which has a double zero at z = -1. 

 
iii. Form the minimum phase FIR filter V(z) by keeping any zeros of G(z) inside the unit circle 

and keeping one zero in each pair of repeated zeros on the unit circle in G(z). 6 points. 

𝑽 𝒛 = 𝑪 𝟏+ 𝒛!𝟏  where C is the gain. 

 

iv. Compute the gain for V(z) so that its response at ω = 0 is the same as the response of H(z) 
at ω = 0.  6 points. 

In the z-domain, discrete-time frequency ω  is 𝒛 =  𝒆 𝒋 𝝎 . 

When ω  = 0, 𝒛 =  𝒆 𝒋 𝟎 = 𝟏.  
V(1) = 2C and H(1) = 3.8. 

This gives 2C = 3.8 or C = 1.9. 
 

Note: The Herrman-Schüssler algorithm is based on observing the structure of zeros in a linear 
phase finite impulse response (FIR) filter.  Here are the pole-zero and frequency response plots for 
a 50th-order linear phase FIR filter h[n] using fdatool in MATLAB with default design parameters: 

Lecture slides 5-12 
5-15 5-17 & 5-18 

Lecture slides 5-5 
5-17 5-18 & 5-19 

HW 1.1 2.1 2.2 2.3 & 3.2 
Lab #3 

Lectures 3 5 & 6 

JSK Ch. 7 

HW 3.2 

HW 3.2 



 
Filter design parameters are fpass = 9600 Hz, Apass = 1 dB, fstop = 12000 Hz, Astop = 80 dB, and 
fs = 48000 Hz.  In linear units, Astop is 10 -4.  The filter order is M = 50. 

In zooming into the stopband of the freqz plot on the left and using the data cursor tool in 
MATLAB, the actual Astop is -78.8 dB, which is 1.1482 x 10 -4 in linear units. 

In the pole-zero plot, the zero locations in the passband frequencies occur in reciprocal pairs at the 
same angle; i.e., the radius of one zero is the reciprocal of the radius of the other.  The zeros for 
stopband frequencies are on the unit circle. 
If we were to augment h[n] using the Herrman-Schüssler algorithm, we would add enough offset to 
all frequencies to lift the stopband amplitude function (not magnitude function) to be non-negative: 
g[n] = Α stop δ[n – 25] + h[n]. Phase response (below) becomes a line without any discontinuities. 
The freqz and zplane plots for g[n] are given below. Its Astop is -72.9 dB, as highlighted. Zeros over 
stopband frequencies are in reciprocal pairs— they are so close in value that they appear in the 
same location in the zplane plot.  The zplane plot for one of reciprocal pairs of zeros is enlarged. 

 
To form V(z), we would keep the zeros inside the unit circle and normalize. 



  
Problem 1.3 Bluetooth Receiver.  24 points. 

Bluetooth operates in the 2400-2499 MHz unlicensed band. 
At any given time, Bluetooth will transmit on one of 79 channels, and each channel is 1 MHz wide. 

Channel k begins at (2402 + k) MHz where k = 0, 1, …, 78. 
The Bluetooth receiver below has an analog/RF front end and a digital baseband receiver. 

(a) Analog/RF front end block diagram is given below, where r(t) is the received RF signal. In the 
plot for R(f), one of the 1 MHz channels is shaded, and its counterpart in negative frequencies is 
also shaded.  The spectrum of the analog/RF front end output signal, y(t), is also shown.  6 points. 

 
 

 

 
What is the carrier frequency fc? 
fc = f1. Analog/RF front end performs sinusoidal amplitude demodulation to shift the positive 
frequency band in R(f) to the left by f1 and negative frequency band in R(f) to the right by f1. 
Note: This type of fixed analog/RF front end design would enable digital baseband processing to 
be programmed in software. The baseband performs the final demodulation stage for channel k. 
Bluetooth transmitters/receivers perform ~1600 hops/s in a pre-defined pattern in an attempt to 
avoid interference, and will stop using a channel that has strong noise/interference on it.  

(b) Design a second-order discrete-time linear time-invariant (LTI) infinite impulse response (IIR) 
filter to extract channel k from y[n] where y(t) is sampled at a sampling rate of fs to obtain y[n] 
where fs ≥ 200 MHz.  Give formulas for, and plot, the poles and zeros.  18 points. 

Due to the analog/RF front end in part (a), channel k in y(t) resides between (k+2) MHz and 
(k+3) MHz.  The center frequency is at (k+2.5) MHz.  Let fs = 200 MHz. 

To extract channel k, i.e. to receive channel k, we have been asked to use a second-order 
bandpass IIR filter. The center frequency would be 𝝎𝒌 = 𝟐𝝅 𝒌!𝟐.𝟓  𝐌𝐇𝐳

𝟐𝟎𝟎 𝐌𝐇𝐳
= 𝟐𝝅 𝒌!𝟐.𝟓 

𝟐𝟎𝟎 
 . 

A second-order filter has two poles and any number of zeros.  A biquad 
would have two poles and two zeros. 

Poles are at 𝒑𝟎 = 𝟎.𝟗 𝒆𝒋𝝎𝒌 and 𝒑𝟏 = 𝟎.𝟗 𝒆!𝒋𝝎𝒌 
For small values of k, poles are close to 0 rad/sample.  To avoid 
strong interaction between zeros and poles, place two zeros at z = -1. 
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Problem 1.4.  Potpourri.  21 points.  
(a) Compare the implementation complexity of an infinite impulse response (IIR) filter with N poles 

and N zeros for the different filter structures below.  A biquad is a second-order IIR filter. 
i. Complete the table below while providing justification for each entry.  Your answers would 

be in terms of N.  12 points. 

Filter 
Structure 

Number of 
coefficients 

Number of input and 
output values to store 

Multiplications 
per output sample 

Additions per 
output sample 

Direct Form 2N+1 2N+2 2N+1 2N 

Cascade of 
Biquads 
(N even) 

𝟓
𝑵
𝟐 = 𝟐.𝟓𝑵 𝟔

𝑵
𝟐 = 𝟑𝑵 𝟓

𝑵
𝟐 = 𝟐.𝟓𝑵 𝟒

𝑵
𝟐 = 𝟐𝑵 

Cascade of 
Biquads 
(N odd) 

𝟓
𝑵− 𝟏
𝟐 + 𝟑 𝟔

𝑵− 𝟏
𝟐 + 𝟒 𝟓

𝑵− 𝟏
𝟐 + 𝟑 𝟒

𝑵− 𝟏
𝟐 + 𝟐 

Direct form calculation of the current output sample y[n] would use the following: 
𝒚 𝒏 = 𝒂𝒎 𝒚 𝒏−𝒎 + 𝒃𝒌 𝒙[𝒏− 𝒌]𝑵

𝒌!𝟎
𝑵
𝒎!𝟏 . 

Direct form with two tapped delay lines stores 2N+2 values, i.e. N+1 current/previous 
inputs and N+1 current/previous outputs (see lecture slide 6-9).  Direct form with one 
tapped delay line stores N+1 intermediate values (see lecture slide 6-11). 

Biquad i: 𝒚𝒊 𝒏 = 𝒂𝟏 𝒚𝒊 𝒏− 𝟏 + 𝒂𝟐 𝒚𝒊 𝒏− 𝟐 + 𝒃𝟎 𝒙𝒊 𝒏 + 𝒃𝟏 𝒙𝒊 𝒏− 𝟏 + 𝒃𝟐 𝒙𝒊 𝒏− 𝟐 , 
which takes 5 multiplications and 4 additions.  We would need to store the current input 
and two previous inputs, and the current output and two previous outputs. 
When N is even, there are N/2 biquads in cascade. 

When N is odd, there are (N-1)/2 biquads and a first-order IIR filter in cascade.  A first-
order IIR filter output is 𝒚𝒊 𝒏 = 𝒂𝟏 𝒚𝒊 𝒏− 𝟏 + 𝒃𝟎 𝒙𝒊 𝒏 + 𝒃𝟏 𝒙𝒊 𝒏− 𝟏 . 

ii. What is the percentage increase in implementation complexity for the cascade of biquads 
vs. direct form when N = 10? 3 points. 

Direct Form: 21 coefficients, 22 values to store, 21 multiplications, 20 additions 
Cascade:  25 coefficients, 30 values to store, 25 multiplications, 20 additions. 
19% more coefficients/multiplications.  36% more values to store.  Same in additions. 

(b) For infinite impulse response (IIR) filter orders greater than two, what is the primary advantage of 
using a cascade of biquads vs. a direct form filter structure?  6 points. 
Using a cascade of biquads helps to ensure that a bounded-input bounded-output (BIBO) IIR 
filter remains BIBO stable after implementation. Classical IIR filter designs compute the 
pole and zero locations for a BIBO stable filter using closed-form formulas with high 
accuracy.  When converting the factored form of the transfer function to unfactored form for 
direct form implementation, quantization error from the addition and multiplication 
operators can cause lead to error in the feedback and feedforward coefficient values. 
Refactoring the perturbed feedback coefficient values can yield poles on or outside of the unit 
circle, which means that the implementation is BIBO unstable. 
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Problem 1.1 Filter Analysis.  28 points.  
Consider the following causal linear time-invariant (LTI) discrete-time 
filter with input x[n] and output y[n] described by 

 y[n] = a x[n] + b x[n-1] – b x[n-2] – a x[n-3] 
for n ≥ 0, where a and b are real-valued positive coefficients. 
(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  Why?  3 points. 

FIR filter.  Any of the following reasons would provide sufficient justification: 
1. The impulse response extends for 4 samples from n = 0 to n = 3, which is finite in duration. 
2. The output y[n] does not depend on previous output values; i.e., there is no feedback. 
3. In the transfer function in the z-domain in part (d), the only poles are trivial poles at z = 0. 

(b) What are the initial conditions and their values?  Why?  6 points. 
Let n=0:  y[0] = a x[0] + b x[-1] – b x[-2] – a x[-3].  
Let n=1:  y[1] = a x[1] + b x[0] – b x[-1] – a x[-2]. 
Let n=2:  y[2] = a x[2] + b x[1] – b x[0] – a x[-1].   Etc. 
Initial conditions are x[-1], x[-2], x[-3] and must be zero for linearity and time-invariant 
properties to hold.  Note that x[0] is the first input value and not an initial condition. 
Note: A causal system does not depend on future input values or future output values. 

(c) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 
(d) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points. 

Z-transform both sides of difference equation, knowing that all initial conditions are zero: 
Y(z) = a X(z) + b z -1 X(z) – b z -2 X(z) – a z -3 X(z)  which means 

 𝑯 𝒛 = 𝒀(𝒛)
𝑿(𝒛)

= 𝒂+ 𝒃 𝒛!𝟏 − 𝒃 𝒛!𝟐  − 𝒂 𝒛!𝟑 for 𝒛 ≠ 𝟎 

(e) Give a formula for the discrete-time frequency response of the filter.  3 points. 
We can convert the transfer function H(z) into the discrete-time frequency domain by 
substituting z = exp(j ω) because FIR LTI systems are always Bounded-Input Bounded-
Output stable, or equivalently, because the region of convergence includes the unit circle: 
𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯(𝒛) 𝒛!𝒆𝒋𝝎 = 𝒂+ 𝒃 𝒆!𝒋𝝎 − 𝒃 𝒆!𝟐𝒋𝝎 − 𝒂 𝒆!𝟑𝒋𝝎 

(f) Give a formula for the phase response vs. discrete-time frequency and the group delay vs. discrete-
time frequency. Does the filter have linear phase over all frequencies?  Why or why not?  6 points. 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝒆!𝒋
𝟑
𝟐𝝎 𝒂 𝒆𝒋

𝟑
𝟐𝝎  + 𝒃 𝒆𝒋

𝝎
𝟐 − 𝒃 𝒆!𝒋

𝝎
𝟐 − 𝒂 𝒆!𝒋

𝟑
𝟐𝝎 = 𝟐 𝒂 𝐬𝐢𝐧

𝟑
𝟐𝝎 + 𝒃 𝐬𝐢𝐧

𝝎
𝟐  𝒋 𝒆!𝒋

𝟑
𝟐𝝎 

With 𝒋 = 𝒆𝒋
𝝅
𝟐 , ∠𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝝅

𝟐
− 𝟑

𝟐
𝝎  except for phase jumps (discontinuities) of π  at frequencies 

that are zeroed out, which is generalized linear phase.  𝑮𝑫 𝝎 = − 𝒅
𝒅𝝎
∠𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝟑

𝟐
 𝐬𝐚𝐦𝐩𝐥𝐞𝐬.    

Note: The three initial conditions are 
visible here as the initial condition for 
each unit delay block. 
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Problem 1.1 Supplemental information not expected for students to have provided in their answers. 
Matlab plots using freqz( [a b -b -a] ) for a = 1 and b = 2 (left) and a = 2 and b = 1 (right) 

 
 

  



Problem 1.2 Sampling and Aliasing.  24 points.  
A frequency of 46 kHz is higher than the normal audible range of 20 Hz 
to 20 kHz for a human being. 

Consider a continuous-time signal x(t) = cos(2 π f0 t) where f0 = 46 kHz. 

Sample the signal using a sampling rate of fs = 48 kHz. 
(a) Derive a formula for the discrete-time signal x[n] that results from sampling x(t).  3 points. 

Sampling in the time domain can be modeled as an instantaneous closing and opening of a 
switch. Each time that the switch is closed, the input is gated to the output.  In practice, this 
could be implemented by a pass transistor with a sampling clock feeding the gate terminal. 

𝒙 𝒏 = 𝒙 𝒕 |𝒕!𝒏𝑻𝒔 = 𝐜𝐨𝐬 𝟐 𝝅 𝒇𝟎 𝒏 𝑻𝒔 =  𝐜𝐨𝐬 𝟐 𝝅 𝒇𝟎  
𝒏
𝒇𝒔

= 𝐜𝐨𝐬 𝟐𝝅
𝒇𝟎
𝒇𝒔

𝒏  

The discrete-time frequency corresponding to continuous-time frequency f0 is 𝝎𝟎 = 𝟐𝝅 𝒇𝟎
𝒇𝒔

 
(b) Using only analysis of x[n] in the discrete-time domain, determine the discrete-time frequency to 

which the continuous-time frequency of f0 will alias.  6 points. 

𝒙 𝒏 = 𝐜𝐨𝐬 𝟐𝝅
𝒇𝟎
𝒇𝒔

𝒏 = 𝐜𝐨𝐬 𝟐𝝅
𝟒𝟔 𝐤𝐇𝐳
𝟒𝟖 𝐤𝐇𝐳 𝒏 = 𝐜𝐨𝐬 𝟐𝝅

𝟐𝟑 
𝟐𝟒 𝒏  

We can subtract an offset in the argument of 2 π  n without changing x[n]: 

𝐜𝐨𝐬 𝟐𝝅
𝟐𝟑
𝟐𝟒 𝒏− 𝟐𝝅𝒏 = 𝐜𝐨𝐬 𝟐𝝅

𝟐𝟑
𝟐𝟒− 𝟏 𝒏 = 𝐜𝐨𝐬 𝟐𝝅 −

𝟏
𝟐𝟒 𝒏 = 𝐜𝐨𝐬 𝟐𝝅

𝟏
𝟐𝟒 𝒏  

Continuous-time frequency of f0 will alias to a discrete-time frequency of 𝟐𝝅 𝟏
𝟐𝟒

 rad/sample. 

(c) What is the equivalent continuous-time frequency for the aliased discrete-time frequency in (b)? 
6 points. 
With 𝝎𝟏 = 𝟐𝝅 𝒇𝟏

𝒇𝒔
 and fs = 48 kHz, f1 = 2 kHz. 

(d) Using only analysis in the continuous-time frequency domain of sampling applied to x(t), 
determine the continuous-time frequency to which the continuous-time frequency f0 will alias.  The 
answer should be the same as part (c).  6 points. 

In the time domain, we model instantaneous gating of input to output every Ts seconds as a 
multiplication of the input signal by an impulse train with impulses every Ts seconds. The 
output spectrum is the convolution of the input spectrum and an impulse train with impulses 
separated by fs with area fs. In the frequency domain, sampling creates replicas of the input 
spectrum at offsets of integer multiples of fs. The Fourier transform of cos(2 π  f0 t) is 
𝟏
𝟐
𝜹 𝒇+ 𝒇𝟎 + 𝟏

𝟐
𝜹 𝒇− 𝒇𝟎 .  Replicas are shown as dashed impulses below.  Reconstructed 

frequencies are from -½ fs to ½ fs and hence the aliased continuous-time frequency is 2 kHz. 

 
(e) Is the aliased frequency audible?  3 points. 

Yes, the aliased frequency of 2 kHz is in the audible range of 20 Hz to 20 kHz.  
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Problem 1.2 Supplemental information not expected for students to have provided in their answers. 
Matlab code to show aliasing in the time domain 

Plot x(t) = cos(2 π  f0 t) 

 
Plot samples x(n Ts) superimposed on 
x(t) = cos(2 π  f0 t) 

 
Plot x1(t) = cos(2 π  f1 t) and x(n Ts)  
superimposed on x(t) = cos(2 π  f0 t) 

 

%% Part 1: Define Signals 
wHat = 2*pi*(1/24); 
nmax = 24; 
n = 0:nmax; 
x1 = cos(wHat*n); 
x = cos(2*pi*(23/24)*n); 
 
fs = 1;     %% fs=1 to align DT and CT 
f1 = 2/48;  %% Actual fs goes in denom 
w1Hat = 2*pi*f1/fs; 
period = round(fs/f1); 
f0 = 46/48; %% Actual fs goes in denom 
w0Hat = 2*pi*f0/fs; 
Ts = 1/fs; 
tmax = (nmax/period)*(1/f1); 
t = 0 : (Ts/100) : tmax; 
x1cont = cos(2*pi*f1*t); 
xcont = cos(2*pi*f0*t); 
  
%% Part 2: Generate Plots 
figure; 
plot(t, xcont, 'm-', 'LineWidth', 1); 
  
figure; 
plot(t, xcont, 'm-', 'LineWidth', 1); 
hold; 
stem(n, x1, 'Linewidth', 2, 
'MarkerEdgeColor', 'black'); 
stem(n, x, 'Linewidth', 2, 
'MarkerEdgeColor', 'black'); 
  
figure; 
plot(t, xcont, 'm-', 'LineWidth', 1); 
hold; 
stem(n, x1, 'Linewidth', 2, 
'MarkerEdgeColor', 'black'); 
stem(n, x, 'Linewidth', 2, 
'MarkerEdgeColor', 'black'); 
plot(t, x1cont, 'b-', 'LineWidth', 2); 
 



Problem 1.3 Filter Design.  24 points.  
An electrocardiogram (ECG) device records the heart’s electrical potential versus time for monitoring 
heart health and diagnosing heart disorders. [1] 
Use a sampling rate fs of 240 Hz for the continuous-time ECG signal for a monitoring application. [1] 

Design a third-order discrete-time infinite impulse response (IIR) filter to remove baseline wander 
noise below 0.5 Hz and powerline interference at 60 Hz in an ECG signal. [1] 

Baseline wander noise is induced by electrode changes due to perspiration, movement and respiration. 
The third-order discrete-time IIR filter will be a cascade of a first-order and a second-order section. 

(a) Design a first-order discrete-time IIR filter to remove DC (0 Hz) but pass as many of the other 
frequencies as possible with a gain of one in linear units.  Please give the pole, zero, and gain. 
6 points. 
Pole p0 = 0.95 and zero z0 = 1. 
𝑯𝟎 𝒛 = 𝑪𝟎  𝟏!𝒛𝟎𝒛

!𝟏

𝟏!𝒑𝟎𝒛!𝟏
= 𝑪𝟎  𝒛!𝒛𝟎

𝒛!𝒑𝟎
 

Set H0(z) = 1 at z = exp(j π) = -1 to give C0 = 0.975. 
(b) Design a second-order discrete-time IIR filter to remove 60 Hz but pass as many of the other 

frequencies as possible with a gain of one in linear units.  Please give the two poles, two zeros, and 
gain.  6 points.  
𝝎𝟔𝟎 = 𝟐𝝅 𝒇𝟔𝟎

𝒇𝒔
= 𝟐𝝅 𝟔𝟎 𝑯𝒛

𝟐𝟒𝟎 𝑯𝒛
= 𝝅

𝟐
 

Poles and zeros are at the same angle ω60 

Poles at 𝒑𝟏 = 𝟎.𝟗 𝒆𝒋 𝝎𝟔𝟎 = 𝒋𝟎.𝟗 and 𝒑𝟐 = 𝟎.𝟗 𝒆!𝒋 𝝎𝟔𝟎 = −𝒋𝟎.𝟗 

Zeros at 𝒛𝟏 = 𝒆𝒋 𝝎𝟔𝟎 = 𝒋 and 𝒛𝟐 = 𝒆!𝒋 𝝎𝟔𝟎 = −𝒋 

𝑯𝟏 𝒛 = 𝑪𝟏  
𝟏− 𝒛𝟏𝒛!𝟏 𝟏− 𝒛𝟐𝒛!𝟏

𝟏− 𝒑𝟏𝒛!𝟏 𝟏− 𝒑𝟐𝒛!𝟏
 

Normalize H1(z) = 1 at z = exp(j 0) = 1 to give C0 = 0.905.  
(c) Plot the poles and zeros for the third-order 

discrete-time IIR filter on the right.  The circle on 
the right has a radius of 1.  6 points. 
 

(d) What is the response of the discrete-time IIR filter 
to continuous-time frequencies in the ECG signal 
that are odd harmonics of 60 Hz, i.e. 180 Hz, 300 
Hz, etc.?  Why?  6 points. 
When sampled at the sampling rate of 240 Hz, 
continuous-time frequencies that are odd 
harmonics of 60 Hz will alias to the discrete-
time frequency ω60, and hence will be zeroed 
out by the discrete-time IIR filter.  

Re(z) 

Im(z) 

[1] Yong Lian and Jianghong Yu, "A Low Power Linear Phase Digital FIR Filter for Wearable ECG Device", Proc. 
IEEE Int. Conf. on Engineering in Medicine and Biology Society, pp. 7357-7360, 2005.  
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Problem 1.3 Supplemental information not expected for students to have provided in their answers. 
 
Matlab code to specify and analyze the discrete-time IIR filter.  
 
%% Zeros 
z0 = 1; 
z1 = j; 
z2 = -j; 
%% Poles 
p0 = 0.9; 
p1 = 0.9j; 
p2 = -0.9j;  
%% Gains for each stage 
C0 = 0.975; 
C1 = 0.905; 
%% Expand factors to coefficents 
zeros = [z0 z1 z2]; 
poles = [p0 p1 p2]; 
feedforwardCoeffs = C0*C1*poly(zeros); 
feedbackCoeffs = poly(poles); 
%% Filter frequency response 
freqz( feedforwardCoeffs, feedbackCoeffs ); 

 
  



Problem 1.4.  Potpourri.  24 points.  
(a) A discrete-time signal with sampling rate of fs of 8000 Hz has the following “UX” spectrogram.  

The spectrogram was computed using 1000 samples per block and an overlap of 900 samples. 
i. Describe frequency components vs. time.  6 points. 

By using the intensity scale shown to the right of 
the spectrogram plot: 
t = 0.5s : all frequencies present 
0.5s < t < 1.5s : Low frequencies 0 to 0.1 kHz 

continuously present (in white) plus six less 
intense short bursts of frequencies 0 to 1 kHz 
equally spaced in time (short rect. pulses) 

t = 1.5s : all frequencies present 
2.5s < t < 3.5s : chirp increasing from 0 to ½fs 

plus a chirp decreasing from ½fs to 0 
ii. What would the signal sound like when played as audio signal?  6 points. 

0.5s < t < 1.5s : Bass tones 20-100 Hz plus lower intensity 0-1 kHz freq. repeated 6 times 
2.5s < t < 3.5s : Note increasing 0 to 4 kHz, and note decreasing 4 to 0 kHz, with time 

(b) Consider an unknown causal, time-varying, nonlinear, discrete-time system with input x[n] and 
output y[n].  We will model the system as a discrete-time linear time-invariant (LTI) finite impulse 
response (FIR) filter.  Find the FIR coefficients. 
i. Give a formula for a finite-length input signal other than an impulse that contains all 

frequencies. 3 points.  

The discrete-time frequency domain has period 2π . 

Input signal x[n] of N samples should contain all discrete-time frequencies 
from -π  to π .  Use a chirp signal that linearly sweeps all frequencies from 0 to π: 

𝒙 𝒏 = 𝐜𝐨𝐬 𝟐𝝅
𝒏
𝟒𝑵 𝒏 = 𝐜𝐨𝐬

𝟐𝝅
𝟒𝑵𝒏

𝟐     𝒇𝒐𝒓 𝒏 = 𝟎,𝟏,… ,𝑵− 𝟏 

ii. Using your answer in part i, derive a time-domain algorithm to estimate the FIR filter 
coefficients.  Your algorithm should also be able to determine how many FIR filter 
coefficients are meaningful.  9 points. 
We base the algorithm on convolution: 

𝒚 𝒏 = 𝒉 𝒏 ∗ 𝒙 𝒏 = 𝒉 𝒌
𝑲!𝟏

𝒌!𝟎

𝒙 𝒏− 𝒌  

For each output value y[n], we’ll have one equation and one unknown h[n]: 
y[0] = h[0] x[0]   solve for h[0] which works as long as x[0] is not zero. 
y[1] = h[0] x[1] + h[1] x[0]    solve for h[1] which works as long as x[0] is not zero 
until |h[n]| < 10 -5 or n = N 

Alternate criterion to |h[n]| < 10 -5: 𝒉 𝒌 𝟐 ≥ 𝟎.𝟗𝑹𝒏
𝒌!𝟎   𝐰𝐡𝐞𝐫𝐞 𝑹 = |𝒚 𝒎 |𝟐𝑵!𝟏

𝒎!𝟎
|𝒙 𝒎 |𝟐𝑵!𝟏

𝒎!𝟎
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Problem 1.4 Supplemental information not expected for students to have provided in their answers  

1.4(a) Matlab code to generate the spectrogram. 
fs = 8000; 
Ts = 1 / fs; 
tmax = 4; 
utSignal = zeros(1, tmax*fs); 
t1sec = 0 : Ts : (1 - Ts); 
%% Spectrogram parameters 
Nfft = 1000; 
Noverlap = 900; 
%% Generate low frequency groups 
f0 = fs / Nfft; 
lowfcosines = zeros(1, length(t1sec)); 
for n = 1 : 10 
  f1 = n*f0; 
  lowfcosines = lowfcosines + cos(2*pi*f1*t1sec); 
end 
%% Create chirp signals 
fstart = 0; 
fend = fs/2; 
fstep = fend - fstart; 
phi = pi*fstep*(t1sec.^2); 
upchirp = cos(2*pi*fstart*t1sec + phi); 
downchirp = cos(2*pi*fend*t1sec - phi); 
%% Draw U into spectrogram 
utSignal(0.5*fs+1:1.5*fs) = lowfcosines; 
%% Draw X into spectrogram 
utSignal(2.5*fs+1:3.5*fs)= upchirp + downchirp; 
%% Plot the spectrogram 
spectrogram(utSignal, hamming(Nfft), Noverlap, Nfft, fs, 'yaxis'); 
colormap bone; 

1.4(a)ii Matlab code to play the signal in the spectrogram in problem 1.4(a) as an audio signal 
soundsc(utSignal, fs); 

1.4(b)i Matlab code to generate chirp 
signal x[n] of N samples in length.  All 
frequencies are present in x[n]. 
N = 10000; 
n = 0 : N-1; 
x = cos(((2*pi)/(4*N))*(n.^2)); 
 
%% Plot frequency content in x 
freqz(x, 1, N); 

1.4(b)ii Although not asked, here are two 
frequency-domain algorithms. 
Algorithm #1: Computer H(z) = Y(z) / X(z), 
take inverse transform to find h[n], and 
truncate h[n] to keep 90% of energy or N 
coefficients, whichever is smaller. 
Algorithm #2:  Similar approach to Algorithm #1 using Hfreq(ω) = Yfreq(ω) / Xfreq(ω). 
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Problem 1.1 Filter Analysis.  28 points. 

Consider the following causal linear time-invariant (LTI) discrete-time filter 

with input x[n] and output y[n] described by 

 y[n] = x[n] – x[n-2] 

for n  0. 

(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  Why?  3 points. 

FIR filter.  Any of the following reasons would provide sufficient justification: 

1. The impulse response extends for 3 samples from n = 0 to n = 2, which is finite in duration. 

2. The output y[n] does not depend on previous output values; i.e., there is no feedback. 

3. In the transfer function in the z-domain in part (d), the only poles are trivial poles at z = 0. 

(b) What are the initial conditions and their values?  Why?  6 points. 

Let n=0:  y[0] = x[0] – x[-2] 

Let n=1:  y[1] = x[1] – x[-1] 

Let n=2:  y[2] = x[2] – x[0]  etc. 

Initial conditions are x[-1] and x[-2] and must be zero for linearity and time-invariant 

properties to hold.  Note that x[0] is the first input value and not an initial condition. 

(c) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 
(d) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points. 

Z-transform both sides of difference equation, knowing that all initial conditions are zero: 

 Y(z) = X(z) – z -2 X(z) which means that 𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
= 𝟏 − 𝒛−𝟐  for 𝒛 ≠ 𝟎 

(e) Give a formula for the discrete-time frequency response of the filter.  3 points. 

We can convert the transfer function H(z) into the discrete-time frequency domain by 

substituting z = exp(j ) because FIR LTI systems are always Bounded-Input Bounded-

Output stable, or equivalently, because the region of convergence includes the unit circle: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝟏 − 𝒆−𝟐𝒋𝝎 

(f) Give a formula for the phase response vs. discrete-time frequency and the group delay vs. discrete-

time frequency. Does the filter have linear phase over all frequencies?  Why or why not?  6 points. 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝟏 − 𝒆−𝟐𝒋𝝎 = 𝒆−𝒋𝝎( 𝒆𝒋𝝎 − 𝒆−𝒋𝝎) = 𝟐 𝐬𝐢𝐧(𝝎) 𝒋 𝒆−𝒋𝝎 = 𝟐 𝐬𝐢𝐧(𝝎) 𝒆
𝒋(−𝝎+

𝝅
𝟐)

 

∠𝑯𝒇𝒓𝒆𝒒(𝝎) = −𝝎 +
𝝅

𝟐
  except for phase jumps (discontinuities) of  at frequencies that are 

zeroed out, which is generalized linear phase.  𝑮𝑫(𝝎) = −
𝒅

𝒅𝝎
∠𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝟏 𝐬𝐚𝐦𝐩𝐥𝐞.    
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The following expands on the solution for problem 1.1(f). 

 

Additional explanation concerning phase discontinuities 

We take the expression for the frequency response in amplitude and phase form 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝟐 𝐬𝐢𝐧(𝝎) 𝒆
𝒋(−𝝎+

𝝅
𝟐)

 

and convert it into magnitude and phase response.  The amplitude form 𝟐 𝐬𝐢𝐧(𝝎) is non-

positive for 𝝎 ∈ (−𝝅, 𝟎] and non-negative for 𝝎 ∈ (𝟎, 𝝅]: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = [
(−𝟐 𝐬𝐢𝐧(𝝎)) (−𝒆

𝒋(−𝝎+
𝝅
𝟐)

) 𝝎 ∈ (−𝝅, 𝟎]

𝟐 𝐬𝐢𝐧(𝝎) 𝒆
𝒋(−𝝎+

𝝅
𝟐)

𝝎 ∈ (𝟎, 𝝅]

 

In the phase form, we can replace – 𝟏 = 𝒆−𝒋𝝅 to give 

𝑯𝒇𝒓𝒆𝒒(𝝎) = [
(−𝟐 𝐬𝐢𝐧(𝝎))𝒆

𝒋(−𝝎−
𝝅
𝟐)

𝝎 ∈ (−𝝅, 𝟎]

𝟐 𝐬𝐢𝐧(𝝎) 𝒆
𝒋(−𝝎+

𝝅
𝟐)

𝝎 ∈ (𝟎, 𝝅]
 

Discrete-time frequency responses are periodic in  with period 2.  Hence, there is a 

discontinuity in the phase response at integer multiples of . 

 

MATLAB code to plot magnitude and phase responses 

We can see the discontinuity in the phase response that occurs at integer multiples of  

rad/sample by plotting the phase response from [0, 2] rad/sample: 

 

freqz( [1 0 -1], 1000, 'whole' )  

  



Problem 1.2 Predistortion Filter Design.  24 points.  

A predistorter is used to compensate for distortion introduced by a system: 

 

 

 

 

The predistorter applies distortion to x[n] that is the opposite of that particular distortion in the system, 

so that the distortion introduced by the predistorter cancels the distortion introduced by the system. 

In this problem, both the predistorter and the system are  

 Linear and time-invariant (LTI) 

 Bounded-input bounded-output (BIBO) stable 

Each predistorter will be a first-order infinite impulse response (IIR) filter. 

The goal in each part is to design a predistorter by placing its pole so that the cascade is all-pass. 

All-pass cascade would mean |𝑮𝒇𝒓𝒆𝒒(𝝎)𝑯𝒇𝒓𝒆𝒒(𝝎)| = 𝒈 where 𝒈 is a positive constant.  A pole-zero 

pair in an all-pass configuration would have same angles and reciprocal magnitudes, or would 

have the same value and cancel out.  Both filters are causal. 

(a) The system has a transfer function H(z) = 1 – 0.5 z-1.  8 points. 

i. Give the transfer function of the predistorter, G(z). 

ii. Plot the pole and zero for the product G(z) H(z) on the right. 

H(z) has a zero at z = 0.5.  A pole at z = 2 for G(z) would give a BIBO 

unstable system.  G(z) would have a pole at the same location z = 0.5. 

𝑮(𝒛) =  
𝟏

𝟏−𝟎.𝟓 𝒛−𝟏
 and 𝑮(𝒛)𝑯(𝒛) = 𝟏 which doesn’t have poles or zeros.  

(b) The system has a transfer function H(z) = 1 –  z-1.  8 points. 

i. Give the transfer function of the predistorter, G(z). 

ii. Plot the pole and zero for the product G(z) H(z) on the right. 

H(z) has a zero at z = 1.  A pole at z = 1 for G(z) would give a BIBO 

unstable system.  Place the pole at the same angle as the zero but at a 

radius of 0.9 to give a notch configuration. 

 𝑮(𝒛) =  
𝟏

𝟏−𝟎.𝟗 𝒛−𝟏
 and hence 𝑮(𝒛)𝑯(𝒛) =

𝟏−𝒛−𝟏

𝟏−𝟎.𝟗 𝒛−𝟏
 

 

(c) The system has a transfer function H(z) = 1 –  2 z-1. 8 points. 

i. Give the transfer function of the predistorter, G(z).   

ii. Plot the pole and zero for the product G(z) H(z) on the right. 

H(z) has a zero at z = 2.  G(z) would have a pole at z = 0.5.  

𝑮(𝒛) =  
𝟏

𝟏−𝟎.𝟓 𝒛−𝟏
 and hence 𝑮(𝒛)𝑯(𝒛) =

𝟏−𝟐 𝒛−𝟏

𝟏−𝟎.𝟓 𝒛−𝟏
 

 

 

 

Re(z) 

Im(z) 

Re(z) 

Im(z) 

X O 

Note:  If the predistorter were 

placed after the system, then it 

would be called an equalizer.  
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MATLAB results for the solutions for problem 1.2. 

 

(b) We had seen a DC notch filter during lecture 6 at the five-second mark in the animation “IIR 

filter with one pole and one zero” that relates the time, z, and frequency domains (see demos) 

 

freqz( [1 -1], [1 -0.9] ) 

 
 

(c) This is an all-pass configuration as discussed on lecture slide 6-6. 

 

freqz( [1 -2], [1 -0.5] ) 

 

 
  

http://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
http://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html


Problem 1.3 Acoustic Noise Reduction.  24 points.  

A car’s audio system allows connection with a phone for hands-free use.  

Inside the car, the primary sources of acoustic noise are from the engine and air conditioner. 

Design discrete-time infinite impulse response (IIR) filters to be applied in cascade to the output 

of the microphone in the car’s audio system to reduce acoustic noise when the phone is in use.  

Assume a sampling rate of 𝑓𝑠 = 8 kHz. 

(a) Filter #1. An air conditioner emits acoustic noise uniformly between 

0 Hz and 4000 Hz. Primary speech frequencies are from 80 Hz to 3000 

Hz. Give formulas for the two poles, two zeros, and gain of a discrete-

time second-order IIR filter to reduce the air conditioning noise and 

improve the signal-to-noise ratio of the speech signal, and plot the 

poles and zeros on the right.  9 points. 

Use bandpass filter w/ passbands 80 to 3000 Hz & -80 to -3000 Hz. 

Place pole at center of each passband and zeros at 0 & 4000 Hz. 

𝝎𝒄 = 𝟐𝝅
(𝟖𝟎𝐇𝐳+𝟑𝟎𝟎𝟎𝐇𝐳)/𝟐

𝟖𝟎𝟎𝟎 𝑯𝒛
= 𝟐𝝅

𝟕𝟕

𝟐𝟎𝟎
 and 𝒑𝟎 = 𝟎. 𝟖𝒆𝒋𝝎𝒄, 𝒑𝟏 = 𝟎. 𝟖𝒆−𝒋𝝎𝒄 , 𝒛𝟎 = 𝟏, and 𝒛𝟏 = −𝟏. 

Solve for gain C by setting H(z) = 1 at 𝒛 = 𝒆𝒋𝝎𝒄 where 𝑯(𝒛) = 𝑪
(𝟏−𝒛𝟎𝒛−𝟏)(𝟏−𝒛𝟏𝒛−𝟏)

(𝟏−𝒑𝟎𝒛−𝟏)(𝟏−𝒑𝟏𝒛−𝟏)
 

(b) Filter #2. The engine emits acoustic noise with two principal frequencies: the engine’s rotational 

speed and its third harmonic. The engine’s rotation speed in Hz, 𝑓Eng(𝑡), varies over time. 

i. The current rotational speed of the engine in revolutions per minute (RPM) is ΩRPM(𝑡).  Give 

formulas for 𝑓Eng(𝑡) and its third harmonic 3𝑓Eng(𝑡), in Hz, in terms of ΩRPM(𝑡).   3 points 

Since 𝟏 RPM = (𝟏/𝟔𝟎) Hz, we have:  𝒇Eng(𝒕) =
𝟏

𝟔𝟎
𝛀RPM(𝒕) and 𝟑𝒇Eng(𝒕) =

𝟏

𝟐𝟎
 𝛀RPM(𝒕) 

ii. What is the highest rotational speed (in RPM) of the engine before aliasing of the third 

harmonic 3𝑓Eng(𝑡) occurs?  3 points. 

Aliasing will occur when 𝟐𝒇max ≥ 𝒇𝒔 .  Third harmonic will not alias if 𝟔𝒇Eng(𝒕) ≥ 𝒇𝒔 : 
𝟏

𝟏𝟎
𝛀RPM(𝒕) ≥ 𝟖𝟎𝟎𝟎 Hz. Highest engine rotational speed before aliasing occurs is 80,000 RPM. 

iii. Design a fourth-order discrete-time IIR filter to remove both principal frequencies, 

𝑓Eng(𝑡) and 3𝑓Eng(𝑡), of the engine noise assuming ΩRPM(𝑡) = 2400 RPM. Please specify the 

four poles, four zeros, and gain, and plot the poles and zeros below.  9 points 

For notch at 𝒇Eng(𝒕), 𝝎𝟏 = 𝟐𝝅
𝒇Eng(𝒕)

𝒇𝒔
= 𝟐𝝅

𝟐𝟒𝟎𝟎𝐑𝐏𝐌

𝟖𝟎𝟎𝟎 Hz
×

𝟏 𝐇𝐳

𝟔𝟎𝐑𝐏𝐌
=

𝟏

𝟏𝟎𝟎
𝝅 

For notch at 𝟑𝒇Eng(𝒕), 𝝎𝟑 = 𝟑𝝎𝟏 =
𝟑

𝟏𝟎𝟎
𝝅 

Zeros at 𝒛𝟎 = 𝒆𝒋
𝝅

𝟏𝟎𝟎  , 𝒛𝟏 = 𝒆−𝒋
𝝅

𝟏𝟎𝟎  , 𝒛𝟐 = 𝒆𝒋
𝟑

𝟏𝟎𝟎
𝝅

 , and 𝒛𝟑 = 𝒆−𝒋
𝟑

𝟏𝟎𝟎
𝝅

. 

Poles at 𝒓𝒆𝒋
𝝅

𝟏𝟎𝟎  , 𝒓𝒆−𝒋
𝝅

𝟏𝟎𝟎  , 𝒓𝒆𝒋
𝟑

𝟏𝟎𝟎
𝝅

 , and 𝒓𝒆−𝒋
𝟑

𝟏𝟎𝟎
𝝅

 where 𝒓 = 𝟎. 𝟗. 

To solve for gain C, normalize H(z) at 𝒛 = 𝒆𝒋𝝅 = −𝟏 and H(-1) = 1 

where 

𝑯(𝒛) = 𝑪
(𝟏 − 𝒛𝟎𝒛−𝟏)(𝟏 − 𝒛𝟏𝒛−𝟏)(𝟏 − 𝒛𝟐𝒛−𝟏)(𝟏 − 𝒛𝟑𝒛−𝟏)

(𝟏 − 𝒑𝟎𝒛−𝟏)(𝟏 − 𝒑𝟏𝒛−𝟏)(𝟏 − 𝒑𝟐𝒛−𝟏)(𝟏 − 𝒑𝟑𝒛−𝟏)
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Problem 1.3.  Alternate student solution for part (a). 

We can use a double notch with real-valued poles and zeros if they 

are designed carefully. 

𝒑𝟎 = 𝟎. 𝟗, 𝒑𝟏 = −𝟎. 𝟗, 𝒛𝟎 = 𝟏, and 𝒛𝟏 = −𝟏 

Find C by normalizing H(z) at 𝒛 = 𝒆𝒋𝝅/𝟐 = 𝒋 which gives C = 0.905. 

freqz( 0.905*[1 0 -1], [1 0 -0.81] ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Passband is from 400 to 3600 Hz.  We can move the pole at z = 0.9 closer to the unit circle to 

narrow the stopband at 0 rad/sample, and move the pole at z = -0.9 further away from the unit 

circle to widen the stopband at  rad/sample. The following has a passband from 80 to 2920 Hz: 

z0 = 1; z1 = -1; 

numer = [1 -(z0+z1) z0*z1]; 

p0 = 0.98; p1 = -0.78; 

denom = [1 -(p0+p1) p0*p1]; 

z = j; 

C = abs(denom * [1 z^(-1) z^(-2)]') / (numer * [1 z^(-1) z^(-2)]'); 

freqz(C*numer, denom); 

 
Note:  Having real-valued poles has a distinct advantage in implementation because the quality 

factor for each real-valued pole is at the minimum value of 0.5.  The time response due to a real-

valued pole does not have an oscillating component and only has exponential decay.  See Lab #3 

Part 3 and Lecture Slides 6-16 and 6-17. 

Re(z) 

Im(z) 

X X O O 



Problem 1.4.  Potpourri.  24 points.  

(a) Let 𝑥(𝑡) = cos(2𝜋𝑓0𝑡) be a continuous-time signal for −∞ < 𝑡 < ∞.  6 points. 

i. From the block diagram below, derive a formula for 𝑦(𝑡) and write it as a sum of cosines.  

𝒚(𝒕) = 𝒙𝟐(𝒕) = 𝐜𝐨𝐬𝟐(𝟐𝝅𝒇𝟎𝒕) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅(𝟐𝒇𝟎)𝒕) 

ii. Let 𝑓0 = 3000 𝐻𝑧.  What negative, zero, and positive frequencies are present in 𝑦(𝑡)?  

Frequencies present are −𝟐 𝒇𝟎 , 0, and 𝟐 𝒇𝟎 , i.e. −6000 Hz, 0 Hz, and 6000 Hz. 

(b) Let 𝑥(𝑡) = cos(2𝜋𝑓0𝑡) be a continuous-time signal for −∞ < 𝑡 < ∞. 12 points. 

i. Derive a formula for the discrete-time signal 𝑥[𝑛] obtained from sampling 𝑥(𝑡) at a sampling 

rate of 𝑓𝑠. 

𝒙[𝒏] = 𝒙(𝒕)]𝒕=𝒏𝑻𝒔
= 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎(𝒏𝑻𝒔)) = 𝐜𝐨𝐬 (𝟐𝝅

𝒇𝟎

𝒇𝒔
𝒏) 

ii. Give a formula for the discrete-time frequency 𝜔0 of 𝑥[𝑛] in terms of 𝑓0 and 𝑓𝑠. 

𝝎𝟎 = 𝟐𝝅
𝒇𝟎

𝒇𝒔

 

iii. From the block diagram below, derive a formula for 𝑦[𝑛] and write it as a sum of cosines.   

𝒚[𝒏] = 𝒙𝟐[𝒏] = 𝐜𝐨𝐬𝟐(𝝎𝟎𝒏) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅(𝟐𝝎𝟎)𝒏) 

iv. Let 𝑓0 = 3000 Hz and 𝑓𝑠 = 8000 Hz.  What negative, zero and positive discrete-time 

frequencies are present in 𝑦[𝑛] between – rad/sample and  rad/sample?    

From part (a) ii, frequencies present are −6000 Hz, 0 Hz, and 6000 Hz. The component 

at -6000 Hz will alias to 2000 Hz, and the component at 6000 Hz will alias to -2000 Hz.  

The discrete-time frequencies are −
𝝅

𝟐
 , 0, and 

𝝅

𝟐
 in units of rad/sample. 

(c) Consider a 10th order infinite impulse response (IIR) filter with 10 complex-valued poles in 

conjugate pairs (i.e. 𝛼 ± 𝑗𝛽) and 10 complex-valued zeros in conjugate pairs. None of the poles is 

real-valued. None of the zeros is real-valued. 6 points.  Assume input signal is real-valued. 

i. If the filter were implemented as a cascade of biquads (i.e. second-order sections), 

how many real-valued multiplications would be needed? 

Each biquad has a conjugate symmetric pair of poles and a conjugate symmetric pair 

of zeros; hence, it has five real-valued coefficients in its difference equation. 

5 biquads x 5 real multiplications/biquad = 25 real multiplications 

ii. If the filter were implemented as a cascade of first-order sections, how many real-valued 

multiplications would be needed?  

A first-order section has three complex-valued coefficients.  Pole is located at 𝒛 = 𝒂𝟏. 

𝒚[𝒏] = 𝒂𝟏𝒚[𝒏 − 𝟏] + 𝒃𝟎𝒙[𝒏] + 𝒃𝟏𝒙[𝒏 − 𝟏] 

Each complex-valued multiplication takes four real-valued multiplications. 

(𝒂 + 𝒋𝒃)(𝒄 + 𝒋𝒅) = (𝒂𝒄 − 𝒃𝒅) +  𝒋(𝒃𝒄 + 𝒂𝒅) 

10 first-order sections x 12 real multiplications/section = 120 real multiplications 

The next page has a more detailed answer that would find 95 real multiplications.  
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We can refine the answer to problem 1.4(c)2 to take into account that the input signal to the 

cascade of 10 first-order filters is real-valued, the output of the cascade is real-valued, and gain 

for each section is real-valued.  This is a more detailed answer than expected on a midterm exam. 

The difference equation for one of the first-order sections is 

𝒚[𝒏] = 𝒂𝟏𝒚[𝒏 − 𝟏] + 𝒃𝟎𝒙[𝒏] + 𝒃𝟏𝒙[𝒏 − 𝟏] 

Since the first-order section has complex-valued pole p0, complex-valued zero z0, and real-valued 

gain b0, the feedback coefficient a1 = p0 is complex-valued.  The zero location is at –b1/b0, so b1 is 

complex-valued since b0 is real-valued. 

Multiplying a real number and a complex-number takes two real-multiplications. 

For the first first-order section, the input x[n] is real-valued and the output y[n] is complex-

valued.  Hence, the first first-order section will require 4 real multiplications for a1 y[n-1], 1 real 

multiplication for b0 x[n], and 2 real multiplications for b1 x[n-1]. This takes a total of 7 real 

multiplications. 

The next 8 remaining first-order sections will each take 4 + 2 + 4 = 10 real multiplications, for a 

total of 80 real multiplications. 

In the last first-order section, y[n] will be real-valued and the section will take 8 real 

multiplications. 

The cascade of 10 first-order sections will take 95 real multiplications. 

 

Additional explanation for problem 1.4(c).  Not expected for students to include in their answers. 
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Problem 1.1 Filter Analysis.  28 points.  
Consider the following causal linear time-invariant (LTI) 
discrete-time filter with input x[n] and output y[n] described by 

 y[n] = a x[n] + b x[n-1] + c x[n-2] 

for n ≥ 0.  Coefficients a, b and c are real-valued.  In addition, a ≠ 0 and c ≠ 0. 
(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  Why?  3 points. 

FIR filter.  Any of the following reasons would provide sufficient justification: 
1. The impulse response extends for 3 samples from n = 0 to n = 2, which is finite in duration. 
2. The output y[n] does not depend on previous output values; i.e., there is no feedback. 
3. In the transfer function in the z-domain in part (d), the only poles are trivial poles at z 

(b) What are the initial conditions and their values?  Why?  6 points. 
Let n=0:  y[0] = a x[0] + b x[-1] + c x[-2] 
Let n=1:  y[1] = a x[1] + b x[0] + c x[-1] 
Let n=2:  y[2] = a x[2] + b x[1] + c x[0]    and so forth. 
Initial conditions are x[-1] and x[-2] and must be zero for linearity and time-invariant 
properties to hold.  Note that x[0] is the first input value and not an initial condition. 
Note: A causal system does not depend on future input values, or current/future output values. 

(c) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 
 
 

 
 

 
 

(d) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points 
Z-transform both sides of difference equation, knowing that all initial conditions are zero: 
Y(z) = a X(z) + b z -1 X(z) + c z -2 X(z) and 𝑯 𝒛 = 𝒀(𝒛)

𝑿(𝒛)
= 𝒂+ 𝒃 𝒛!𝟏 + 𝒄 𝒛!𝟐  for 𝒛 ≠ 𝟎 

(e) Give a formula for the discrete-time frequency response of the filter.  Justify the steps.  3 points. 
We can convert the transfer function H(z) into the discrete-time frequency domain by 
substituting z = exp(j ω) because FIR LTI systems are always Bounded-Input Bounded-
Output stable, or equivalently, because the region of convergence includes the unit circle: 
𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯(𝒛) 𝒛!𝒆𝒋𝝎 = 𝒂+ 𝒃 𝒆!𝒋𝝎 + 𝒄 𝒆!𝟐𝒋𝝎 

(f) Determine formulas for the relationships among the filter coefficients to make the filter have 
generalized linear phase over all frequencies. Give a numeric value for each coefficient to achieve 
generalized linear phase, and indicate what the frequency selectivity is.  Hint:  Generalized linear 
phase means that the impulse response is odd symmetric about its midpoint.    6 points. 

For this question: h[n] = a δ[n] + b δ[n-1] + c δ[n-2].  
Odd symmetry a = -c and b = 0. Values:  a = 1, b = 0, c = -1. 
𝑯 𝒛 = 𝟏− 𝒛!𝟐  = 𝟏− 𝒛!𝟏 𝟏+ 𝒛!𝟏 .  Two poles at z = 0. 
Zeros at ω  = 0 rad/sample (z = 1) and ω  = π  rad/sample (z = -1) 
indicate stopbands.   Bandpass frequency selectivity (see right).  
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Problem 1.2.  Sampling.  24 points.  
For each problem below, determine the frequency (or frequencies) present in x(t) and y(t) as well as 
the single sampling rate you would use for the entire system to prevent aliasing. 

Please note that 𝑇! = 1 / 𝑓! and 𝑇! = 1 / 𝑓! in the following.  Each problem is worth 6 points. 

(a) Let 𝑥 𝑡 = cos 2𝜋𝑓!𝑡  be a continuous-time signal for −∞ < 𝑡 < ∞. 
 

 
x(t) has frequencies -fc and +fc.  y(t) = x2(t) = ½ + ½ cos(2 π  (2 fc) t).  
Or one could determine y(t) = x(t) x(t) by computing Y(f) = X(f) X(f) and inverse transform. 
y(t) has frequencies –2fc, 0, and +2fc.  Here, fmax = 2fc.  Sampling Theorem : fs > 2 fmax. 
Note: Because the component at 2 fc in y(t) is a cosine, one could use fs ≥ 2 fmax. 

(b) Let 𝑥 𝑡 = cos 2𝜋𝑓!𝑡  be a continuous-time signal for −∞ < 𝑡 < ∞.  
 
 

x(t) has frequencies -fc and +fc.   
Cascade of two squaring blocks.  First squaring block gives frequencies –2fc, 0, and +2fc. 
Second squaring block: –4fc, –2fc, 0, +2fc, +4fc.  Here, fmax = 4fc.  Choose fs > 2 fmax 

(c) Let 

𝑥 𝑡 = sinc
𝑡
𝑇!

 

be a continuous-time signal for −∞ < 𝑡 < ∞ 
whose continuous-time Fourier transform is 

𝑋 𝑓 = 𝑇! rect !
!!

     

Here, 𝑓! > 𝑓! 

   

 
 

 
 

(d) Let  

𝑥 𝑡 = cos 2𝜋𝑓!𝑡 sinc
𝑡
𝑇!

 

be a continuous-time signal for −∞ < 𝑡 < ∞ 
where 𝑓! > 𝑓!   
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Problem 1.3 Audio Filter Design.  24 points. 
This problem asks you to evaluate tradeoffs in two designs for a filter for a tweeter/treble speaker: 
• Speaker plays frequencies from roughly 2,000 Hz to 20,000 Hz. 
• A discrete-time highpass filter will be placed in the speaker before the 

digital-to-analog (D/A) converter 
• The D/A converter operates at a sampling rate of 48,000 Hz. 
Highpass filter design specifications: 
• Stopband frequency of 1800 Hz and passband frequency of 2000 Hz 
• Stopband attenuation of 80 dB and passband tolerance of 1 dB 
• Sampling rate of 48,000 Hz. 
Proposed filter design #1: Finite Impulse Response (FIR) Filter. 
Parks-McClellan (Equiripple) design. Order = 660. Meets specifications. 
Proposed filter design #2: Infinite Impulse Response (IIR) Filter. 
Elliptic (Equiripple) design. Order = 10. Meets specifications 
(a) Assuming the FIR filter is in direct form and the IIR filter is in a 

cascade of biquads (second-order sections), compute the number of 
multiplications per sample required by each.  6 points. 
FIR:  y[n] = h0 x[n] + h1 x[n - 1] + …. +  h660 x[n - 660] 
Needs 661 multiplications per output sample. 
Order is 660: H(z) = h0 + h1 z -1 + … + h660 z -660 

IIR: Cascade of 5 biquads to get 10th order filter. 
Biquad has 3 feedback and 2 feedforward coefficients, 
Total:  5 x 5 = 25 multiplications per output sample. 

(b) For the IIR filter design, the group delay for frequencies greater than 4,000 Hz is less than 7 
samples.  What is the group delay for the FIR filter in the same range?  6 points 
The Parks-McClellan FIR filter design would have linear phase. 
Its impulse response is even symmetric about its midpoint: 
𝐺𝐷 𝜔 = − !

!"
∠𝐻 𝜔 = !"#$"

!
= !!!

!
= 330 samples  

(c) For the IIR filter design, the largest group delay of 64–500 samples occurred over the range of 
2000 Hz to 2200 Hz.  Is there a way you would recommend to alter the filter specifications so that 
the group delay would be less than 64 throughout the entire passband?  6 points 
Max group delay (GD) over passband determined by using Matlab filter design analysis tool: 
1. Shift stopband freq. to 1600 Hz and passband freq. to 1800 Hz.  Max GD = 67.5 samples 
2. Shift stopband freq. to 500 Hz but keep passband freq. at 2000 Hz.  Max GD = 53 samples 
3. Reduce stopband attenuation to 12dB.  Not very selective.  Max GD = 38.9 samples 
4. Reduce filter order to 4 (i.e. reduce stopband freq. to 450 Hz).  Max GD = 34 samples 

(d) Which proposed filter design would you advocate using?   6 points. 
For the real-time application, use an IIR filter because it has 26 times lower complexity.  In 
audio, both linear phase and group delay are important.  The IIR filter has near linear phase 
over the passband.  With adjustments in part (c), the IIR group delay is 5 times lower.  

FIR Filter 

IIR Filter 

HW 1.3 2.3 3.2 



Problem 1.4.  Potpourri.  24 points. 
(a) You’d like to design a low-complexity lowpass finite impulse response (FIR) filter with an integer 

group delay. The two-tap averaging filter is a low-complexity lowpass FIR filter, but it has a group 
delay of ½ sample. Design two different low-complexity lowpass FIR filters with integer group 
delays based on the two-tap averaging filter. 6 points. 
For a linear phase FIR filter of N coefficients, the group delay is (N – 1) / 2 samples.  To have 
an integer group delay, N would need to be odd.  For computational complexity, an FIR filter 
takes N multiplications per output sample.  The lowest complexity possible is N = 3. 
Linear phase means the impulse response is either even or odd symmetric about its midpoint. 
For a three-coefficient lowpass FIR filter, we could use a  

i. three-coefficient averaging filter whose coefficients are {1, 1, 1} or { 1/3, 1/3, 1/3 }. 
ii. create a three-coefficient lowpass filter by cascading two two-tap averaging filters.  

The resulting impulse response would be {1, 2, 1} by convolving {1, 1} with itself. 
(b) Your system only has the ability to generate half of the carrier frequency you need for a 

communication system.  What signal processing operations would you add to generate the carrier 
frequency?  Draw a block diagram for your approach.  6 points. 
Continuous-time: Put sinusoidal signal 𝐜𝐨𝐬(𝟐𝝅(𝟏/𝟐 𝒇𝒄 )𝒕) through a squaring block which 
would produce frequencies –fc, 0, +fc.  Apply a DC notch or bandpass filter to remove 0 Hz. 
Discrete-time:  Use a similar approach as above in continuous-time.  Or use upsampling by 2. 

(c) We can use partial fractions decomposition to convert a transfer function into a parallel 
implementation.  Consider a second-order system with conjugate symmetric poles p0 and p1 and 
conjugate symmetric zeros z0 and z1. We can rewrite the second-order system as a sum of two first-
order sections assuming that the poles are not equal: 

𝐻 𝑧 =
(1− 𝑧!𝑧!!)(1− 𝑧!𝑧!!)
(1− 𝑝!𝑧!!)(1− 𝑝!𝑧!!)

=
1− 𝑐!𝑧!!

1− 𝑝!𝑧!!
+
1− 𝑐!𝑧!!

1− 𝑝!𝑧!!
 

Please note that constants c0 and c1 are complex-valued. 
i. How many real-valued multiplications per output sample are needed for the second-order 

system?  3 points.  

𝑯 𝒛 =
(𝟏− 𝒛𝟎𝒛!𝟏)(𝟏− 𝒛𝟏𝒛!𝟏)
(𝟏− 𝒑𝟎𝒛!𝟏)(𝟏− 𝒑𝟏𝒛!𝟏)

=
𝟏+ 𝒃𝟏𝒛!𝟏 + 𝒃𝟐𝒛!𝟐

𝟏+ 𝒂𝟏𝒛!𝟏 + 𝒂𝟐𝒛!𝟐
 

Coefficients a1, a2, b1, b2 are real-valued because poles/zeros are conjugate symmetric. 
Biquad will need 4 real multiplications per output sample. 

ii. How many real-valued multiplication operations per output sample are needed for the 
parallel combination of the two first-order sections?  3 points. 
Each first-order section requires 2 complex multiplications per output sample.  It takes 
4 real multiplications for a complex multiplications.  2 x 2 x 4 = 16 real multiplications. 

iii. Assuming that the two first-order sections can be executed in parallel, which realization 
requires fewer real-valued multiplications per output sample to compute?   3 points. 
Each first-order section needs 8 real multiplications.  The biquad requires fewer.  

iv. Repeat part iii assuming that poles p0 and p1, zeros z0 and z1, and constants c0 and c1 are real-
valued.  3 points.  Each first-order section would need 2 real multiplications, which are 
fewer than for the biquad. 

F19 Midterm #1 1.4(a)  
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Problem 1.1 Filter Analysis.  28 points.  
Consider the following averaging filter with N coefficients.  It is a causal, linear time-invariant (LTI), 
finite impulse response (FIR), discrete-time filter with input x[n] and output y[n] described by 

𝑦[𝑛] =
1
𝑁 𝑥

[𝑛] +
1
𝑁 𝑥

[𝑛 − 1] + ⋯+
1
𝑁 𝑥

[𝑛 − (𝑁 − 1)] 

for n ³ 0.  For example, when N = 2, y[n] = (½) x[n] + (½) x[n-1] = ( x[n] + x[n-1] ) / 2 
which is the average of the current input sample x[n] and previous input sample x[n-1]. 

Please answer the following questions for an averaging filter for N coefficients. 
(a) What are the initial conditions and their values?  Why?  6 points. 

Look at the first output value y[0] to see what the initial conditions are. 

𝒚[𝟎] =
𝟏
𝑵𝒙

[𝟎] +
𝟏
𝑵𝒙

[−𝟏] + ⋯+
𝟏
𝑵𝒙

[−(𝑵 − 𝟏)] 
Initial conditions are x[-1], x[-2], …, x[-(N-1)] and they must be zero as a 
necessary condition for the system to be linear and time-invariant. 
Also, the initial conditions correspond to setting the memory location in each delay element 
in the block diagram in part (b) to zero. 
Note: A causal system does not depend on future input 
values, or current/future output values.  

(b) Draw the block diagram of the filter relating input x[n] and 
output y[n]. 6 points. 
Block diagram for an FIR filter from lecture slide 3-20: 
The values of the FIR coefficients are 

𝒂𝒊 =
𝟏
𝑵 					𝐟𝐨𝐫	𝒊 = 𝟎, 𝟏, … ,𝑵 − 𝟏 

(c) Derive a formula for the transfer function in the z-domain 
and the region of convergence.  4 points. 
Take z-transform of both sides of the difference equation with initial conditions being zero:  

𝒀(𝒛) =
𝟏
𝑵𝑿

(𝒛) +
𝟏
𝑵 	𝒛

"𝟏	𝑿(𝒛) + ⋯+
𝟏
𝑵 	𝒛

"(𝑵"𝟏)	𝑿(𝒛) 

𝑯(𝒛) =
𝒀(𝒛)
𝑿(𝒛) =

𝟏
𝑵 +

𝟏
𝑵 	𝒛

"𝟏 +⋯+
𝟏
𝑵 	𝒛

"(𝑵"𝟏) =
𝟏
𝑵?𝟏 + 	𝒛

"𝟏 +⋯+ 	𝒛"(𝑵"𝟏)@			𝐟𝐨𝐫	𝒛	 ≠ 	𝟎	 

(d) Give a formula for the discrete-time frequency response of the filter.  Justify the steps.  3 points. 
Since region of convergence 𝒛	 ≠ 	𝟎 includes the unit circle, we substitute z = e jw  in part (c): 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒆𝒋𝝎) =
𝟏
𝑵?𝟏 + 	𝒆

"𝒋	𝝎 +⋯+ 	𝒆"𝒋	(𝑵"𝟏)	𝝎@ 

(e) What is the group delay of the filter?  3 points. 
Answer #1: Since the impulse response {	𝟏

𝑵
, 𝟏
𝑵
, . . . , 𝟏

𝑵
	} is even symmetric 

about its midpoint at 𝒏 = 𝑵"𝟏
𝟐

, the group delay is 𝑵"𝟏
𝟐

 samples. 

Answer #2:  We factor the frequency response into amplitude A(w) and phase q(w) form: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 		
𝟏
𝑵	𝒆

"𝒋	/𝑵"𝟏𝟐 0𝝎 	H𝒆𝒋	/
𝑵"𝟏
𝟐 0𝝎 + 𝒆𝒋	/

𝑵"𝟑
𝟐 0𝝎 +⋯+ 𝒆"𝒋	/

𝑵"𝟑
𝟐 0𝝎 + 𝒆"𝒋	/

𝑵"𝟏
𝟐 0𝝎I 
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𝑯𝒇𝒓𝒆𝒒(𝝎) = 		
𝟐
𝑵	𝒆

"𝒋	/𝑵"𝟏𝟐 0𝝎 	H𝐜𝐨𝐬 H
𝑵 − 𝟏
𝟐 I + 𝐜𝐨𝐬 H

𝑵 − 𝟑
𝟐 I +⋯I 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 		
𝟐
𝑵	H𝐜𝐨𝐬 H

𝑵 − 𝟏
𝟐 I + 𝐜𝐨𝐬 H

𝑵 − 𝟑
𝟐 I +⋯INOOOOOOOOOOOPOOOOOOOOOOOQ

𝑨(𝝎)

	𝒆
𝒋	/"𝑵"𝟏𝟐 0𝝎3445446

𝜽(𝝎) = |	𝑨(𝝎)|	𝒆	𝒋	𝚯(𝝎)	 

Discontinuities in the phase occur at frequencies eliminated by the filter, i.e. when |A(w)| is 
zero. When A(w) is negative, the phase q(w) will shift by p, which won’t affect the derivative: 

𝑮𝑫(𝝎) = −
𝒅
𝒅𝝎 	𝜽

(𝝎) =
𝑵 − 𝟏
𝟐  

FIR filters with linear phase must have even or odd symmetry w/r midpoint of impulse response. 

(f) The averaging filter, for N ³ 2, is not only a lowpass filter, but can also be used to filter out the 
discrete-time frequency 2p/N rad/sample and its harmonics up to and including p rad/sample. 
By denoting fs as the sampling rate, 

i. What continuous-time frequency f0 corresponds to discrete-time frequency 2p/N ?  3 points. 

𝝎𝟎 = 𝟐𝝅
𝒇𝟎
𝒇𝒔
= 𝟐𝝅

𝟏
𝑵 		𝐰𝐡𝐢𝐜𝐡	𝐠𝐢𝐯𝐞𝐬	𝒇𝟎 =

𝒇𝒔
𝑵  

ii. What continuous-time frequency f1 corresponds to discrete-time frequency p ?  3 points. 

𝝎𝟏 = 𝟐𝝅
𝒇𝟏
𝒇𝒔
= 𝝅		𝐰𝐡𝐢𝐜𝐡	𝐠𝐢𝐯𝐞𝐬	𝒇𝟏 =

𝟏
𝟐𝒇𝒔 

Epilog. When N = 1, the impulse response is a discrete-time impulse d[n] whose frequency response 
is all-pass. The z-transform and discrete-time Fourier transform are a constant value of 1. 

When N ³ 2, the impulse response is a rectangular pulse of N samples in duration. In continuous-
time, the Fourier transform of a rectangular pulse of length T seconds is a sinc with its first zero at 
2p/T rad/s (homework 0.1). In discrete-time, the frequency domain is periodic with period 2p.  The 
discrete-time Fourier transform of a rectangular pulse of N samples is a periodic sinc: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = ` 𝒉[𝒏]	𝒆"𝒋𝝎𝒏 = ` H
𝟏
𝑵I

(𝒆"𝒋𝝎)𝒏
𝑵"𝟏

𝒏;𝟎

=
𝟏
𝑵b

𝟏 − 𝒆"𝒋𝑵𝝎

𝟏 − 𝒆"𝒋𝝎 c =
<

𝒏;"<

𝐬𝐢𝐧 e𝑵𝟐 𝝎f

𝑵	𝐬𝐢𝐧 e𝝎𝟐fNOOPOOQ
𝑫𝑵(𝝎)

𝒆"𝒋/
𝑵"𝟏
𝟐 0𝝎 

Below, we plot the amplitude function DN(w) on the left and its magnitude on the right for N = 10: 
 
  
w = -pi : 0.001 : pi; 
N = 10; 
d = sin(N*w/2) ./ (N * sin(w/2)); 
figure; 
plot(w, d) 
ylim( [-0.4, 1.2] ); 
xlim( [-pi, pi] ); 
figure; 
plot(w, abs(d)); 
ylim( [0, 1.2] ); 
xlim( [-pi, pi] ); 
 w w 

2𝜋
𝑁  

DN(w) | DN(w) | 

Midterm 1 Problem 1.4(a)   

2𝜋
𝑁  

. 

. 

A lowpass averaging filter can be made more 
efficient by using all ones for the coefficients.  
In lab 7, we’ll learn about FIR comb filters 
which have even lower run-time complexity 
to eliminate a frequency and its harmonics. 
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Problem 1.2.  Filter Design.  24 points.  

Consider a second-order discrete-time linear time-invariant (LTI) infinite impulse response (IIR) filter. 
The biquad filter has zeros z0 and z1 and poles p0 and p1, and its transfer function in the z-domain is 

𝐻(𝑧) = 𝐶
(𝑧 − 𝑧>)(𝑧 − 𝑧?)
(𝑧 − 𝑝>)(𝑧 − 𝑝?)

 

Biquad is short for the “biquadratic” transfer function that is a ratio of two quadratic polynomials. 

In this problem, all of the poles and zeros will be real-valued. 
In each part below, design a biquad by placing real-valued poles and zeros to achieve the indicated 
frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass or notch) or indicate that no such 
biquad with real-valued poles and zeros could be designed. 

Please use O to indicate real-valued zero locations and X to indicate real-valued pole locations. 

Re(z) 

Im(z) 
(a) Lowpass filter 

Re(z) 

Im(z) 
(b) Highpass filter 

Re(z) 

Im(z) 
(c) Bandpass filter 

Re(z) 

Im(z) 
(d) Bandstop filter 

Re(z) 

Im(z) 
(e) Allpass filter 

Re(z) 

Im(z) 
(f) Notch filter 

X O 
z0 = -1 
z1 = -1 

(2) 

p0 = 0.9 
p1 = 0.9 

p0 = -0.9 
p1 = -0.9 

(2) 
X 

(2) 
O 

(2) 

z0 = 1 
z1 = 1 

O O X 
(2) 

z0 = -1 z1 = 1 p0 = 0 
p1 = 0 

X X 
p0 = -0.9 p1 = 0.9 z0 = 0 

z1 = 0 

O 
(2) 

X O X O 
p1 = 0.80 
z1 = 1.25 

P9 = -0.80 
z0 = -1.25 

X O X O 
p1 = 0.9 
z1 = 1.0 

p9 = -0.9 
z0 = -1.0 
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For lowpass, highpass, 
bandpass and bandstop 
filters, place the poles 
at separate angles from 
the zeros.  Angles of 
poles near unit circle 
indicate passband 
frequencies.  Angles of 
zeros on or near unit 
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stopband frequencies.   

Allpass: Pole-zero 
pairs at same angle 
and reciprocal 
magnitudes. 

Handout O on 
All-pass Filters 



Epilog. Plots of the magnitude responses of the six filters using the freqz command.  All transfer 
functions were normalized so that maximum magnitude response would be 1 in linear units or 0 dB. 

 

 

 

 

 

 

figure; 
z0 = -1; z1 = -1; p0 = 0.9; p1 = 0.9; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = 1; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(a) Lowpass'); 
 
 
figure; 
z0 = 1; z1 = 1; p0 = -0.9; p1 = -0.9; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = -1; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(b) Highpass'); 
  
 
 
figure; 
z0 = -1; z1 = 1; p0 = 0; p1 = 0; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = j; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(c) Bandpass'); 
  
 
figure; 
z0 = 0; z1 = 0; p0 = -0.9; p1 = 0.9; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = 1; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(d) Bandstop'); 
  
 
figure; 
z0 = -1.25; z1 = 1.25; p0 = -0.8; p1 
= 0.8; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = 1; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(e) Allpass'); 
  
 
figure; 
z0 = -1; z1 = 1; p0 = -0.9; p1 = 0.9; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = j; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(f) Notch'); 
 



Problem 1.3 Analysis of Filter Designs.  24 points.  
Two discrete-time linear time-invariant (LTI) infinite impulse response (IIR) filter designs are below. 

Assume that both filters meet the same magnitude specifications.  All zeros are on the unit circle. 
  

Design #1 
Number of complex/real poles: 18 Complex 

Number of complex/real zeros: 18 Real 
Passband behavior: Monotonic 
Stopband behavior: Monotonic 

Design method: Butterworth 

Design #2 
Number of complex/real poles: 10 Complex  
Number of complex/real zeros: 10 Complex 

Passband behavior: Rippling  
Stopband behavior: Rippling 

Design method: Elliptic 

Please answer the following questions about the filter designs with justification.  3 points each. 
 Design #1 Design #2 
(a) Filter Order #poles = 18 #poles = 10 
(b) Bounded-Input Bounded 
Output (BIBO) Stability? 

Yes, all poles inside unit circle per 
Lecture Slides 6-15 and 6-16 

Yes, all poles inside unit circle per 
Lecture Slides 6-15 and 6-16 

(c) Approximate range of 
discrete-time frequencies in 
the passband in rad/sample 

Pole and zero angles separated; 
estimate outer pole locations gave 
pole angles from 0.395p to 0.505p 

Pole and zero angles separated; 
estimate outer pole locations gave 

pole angles from 0.4p to 0.5p 

(d) Frequency selectivity 
(lowpass, highpass, bandpass, 
bandstop, allpass or notch) 

 
Bandpass due to part (c) 

 
Bandpass due to part (c) 

(e) Number of multiplication 
operations using a cascade of 
biquads filter structure 

9 biquads x 5 mults = 45 mults 
Fall 2018, Problem 1.4(a) -OR- 
9 biquads x 4 mults = 36 mults 

because all zeros on unit circle per 
homework 3.3(b)(c) 

5 biquads x 5 mults = 25 mults 
Fall 2018, Problem 1.4(a) -OR- 
5 biquads x 4 mults = 20 mults 

because all zeros on unit circle per 
homework 3.3(b)(c) 

(f) Amount of memory 
storage (in words) using a 
cascade of biquads filter 
structure 

9 biquads x 5 words = 45 words 
Fall 2018, Problem 1.4(a) -OR- 
9 biquads x 4 words = 36 words 

because all zeros on unit circle per 
homework 3.3(b)(c) solution 

5 biquads x 5 words = 25 words 
Fall 2018, Problem 1.4(a) -OR- 
5 biquads x 4 words = 20 words 

because all zeros on unit circle per 
homework 3.3(b)(c) solution 

(g) Give an advantage of each 
design, and indicate which 
design you would choose. 

Lower maximum value of group 
delay due wider transition region 

per Spring 2020, Prob 1.3(c) 

Lower run-time complexity due to 
fewer multiplications in part (f) 

(h) Describe the frequency 
response if all poles are 
removed, including selectivity 

Bandpass FIR filter with 
center frequency of p/2 due to all 

zeros being at either p or -p 

Weak bandpass FIR filter with 
same center frequency with six 

frequencies removed 
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next page 
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See alternate 
answer on 
next page 

Storage of 
input & output 
samples should 
have been 
included  



(c) Poles are separated from the zeros in angles, and the poles are close to the unit circle.  The pole 
angles indicate the passband frequencies.  Below, I’ve estimated the pole angles by zooming into 
the pole-zero plots in the PDF file and measuring their locations with a ruler. 
Design #1. I estimated the pole location with the least positive angle to be at 0.3162 + j*0.9191, 
which is an angle of about 0.395p, and the pole with the greatest positive angle to be at -0.0147 + 
j*0.9706, which is an angle of about 0.505p.  The pole in the middle of the passband is measured 
to be 0.1360+j*0.8235, which has an angle of about 0.45p rad/sample. 

Design #2, I estimated the pole location with the least positive angle to be at 0.3051 + j*0.938, 
which is an angle of about 0.4p.  The pole with the greatest positive angle approximately resides 
on the imaginary axis, which is an angle of 0.5p.  The pole in the middle of the passband is 
measured to be 0.1496+j*0.9382, which has an angle of about 0.45p rad/sample. 
(g) Butterworth design:  Magnitude response is monotically decreasing with frequency (no 

rippling).  The attenuation in the stopband increases with increasing frequency.  The 
Butterworth desin has nearly linear phase over a wider range of passband frequencies than 
the Elliptic design (per homework problem 3.3). 
Elliptic design:  Magnitude response has much a sharper transition from the passband to 
either stopband. 

 
Epilog.  This filter was designed using the default 
specification in the filter design and analysis tool in 
Matlab for bandpass filter design: 

• Bandpass frequency selectivity 
• IIR fiilter 
• Minimum order design 
• fs =         48000 Hz 
• fstop1 =    7200 Hz    (0.3p rad/sample) 
• fpass1 =   9600 Hz    (0.4p rad/sample) 
• fpass2 = 12000 Hz    (0.5p rad/sample) 
• fstop2 = 14400 Hz    (0.6p rad/sample) 
• Astop1 =     60 dB 
• Apass =         1 dB 
• Astop2 =     80 dB 

 
To meet these magnitude specifications with a linear 
phase FIR filter, a Parks-McClellan design algorithm 
requires an FIR filter with order 52.  An FIR filter of 
order 52 would require 53 multiplication operations per 
output sample, compared with 20 for the elliptic IIR 
filter (implemented as a cascade of biquads) and 36 for 
the Butterworth IIR filter (implemented as a cascade of 
biquads).  The linear phase FIR filter has a group delay 
of 26 samples for all frequencies (i.e. order/2 samples). 

  

Group delay vs. frequency 

Butterworth 
Design 

Elliptic 
Design 



Problem 1.4.  Mixer.  24 points. 
Sinusoidal amplitude modulation upconverts a baseband (low-
frequency) signal into a bandpass (higher frequency) signal.  
A block diagram for sinusoidal amplitude modulation is shown on 
the right. The lowpass filter (LPF) enforces the baseband bandwidth 
to be f1. The bandpass filter (BPF) enforces the transmission 
bandwidth to be 2f1 centered at fc. 
The circuitry can be simplified by replacing the analog multiplier 
and cosine generator with a sampling block that operates at 
sampling rate fs. The sampler could be implemented with a pass 
transistor and a generator of a simpler periodic waveform. 
Assume ideal lowpass and bandpass filters shown on the right. 

Using the spectrum for X(f) on the right,  
(a) Draw V(f).  6 points.  

V(f) = HLPF(f) X(f). The lowpass 
filter only passes frequencies from -
f1 to f1, and signal x(t) only has 
frequencies between -f1 and f1. 

(b) Draw S(f). 6 points. Assume an ideal 
sampler that closes the switch to gate the input voltage to the output instantaneously and opens 
switch instantaneously. Switch is closed/opened every Ts seconds where Ts = 1 / fs and fs is the 
sampling rate. We model the sampler as modulation by an impulse train p(t). 

 
 
 
 
 

𝑝(𝑡) = ` 𝛿(𝑡 − 𝑛	𝑇@)
<

A;"<

 

𝑃(𝑓) = 𝑓@ ` 𝛿(𝑓 − 𝑘	𝑓@)
<

B;"<

 

(c) Draw Y(f). 6 points. 
S(f) has spectrum of V(f) scaled by fs  
plus its replicas at offsets of integer  
multiples of fs.  We’ll set fc = k fs so that 
the BPF selects the kth replica. 

(d) Give formulas that describe all the possible 
values for fs so that the mixer implements 
sinusoidal amplitude modulation. 6 points. 
We would like the BPF selects the kth replica that matches the carrier frequency: fc = k fs 
We would also like to avoid aliasing by keeping gaps between adjacent replicas:  fs > 2 f1 

Sinusoidal Amplitude Modulation 

Mixer 

s(t) = v(t) p(t) 

𝑆(𝑓) = 𝑉(𝑓) ∗ 𝑃(𝑓) = 𝑉(𝑓) ∗ v𝑓@ ` 𝛿(𝑓 − 𝑘	𝑓@)
<

B;"<

w = 𝑓@ ` 𝑉(𝑓 − 𝑘	𝑓@)
<

B;"<

 

Lectures 1 & 4 
 

HW 0.1 0.2 0.3 1.3 2.2 3.2 Lab 2 

Midterm 1: Sp 2018, Prob 1.2; Fall 2017, Prob 1.2; Fall 2013, Prob 1.4 



We covered the mixer implementation in lecture on September 9, 2020, as part of lecture 1, and 
here’s the market board work.  The picture is linked into the Web page for lecture 1: 

 
 
Epilog: The idea of using the replicas generated by sampling for upconversion as in this problem 
can also be applied to downconversion.  Upconversion and downconversion using sampling is 
also called “bandpass sampling”.  More info is available on lecture slides 4-15 to 4-17 given below. 

 
 

4 - 15

Bandpass Sampling
• Reduce sampling rate

Bandwidth: f2 – f1
Sampling rate fs must

be greater than analog
bandwidth fs > f2 – f1

For replica to be centered
at origin after sampling
fcenter = ½(f1 + f2) = k fs

Ideal Bandpass Spectrum

f1 f2 f–f2 –f1

Sample at fs

Sampled Ideal Bandpass Spectrum

f1 f2 f–f2 –f1

Lowpass filter to 
extract baseband

Bandpass Sampling

• Practical issues
Sampling clock tolerance:  fcenter = k fs
Effects of noise

4 - 16

Bandpass Sampling
• Sampling theorem

Maximum frequency f2
fs > 2 f2

Ideal Bandpass Spectrum

f1 f2 f–f2 –f1

Bandpass Sampling

• Bandpass sampling
Bandwidth f2 – f1
fs > f2 – f1

• 2.4 GHz unlicensed band
f1 = 2.4 GHz
f2 = 2.5 GHz (2.499 GHz)
Bandwidth = 0.1 GHz
fc = 2.45 GHz

• Sampling theorem
fs = 5.0 GHz

• Bandpass sampling
fs = 0.245 GHz
20x more efficient

Sampling for Up/Downconversion
• Upconversion method

Sampling plus bandpass 
filtering to extract 
intermediate frequency 
(IF) band with fIF = kIF fs

f

fmax-fmax

ffs fIF-fIF -fs

Sample 
at fs

Bandpass Sampling

4 - 17

f1 f2

f

–f2 –f1

f

–f2 –f1 -fIF fIF f1 f2

• Downconversion method
Bandpass sampling plus 
bandpass filtering to extract 
intermediate frequency (IF) 
band with fIF = kIF fs

Bandpass sampling 
is used to accelerate 
simulations of RF 
communication 
systems because of 
the large reduction 
in sampling rate and 
an equal amount of 
reduction in 
simulation runtimes. 
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Problem 1.1.  IIR Filter Design.  24 points.  

Consider a second-order discrete-time linear time-invariant (LTI) infinite impulse response (IIR) filter. 

A second-order section, also known as a biquad, has two zeros z0 and z1 and two poles p0 and p1.  Its 

transfer function in the z-domain is 

𝐻(𝑧) = 𝐶
(𝑧 − 𝑧0)(𝑧 − 𝑧1)

(𝑧 − 𝑝0)(𝑧 − 𝑝1)
 

In this problem, all poles and zeros will be complex-valued but not real-valued.  The imaginary part 

of the complex number cannot be zero, and the real part of the complex number can be anything. 

In each part below, design a biquad by placing complex non-real-valued poles and zeros to achieve the 

indicated frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass or notch) or indicate 

that no such biquad could be designed.  For each filter, 

 Please use O to indicate the zero locations and X to indicate pole locations 

 Give numeric values for the two poles and two zeros in polar form (i.e. magnitude and phase form) 

  

Re(z) 

Im(z) 
(a) Lowpass filter 

Re(z) 

Im(z) 
(b) Highpass filter 

Re(z) 

Im(z) 
(c) Bandpass filter 

Re(z) 

Im(z) 
(d) Bandstop filter 

Re(z) 

Im(z) 
(e) Allpass filter 

Re(z) 

Im(z) 
(f) Notch filter 

Please see the 

next two pages 

for solutions. 

Lecture Slides 6-5 to 6-10 

HW 0.4 1.1 2.1 3.1 & 3.3 

Labs 2 & 3 

In-Lecture #2 Assignment 

Similar to Fall 2014 Midterm 1.3 & Fall 2020 Midterm 1.2 

Midterm 1 

Fall 2008, Prob 2(a) 

Spring 2017, Prob 3 

Fall 2017, Prob 3 

Fall 2019, Prob 1(f) 

Spring 2020, Prob 1(f) 

Fall 2020, Prob 2(c) 

 

Midterm 1 

Fall 2010 Prob 1 

Spring 2012 Prob 1 

Fall 2014, Prob 3 

Fall 2019, Prob 2(c) 

Fall 2020, Prob 2(e) 

 

Midterm 1 

Spring 2007, Prob 1 

Fall 2010, Prob 4(b) 

Spring 2011, Prob 2 

Fall 2011, Prob 1 

Spring 2012, Prob 2 

Fall 2016, Prob 1 

Spring 2019, Prob 3 

Fall 2019, Prob 2(b) 

Fall 2020, Prob 2(f) 

HW 3.1(c) 

Handout O on 

All-pass Filters 

Midterm 1 

Fall 2008, Prob 2(b) 

Spring 2009, Prob 1(f) 

Fall 2016, Prob 3 

 



Per lecture slide 6-8, 

 Angle of pole near unit circle indicates frequency 

at which peak occurs in magnitude response 

 Angle of zero on or near unit circle indicates 

frequency at which valley occurs in mag. response. 

Although not explicitly requested, we will choose poles 

that are conjugate symmetric to give real-valued  

feedback coefficients, and zeros that are conjugate  

symmetric to give real-valued feedforward coefficients,  

as we’ve been doing throughout the semester to reduce 

run-time complexity.  Using complex coefficients in the 

difference equation to implement the filter requires 

4x complexity for multiplication-addition operations 

and 2x storage for input x[n] and output y[n]: 

 

For lowpass, highpass, bandpass, and bandstop filters, we’ll place each pole at the center of 

each passband as per lecture slide 6-9 (left pole-zero plot) and demos in lecture slide 6-10. 

(a) Lowpass: zeros at 

𝒛𝟎 = 𝒆𝒋𝜽𝟏   and 

𝒛𝟏 = 𝒆−𝒋𝜽𝟏  

with 𝜽𝟏 =
𝟏𝟓

𝟏𝟔
𝝅 and 

poles at 

𝒑𝟎 = 𝟎. 𝟗 𝒆𝒋𝜽𝟐  and 

𝒑𝟏 = 𝟎. 𝟗 𝒆−𝒋𝜽𝟐  

with 𝜽𝟐 =
𝟏

𝟏𝟔
𝝅  

(b) Highpass: zeros at 

𝒛𝟎 = 𝒆𝒋𝜽𝟐   and 

𝒛𝟏 = 𝒆−𝒋𝜽𝟐  

with 𝜽𝟐 =
𝟏

𝟏𝟔
𝝅 and 

poles at 

𝒑𝟎 = 𝟎. 𝟗 𝒆𝒋𝜽𝟏  and 

𝒑𝟏 = 𝟎. 𝟗 𝒆−𝒋𝜽𝟏  

with 𝜽𝟏 =
𝟏𝟓

𝟏𝟔
𝝅  

 

(c) Bandpass: zeros at 

𝒛𝟎 = 𝟎. 𝟏 𝒆𝒋𝜽𝟑  and 

𝒛𝟏 = 𝟎. 𝟏 𝒆−𝒋𝜽𝟑  

with 𝜽𝟑 =
𝝅

𝟐
 and 

poles at 

𝒑𝟎 = 𝟎. 𝟗𝟓 𝒆𝒋𝜽𝟑  and 

𝒑𝟏 = 𝟎. 𝟗𝟓 𝒆−𝒋𝜽𝟑

%%% Lowpass filter example 

zeroAngle = 15*pi/16; 

z0 = exp(j*zeroAngle); 

z1 = exp(-j*zeroAngle); 

feedforwardcoeffs = [1 -(z0+z1) z0*z1]; 

  

r = 0.9; 

poleAngle = pi/16; 

p0 = r * exp(j*poleAngle); 

p1 = r * exp(-j*poleAngle); 

feedbackcoeffs = [1 -(p0+p1) p0*p1]; 

  

%%% Normalize frequency response 

%%% to 1 at center of passband 

z = 1; zvec = [1 z^(-1) z^(-2)]'; 

C = (feedbackcoeffs * zvec) / 

(feedforwardcoeffs * zvec); 

 

figure; zplane(C*feedforwardcoeffs, 

feedbackcoeffs); 

figure; freqz(C* feedforwardcoeffs, 

feedbackcoeffs); 

 

 
 

 
 

  

Lecture slide 6-7 

Lecture slide 6-9 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt


(d) Bandpass: zeros at 

      𝒛𝟎 = 𝒆𝒋𝜽𝟑   and 

      𝒛𝟏 = 𝒆−𝒋𝜽𝟑  

      with 𝜽𝟑 =
𝝅

𝟐
 and 

      poles at 

      𝒑𝟎 = 𝟎. 𝟏 𝒆𝒋𝜽𝟑  and 

      𝒑𝟏 = 𝟎. 𝟏 𝒆−𝒋𝜽𝟑 

 

For allpass filters, we’ll follow lecture slide 6-9 (right pole-zero plot) and the all-pass filter 

handout to place pole-zero pairs at the same angle and reciprocal magnitudes.  

(e) Allpass: zeros at 

𝒛𝟎 = 𝟏. 𝟐𝟓 𝒆𝒋𝜽𝟒  and 

𝒛𝟏 = 𝟏. 𝟐𝟓 𝒆−𝒋𝜽𝟒  

with 𝜽𝟒 =
𝝅

𝟒
 

poles at 

𝒑𝟎 = 𝟎. 𝟖 𝒆𝒋𝜽𝟒  and 

𝒑𝟏 = 𝟎. 𝟖 𝒆−𝒋𝜽𝟒 

 

 

For notch filters, we’ll follow lecture slide 6-9 (middle pole-zero plot), demos in lecture slide 

6-10, and homework 3.1 on designing a notch filter to remove narrowband interference. 

(f) Notch: zeros at 

𝒛𝟎 = 𝒆𝒋𝜽𝟒   and 

𝒛𝟏 = 𝒆−𝒋𝜽𝟒  

with 𝜽𝟒 =
𝝅

𝟒
 

poles at 

𝒑𝟎 = 𝟎. 𝟖 𝒆𝒋𝜽𝟒  and 

𝒑𝟏 = 𝟎. 𝟖 𝒆−𝒋𝜽𝟒 

 

 

For reference, and not asked, we obtain the difference equation with feedback coefficiens a1 

and a2 and feedforward coefficients b0, b1, and b2 from the transfer function: 

𝑯(𝒛) = 𝑪
(𝒛 − 𝒛𝟎)(𝒛 − 𝒛𝟏)

(𝒛 − 𝒑𝟎)(𝒛 − 𝒑𝟏)
= 𝑪

𝒛𝟐 − (𝒛𝟎 + 𝒛𝟏)𝒛 + 𝒛𝟎𝒛𝟏

𝒛𝟐 − (𝒑𝟎 + 𝒑𝟏)𝒛 + 𝒑𝟎𝒑𝟏
= 𝑪

𝟏 − (𝒛𝟎 + 𝒛𝟏)𝒛−𝟏 + 𝒛𝟎𝒛𝟏𝒛−𝟐

𝟏 − (𝒑𝟎 + 𝒑𝟏)𝒛−𝟏 + 𝒑𝟎𝒑𝟏𝒛−𝟐
 

𝑯(𝒛) = 𝑪
𝒃𝟎 + 𝒃𝟏𝒛−𝟏 + 𝒃𝟐𝒛−𝟐

𝟏 + 𝒂𝟏𝒛−𝟏 + 𝒂𝟐𝒛−𝟐
=

𝒀(𝒛)

𝑿(𝒛)
 

(𝟏 + 𝒂𝟏𝒛−𝟏 + 𝒂𝟐𝒛−𝟐) 𝒀(𝒛) = (𝒃𝟎 + 𝒃𝟏𝒛−𝟏 + 𝒃𝟐𝒛−𝟐) 𝑿(𝒛) 

  

  

  

  

Selectivity Example Application(s) Selectivity Example Application 

Lowpass Anti-aliasing filter before sampler 

in ADC; demodulation 

Bandstop Alleviate ringing of the ear 

symptoms (HW 2.3 & 3.3) 

Highpass Enhance edges/texture in images Allpass Phase correction after ADC 

Bandpass Reject out-of-band interference and 

noise (HW 3.1); modulation 

Notch Remove in-band narrowband 

interference (HW 3.1) 

 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/AllPassFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/AllPassFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt


Problem 1.2 Filter Design Tradeoffs.  24 points.  

Both discrete-time linear time-invariant (LTI) filters below meet the same filter design specifications 

based on the magnitude response for an audio application. 

  

Design #1 

Number of complex/real poles: 5 

Number of complex/real zeros: 5 

Passband behavior: Rippling 
Stopband behavior: Rippling 

Design method: Elliptic 

Maximum Group Delay: 33 samples 

Design #2 

Number of complex/real poles: 74 

Number of complex/real zeros: 74 

Passband behavior: Rippling  
Stopband behavior: Rippling 

Design method: Parks-McClellan 

Maximum Group Delay: 37 samples 
 

Please answer the following questions about the filter designs with justification.  3 points each. 

 Design #1 Design #2 

(a) Finite Impulse Response 

(FIR) or Infinite Impulse 

Response (IIR) Filter? 

IIR filter because it has at least one 

non-trivial (non-zero) pole and was 

designed using the elliptic method. 

FIR filter because all poles are 

zero and it was designed using 

Parks-McClellan method.   

(b) Filter Order #poles = 5     (Homework 3.3) #zeros = 74     (Homework 2.3) 

(c) Bounded-Input Bounded 

Output Stable? 

 

Yes, all poles inside unit circle 

(Lecture Slides 6-13 & 6-14; 

Homework 2.1 & 3.3) 

Yes, all FIR filters are BIBO 

stable (Lecture Slides 6-13 & 6-

14 and BIBO Stability Handout) 

(d) Approximate range of 

discrete-time frequencies in 

the passband in rad/sample 

Pole angles from 0 to 0.52approx. 

and zero angles 0.56approx. to  

(Lecture Slide 6-8) 

Pole angles from 0 to 0.5 and 

zero angles 0.58approx. to  

(Lecture Slide 6-8) 

(e) Frequency selectivity 

(lowpass, highpass, bandpass, 

bandstop, allpass or notch) 

 

Lowpass due to (d) 

 

Lowpass due to (d) 

(f) Number of multiplication 

operations (use cascade of 

biquads structure if IIR filter) 

3 + 2 biquads x 5 = 13 mults 

Fall 2018, Problem 1.4(a) -OR- 

3 + 2 biquads x 4 = 11 mults 

each pair of zeros on unit circle give 

2 of 3 feedforward coefficients with 

value 1 (Homework 3.3(b)(c)) 

Number of FIR coefficients is 

filter order + 1 = 75. 

75 mults 

(g) Amount of storage (use 

cascade of biquads structure if 

IIR filter) 

Data: 3 + 2 biquads x 6 = 15 words 

Coeffs: 3 + 2 biquads x 5 = 13 words 

Fall 2018, Problem 1.4(a) -OR- 

3 + 2 biquads x 4 = 11 words per (f) 

Data: 75 words 

Coeffs: 75 words 

(h) Give an advantage of each 

design, and indicate which 

design you would choose. 

5-6x lower complexity 

Mildly lower maximum group 

delay 

Linear phase over all freq. 

BIBO stability regardless of 

implementation 

 

  

See work on 

next page 

Include storage 
of input & 

output samples 

Lecture 5 & 6 Slides 

 

In-Lecture #2 Assignment 

 
HW 0.4 1.1 2.1 2.2 2.3 3.1 3.2 & 3.3 

  
Labs 2 & 3 

  

Midterm: 1.2 Sp10, 1.4(b) F15, 1.3 Sp16, 1.3 F18, 1.4 F18 & 1.3 F20 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/BIBOStability.pdf


(c) Poles are separated from the zeros in angles, and the poles are close to the unit circle.  The pole 

angles indicate the passband frequencies, and the zero locations on the unit circle indicate the 

stopband frequencies.  I estimated the angle of the pole with greatest positive angle by zooming 

into the pole-zero plot in the PDF file, measuring their Cartesian in the complex plane with a ruler, 

and computing the phase.  I followed the same approach for the zero with smallest positive angle. 

 

The lowpass filter design specification was to attenuate frequencies above the highest note on an 

88-key piano, which is at 4186 Hz (C8).  The next note above 4186 Hz is 4434 Hz which will be in 

the stopband.   

 

Filter specifications 

 Fpass = 4186 Hz 

 Fstop = 4434 Hz 

 Apass = 1 dB 

 Astop = 30 dB 

 Fs = 16000 Hz 

 

I chose a low stopband attentuation so the FIR filter order wouldn’t be so large which in turn 

would allow one to see all of the zeros on the pole-zero plot.  In audio, 80 dB is a common value 

for stopband attenuation.  We’ll learn in Lecture 8 on Quantization that 80 dB is equivalent to 

13 bits, so 80 dB of stopband attention means that high frequencies will lose the upper 13 bits 

per sample in strength.  The conversion is SNRdB = 2 + 6B where B is the number of bits.  When 

using 80 dB for the stopband attention, the filter orders increase to 11 for the elliptic IIR design 

method and 164 for the Parks-McClellan FIR design method.  

 

Here’s the plot of group delay for the IIR filter (Design #1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The lowest note on an 88-key piano is 27.5 Hz (A0).  If one wanted to also remove frequencies 

below the lowest note, then one could either add a DC notch filter in cascade with the lowpass 

filter above, or design a bandpass filter from scratch. 

 

  

https://en.wikipedia.org/wiki/Piano_key_frequencies
https://en.wikipedia.org/wiki/Piano_key_frequencies
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/08_Quantization/lecture8.ppt


Problem 1.3 FIR Filter Bank Design.  28 points.  

A bank of analysis filters divides a signal 𝑥[𝑚] into frequency bands for subsequent processing. 

A bank of synthesis filters combines the analysis frequency bands into a single signal 𝑦[𝑚]. 

The analysis-synthesis filter bank below has three linear time-invariant (LTI) filters in each bank: 

 

The LPF, BPF, and HPF filters are finite impulse response (FIR) filters with three coefficients each. 

Both lowpass filters (LPFs) have impulse response of ℎ0[𝑚] = 𝛿[𝑚] + 𝛿[𝑚 − 1] + 𝛿[𝑚 − 2].  The 

LPF coefficients are [1, 1, 1]. 

(a) Both bandpass filters (BPFs) are designed by modulating the LPF to shift its frequency response 

by /2 to the right and left: ℎ1[𝑚] = cos (
𝜋

2
𝑚) ℎ0[𝑚].  Give the coefficients for ℎ1[𝑚].  Does the 

BPF have linear phase?  Why or why not?    6 points. 

 [1, 0, -1].  Yes, BPF has (generalized) linear phase due to odd symmetry about midpoint of 

impulse response. Odd symmetry: 𝒉[𝒏] = −𝒉[𝑵 − 𝟏 − 𝒏] 𝐟𝐨𝐫 𝒏 = 𝟎, 𝟏, … , 𝑵 − 𝟏. Here, h[0] 

= -h[2] and h[1] = -h[1] = 0. (Modulation is used during the offline filter design procedure.) 

(b) Both highpass filters (HPFs) are designed by modulating the LPF to shift its frequency response by 

to the right and left: ℎ2[𝑚] = cos(𝜋 𝑚) ℎ0[𝑚].  Give the coefficients for ℎ2[𝑚].  Does the HPF 

have linear phase?  Why or why not?    6 points. 

[1, -1, 1].  Yes, HPF has linear phase due to even symmetry about midpoint of impulse 

response.  Even symmetry: 𝒉[𝒏] = 𝒉[𝑵 − 𝟏 − 𝒏] 𝐟𝐨𝐫 𝒏 = 𝟎, 𝟏, … , 𝑵 − 𝟏.  Here, h[0] = h[2] 

and h[1] = h[1]. (Modulation is used during the filter design procedure, not implementation.) 

(c) Compute the impulse response ℎ[𝑚] for the overall system with input 𝑥[𝑚] and output 𝑦[𝑚].  The 

impulse response will include the real-valued gain g.  Hint:  𝑦[𝑚] = 𝑦0[𝑚] + 𝑔 𝑦1[𝑚] + 𝑦2[𝑚]. 

Overall impulse response: 𝒉[𝒎] = 𝒉𝟎[𝒎] ∗ 𝒉𝟎[𝒎] + 𝒈 𝒉𝟏[𝒎] ∗ 𝒉𝟏[𝒎] + 𝒉𝟐[𝒎] ∗ 𝒉𝟐[𝒎] 

𝒉𝟎[𝒎] ∗ 𝒉𝟎[𝒎]:            conv( [1, 1, 1], [1, 1, 1] )    =  [  1,       2,      3,       2,      1 ] 

𝒈 𝒉𝟏[𝒎] ∗ 𝒉𝟏[𝒎]:     g conv( [1, 0, -1], [1, 0, -1] )  =  [  g,       0,     -2g,     0,      g ] 

𝒉𝟐[𝒎] ∗ 𝒉𝟐[𝒎]:            conv( [1, -1, 1], [1, -1, 1] )  =  [  1,      -2,     3,      -2,      1 ] 

Add all term:                                                                [ g+2,    0,   6-2g,     0,    g+2 ]  

(d) Does the overall system have linear phase for all possible values of g?  Why or why not?  3 points. 

Yes, because its impulse response is even symmetric about its midpoint for all values of g. 

(e) Compute the value of g that causes the overall system to act like an ideal delay with gain C, i.e. 

𝑦[𝑚] = 𝐶 𝑥[𝑚 − 𝑚0].  Please give the values of C and 𝑚0.  4 points.  

9 points. 

When g = -2, the overall impulse response becomes [0, 0, 10, 0, 0].  This equivalent to an 

ideal delay of m0 = 2 samples with a gain of C = 10. 
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Problem 1.4.  Mystery Nonlinearities.  24 points.  

You’re trying to determine input-output relationships for discrete-time pointwise nonlinear systems. 

For discrete-time pointwise systems, output at discrete-time n only depends on input at discrete-time n. 

You input a chirp signal and look at the resulting output signal to figure out what the system is doing. 

For the analysis, you decide to use the chirp signal from in-lecture assignment #1, which starts around 

240 Hz and ends around 1520 Hz, and uses a sampling rate of 8000 Hz. 

(a) Give a formula for output 𝑦[𝑛] in terms of input 𝑥[𝑛] by looking at the spectrogram for a chirp input 

signal (left) and the spectrogram of the output signal (right).  12 points. 

 

 

 

 

 

 

 

 

 

 

 
 

The spectrogram of the output shows a strong DC component at all times, and another component 

shows a linear increase from around 480 Hz to around 3040 Hz over time. 

A spectrogram is a plot of the frequency content (y-axis) vs. time (x-axis) of a signal. 

At any point in time, the chirp input signal has one principal frequency and the output signal 

contains double the principal frequency plus a DC component. 

This is a squaring block:  𝒚[𝒏] =  𝒙𝟐[𝒏]. 

(b) Give a formula for output 𝑦[𝑛] given the input 𝑥[𝑛] by looking at the spectrogram for a chirp input 

signal (left) and the spectrogram of the output signal (right).  12 points.  

 

 

 

 

 

 

 

 

 

 

 

The spectrogram of the output shows a strong DC component at all times; a second component that 

shows a linear increase from around 480 Hz to around 3040 Hz; and a third component that starts 

around 960 Hz, linearly increases to 4000 Hz, and then linearly decreases to around 1880 Hz.  

See next page. 

  

  

𝐜𝐨𝐬𝟐(𝝎𝟎𝒏) =
𝟏

𝟐
+

𝟏

𝟐
 𝐜𝐨𝐬(𝟐 𝝎𝟎𝒏) 
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At any point in time, the input chirp signal has one principal frequency, and the output 

contains quadruple and double the input principal frequency as well as a DC component from 

0 to 1.8 s. The quadruple component is twice the doubled input principal frequency, which 

would be consistent with a second squaring block in cascade with the first:  𝒚[𝒏] =  𝒙𝟒[𝒏]. 

For input 𝐜𝐨𝐬(𝝎𝟎𝒏), the first squaring block would give as output 

𝟏

𝟐
+

𝟏

𝟐
 𝐜𝐨𝐬(𝟐 𝝎𝟎𝒏) 

The second squaring block would give   

(
𝟏

𝟐
+

𝟏

𝟐
 𝐜𝐨𝐬(𝟐 𝝎𝟎𝒏))

𝟐

=
𝟏

𝟒
+

𝟏

𝟐
 𝐜𝐨𝐬(𝟐 𝝎𝟎𝒏) +

𝟏

𝟒
𝐜𝐨𝐬𝟐(𝟐 𝝎𝟎𝒏) 

where 

𝐜𝐨𝐬𝟐(𝟐 𝝎𝟎𝒏) =
𝟏

𝟐
+

𝟏

𝟐
 𝐜𝐨𝐬(𝟒 𝝎𝟎𝒏) 

and hence 

(
𝟏

𝟐
+

𝟏

𝟐
 𝐜𝐨𝐬(𝟐 𝝎𝟎𝒏))

𝟐

=
𝟑

𝟖
+

𝟏

𝟐
 𝐜𝐨𝐬(𝟐 𝝎𝟎𝒏) +

𝟏

𝟖
𝐜𝐨𝐬(𝟒 𝝎𝟎𝒏) 

Among the three terms, the 𝐜𝐨𝐬(𝟐 𝝎𝟎𝒏) term is strongest, followed by the DC term of 3/8, and 

finally by the 𝐜𝐨𝐬(𝟒 𝝎𝟎𝒏) term.  This is reflected in the color ascribed to these three terms 

according to the color map show at the right of the spectrogram plot. 

We can track the 𝐜𝐨𝐬(𝟒 𝝎𝟎𝒏) component in green from 0 to 3s to see what happens. Let f0 be 

the principal input frequency at any point in time. From 0 to 1.8s, 4f0 < ½fs which is 4000 Hz, 

or equivalently 40 <  rad/sample, and we see a linear increase. From 1.8s to 3s, the 

𝐜𝐨𝐬(𝟒 𝝎𝟎𝒏) term aliases because 4f0 > ½fs which accounts for the downward linear trajectory. 

Here’s the Matlab code to generate the above plots: 

fs = 8000;               % Samples/s 

n = 0 : 3*fs;            % There are fs samples in 1s 

f0 = 220;                % A3 (A note at 220 Hz in third octave on Western scale) 

w0 = 2*pi*f0/fs; 

x = 0.1*cos(w0*n + pi*(0.7*10^(-5))*(n.^2)); 

  

blockSize = 1024;  

overlap = 1023; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

  

y = x .^ 2; 

  

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

  

y = x .^ 4; 

  

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 
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Problem 1.1.  Sinusoidal Generation.  24 points.  

You’re asked to generate one period of a discrete-time cosine signal 𝑦[𝑛]: 

 The continuous-time frequency is 131 Hz (‘C’ note on the Western scale in the third octave). 

 The sampling rate 𝑓𝑠  is 8,000 Hz. 

(a) What is the discrete-time frequency in rad/sample of the discrete-time cosine signal?  4 points. 

𝒙(𝒕) = 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝟎 𝒕) where 𝒇𝟎 = 𝟏𝟑𝟏 𝐇𝐳. 

𝒙[𝒏] = 𝒙(𝒏 𝑻𝒔) = 𝒙 (
𝒏

𝒇𝒔
) = 𝐜𝐨𝐬 (𝟐 𝝅 

𝒇𝟎

𝒇𝒔
 𝒏) = 𝐜𝐨𝐬(𝝎𝟎 𝒏)  

where 𝝎𝟎 = 𝟐 𝝅 
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅 

𝟏𝟑𝟏

𝟖𝟎𝟎𝟎
  is the discrete-time frequency in rad/sample. 

(b) What is the fundamental period of the discrete-time cosine signal in samples?   4 points. 

Per the Handout on Discrete-Time Periodicity, a sinusoidal signal with discrete-time 

frequency, where the common factors between integers N and L have been removed, 

𝝎𝟎 = 𝟐 𝝅 
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅 

𝑵

𝑳
 

has a discrete-time fundamental period of L samples.  In the period of L samples, there are N 

continuous-time periods of a continuous-time sinusoidal signal at frequency 𝒇𝟎. 

(c) Give a difference equation whose impulse response will generate the discrete-time cosine signal. 

4 points. From homework problem 0.4, y[n] = (2 cos 0) y[n-1] - y[n-2] + x[n] - (cos 0) x[n-1] 

with initial conditions y[-1], y[-2], and x[-1] being zero as necessary conditions for LTI. 

(d) Compare the run-time complexity for the difference equation and the lookup table method.  The 

lookup table would store an entire period of cosine values computed offline.  8 points. 

Method Total Memory 

Needed 

Multiplications 

per output sample 

Reads per 

output sample 

Writes per 

output sample 

Difference equation 7 words 2 6 words 4 words 

Lookup table 8001 words 0 1 word 1 word 

The difference equation contains two constants, current input value, previous input value, 

current output value, and two previous output values.  Total memory of 7 words. 

The difference equation has two multiplications (2 cos 0) y[n-1] and (cos 0) x[n-1] per 

output sample.  To compute y[n], the other six values have to be read once each.  Also, we’ll 

need to write the result y[n], and update y[n-1], y[n-2] and x[n-1]. 

Cosine lookup table stores one period of 𝑳 = 𝟖𝟎𝟎𝟎 samples. We use 𝒏 = 𝟎, 𝟏, … , 𝑳 − 𝟏 to 

read the precomputed value from the table for 𝐜𝐨𝐬(𝝎𝟎 𝒏) and write it out as y[n]. 

(e) How would you use the lookup table for the cosine signal to generate a discrete-time sine signal 

with the same frequency?  4 points. 

With 𝐬𝐢𝐧(𝜽) = 𝐜𝐨𝐬(𝜽 − 𝝅/𝟐), we delay the cosine by ¼ of a period: 𝒏𝟎 = L/4 = 2000 samples. 

To generate 𝐬𝐢𝐧(𝝎𝟎 𝒏) = 𝐜𝐨𝐬(𝝎𝟎 (𝒏 − 𝒏𝟎)), we start with 𝒏 = 𝟎 which is index −𝒏𝟎 into the 

cosine lookup table, which is out of bounds.  Due to periodicity, index −𝒏𝟎 is the same as 

−𝒏𝟎 + 𝑳 = 𝟔𝟎𝟎𝟎 into the cosine table. We start with index 6000 into the cosine table. As we 

increment the index and reach the end of the lookup table, we go to the first entry (index 0). 

  
Note:  The above answer in part (d) was my initial answer and is plenty for a timed test.  

Upon further analysis given on the next page, I learned that the determination of the value of 

𝒏𝟎 is a bit more complicated. 
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(d) We would like to choose the delay 𝒏𝟎 for 𝒙[𝒏] = 𝐜𝐨𝐬(𝝎𝟎 𝒏) to give 𝒚[𝒏] = 𝐬𝐢𝐧(𝝎𝟎 𝒏): 

𝒚[𝒏] = 𝒙[𝒏 − 𝒏𝟎] = 𝐜𝐨𝐬 (𝟐 𝝅 
𝑵

𝑳
 (𝒏 − 𝒏𝟎)) = 𝐜𝐨𝐬 (𝟐 𝝅 

𝑵

𝑳
𝒏 − 𝟐 𝝅 

𝑵

𝑳
𝒏𝟎 ) = 𝐜𝐨𝐬(𝝎𝟎 𝒏 − 𝜽) 

We would like the phase shift 𝜽 to be 
𝝅

𝟐
+ 𝟐𝝅𝒌 where 𝒌 is an integer: 

𝟐 𝝅 
𝑵

𝑳
𝒏𝟎 =

𝝅

𝟐
+ 𝟐𝝅𝒌      𝒏𝟎 = (

𝟏

𝟒
+ 𝒌)

𝑳

𝑵
= (

𝟏+𝟒𝒌

𝟒
)

𝑳

𝑵
= (

𝟏+𝟒𝒌

𝟒𝑵
) 𝑳 

For example, when 𝑵 = 𝟏 and 𝒌 = 𝟎, we would have 𝒏𝟎 =
𝑳

𝟒
 . For 𝑵 = 𝟏𝟑𝟏 and 𝑳 = 𝟖𝟎𝟎𝟎: 

𝒏𝟎 = (
𝟏 + 𝟒𝒌

𝟒𝑵
) 𝑳 = (

𝟏 + 𝟒𝒌

𝑵
)

𝑳

𝟒
= (

𝟏 + 𝟒𝒌

𝟏𝟑𝟏
) 𝟐𝟎𝟎𝟎 

We can try different values for integer 𝒌 to find integer 𝒏𝟎.  When 𝒌 = 𝟗𝟖, 𝒏𝟎 = 𝟔𝟎𝟎𝟎.  We would 

start indexing into the cosine table at -6000 which is same as an index of 2000 due to periodicity. 

Deeper dive:  We would like to have the term below be an integer, which we’ll denote as m: 

(
𝟏+𝟒𝒌

𝟏𝟑𝟏
) = 𝒎    𝟏 + 𝟒𝒌 = 𝟏𝟑𝟏𝒎    𝟏 = 𝟏𝟑𝟏𝒎 − 𝟒𝒌 

The equation 𝟏𝟑𝟏𝒎 − 𝟒𝒌 = 𝟏 is Bezout’s identity which can be solved efficiently by Euclid’s 

algorithm.  This is not a topic that would have appeared in the course or its pre-requisites. 

Examples: We’ll use a shorter discrete-time period L = 20 to visualize results.  Examples show 

two different values for −𝒏𝟎 to achieve a phase shift of -/2 for the same value of L.  In example 

#1, 𝒏𝟎 ≠
𝑳

𝟒
.  N and L must be relatively prime.  To satisfy the Sampling Theorem, 𝑳 > 𝟐𝑵. 

 

  

 

N = 9 and L = 20: 

𝝎𝟎 = 𝟐 𝝅 (
𝟗

𝟐𝟎
) 

𝒏𝟎 = (
𝟏 + 𝟒𝒌

𝟗
) 𝟓 

𝒌 = 𝟐 to give 𝒏𝟎 = 𝟓 

Shift of -5 samples is 

same as shift of 15 

samples due to 

period of 20 samples 

Example #2 

15 samples 

Let N = 7 and L = 20:  

𝝎𝟎 = 𝟐 𝝅 (
𝟕

𝟐𝟎
) 

𝒏𝟎 = (
𝟏 + 𝟒𝒌

𝟕
) 𝟓 

𝒌 = 𝟓 to give 𝒏𝟎 = 𝟏𝟓. 

Shift by -15 samples is 

same as shift of 5 

samples due to period 

of 20 samples. 

 

 

5 samples 

Example #1 

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm


Problem 1.2 FIR Filter Design.  24 points.  

You’re asked to design a lowpass linear phase finite impulse response (FIR) filter to meet the 

following specifications: 

 Pass frequencies in octave 0, Western scale, from 16.35160 Hz (‘C’) to 30.8611 Hz (‘B’) 

 Zero out odd harmonics of the 60 Hz powerline frequency (60 Hz, 180 Hz, 300 Hz, etc.) 

 Sampling rate is less than 1000 Hz 

(a) What sampling rate would you choose?  Why?  12 points 

From the Sampling Theorem, sample at 𝒇𝒔 > 𝟐 𝒇𝒎𝒂𝒙 to be able to reconstruct the 

original signal from its sampled version.  Frequencies captured by sampling are 

−
𝟏

𝟐
𝒇𝒔 < 𝒇𝒎𝒂𝒙 <

𝟏

𝟐
𝒇𝒔 and these are the frequencies used in reconstructing a signal 

Considerations for choosing the sampling rate 𝒇𝒔 < 𝟏𝟎𝟎𝟎 𝐇𝐳 : 

 The maximum passband frequency is 30.8611 Hz.  𝒇𝒔 > 𝟐 (𝟑𝟎. 𝟖𝟔𝟏𝟏 𝐇𝐳) 

 We want to remove odd harmonics of the main powerline frequency of 60 Hz, which are 

60 Hz, 180 Hz, 300 Hz, 420 Hz, 540 Hz, 660 Hz, 780 Hz, etc.  Some will alias. 

 Our sampling rate 𝒇𝒔 < 𝟏𝟎𝟎𝟎 𝐇𝐳, so any odd harmonics of 60 Hz above 
𝟏

𝟐
𝒇𝒔 will alias.  

The harmonics are 60 Hz, 180 Hz, 300 Hz, 420 Hz, 540 Hz, 660 Hz, 780 Hz, 900 Hz, etc.   

 Use the highest sampling rate possible for better audio quality. 

If we choose a sampling rate between adjacent odd harmonic frequencies, all the odd 

harmonics that alias will alias to one of the odd harmonic frequencies that didn’t alias. 

When  𝒇𝒔 = 𝟐𝟒𝟎 𝐇𝐳, the odd harmonic at 60 Hz does not alias.  For the other odd harmonics: 

 180 Hz aliases to 180 Hz – 240 Hz = –60 Hz and –180 Hz aliases to –180 Hz + 240 Hz = 60 Hz 

 300 Hz aliases to 300 – 240 = 60 Hz and –300 Hz aliases –300 + 240 = –60 Hz, etc. 

Choose 𝒇𝒔 = 𝟗𝟔𝟎 𝐇𝐳 

(b) Give the coefficients of the FIR filter to meet the specifications.  12 points. 

Solution #1: Averaging Filter.  From the handout Designing Averaging 

Filters, an averaging filter has a null bandwidth of 𝒇𝒔 / 𝑵 and we 

would like the first null to be at 60 Hz so that we can pass octave 0: 
𝒇𝒔

𝑵
= 𝟔𝟎       𝑵 =

𝒇𝒔

𝟔𝟎
=

𝟗𝟔𝟎

𝟔𝟎
= 𝟏𝟔 

The averaging filter would zero out frequencies that are multiples 

of 60 Hz, which would include the odd and even harmonics.  It is 

zeroing out twice as many frequencies as needed, but still meets 

the specifications.  See next page for additional analysis.  

Solution #2:  Manually place zeros.  MATLAB command poly 

can convert a list of roots (zeros) to an unfactored polynomial. 

We place a zero on the unit circle at the angle of each positive and negative discrete-time 

frequency to be zeroed out.  There are four of each.  The zeros 

𝒆±𝒋𝝎𝟎, 𝒆±𝒋𝟑𝝎𝟎, 𝒆±𝒋𝟓𝝎𝟎, 𝒆±𝒋𝟕𝝎𝟎 where 𝝎𝟎 = 𝟐 𝝅 
𝟔𝟎

𝟗𝟔𝟎
=

𝝅

𝟖
 give coefficients [ 1 0 0 0 0 0 0 0 1 ]. 

Filter has linear phase, but multiband in selectivity instead of lowpass.  (See next page.)  
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Additional analysis for problem 1.2(b).  This would not be expected on a test. 

Solution #1: Averaging filter. 

h = 1/16)*ones(1,16);     % impulse response is a rectangular pulse 

freqz(h);                 % frequency response is a periodic sinc 

 
Magnitude response shows discrete-time frequencies at multiples of 

𝝅

𝟖
 are being zeroed out. 

Filter coefficients are even symmetric about the midpoint, which means the FIR filter has 

linear phase. 

Solution #2: Manually place zeros to design the FIR filter. 

Matlab code to determine the filter coefficients from the zero locations 

w0 = pi/8; 

zerolist = exp( j * w0 * [1 -1 3 -3 5 -5 7 -7] ); 

h = poly(zerolist) 

>> [ 1 0 0 0 0 0 0 0 1 ] 

freqz(h); 

 

 

Magnitude response shows discrete-time frequencies 
𝟏

𝟖
𝝅,

𝟑

𝟖
𝝅,

𝟓

𝟖
𝝅 𝐚𝐧𝐝 

𝟕

𝟖
𝝅 being zeroed out. 

Filter coefficients [ 1 0 0 0 0 0 0 0 1 ] are even symmetric about the midpoint, which means 

the FIR filter has linear phase. 

The magnitude response has multiple passbands.  It’s not lowpass.   

This filter is called a comb filter.  We’ll see it later in lab #7 on guitar effects.  

https://en.wikipedia.org/wiki/Comb_filter


Problem 1.3 Discrete-Time Audio Effects.  28 points.  

The notes on the Western scale on an 88-key piano keyboard grouped into octaves follow: 

 

 

 

 

The frequency of note A4 (i.e. ‘A’ in the 4th octave) at 440 Hz is twice the frequency of A3 at 220 Hz. 

This type of octave spacing occurs for all the notes on the Western scale. 

Design a discrete-time audio effects system that will extract the fourth octave of frequencies and then 

alter that octave of frequencies to be in the next higher octave: 

 

All notes on the fourth octave should appear as the same notes in the next higher octave. 

Bandpass filter hk[n] passes frequencies in the kth octave and attenuates other frequencies. 

For signals x[n] and x4[n], the sampling rate 𝑓𝑠  is 8,000 Hz. 

(a) Design a second-order infinite impulse response (IIR) 

bandpass filter h4[n] to pass the fourth octave and 

attenuate the other octaves.  In the fourth octave, the 

lowest note is 262 Hz and highest note is 494 Hz. 

12 points. 

i. Give formulas for the pole and zero locations.  

ii. Plot poles and zeros on the diagram on the right. 

Place a pole 𝒑𝟎 at the center frequency in the fourth 

octave and near but inside the unit circle to define the 

passband in positive frequencies: 

𝒇𝒄𝒆𝒏𝒕𝒆𝒓 =
𝟐𝟔𝟐 𝑯𝒛 + 𝟒𝟗𝟐 𝑯𝒛

𝟐
= 𝟑𝟕𝟕 𝑯𝒛 

𝝎𝒄𝒆𝒏𝒕𝒆𝒓 = 𝟐 𝝅 
𝒇𝒄𝒆𝒏𝒕𝒆𝒓

𝒇𝒔
= 𝟐 𝝅 

𝟑𝟕𝟕

𝟖𝟎𝟎𝟎
 

𝒑𝟎 = 𝟎. 𝟗𝟓 𝒆𝒋 𝝎𝒄𝒆𝒏𝒕𝒆𝒓 and 𝒑𝟏 = 𝟎. 𝟗𝟓 𝒆−𝒋 𝝎𝒄𝒆𝒏𝒕𝒆𝒓 

(b) What system would you use for the ?? block?  Why?   9 points. 

Solution #1: Squaring block. Effect on single input frequency: 

𝒚[𝒏] = 𝒙𝟐[𝒏] = 𝐜𝐨𝐬𝟐(𝝎𝟎 𝒏) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟎 𝒏) 

It doubles the input frequency and creates a zero frequency (DC) term. 

Any single note in the fourth octave would be doubled to be the same 

note in the fifth octave, and DC term would be filtered out by the fifth octave bandpass filter. 

Solution #2: Downsampling by 2. 

Re(z) 

Im(z) 
F 2019 Midterm 1.3(a) 

Sp 2017 Midterm 1.3 

Sp 2021 Midterm 1.4(a) 

Sp 2020 Midterm 1.4(b) 

F 2016 Midterm 1.3(c)  

F 2015 Midterm 1.3(a) 

Sp 2010 Midterm 1.3(c) 

 

 

Place zeros on the unit circle to 

define stopbands centered at 

0 rad/sample and  rad/sample: 

𝒛𝟎 = 𝒆𝒋 𝟎 = 𝟏 and 𝒛𝟏 = 𝒆𝒋 𝝅 = −𝟏 

HW 1.3 

 

 

Lecture slides 3-7 & 3-10   

 

 

X 

X 
O O 

Lecture Slides 6-5 to 6-10 

 

In-Lecture #2 Assignment 

 
HW 1.1 2.1 2.2 2.3 & 3.1 

 

Labs 2 & 3 



(c) What would the output be for your proposed system if two notes in the fourth octave were being 

played at the same time?  7 points. 

Solution #1: Let the input signal to the squaring block be a sum of two cosine signals at different 

note frequencies 𝝎𝟏 and 𝝎𝟐 in the fourth octave. 

𝒙[𝒏] = 𝐜𝐨𝐬(𝝎𝟏 𝒏) + 𝐜𝐨𝐬(𝝎𝟐 𝒏) 

𝒚[𝒏] = 𝒙𝟐[𝒏] = (𝐜𝐨𝐬(𝝎𝟏 𝒏) +  𝐜𝐨𝐬(𝝎𝟐 𝒏))𝟐 

𝒚[𝒏] = 𝐜𝐨𝐬𝟐(𝝎𝟏 𝒏) + 𝟐 𝐜𝐨𝐬(𝝎𝟏 𝒏) 𝐜𝐨𝐬(𝝎𝟐 𝒏)  + 𝐜𝐨𝐬𝟐(𝝎𝟐 𝒏) 

We know from part (b) that 𝐜𝐨𝐬𝟐(𝝎𝟎 𝒏) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟎 𝒏).  

The middle term 𝟐 𝐜𝐨𝐬(𝝎𝟏 𝒏) 𝐜𝐨𝐬(𝝎𝟐 𝒏) is the modulation of one cosine by another. 

The resulting frequencies are 𝝎𝟏 + 𝝎𝟐 and |𝝎𝟏 − 𝝎𝟐|. 

𝒚[𝒏] = 𝟏 +
𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟏 𝒏) + 𝐜𝐨𝐬((𝝎𝟏 + 𝝎𝟐) 𝒏) + 𝐜𝐨𝐬((𝝎𝟏 − 𝝎𝟐) 𝒏) +

𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟐 𝒏) 

The output consists of the following frequencies: 

𝟐 𝝎𝟏 the frequency for note #1 in the fifth octave 

𝟐 𝝎𝟐 the frequency for note #2 in the fifth octave  

𝝎𝟏 + 𝝎𝟐 which will fall in the fifth octave 

|𝝎𝟏 − 𝝎𝟐| which fall below the fourth octave 

0 frequency 

The last two frequencies will be attenuated by the bandpass filter for the fifth octave, but there 

will be intermodulation distortion (or audio effect?) in the fifth octave at frequency 𝝎𝟏 + 𝝎𝟐. 

Solution #2:  The two notes in the fourth octave will show up as their respective notes in the 

fifth octave.  Downsampling by 2 will also double the bandwidth around the principal 

frequency.  One can see this is in problem 1.4(b) on this test. 

 

 

 

 

Please note that this discrete-time audio effect system only alters the principal frequencies of notes.  

It filters out all the harmonics of the note.  It’s the harmonics that gives richness and texture to 

the notes.  It’s the harmonics that allow us to identify what instrument played it.  



Problem 1.4.  Mystery Systems.  24 points.  

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 4000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 4000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

4000 Hz

10 𝑠
= 400 Hz2.  Sampling rate 𝑓𝑠  is 8000 Hz. 

In each part below, identify the unknown system as one of the following: 

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies 

2. upsampler – give upsampling factor 

3. downsampler – give downsampling factor 

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  12 points. 

From the output spectrogram, frequencies from 0 Hz to about 1200 Hz are passed.  

Principal frequencies in the chirp above about 1300 Hz are severely attenuated and their 

medium blue color indicates at attenuation vs. bright yellow of about 100 dB. 

Lowpass Filter with passband frequency ~1200 Hz and stopband frequency ~1300 Hz. 

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right). 12 points. 

When compared to the input spectrogram, the output spectrogram has half the duration in 

time and its principal frequency is increasing.  From 1.25s to 2.5s, aliasing occurs. 

Downsampling by 2, per homework problem 2.2(d).  

HW 1.2 1.3 & 2.2 In-Lecture #1 Assignment 

Handout Common Signals in Matlab 

Midterm 1: 1.4 Sp11, 1.3 Sp15, 1.5 Sp19, 1.4 F19 & 1.4 Sp20 

Lecture 4 

HW 0.1 1.1 

1.3 2.1 & 2.2 

Lab #3 

Lectures 

1 3 5 & 6 

JSK Ch. 7 

Midterm 1.1 

F 2020 

Sp 2020 

F 2018 

Designing 

Averaging 

Filters 

HW 0.3 & 2.2 

Lecture 

4 

Midterm 

Problems 

1.2 F 18 

1.2(d) Sp 18 

1.2(d) F 09 

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf


Matlab code to generate the spectrograms for problem 1.4. 

 

(a) Lowpass filter 

fs = 8000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

 

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

 

%% Design lowpass filter 

fnyquist = fs/2; 

fpass = 1000; 

fstop = 1200; 

ctfrequencies = [0 fpass fstop fnyquist]; 

idealAmplitudes = [1 1 0 0]; 

pmfrequencies = ctfrequencies / fnyquist; 

filterOrder = 200; 

h = firpm( filterOrder, pmfrequencies, idealAmplitudes ); 

h = h / sum(h .^ 2); 

 

y = conv(x, h); 

 

%%% Plot spectrogram of signal 

blockSize = 1024;  

overlap = 1023; 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

(b) Downsampling by 2 

fs = 8000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

 

%% Downsampling by 2 

y = x(1:2:end); 

 

blockSize = 1024;  

overlap = 1023; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 
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Problem 1.1.  Sinusoidal Generation.  24 points.  

You’re asked to generate one period of a discrete-time sine signal 𝑦[𝑛] = sin(𝜔0𝑛): 

 The continuous-time frequency is 196 Hz (‘G’ note on the Western scale in the third octave). 

 The sampling rate 𝑓𝑠  is 8000 Hz. 

(a) What is the discrete-time frequency 𝜔0 in rad/sample of the discrete-time sine signal?  4 points. 

𝒚(𝒕) = 𝐬𝐢𝐧(𝟐 𝝅 𝒇𝟎 𝒕) where 𝒇𝟎 = 𝟏𝟗𝟔 𝐇𝐳. 

𝒚[𝒏] = 𝒚(𝒏 𝑻𝒔) = 𝒚 (
𝒏

𝒇𝒔
) = 𝐬𝐢𝐧 (𝟐 𝝅 

𝒇𝟎

𝒇𝒔
 𝒏) = 𝐬𝐢𝐧(𝝎𝟎 𝒏)  

where 𝝎𝟎 = 𝟐 𝝅 
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅 

𝟏𝟗𝟔

𝟖𝟎𝟎𝟎
  is the discrete-time frequency in rad/sample. 

(b) What is the fundamental period of the discrete-time sine signal in samples?   4 points. 

Per the Handout on Discrete-Time Periodicity, a sinusoidal signal with discrete-time 

frequency, where the common factors between integers N and L have been removed, 

𝝎𝟎 = 𝟐 𝝅 
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅 

𝑵

𝑳
 

has a discrete-time fundamental period of L samples: 

𝝎𝟎 = 𝟐 𝝅 
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅 

𝟏𝟗𝟔 𝐇𝐳

𝟖𝟎𝟎𝟎 𝐇𝐳
= 𝟐 𝝅 

𝟒𝟗

𝟐𝟎𝟎𝟎 
 

In the discrete-time period of L = 2000 samples, there are N = 49 continuous-time periods of 

a continuous-time sinusoidal signal at frequency 𝒇𝟎. 

(c) Give a difference equation whose impulse response will generate the discrete-time sine signal. 

4 points.  From lab #2, y[n] = (2 cos 0) y[n-1] - y[n-2] + (sin 0) x[n-1] for 𝒏 ≥ 𝟎 with initial 

conditions y[-1], y[-2], and x[-1] being zero as necessary conditions for LTI to hold.  This 

difference equation comes from 𝒁{ 𝐬𝐢𝐧(𝝎𝟎𝒏) 𝒖[𝒏] } =
𝐬𝐢𝐧(𝝎𝟎) 𝒛−𝟏

𝟏 − 𝟐 𝐜𝐨𝐬(𝝎𝟎) 𝒛−𝟏 + 𝒛−𝟐  𝐟𝐨𝐫 |𝒛| > 𝟏. 

(d) An alternate method to compute the amplitude value is to use the Taylor series expansion for the 

sine function 

sin(𝜃) = 𝜃 −
1

3!
𝜃3 +

1

5!
𝜃5 −

1

7!
𝜃7 +

1

9!
𝜃9 − ⋯ 

and keep a finite number of terms.  For good quality over one period of 𝜃, we’ll need 17 terms, i.e. 

from the 𝜃 term to the 𝜃33 term. 

Compare the run-time complexity for the difference equation and the lookup table method.  The 

lookup table would store an entire period of sine values computed offline.  12 points. 

Method Total Memory 

Needed 

Multiplications 

per output sample 

Reads per 

output sample 

Writes per 

output sample 

Taylor series 18 291 19 1 

Difference equation 7 2 6 4 

Lookup table 2000 0 1 1 

Taylor series method would compute 𝜽 = 𝝎𝟎 𝒏 using 1 multiplication, and perform a modulo 

operation (1 multiplication by 𝟏/(𝟐𝝅) and 1 additional multiplication) to get the value of 

angle 𝜽 in the first period of [𝟎, 𝟐𝝅). For a Taylor series expansion with N non-zero terms, 

𝐬𝐢𝐧(𝜽) = 𝜽 −
𝟏

𝟑!
𝜽𝟑 +

𝟏

𝟓!
𝜽𝟓 −

𝟏

𝟕!
𝜽𝟕 +

𝟏

𝟗!
𝜽𝟗 − ⋯ 

Lectures 1 & 4 Lab 2 

HW 0.3, 0.4, 1.1(d) & 2.1(d)  

Fall 2021 Midterm 1.1 & Fall 2016 Midterm 1.2 

Lecture Slides 1-16 and 1-19 to 1-22  

Discrete-Time Periodicity Handout 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DiscreteTimePeriodicity.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DiscreteTimePeriodicity.pdf


we’ll assume the constants 𝟏/𝒎! have been computed offline. When 𝑵 = 𝟏, 𝐬𝐢𝐧(𝜽) = 𝜽 does 

not need any multiplications; 𝑵 = 𝟐 terms needs 3 mults; 𝑵 = 𝟑 needs 3+5=8 mults; 𝑵 = 𝟓 

needs 3+5+7=15 mults; 𝑵 = 𝟕 needs 3+5+7+9=24 mults; or (𝑵 + 𝟏)(𝑵 − 𝟏) mults in general. 

Difference equation contains two constants, previous input value, current output value, two 

previous output values.  The current input is stored into the previous input value.  Total 

memory of 7 words.  The difference equation has two multiplications (2 cos 0) y[n-1] and 

(sin 0) x[n-1] per output sample.  To compute y[n], the other six values have to be read once 

each.  Also, we’ll need to write the result y[n], and update y[n-1], y[n-2] and x[n-1]. 

Lookup table stores one period of 𝑳 = 𝟐𝟎𝟎𝟎 samples. We use 𝒏 = 𝟎, 𝟏, … , 𝑳 − 𝟏 to read the 

precomputed value from the table for 𝐬𝐢𝐧(𝝎𝟎 𝒏) and write it out as y[n]. 

 

Epilogue for part (d): Although not asked, we can reduce the number of multiplications by 

using Horner’s form of the series expansion which results from iteratively factoring out 𝜽𝟐: 

𝐬𝐢𝐧(𝜽) = 𝜽 − 𝜽𝟐 (
𝟏

𝟑!
𝜽 +

𝟏

𝟓!
𝜽𝟑 −

𝟏

𝟕!
𝜽𝟓 +

𝟏

𝟗!
𝜽𝟕 − ⋯ ) 

𝐬𝐢𝐧(𝜽) = 𝜽 − 𝜽𝟐 (
𝟏

𝟑!
𝜽 + 𝜽𝟐 (

𝟏

𝟓!
𝜽 −

𝟏

𝟕!
𝜽𝟑 +

𝟏

𝟗!
𝜽𝟓 − ⋯ )) 

In this case, Horner’s form would have a nested structure of 𝒂𝒏𝜽 + 𝒃𝒏𝜽𝟐 for 𝒏 ∈ [𝟐, 𝑵].  The 

𝑵 − 𝟏 nested terms would need 𝟐(𝑵 − 𝟏) multiplications.  We need one multiplication to 

compute 𝜽𝟐, for a total of 𝟐(𝑵 − 𝟏) + 𝟏 multiplications.  For N = 17 terms, 33 multiplications 

would be needed for the polynomial calculation, plus 3 multiplications for the calculation of 

𝜽 = 𝝎𝟎 𝒏 and the modulo operation, for a total of 36 multiplications. 

  

Taylor series expansion is about the origin, i.e. 𝜽 = 𝟎.  

For the Taylor series to provide a good fit to 𝐬𝐢𝐧(𝜽) for 

𝜽 ∈ [𝟎, 𝟐𝛑], 17 terms are needed; however, to provide a 

good fit for 𝜽 ∈ [−𝝅, 𝝅], only 4 terms are needed (from 

the 𝜽 to the 𝜽𝟕 terms).  This makes sense because the 

Taylor series expansion is about 𝜽 = 𝟎.  See 

https://en.wikipedia.org/wiki/Taylor_series and below. 

theta = -2*pi : (4*pi)/1000 : 2*pi; 

maxi = 17; 

sinapprox = zeros(maxi, length(theta)); 

sinapprox(1,:) = theta; 

for i = 2 : maxi 

    term = theta.^(2*i-1) / factorial(2*i-1); 

    sinapprox(i,:) = sinapprox(i-1,:) + (-1)^(i+1) * term; 

end 

plot(theta, sin(theta), '-', ... 

     theta, sinapprox(4,:), '--', ... 

     theta, sinapprox(maxi,:), '--'); 

xlabel('theta'); 

ylim([-2, 2]); 

legend('sin(theta)', 'with 4 terms', 'with 17 terms' ); 

  

In Matlab, the pattern of three 

dots ... means that the command 

continues on the next line. 

 

https://en.wikipedia.org/wiki/Taylor_series


Problem 1.2 Filter Analysis.  26 points.  

In an electric oven, transfer of energy from a heating element to food is governed by the heat equation. 

However, an approximate model is given by the following causal linear time-invariant discrete-time 

filter with input 𝑥[𝑛] and output 𝑦[𝑛] 

𝑦[𝑛] = ∑
𝑥[𝑚]

𝛼𝑛−𝑚

𝑛−1

𝑚=0

  for 𝑛 ≥ 0 

where 𝑥[𝑛] represents the power delivered to the heating element, 𝛼 is the thermal diffusivity, and 

𝑦[𝑛] represents the temperature of the food where a temperature of 0 means room temperature. 

We expand the summation as follows 

𝑦[𝑛] =
1

𝛼
𝑥[𝑛 − 1] +

1

𝛼2
𝑥[𝑛 − 2] + ⋯     for 𝑛 ≥ 0 

and convert 𝑦[𝑛] to a recursive difference equation 

𝑦[𝑛] =
1

𝛼
𝑥[𝑛 − 1] +

1

𝛼
𝑦[𝑛 − 1]  for 𝑛 ≥ 0 

For this problem, assume that 𝛼 = 2.  We observe the system starting at 𝑛 = 1. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

(a) Assume that the food is initially at room temperature.  What are the initial conditions and their values? 

Why?  4 points.  We observe system starting at 𝒏 = 𝟏:  𝒚[𝟏] =
𝟏

𝟐
𝒙[𝟎] +

𝟏

𝟐
𝒚[𝟎].  Initial conditions 

𝒙[𝟎] and 𝒚[𝟎] should be 0 as necessary conditions for linear and time-invariance (LTI) to hold. 

(b) Give a formula for the impulse response of the filter ℎ[𝑛].  Simplify any summations.  6 points. 

To find the impulse response, input an impulse signal, i.e. let 𝒙[𝒏] = 𝜹[𝒏]: 

𝒉[𝒏] =
𝟏

𝟐
𝜹[𝒏 − 𝟏] +

𝟏

𝟐
𝒉[𝒏 − 𝟏]  𝐟𝐨𝐫 𝒏 ≥ 𝟏 

where the initial condition 𝒉[𝟎] = 𝟎.  We can compute this iteratively 𝐟𝐨𝐫 𝒏 ≥ 𝟏 

𝒉[𝟏] =
𝟏

𝟐
𝜹[𝟎] +

𝟏

𝟐
𝒉[𝟎] =

𝟏

𝟐
 and 𝒉[𝟐] =

𝟏

𝟐
𝜹[𝟏] +

𝟏

𝟐
𝒉[𝟏] =

𝟏

𝟐𝟐  etc. 

𝒉[𝒏] =
𝟏

𝟐𝒏
 𝒖[𝒏 − 𝟏] = (

𝟏

𝟐
)

𝒏

𝒖[𝒏 − 𝟏] 

(c) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  4 points. 

IIR due to feedback.  That is, the output 𝒚[𝒏] depends on the previous output value 𝒚[𝒏 − 𝟏]. 

(d) Derive a formula for the transfer function in the z-domain and the region of convergence.  6 points. 

Solution #1: Take the z-transform of the impulse response. 

𝑯(𝒛) = 𝒁 {(
𝟏

𝟐
)

𝒏

𝒖[𝒏 − 𝟏]} =
𝟏

𝟐
 𝒁 {(

𝟏

𝟐
)

𝒏−𝟏

𝒖[𝒏 − 𝟏]} =
𝟏

𝟐
 𝒛−𝟏 𝒁 {(

𝟏

𝟐
)

𝒏

𝒖[𝒏]} =
𝟏

𝟐
 𝒛−𝟏

𝟏−
𝟏

𝟐
 𝒛−𝟏

  for |𝒛| >
𝟏

𝟐
 

Solution #2: Take the z-transform of the difference equation. 

𝒀(𝒛) =
𝟏

𝟐
𝒛−𝟏 𝑿(𝒛) +

𝟏

𝟐
𝒛−𝟏 𝒀(𝒛) which gives 𝑯(𝒛) =

𝒀(𝒛)

𝑿(𝒛)
=

𝟏

𝟐
 𝒛−𝟏

𝟏−
𝟏

𝟐
 𝒛−𝟏

  for |𝒛| >
𝟏

𝟐
 

(e) Give the frequency selectivity of filter (lowpass, highpass, bandpass, bandstop, allpass, notch) and 

explain your reasoning.  6 points.  The transfer function has a pole at z = ½ and a zero at z = 0.  

Pole angle of 0 rad/sample gives center of passband.  This corresponds to a lowpass filter. 
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Problem 1.3 Chromagram Filter Design.  26 points.  

The notes on the Western scale on an 88-key piano keyboard grouped into octaves follow: 

 

 

 

 

The frequency of note A3 (i.e. ‘A’ in the 3rd octave) at 220 Hz is twice the frequency of A2 at 110 Hz. 

This type of octave spacing occurs for all the notes on the Western scale. 

For this problem, assume that the sampling rate 𝑓𝑠  is 16,000 Hz. 

When poles and zeros are separated in angle, the angles of poles 

near but inside the unit circle indicate passband frequencies and 

the angles of the zeros on or near the unit circle indicate the 

stopband frequencies, per lecture 6 slides 6-8 to 6-10. 

(a) Design a second-order infinite impulse response (IIR) to 

extract the note A5 (880.0 Hz). The filter should suppress 

all other frequencies including the neighboring notes 

G#5 (830.6 Hz) and A#5 (932.3 Hz). 12 points. 

i. Give formulas for the pole and zero locations.  

ii. Plot poles and zeros on the diagram on the right. 

Two zeros at 𝒛 = ±𝟏 and two poles at 𝒛 = 𝟎. 𝟗𝟓 𝒆±𝒋 𝝎𝑨𝟓 where 𝝎𝑨𝟓 = 𝟐𝝅 ×
𝟖𝟖𝟎

𝟏𝟔𝟎𝟎𝟎
 

(b) To extract the note A4, how would the design of the filter in part (a) change?   6 points. 

Use 𝝎𝑨𝟒 = 𝟐𝝅 ×
𝟒𝟒𝟎

𝟏𝟔𝟎𝟎𝟎
 for placement of the poles, which is half the angles of the poles in (a).  

Poles will move toward the real axis but at the same magnitude as the poles in (a). 

(c) Design a first-order discrete-time IIR filter to perform the following smoothing operation  

𝑦𝐴[𝑛] = Smooth{𝑣[𝑛]}  where  𝑣[𝑛] = ∑(𝑥[𝑛] ∗ ℎ𝐴𝑘
[𝑛])

2
6

𝑘=1

 

where ℎ𝐴𝑘
[𝑛] is the impulse response of an IIR filter that extracts the note Ak from audio signal 

𝑥[𝑛], and 𝑦𝐴[𝑛] is the output of the smoothing filter for A notes A1, A2, … A6. This operation is 

used to construct a chromagram to analyze musical recordings.  8 points. 

A smoothing filter is a lowpass filter; that is, it smooths out sudden changes in the data which 

corresponding to high-frequency information.  In class, we have seen examples of applying 

an averaging filter, which is a lowpass filter, to create a seven-day moving average of new 

COVID-19 cases in the Designing Averaging Filters handout and smooth/blur an image in 

the “Cascading Two FIR Filters” DSP First demo mentioned in lecture 5 slide 5-21. 

For a first-order IIR filter, place the pole at 𝒛 =  𝟎. 𝟗 for a passband centered at 0 rad/sample 

and the zero at 𝒛 =  −𝟏 for a stopband centered at 𝝅 rad/sample. 

We had seen a similar lowpass first-order IIR filter in a DSP First demo (more on next page). 
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http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
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http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/05_FIR_Filters/lecture5.pptx


 
 

DSP First “Three-Domain Connections” demo “IIR filter with one pole and one zero.” 

In this demo, the pole is at 𝒛 = 𝟎. 𝟕𝟓 and the zero is at 𝒛 = −𝟏 for a lowpass response. 

See lecture 6 slide 6-10. 

 

 

Epilogue:  From Wikipedia "Chroma Feature" (Chromagram): 

“In Western music, the term chroma feature or chromagram closely relates to the twelve 

different pitch classes. Chroma-based features, which are also referred to as "pitch class profiles", are 
a powerful tool for analyzing music whose pitches can be meaningfully categorized (often into twelve 
categories) and whose tuning approximates to the equal-tempered scale. One main property of 
chroma features is that they capture harmonic and melodic characteristics of music, while being robust 

to changes in timbre and instrumentation.” 

The chromagram (as shown on the right) is a 

tool used to analyze musical recordings based 

on the equal temperament scale. It is similar to 

the spectrogram except that it has exactly 

twelve frequency bins (corresponding to 

twelve notes on the Western scale). For each 

note, all harmonics are combined into the 

same frequency bin.  

 

  

https://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
https://en.wikipedia.org/wiki/Chroma_feature
https://en.wikipedia.org/wiki/Music
https://en.wikipedia.org/wiki/Pitch_classes
https://en.wikipedia.org/wiki/Harmonic_pitch_class_profiles
https://en.wikipedia.org/wiki/Equal_temperament


Problem 1.4.  Mystery Systems.  24 points.  

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 4000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 4000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

4000 Hz

10 𝑠
= 400 Hz2.  Sampling rate 𝑓𝑠  is 8000 Hz. 

In each part below, identify the unknown system as one of the following with justification: 

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies 

2. upsampler – give upsampling factor 

3. downsampler – give downsampling factor 

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  12 points. 

 

From the output spectrogram, frequencies from about 900 to 2100 Hz are passed.  

Principal frequencies below 900 Hz and above 2100 Hz are severely attenuated.  In the 

grayscale color map, white has highest magnitude value.  This is a bandpass filter. 

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right). 12 points.  

 

When compared to the input spectrogram, the output spectrogram has about one-third the 

range of frequencies values and the principal frequency is a chirp pattern that is wider and 

that has aliasing.  Downsampling by 3 per homework problem 2.2(d). 
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Epilogue:  Matlab code to generate the spectrograms for problem 1.4. 

 

(a) Bandpass filter 

fs = 8000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

  

%% Design lowpass filter 

fnyquist = fs/2; 

fstop1 =  900; 

fpass1 = 1100; 

fpass2 = 1900; 

fstop2 = 2100; 

ctfrequencies = [0 fstop1 fpass1 fpass2 fstop2 fnyquist]; 

idealAmplitudes = [0 0 1 1 0 0]; 

pmfrequencies = ctfrequencies / fnyquist; 

filterOrder = 200; 

h = firpm( filterOrder, pmfrequencies, idealAmplitudes ); 

h = h / sum(h .^ 2); 

  

y = conv(x, h); 

  

%%% Plot spectrogram of signal 

blockSize = 1024;  

overlap = 1023; 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

 

(b) Downsampling by 3 

fs = 8000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

%% Downsampling by 3 

y = x(1:3:end); 

blockSize = 1024; 

overlap = 1023; 

spectrogram(y, blockSize, overlap, blockSize, fs/3, 'yaxis'); 
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Instructor caught the error of the points adding to 104 while grading the test.  
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Problem 1.1 FIR Filter Analysis.  28 points. 

Consider the following causal linear time-invariant (LTI) discrete-time finite impulse response (FIR) 

filter with input x[n] and output y[n] described by 

 y[n] = a x[n] + b x[n-1] – b x[n-3] – a x[n-4] 

for n  0, where a and b are real-valued positive coefficients. 

Please note that the coefficient in front of the x[n-2] term is zero. 

(a) What are the initial conditions and their values?  Why?  6 points. 

Let n=0:  y[0] = a x[0] + b x[-1] – b x[-3] – a x[-4].  

Let n=1:  y[1] = a x[1] + b x[0] – b x[-2] – a x[-3]. 

Let n=2:  y[2] = a x[2] + b x[1] – b x[-1] – a x[0].   etc. 

Initial conditions are x[-1], x[-2], x[-3], x[-4] which must be zero for linearity and time-

invariant properties to hold.  x[0] is the first input value and not an initial condition. 

Note: A causal system does not depend on future input values or future output values. 

(b) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 
(c) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points. 

Z-transform both sides of difference equation, knowing that all initial conditions are zero: 

Y(z) = a X(z) + b z -1 X(z) – b z -3 X(z) – a z -4 X(z)  which means 

 𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
= 𝒂 + 𝒃 𝒛−𝟏 − 𝒃 𝒛−𝟑  − 𝒂 𝒛−𝟒 for 𝒛 ≠ 𝟎 

(d) Give a formula for the discrete-time frequency response of the filter.  3 points. 

We can convert the transfer function H(z) into the discrete-time frequency domain by 

substituting z = exp(j ) because FIR LTI systems are always Bounded-Input Bounded-

Output stable, or equivalently, because the region of convergence includes the unit circle: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝒂 + 𝒃 𝒆−𝒋𝝎 − 𝒃 𝒆−𝟑𝒋𝝎 − 𝒂 𝒆−𝟒𝒋𝝎 

(e) Give a formula for the phase response vs. discrete-time frequency. 6 points. 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝒆−𝒋𝟐𝝎(𝒂 𝒆𝒋𝟐𝝎  + 𝒃 𝒆𝒋𝝎 − 𝒃 𝒆−𝒋𝝎 − 𝒂 𝒆−𝒋𝟐𝝎) = 𝟐(𝒃 𝐬𝐢𝐧(𝝎) + 𝒂 𝐬𝐢𝐧(𝟐𝝎)) 𝒋 𝒆−𝒋𝟐𝝎 

With 𝒋 = 𝒆𝒋
𝝅

𝟐 , ∠𝑯𝒇𝒓𝒆𝒒(𝝎) =
𝝅

𝟐
− 𝟐𝝎  except for phase jumps (discontinuities) of  at 

frequencies that are zeroed out and don’t get through, which is generalized linear phase. 

(f) Give a formula for the group delay vs. discrete-time frequency. 3 points. 

𝑮𝑫(𝝎) = −
𝒅

𝒅𝝎
∠𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝟐 𝐬𝐚𝐦𝐩𝐥𝐞𝐬   

Spring 2019 Midterm 1.1 

 

Note: The four initial conditions 

are visible here as the initial 

condition for each unit delay block. 

Lecture slides 3-15 & 5-5 

Lecture slide 5-11 



Problem 1.2 IIR Filter Analysis.  25 points. 

For a second-order infinite impulse response (IIR) filter with poles 𝑝0 and 𝑝1 and zeros 𝑧0 and 𝑧1, the 

transfer function in the z-domain is 

𝐻(𝑧) =
(𝑧 − 𝑧0)(𝑧 − 𝑧1)

(𝑧 − 𝑝0)(𝑧 − 𝑝1)
 

The poles will remain at 𝑝0 = −0.9 and 𝑝1 = 0.9 in this problem.  Region of convergence is |𝑧| > 0.9. 

Each question below will ask you to determine the frequency selectivity (lowpass, highpass, bandpass, 

bandstop, allpass and notch) of the second-order IIR filter with different choices of zero locations. 

(a) From the transfer function 𝐻(𝑧), derive an expression 

for the magnitude response of the filter.  3 points. 

We can convert the transfer function H(z) into the discrete-time frequency domain by 

substituting z = exp(j ) because the region of convergence includes the unit circle: 

𝑯(𝒆𝒋𝝎) =
(𝒆𝒋𝝎 −  𝒛𝟎)(𝒆𝒋𝝎 − 𝒛𝟏)

(𝒆𝒋𝝎 −  𝒑𝟎)(𝒆𝒋𝝎 − 𝒑𝟏)
 

Then, take the absolute value of both sides: 

|𝑯(𝒆𝒋𝝎)| = |
(𝒆𝒋𝝎 − 𝒛𝟎)(𝒆𝒋𝝎 − 𝒛𝟏)

(𝒆𝒋𝝎 − 𝒑𝟎)(𝒆𝒋𝝎 − 𝒑𝟏)
| =

|𝒆𝒋𝝎 − 𝒛𝟎||𝒆𝒋𝝎 − 𝒛𝟏|

|𝒆𝒋𝝎 − 𝒑𝟎||𝒆𝒋𝝎 − 𝒑𝟏|
 

(b) Let the zeros be 𝑧0 = −0.1 and 𝑧1 = 0.1 as shown 

on the right.  What is the frequency selectivity?  4 points. 

Bandstop.  The frequency (angle) of a pole near but inside 

the unit circle indicates a peak in the magnitude response 

at that frequency.  This comes from the Euclidean distance 

|𝒆𝒋𝝎 − 𝒑𝟎| in the denominator of the magnitude response.  

The minimum distance occurs when 𝝎 is equal to the angle 

of the pole 𝒑𝟎.  The zeros, because they are close to the origin, have little effect on the 

magnitude response due to the |𝒆𝒋𝝎 − 𝒛𝟎| term which is close to 1 in value for any 𝝎. 

(c) Let the zeros continue being real-valued and negatives of each other, i.e. 𝑧0 = −𝑧1.  For every 

frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass and notch) that is possible for 

the second-order IIR filter to achieve, give the values of zeros 𝑧0 and 𝑧1.  You may reuse your 

answer from part (b).  18 points. 

Bandstop filter from part (b) above. 
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Problem 1.3 Filter Design.  27 points. 

A stethoscope allows a physician to listen to sounds 

of the circulatory and respiratory system especially 

the heart and lungs.  

A conventional stethoscope uses a tube to directly 

transmit the vibration to the physician’s ear.  

A digital stethoscope uses a microphone and an 

analog-to-digital converter to record the signal. 

This problem will design three discrete-time filters 

placed in cascade for a digital stethoscope. 

Assume a sampling rate of 8000 Hz. 

(a) Noise caused by physical motion of the patient or 

stethoscope occurs at extremely low frequencies (near 0 Hz). Design a first-order IIR 

filter to remove noise due to movement by giving the numeric values of the one pole 

and one zero.  Place the pole and zero on the pole-zero diagram.  9 points. 

Remove noise at extremely low frequencies centered at 0 rad/sample. 

DC notch IIR filter.  Pole at 𝒛 = 𝟎. 𝟗 and zero at 𝒛 = 𝟏. 

This can also be thought of as a highpass filter with a narrowband 

passband. 

(b) The sounds produced by the circulatory and respiratory systems occur at low frequencies (<500 Hz). 

Background noise in a hospital (especially from speech) occurs mostly at frequencies above 500 Hz. 

Design a second-order IIR filter by specifying the two poles and two zeros to remove background 

noise above 500 Hz.  Place the poles and zeros on the pole-zero diagram on the right.  9 points. 

Lowpass filter.  Passband is from 0 to 500 Hz.  We could place poles 

at 250 Hz and -250 Hz. For 250 Hz, the discrete-time frequency is 

𝝎𝟐𝟓𝟎 = 𝟐𝝅
𝟐𝟓𝟎 𝑯𝒛

𝟖𝟎𝟎𝟎 𝑯𝒛
 and pole locations would be at 𝒑𝟎 = 𝟎. 𝟗 𝒆𝒋 𝝎𝟐𝟓𝟎  

and 𝒑𝟏 = 𝟎. 𝟗 𝒆−𝒋 𝝎𝟐𝟓𝟎.  Stopband would be from 550 Hz to 4000 Hz, 

and the zeros could be placed on the unit circle at an angle in this 

range and its negative.  We choose 2000 Hz and -2000 Hz, which 

would put zeros at 𝝅/𝟐 and −𝝅/𝟐. 

(c) The digital stethoscope has two modes: One for listening to respiratory and digestive sounds and one 

for listening to circulatory heart sounds. Design a second-order IIR filter by specifying the two poles 

and two zeros to extract sounds of the heart between 120 Hz and 500 Hz.  Place the poles and zeros 

on the pole-zero diagram on the right.  9 points. 

Bandpass filter with passband from 120 Hz to 500 Hz. 

Poles must be conjugate symmetric because each frequency 

Components has a positive and negative component. 

Place a pole at (500 Hz + 120 Hz)/2 = 310 Hz and at -310 Hz. 

𝒑𝟎 = 𝟎. 𝟗 𝒆𝒋 𝝎𝟑𝟏𝟎 and 𝒑𝟏 = 𝟎. 𝟗 𝒆−𝒋 𝝎𝟑𝟏𝟎  where 𝝎𝟑𝟏𝟎 = 𝟐𝝅
𝟑𝟏𝟎 𝑯𝒛

𝟖𝟎𝟎𝟎 𝑯𝒛
 . 

Put zeros to eliminate 0 and 𝝅 rad/sample, i.e. let 𝒛 = 𝟏 and zero at 𝒛 = −𝟏.  

Plot is from Nourelhuda Mohamed, Hyun-Seok Kim, Kyu-Min Kang, Manal Mohamed, Sung-Hoon Kim, and Jae Gwan Kim. "Heart and Lung 
Sound Measurement Using an Esophageal Stethoscope with Adaptive Noise Cancellation" Sensors 21, no. 20: 6757, 2021.  

https://doi.org/10.3390/s21206757
https://doi.org/10.3390/s21206757


Problem 1.4.  Potpourri.  24 points. 

(a) Consider the signal 𝑥[𝑛] = (−1)𝑛 observed for all time −∞ < 𝑛 < ∞.  12 points. 

I. If we express 𝑥[𝑛] = cos(𝜔0 𝑛) observed for all time −∞ < 𝑛 < ∞, give the value of 𝜔0.  

4 points. 

𝝎 = 𝝅 because 𝐜𝐨𝐬(𝝅 𝒏) = (−𝟏)𝒏 

 

 

II. Give a formula for 𝑦[𝑛] that is the output of downsampling by 2 applied to 𝑥[𝑛].  4 points 

Downsampling by 2 of signal 𝒙[𝒏] keeps the even-indexed values of 𝒙[𝒏]. 

𝒚[𝒏] = 𝒙[𝟐𝒏] = 𝐜𝐨𝐬(𝝅 (𝟐𝒏)) = 𝐜𝐨𝐬(𝟐𝝅𝒏) = 𝟏   𝐟𝐨𝐫 − ∞ < 𝒏 < ∞ 

 

III. In part II above, explain why the principal frequency of 𝑥[𝑛] became the principal frequency 

in 𝑦[𝑛].  4 points 

𝒚[𝒏] = 𝒙[𝟐𝒏] = 𝐜𝐨𝐬(𝝅 (𝟐𝒏)) = 𝐜𝐨𝐬(𝟐𝝅𝒏) = 𝟏   𝐟𝐨𝐫 − ∞ < 𝒏 < ∞.   

The principal frequency is 𝝅 rad/sample in 𝒙[𝒏] and 𝟐𝝅 rad/sample in 𝒚[𝒏]. 

Downsampling by 2 doubles the frequencies in 𝒙[𝒏] which causes the frequencies in the 

input signal from 𝝅/𝟐 to 𝝅 to alias.  In this case, the input frequency 𝝅 becomes the 

frequency 𝟐𝝅 rad/sample which aliases to 𝟎 rad/sample (DC). 

 

(b) Upsampling by L can be used to increase the sampling rate of the input signal by a factor of L and  

downsampling by M can be used to decrease the sampling rate of the input signal by a factor of M. 

I. What is the sampling rate change from 𝑥[𝑛] to 𝑦[𝑛] for the system below?  6 points. 

 

 

 

 

 

 

 

 

 

 

II. What is the sampling rate change from 𝑥[𝑛] to 𝑦[𝑛] for the system below?  6 points. 

 

Upsampling by L increases the sampling 

rate by L which is then undone by 

downsampling by L which decreases the 

sampling rate by L.  There is no 

sampling rate change from 𝒙[𝒏] to 𝒚[𝒏]. 

Upsampling by L increases the sampling 

rate by L and downsampling by M 

decreases the sampling rate by M.  The 

sampling rate change is 𝑳/𝑴 from 𝒙[𝒏] 
to 𝒚[𝒏]. 
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Problem 1.1 IIR Filter Analysis.  25 points. 

Consider the following causal linear time-invariant (LTI) discrete-time infinite impulse response (IIR) 

filter with input x[n] and output y[n] described by 

𝑦[𝑛] − 𝑏2  𝑦[𝑛 − 2] = 𝑥[𝑛] 

for n  0, where b is a real-valued positive coefficient less than one, i.e. 0 < 𝑏 < 1. 

Please note that the coefficient in front of the y[n-1] term is zero. 

(a) What are the initial conditions and their values?  Why?  6 points. 

   Consider 𝒏 = 𝟎:  𝒚[𝟎] = 𝒃𝟐 𝒚[−𝟐] + 𝒙[𝟎] 

    Initial Condition 

Consider 𝒏 = 𝟏: 𝒚[𝟏] = 𝒃𝟐 𝒚[−𝟏] + 𝒙[𝟏] 

    Initial Condition 

Our initial conditions must equal zero as necessary conditions for LTI to hold: 

𝒚[−𝟐] = 𝒚[−𝟏] = 𝟎 

 

(b) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 

 

(c) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points. 

 

𝒀(𝒛) = 𝒃𝟐𝒛−𝟐 𝒀(𝒛) + 𝑿(𝒛)  take z-Transform of 𝒚[𝒏] = 𝒃𝟐 𝒚[𝒏 − 𝟐] + 𝒙[𝒏] 
𝒀(𝒛) − 𝒃𝟐𝒛−𝟐 𝒀(𝒛) = 𝑿(𝒛) 

𝒀(𝒛)(𝟏 − 𝒃𝟐𝒛−𝟐) = 𝑿(𝒛)  combine like terms 

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
=

𝟏

𝟏 − 𝒃𝟐 𝒛−𝟐  recall the transfer function is 𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
 

poles are at 𝒛 = 𝒃 and 𝒛 = −𝒃. 

𝑯(𝒛) =
𝟏

(𝟏−𝒃 𝒛−𝟏)(𝟏+𝒃 𝒛−𝟏)
, 𝒇𝒐𝒓 |𝒛| > 𝒃 final answer 

 

  



(d) Give a formula for the discrete-time frequency response of the filter.  3 points. 

 

We substitute 𝒛 = 𝒆𝒋𝝎, because the unit circle is contained inside the Region of 

Convergence |𝒛| > 𝒃 where 𝟎 < 𝒃 < 𝟏: 

𝑯(𝒆𝒋𝒘) =
𝟏

(𝟏 − 𝒃𝒆−𝒋𝝎)(𝟏 + 𝒃𝒆−𝒋𝝎)
=

𝟏

𝟏 − 𝒃𝟐𝒆−𝒋𝟐𝝎
 

 

(e) What frequency responses are possible among lowpass, highpass, bandpass, bandstop, allpass and 

notch?  For each possibility, give a value of 𝑏 that would give that response.  6 points. 

From our transfer function, 𝑯(𝒛) =
𝟏

𝟏−𝒃𝟐𝒛−𝟐 =
𝒛𝟐

𝒛𝟐−𝒃𝟐 

Thus, we know that… 

• 2 zeros exist at 𝒛 = 𝟎 

• 2 poles exist at 𝒑 = ±𝒃 

 

Consider as b→1 

The 2 poles 𝒑𝟎→𝟏, 𝒑𝟏→ − 𝟏 
(Note that the 2 poles are not equal to 1! Because then the poles would be on the unit circle, 

and we would encounter Bounded-Input Bounded-Ouput instability issues.) 

With these pole locations, it means the poles are amplifying low and high 

frequencies. 

Thus, we can see that this as a bandstop filter. 

Consider as b→0 

The 2 poles approach  𝒑𝟎 = 𝒑𝟏 = 𝟎 

Now the 2 zeros and the 2 poles are on the same location, cancelling out. 

Thus, we can see that this as an allpass filter. 



Problem 1.2 Increasing the Sampling Rate.  24 points. 

Upsampling by L can be used to increase the sampling 

rate of the input signal by a factor of L. 
 

A lowpass finite impulse response (FIR) filter can then 

be applied to the output of the upsampler to attenuate 

the high frequencies introduced by upsampling. 
 

On the right, discrete-time index 𝑛 is associated with 

sampling rate 𝑓𝑠 and discrete-time index 𝑚 is associated with sampling rate 𝐿 𝑓𝑠 . 

(a) What is the maximum continuous-time frequency 𝑓𝑚𝑎𝑥 that is present in 𝑥[𝑛]?  What discrete-time 

frequency does 𝑓𝑚𝑎𝑥  correspond to?  6 points. 

𝒙(𝒕) = 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕) , 𝒇𝒐𝒓 − ∞ < 𝒕 < ∞ 

𝒙(𝒕) = 𝐜𝐨𝐬 (𝟐𝝅𝒇𝟎 (
𝒏

𝒇𝒔
)) 

𝝎𝟎 = 𝟐𝝅
𝒇𝟎

𝒇𝒔
 

 

From Nyquist Theorem, we require that 𝒇𝒔 > 𝟐𝒇𝒎𝒂𝒙 

Thus, we have the continuous-time frequency is: 

𝒇𝒎𝒂𝒙 <
𝟏

𝟐
𝒇𝒔 

 

And the corresponding discrete-time frequency is: 

𝝎𝒎𝒂𝒙 = 𝟐𝝅
𝒇𝒎𝒂𝒙

𝒇𝒔
= 𝟐𝝅

(
𝟏
𝟐 𝒇𝒔)

𝒇𝒔
= 𝝅 

Thus, from sampling, we can capture a frequency range of… 

−
𝟏

𝟐
𝒇𝒔 < 𝒇 <

𝟏

𝟐
𝒇𝒔 (𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒕𝒊𝒎𝒆 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒊𝒆𝒔) 

−𝝅 < 𝝎 < 𝝅 (𝒅𝒊𝒔𝒄𝒓𝒆𝒕𝒆 − 𝒕𝒊𝒎𝒆 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒊𝒆𝒔) 

 

(b) What discrete-time frequency in 𝑣[𝑚] corresponds to the maximum continuous-time frequency 𝑓𝑚𝑎𝑥 

that is present in 𝑥[𝑛]?  6 points. 

 

From our solution in part (a), 𝒇𝒎𝒂𝒙 <
𝟏

𝟐
𝒇𝒔 

And we are given that at 𝒗[𝒎], our new sampling rate is 𝑳𝒇𝒔 

Using the same equation for discrete-time frequency, we find that our solution is: 

𝝎𝐦𝐚𝐱 _𝒂𝒕_𝒗[𝒎] = 𝟐𝝅
𝒇𝒎𝒂𝒙

𝒇𝒔_𝒂𝒕_𝒗[𝒎]
= 𝟐𝝅

(
𝟏
𝟐 𝒇𝒔)

𝑳𝒇𝒔
=

𝝅

𝑳
 

 

 



(c) Any discrete-time frequencies present in 𝑣[𝑚] higher than your answer in part (b) but less than 𝜋 

rad/sample correspond to frequencies introduced by upsampling.  Give the discrete-time passband 

frequency 𝜔𝑝𝑎𝑠𝑠 and stopband frequency 𝜔𝑠𝑡𝑜𝑝 you would use for the lowpass filter design.  6 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To determine our 𝝎𝐩𝐚𝐬𝐬 and 𝝎𝐬𝐭𝐨𝐩 values, we want to consider a reasonable value of 

10% for the roll-off factor.  Meaning, 𝝎𝐬𝐭𝐨𝐩 = 𝟏. 𝟏𝝎𝐩𝐚𝐬𝐬 

 

Thus, our values result in… 

𝝎𝐩𝐚𝐬𝐬 = 𝟎. 𝟗𝟓
𝝅

𝑳
 

𝝎𝐬𝐭𝐨𝐩 ≌ 𝟏. 𝟎𝟓
𝝅

𝑳
 

 

(d) Give two ways to design a lowpass FIR filter with linear phase to meet the specifications of a 

discrete-time passband frequency 𝜔𝑝𝑎𝑠𝑠 and stopband frequency 𝜔𝑠𝑡𝑜𝑝.  A “way” to design the filter 

could be a formula, algorithm, etc.  6 points. 

Solution I: 

Design an averaging filter with N coefficients 

The first zero should occur at 
𝟐𝝅

𝑵
 

To determine N, we know that 
𝟐𝝅

𝑵
=

𝝅

𝑳
 

Thus, 𝑵 = 𝟐𝑳 

 

Solution II: 

Use filterDesigner from MATLAB 

Use the design methods such as Parks-McClellan, Least-Squares, or Kaiser Window 

 

Solution III: 

Place zeros on a pole-zero plot for a low-pass filter 

  



Problem 1.3 Equalizer Design.  27 points. 

Many applications use a digital-to-analog (D/A) converter and an analog-to-digital (A/D) converter. 

• An audio system would use a D/A converter for playback over earbuds or speakers and an A/D 

converter in a microphone for recording and mixing. 

• A digital communication system would use a D/A converter in the transmitter and an A/D 

converter in the receiver. 

You’ll design a linear time-invariant (LTI) bound-input bounded-output (BIBO) stable discrete-time 

equalizer to compensate the distortion in the nonlinear system (on the left) using an LTI model of the 

nonlinear system (on right): 

 

 

 

 

 

(a) Give a formula for a test signal to use for x[m] that would be of finite duration.  The test signal 

should have all discrete-time frequencies in it.  The test signal would be used to estimate the 

impulse response h[m] for the LTI model of the cascade of the D/A and A/D converters. 12 points. 

Solution I:  Use a chirp signal:   𝒙(𝒕) = 𝐜𝐨𝐬 (𝟐𝝅𝒇𝟎𝒕 + 𝝅𝝁𝒕𝟐) 

 

                   𝜽(𝒕) 

The chirp will sweep continuous-time frequencies: 

𝟎 𝑯𝒛 → 𝒇𝒎𝒂𝒙 =
𝟏

𝟐
𝒇𝒔 𝐇𝐳 

where the instantaneous frequency is: 

𝒅𝜽(𝒕)

𝒅𝒕
= 𝟐𝝅𝒇𝟎 + 𝟐𝝅𝝁𝒕 = 𝟐𝝅(𝒇𝟎 + 𝝁𝒕) 𝒓𝒂𝒅/𝒔 

 

                     𝒇𝒊(𝒕) = 𝒇𝟎 + 𝝁𝒕,  𝒇𝟎 = 𝟎 𝐇𝐳 

          𝒇𝒎𝒂𝒙 =
𝟏

𝟐
𝒇𝒔 = 𝝁𝒕𝒎𝒂𝒙 

Solution II: 

Use a PN (Pseudo-Random Noise) Sequence because it covers all frequencies 

• 𝒓𝒕𝒉-order connection polynomial 

• 𝟐𝒓 − 𝟏 bits for fundamental period 

We subtract 1 because the state of all zeros is a lockout state that does not change 

 

Solution III: 

Use an impulse response: 𝒙[𝒎] = 𝜹[𝒎] 
In theory this is a good/feasible idea. 

In practice, it does not capturing variability over time in the unknown system. 

Note: Impulsive events used in seismic modelling of acoustic layers (eg., earth layers) 

This chirp signal would sweep 

discrete-time frequencies from 

𝟎 𝒓𝒂𝒅/𝒔𝒂𝒎𝒑𝒍𝒆 → 𝝅 𝒓𝒂𝒅/𝒔𝒂𝒎𝒑𝒍𝒆 
 



 

Solution IV:  Use a special case of a short PN sequence 

 
 

(b) Given the poles and zeros of 𝐻(𝑧) below, give the values for the poles and zeros of 𝐺(𝑧) and draw 

them on the pole-zero diagram on the right for an LTI equalizer 𝐺(𝑧) that would make the cascade 

of the LTI system model 𝐻(𝑧) and the LTI equalizer 𝐺(𝑧) be allpass.  15 points. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝑝0 = 0.9 

𝑝1 = 0.9 𝑒𝑗 
𝜋
4  

𝑝2 = 0.9 𝑒−𝑗 
𝜋
4  

 

𝑧0 = −1  

𝑧1 = 1.25 𝑒𝑗 
𝜋
2  

𝑧2 = 1.25 𝑒−𝑗 
𝜋
2  

Solution I 

 

Solution II 

 



Problem 1.4.  Potpourri.  24 points. 

(a) An integrator is a common building block in systems.  The discrete-time version of the integrator is 

the running summation, which is defined for input 𝑥[𝑛] and output 𝑦[𝑛] for 𝑛 ≥ 0 as follows: 

𝑦[𝑛] = ∑ 𝑥[𝑚]

𝑛

𝑚=0

 

The summation requires unbounded memory as 𝑛 → ∞.  A more efficient implementation is 

𝑦[𝑛] = 𝑦[𝑛 − 1] + 𝑥[𝑛]  for  𝑛 ≥ 0  

I. Give the initial condition(s) for the more efficient implementation to be linear and time-

invariant (LTI). 4 points. 

 

Rather than using the summation equation,  

𝒚[𝒏] = ∑ 𝒙[𝒎]

𝒏

𝒎=𝟎

 

It is simpler to solve for the initial conditions using the equivalent recursive 

difference equation instead, 𝒚[𝒏] = 𝒚[𝒏 − 𝟏] + 𝒙[𝒏]  𝐟𝐨𝐫  𝒏 ≥ 𝟎  

Consider 𝒏 = 𝟎:  𝒚[𝟎] = 𝒚[−𝟏] + 𝒙[𝟎] 

    Initial Condition 

In order for LTI to hold, our initial conditions must equal zero: 

𝒚[−𝟏] = 𝟎 

 

II. Give a formula for and plot the impulse response ℎ[𝑛] of an LTI running summation.  4 points 

 

This time, let’s use the summation form, 

𝒚[𝒏] = ∑ 𝒙[𝒎]

𝒏

𝒎=𝟎

 

Let 𝒙[𝒎] = 𝜹[𝒎] and then 𝒉[𝒏] = 𝒚[𝒏]: 

                 𝒉[𝒏] = ∑ 𝜹[𝒎]

𝒏

𝒎=𝟎

= {
𝟏, 𝒊𝒇 𝒏 ≥ 𝟎
𝟎,     𝒆𝒍𝒔𝒆   

 

 

III. The running summation only gives an unbounded output for a bounded input when the input 

has a non-zero constant component. What filter would you apply before the running summation 

to prevent the running summation being bounded-input bounded-output unstable?   4 points 

 

Use a DC notch filter to remove the non-zero constant at 0 radians/sample 

  



(b) There are several algorithms [1] to generate a  cosine signal  

x[𝑛] = cos(𝜔0 𝑛) and a sine signal 𝑦[𝑛] = sin(𝜔0 𝑛) at the 

same time using rotation.  For each signal, the argument is 

0, 𝜔0, 2𝜔0, …, for 𝑛 = 0, 1, 2, … 
 

Using the visual representation on the right, the next cosine value 

𝑋𝑛+1 and next sine value 𝑌𝑛+1 are computed from the current cosine 

value 𝑋𝑛 and current sine value 𝑌𝑛 using a rotation operation: 
 

[
𝑋𝑛+1

𝑌𝑛+1
] = [

cos(𝜃) −sin(𝜃)

sin(𝜃) cos(𝜃)
] [

𝑋𝑛

𝑌𝑛
] 

 

Using rotation keeps the values of the cosine and sine for the same angle on the unit circle. 

With 𝜃 = 𝜔0, we use the rotation approach starting at 𝑛 = 0 and pre-compute cos(𝜃) and sin(𝜃). 

Note: This is called the Coordinate Rotation Digital Computer (CORDIC) Algorithm.  “The 

algorithm was used in the navigational system of the Apollo program's Lunar Roving 

Vehicle to compute bearing and range, or distance from the Lunar module.” 

I. What are the values of 𝑋0 and 𝑌0?  4 points. 

Consider at 𝒏 = 𝟎: 𝐜𝐨𝐬(𝝎𝟎𝒏) = 𝐜𝐨𝐬(𝟎) = 𝟏 

   𝐒𝐢𝐧(𝝎𝟎𝒏) = 𝐬𝐢𝐧(𝟎) = 𝟎 

Thus, 𝑿𝟎 = 𝟏, 𝒀𝟎 = 𝟎 

II. How many multiplications per output sample are needed to compute the cosine and sine 

signals?  4 points. 

For the matrix operation, we have a 2x2 matrix multiplied by a 2x1 vector. 

To compute 𝑿𝒏+𝟏 (cosine component), we need 2 multiplications 

 𝑿𝒏+𝟏 = 𝐜𝐨𝐬(𝜽) 𝑿𝒏 + (− 𝐬𝐢𝐧(𝜽))𝒀𝒏 

To compute 𝒀𝒏+𝟏 (sine component), we need 2 multplications 

 𝒀𝒏+𝟏 = 𝐬𝐢𝐧(𝜽) 𝑿𝒏 + 𝐜𝐨𝐬 (𝜽)𝒀𝒏 

So, we require a total of 4 multiplications (and 4 additions) per output sample. 

 

III. Compare your answer in part II to using second-order difference equations to compute cosine 

and sine signals separately.  4 points. 

 

Consider the difference equation for the cosine signal: 

𝒚[𝒏] = (𝟐𝐜𝐨𝐬(𝝎𝟎)) 𝒚[𝒏 − 𝟏] − 𝒚[𝒏 − 𝟐] + 𝒙[𝒏] − (𝐜𝐨𝐬(𝝎𝟎)) 𝒙[𝒏 − 𝟏] 

Consider the difference equation for the sine signal: 

𝒚[𝒏] = (𝟐𝐜𝐨𝐬(𝝎𝟎)) 𝒚[𝒏 − 𝟏] − 𝒚[𝒏 − 𝟐] + (𝐬𝐢𝐧(𝝎𝟎)) 𝒙[𝒏 − 𝟏] 

We see that with this format, both cosine and sine require around 2 

multiplications and 4 additions, for a total of 4 multiplications and 8 additions. 

 

In comparison, the CORDIC algorithm only requires 4 multiplications and 4 

additions, and so gives us computational savings. 

Matrix Rotation [1] 

https://en.wikipedia.org/wiki/CORDIC
https://en.wikipedia.org/wiki/Apollo_program
https://en.wikipedia.org/wiki/Lunar_Roving_Vehicle
https://en.wikipedia.org/wiki/Lunar_Roving_Vehicle
https://en.wikipedia.org/wiki/Bearing_(navigation)
https://en.wikipedia.org/wiki/Lunar_module
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Problem 1.1 FIR Filter Analysis.  25 points.  

Consider a causal linear time-invariant (LTI) discrete-time finite impulse response (FIR) filter with 

input x[n] and output y[n] observed for n  0.  The transfer function in the z-domain is 

𝐻(𝑧) = 1 − 𝑧−1 

(a) Give the equation for output y[n] in terms of the input x[n] in the discrete-time domain.  6 points. 

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
= 𝟏 − 𝒛−𝟏 which means 𝒀(𝒛) = (𝟏 − 𝒛−𝟏 ) 𝑿(𝒛) = 𝑿(𝒛) − 𝒛−𝟏 𝑿(𝒛) 

Take the inverse z-transform of both sides to obtain 𝒚[𝒏] = 𝒙[𝒏] − 𝒙[𝒏 − 𝟏] for 𝒏 ≥ 𝟎. 

(b) What are the initial condition(s) and their value(s)?  Why?  6 points. 

Consider 𝒏 = 𝟎:  𝒚[𝟎] =  𝒙[𝟎] + 𝒙[−𝟏]  which has one initial condition 𝒙[−𝟏]. 

Consider 𝒏 = 𝟏:  𝒚[𝟏] =  𝒙[𝟏] + 𝒙[𝟎]  which does not have any initial conditions. 

Our initial condition must equal zero as necessary conditions for LTI to hold:  𝒙[−𝟏] = 𝟎 

(c) Derive a formula for the discrete-time frequency response of the filter.  3 points. 

We first determine the region of convergence for 𝑯(𝒛) = 𝟏 − 𝒛−𝟏 which is 𝒛 ≠ 𝟎 because we 

need to avoid division by zero due to to 𝒛−𝟏 term.  Another way to see this is 

𝑯(𝒛) = 𝟏 − 𝒛−𝟏 =
𝒛 − 𝟏

𝒛
 

Because the unit circle is in the region of convergence, we can substitute 𝒛 = 𝒆𝒋𝝎 into 𝑯(𝒛)  

𝐻𝑓𝑟𝑒𝑞(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝟏 − 𝒆−𝒋𝝎 

(d) Consider implementing a fourth-order version of this filter which would have the transfer function 

𝐻4(𝑧) = (1 − 𝑧−1)4 

Assume the input x[n] and output y[n] values are stored in 32-bit IEEE floating-point format. 

In terms of run-time implementation complexity, which of the following designs would you 

advocate using?  Please fill out the table to justify your answer.  10 points. 

Filter Structure  # multiplications # additions # words of memory 

Cascade of four first-order sections 0 4 12 or 9 (see below) 

Cascade of two second-order sections 2 4 10 or 9 (see below) 

Single fourth-order section 3 4 9 

For a cascade of four first-order sections, each section would have input-output relationship 

𝒚[𝒏] = 𝒙[𝒏] − 𝒙[𝒏 − 𝟏] which requires 0 mults, 1 add, and 3 words of memory.  If reuse the 

same memory location for first section output and second section input, etc., 9 total words. 

For a cascade of two second-order sections, each second-order section would have an input-

output relationship 𝒚[𝒏] = 𝒙[𝒏] − 𝟐 𝒙[𝒏 − 𝟏] + 𝒙[𝒏 − 𝟐] which requires 1 mults, 2 adds, and 

5 words of memory to store the coefficient -2 as well as 𝒙[𝒏], 𝒙[𝒏 − 𝟏], 𝒙[𝒏 − 𝟐] and 𝒚[𝒏].  
We can obtain the second-order coefficients by conv( [1 -1], [1 -1] ) or expand (𝟏 − 𝒛−𝟏)𝟐.  If 

reuse same memory location for first section output and second section input, 9 total words 

A single fourth-order section would have the input-output relationship 

𝒚[𝒏] = 𝒙[𝒏] − 𝟒 𝒙[𝒏 − 𝟏] + 𝟔 𝒙[𝒏 − 𝟐] −  𝟒 𝒙[𝒏 − 𝟑] + 𝒙[𝒏 − 𝟒] 

which requires 3 mults, 4 adds, and 9 words of memory to store the coefficients -4, -6, -4 and 

input values 𝒙[𝒏], 𝒙[𝒏 − 𝟏], 𝒙[𝒏 − 𝟐], 𝒙[𝒏 − 𝟑], and 𝒙[𝒏 − 𝟒] and output 𝒚[𝒏]. 
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Problem 1.2 Decreasing the Sampling Rate.  24 points. 

Downsampling by M can be used to decrease the 

sampling rate of the input signal by a factor of M. 

A lowpass finite impulse response (FIR) filter can be 

placed before the downsampler to reduce the aliasing 

caused by resampling at the lower sampling rate. 

On the right, discrete-time index 𝑚 is associated with sampling rate 𝑓𝑠 and discrete-time index 𝑛 is 

associated with sampling rate 
𝑓𝑠

𝑀
 . 

(a) What is the maximum continuous-time frequency 𝑓𝑚𝑎𝑥 that is present in 𝑦[𝑛]?  What discrete-time 

frequency does 𝑓𝑚𝑎𝑥  correspond to?  6 points.  The sampling rate for 𝒚[𝒏] is 𝒇𝒔/𝑴 . 

Sampling Theorem says to choose the sampling rate 
𝒇𝒔

𝑴
> 𝟐 𝒇𝒎𝒂𝒙 so 𝒇𝒎𝒂𝒙 →

𝟏

𝟐

𝒇𝒔

𝑴
 . 

Let 𝒚(𝒕) = 𝐜𝐨𝐬(𝟐𝝅𝒇𝒎𝒂𝒙𝒕)  𝐟𝐨𝐫 − ∞ < 𝒕 < ∞  and sample it at sampling rate 
𝒇𝒔

𝑴
 : 

𝒚[𝒏] = 𝒚(𝒕)]
𝒕=

𝒏
𝒇𝒔
𝑴

 
= 𝐜𝐨𝐬 (𝟐𝝅𝒇𝒎𝒂𝒙 (

𝒏

𝒇𝒔

𝑴

)) = 𝐜𝐨𝐬 (𝟐𝝅

𝟏
𝟐

𝒇𝒔

𝑴
𝒇𝒔

𝑴

𝒏) = 𝐜𝐨𝐬(𝝅𝒏)  𝐟𝐨𝐫 − ∞ < 𝒏 < ∞ 

The continuous-time frequency 𝒇𝒎𝒂𝒙 corresponds to discrete-time frequency 𝝅 rad/sample. 

(b) What discrete-time frequency in 𝑟[𝑚] corresponds to the maximum continuous-time frequency 𝑓𝑚𝑎𝑥 

that is present in 𝑦[𝑛]?  6 points. 

Since the sampling rate for 𝒓[𝒏] is 𝒇𝒔, continuous-time frequency 𝒇𝒎𝒂𝒙 in 𝒓[𝒏] corresponds to 

𝟐𝝅

𝟏
𝟐

𝒇𝒔

𝑴
𝒇𝒔

=
𝝅

𝑴
 𝐫𝐚𝐝/𝐬𝐚𝐦𝐩𝐥𝐞 

(c) Any discrete-time frequencies present in 𝑟[𝑚] higher than your answer in part (b) but less than 𝜋 

rad/sample correspond to frequencies that will alias due to downsampling.  Give the discrete-time 

passband frequency 𝜔𝑝𝑎𝑠𝑠 and stopband frequency 𝜔𝑠𝑡𝑜𝑝 you would use for the lowpass filter design.  

6 points.  With 10% rolloff from passband frequency 𝝎𝒑𝒂𝒔𝒔 and stopband 

frequency 𝝎𝒔𝒕𝒐𝒑, we could use 𝝎𝒑𝒂𝒔𝒔 = 𝟎. 𝟗𝟓
𝝅

𝑴
 and 𝝎𝒔𝒕𝒐𝒑 = 𝟏. 𝟎𝟓

𝝅

𝑴
 . 

(d) Here are two possible lowpass FIR filter with linear phase to meet the specifications 

of a discrete-time passband frequency 𝜔𝑝𝑎𝑠𝑠  and stopband frequency 𝜔𝑠𝑡𝑜𝑝.   

i. Averaging filter. How many FIR filter coefficients would you use?  Why?  What are the filter 

coefficient values? 3 points. Averaging FIR filter with 𝑵 coefficients has null bandwidth 

of 
𝟐𝝅

𝑵
 𝐫𝐚𝐝/𝐬𝐚𝐦𝐩𝐥𝐞.  With 

𝟐𝝅

𝑵
=

𝝅

𝑴
 , we use 𝑵 = 𝟐𝑴 coefficients each with a value of 

𝟏

𝑵
 . 

ii. Impulse response is a truncated sinc pulse.  How would you choose the number of samples 

in the sinc pulse? 3 points. An infinite sinc pulse would be an ideal lowpass filter.  For a 

discrete-time cutoff frequency of 
𝝅

𝑴
 , the sinc pulse would have zero crossings every 𝑴 

samples except the origin. To keep even symmetry, we would keep 𝟐 𝑴 𝒌 + 1 samples 

where 𝒌 is a positive integer. For causality, we’d delay the sinc by 𝑴 𝒌 samples.  Larger 

𝒌 means better lowpass response but higher run-time complexity and group delay. 
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Problem 1.3 System Identification.  27 points.  

You are given several causal discrete-time linear time-invariant (LTI) systems with unknown impulse 

responses but you know the response of each system when the input is a unit step function 𝑢[𝑛] where 

𝑢[𝑛] = [
1 𝑓𝑜𝑟 𝑛 ≥ 0
0 𝑜tℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The z-transform of 𝑢[𝑛] is 
1

1−𝑧−1 for |𝑧| > 1. 

(a) When the input is 𝑥[𝑛] = 𝑢[𝑛], the output 𝑦[𝑛] = 𝛿[𝑛] where 𝛿[𝑛] is the discrete-time impulse. 

𝛿[𝑛] = [
1 𝑓𝑜𝑟 𝑛 = 0
0 𝑜tℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Find the impulse response ℎ[𝑛].  9 points. 

Time-domain approach.  𝒚[𝒏] = 𝜹[𝒏] = 𝒖[𝒏] − 𝒖[𝒏 − 𝟏].  Since 𝒙[𝒏] = 𝒖[𝒏], we can write 

𝒚[𝒏] = 𝒙[𝒏] − 𝒙[𝒏 − 𝟏] and hence 𝒉[𝒏] = 𝜹[𝒏] − 𝜹[𝒏 − 𝟏]. 

Deconvolution approach. Assume the LTI system is an FIR filter observed for 𝒏 ≥ 𝟎 : 

𝒚[𝟎] = 𝒉[𝟎] 𝒙[𝒏] + 𝒉[𝟏] 𝒙[𝒏 − 𝟏] + 𝒉[𝟐] 𝒙[𝒏 − 𝟐] + ⋯ 𝒉[𝑵 − 𝟏] 𝒙[𝒏 − (𝑵 − 𝟏)] 

All initial conditions are zero as a necessary condition for LTI properties to hold: 

𝒚[𝟎] = 𝒉[𝟎] 𝒙[𝟎] so 𝟏 = 𝒉[𝟎] because 𝒚[𝟎] = 𝟏 and 𝒙[𝟎] = 𝟏 so 𝒉[𝟎] = 𝟏 

𝒚[𝟏] = 𝒉[𝟎] 𝒙[𝟏] + 𝒉[𝟏] 𝒙[𝟎] which is 𝟎 = 𝒉[𝟎] + 𝒉[𝟏] so 𝒉[𝟏] = −𝟏 

𝒚[𝟐] = 𝒉[𝟎] 𝒙[𝟐] + 𝒉[𝟏] 𝒙[𝟏] + 𝒉[𝟐] 𝒙[𝟎] which is 𝟎 = 𝒉[𝟎] + 𝒉[𝟏] + 𝒉[𝟐] so 𝒉[𝟐] = 𝟎 

We can check to see that 𝒉[𝒏] = 𝜹[𝒏] − 𝜹[𝒏 − 𝟏] convolved with 𝒖[𝒏] is 𝜹[𝒏]. 

Z-domain approach. An equalizer problem in disguise. We are trying to find an LTI system 

𝒉[𝒏] so that 𝒉[𝒏] ∗ 𝒖[𝒏] = 𝜹[𝒏].  In the z-domain, 𝑯(𝒛) 𝑼(𝒛) = 𝟏 which means that 

𝑯(𝒛) =  
𝟏

𝑼(𝒛)
=

𝟏
𝟏

𝟏−𝒛−𝟏

= 𝟏 − 𝒛−𝟏 for 𝒛 ≠ 𝟎.  Inverse z-transform is 𝒉[𝒏] = 𝜹[𝒏] − 𝜹[𝒏 − 𝟏]. 

(b) When the input is 𝑥[𝑛] = 𝑢[𝑛], the output is 𝑦[𝑛] = 𝑛 𝑢[𝑛].  Find the impulse 

response ℎ[𝑛].  9 points.  We rewrite 𝒚[𝒏] = 𝒏 𝒖[𝒏] = (𝒏 − 𝟏) 𝒖[𝒏 − 𝟏]. 

Deconvolution approach. Assume the LTI system is an FIR filter observed for 𝒏 ≥ 𝟎 : 

𝒚[𝟎] = 𝒉[𝟎] 𝒙[𝒏] + 𝒉[𝟏] 𝒙[𝒏 − 𝟏] + 𝒉[𝟐] 𝒙[𝒏 − 𝟐] + ⋯ 𝒉[𝑵 − 𝟏] 𝒙[𝒏 − (𝑵 − 𝟏)] 
All initial conditions are zero as a necessary condition for LTI properties to hold: 

𝒚[𝟎] = 𝒉[𝟎] 𝒙[𝟎] so 𝟎 = 𝒉[𝟎] because 𝒚[𝟎] = 𝟎 and 𝒙[𝟎] = 𝟏 so 𝒉[𝟎] = 𝟎 

𝒚[𝟏] = 𝒉[𝟎] 𝒙[𝟏] + 𝒉[𝟏] 𝒙[𝟎] which is 𝟏 = 𝒉[𝟎] + 𝒉[𝟏] so 𝒉[𝟏] = 𝟏 

𝒚[𝟐] = 𝒉[𝟎] 𝒙[𝟐] + 𝒉[𝟏] 𝒙[𝟏] + 𝒉[𝟐] 𝒙[𝟎] which is 𝟐 = 𝒉[𝟎] + 𝒉[𝟏] + 𝒉[𝟐] so 𝒉[𝟐] = 𝟏 

𝒚[𝟑] = 𝒉[𝟎] 𝒙[𝟑] + 𝒉[𝟏] 𝒙[𝟐] + 𝒉[𝟐] 𝒙[𝟏] + 𝒉[𝟑] 𝒙[𝟎] which is 

     𝟑 = 𝒉[𝟎] + 𝒉[𝟏] + 𝒉[𝟐] + 𝒉[𝟑] so 𝒉[𝟑] = 𝟏 

We check to see that 𝒉[𝒏] = 𝒖[𝒏 − 𝟏] convolved with 𝒖[𝒏] is 𝒏 𝒖[𝒏].  So, 𝒉[𝒏] = 𝒖[𝒏 − 𝟏]. 

Z-domain approach. Rewrite 𝒚[𝒏] = 𝒏 𝒖[𝒏] = (𝒏 − 𝟏) 𝒖[𝒏 − 𝟏].  We’re finding LTI system 

𝒉[𝒏] so that 𝒉[𝒏] ∗ 𝒖[𝒏] = (𝒏 − 𝟏) 𝒖[𝒏 − 𝟏]. In z-domain, 𝑯(𝒛) 𝑼(𝒛) =
𝒛−𝟏

(𝟏−𝒛−𝟏)
𝟐 𝐟𝐨𝐫 |𝒛| > 𝟏: 

𝑯(𝒛)  =

𝒛−𝟏

(𝟏 − 𝒛−𝟏)𝟐

𝟏
𝟏 − 𝒛−𝟏

=
𝒛−𝟏

𝟏 − 𝒛−𝟏
  𝐟𝐨𝐫 |𝒛| > 𝟏 

Taking the inverse z-transform gives 𝒉[𝒏] = 𝒖[𝒏 − 𝟏]. 
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(c) When the input is 𝑥[𝑛] = 𝑢[𝑛], the output is 𝑦[𝑛] is a rectangular pulse of L samples in duration: 

𝑦[𝑛] = [
1 𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 𝐿 − 1

0 𝑜tℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Find the impulse response ℎ[𝑛]. 9 points. 

Time-domain approach.  𝒚[𝒏] = 𝜹[𝒏] = 𝒖[𝒏] − 𝒖[𝒏 − 𝑳].  Since 𝒙[𝒏] = 𝒖[𝒏], we can write 

𝒚[𝒏] = 𝒙[𝒏] − 𝒙[𝒏 − 𝑳] and hence 𝒉[𝒏] = 𝜹[𝒏] − 𝜹[𝒏 − 𝑳]. 

Deconvolution approach. Assume the LTI system is an FIR filter observed for 𝒏 ≥ 𝟎 : 

𝒚[𝟎] = 𝒉[𝟎] 𝒙[𝒏] + 𝒉[𝟏] 𝒙[𝒏 − 𝟏] + 𝒉[𝟐] 𝒙[𝒏 − 𝟐] + ⋯ 𝒉[𝑵 − 𝟏] 𝒙[𝒏 − (𝑵 − 𝟏)] 
All initial conditions are zero as a necessary condition for LTI properties to hold: 

𝒚[𝟎] = 𝒉[𝟎] 𝒙[𝟎] so 𝟏 = 𝒉[𝟎] because 𝒚[𝟎] = 𝟏 and 𝒙[𝟎] = 𝟏 so 𝒉[𝟎] = 𝟏 

𝒚[𝟏] = 𝒉[𝟎] 𝒙[𝟏] + 𝒉[𝟏] 𝒙[𝟎] which is 𝟏 = 𝒉[𝟎] + 𝒉[𝟏] so 𝒉[𝟏] = 𝟎 

𝒚[𝟐] = 𝒉[𝟎] 𝒙[𝟐] + 𝒉[𝟏] 𝒙[𝟏] + 𝒉[𝟐] 𝒙[𝟎] which is 𝟏 = 𝒉[𝟎] + 𝒉[𝟏] + 𝒉[𝟐] so 𝒉[𝟐] = 𝟎 

If 𝒉[𝒏] = 𝜹[𝒏], then 𝒉[𝒏] ∗ 𝒖[𝒏] ≠ 𝒚[𝒏].  So, we keep computing 𝒉[𝒏] values. 

𝒚[𝑳] = 𝒉[𝟎] 𝒙[𝑳] + 𝒉[𝟏] 𝒙[𝑳 − 𝟏] + ⋯ + 𝒉[𝑳] 𝒙[𝟎] which is 

     𝟎 = 𝒉[𝟎] + 𝒉[𝟏] + ⋯ + 𝒉[𝑳] so 𝒉[𝑳] = 𝟎 

We check to see that 𝒉[𝒏] = 𝜹[𝒏] − 𝜹[𝒏 − 𝑳] convolved with 𝒖[𝒏] is 𝒚[𝒏]. 

Z-domain approach. We’re finding LTI system 𝒉[𝒏] so that 𝒉[𝒏] ∗ 𝒖[𝒏] is rectangular pulse 

of 𝑳 samples in duration. In the z-domain, 𝑯(𝒛) 𝑼(𝒛) = 𝟏 + 𝒛−𝟏 + ⋯ + 𝒛−(𝑳−𝟏) which means 

𝑯(𝒛)  =
𝟏 + 𝒛−𝟏 + ⋯ + 𝒛−(𝑳−𝟏)

𝟏
𝟏 − 𝒛−𝟏

= (𝟏 + 𝒛−𝟏 + ⋯ + 𝒛−(𝑳−𝟏))(𝟏 − 𝒛−𝟏) = 𝟏 − 𝒛−𝑳 𝐟𝐨𝐫 𝒛 ≠ 𝟎 

Taking the inverse z-transform gives 𝒉[𝒏] = 𝜹[𝒏] − 𝜹[𝒏 − 𝑳].  In Matlab, polynomial 

multiplication is computed using the conv command, e.g. conv( [1 1 1 1 1 1 1], [1 -1] ). 

 

  
%% Deconvolution by Prof. Brian L. Evans. 

%% Keep in mind the first element in a 

%% MATLAB vector has index 1 and not 0. 

  

%% USAGE 

%% FIR filters convolve the input signal 

%% and the FIR filter impulse response 

%% (which is equal to the filter coeffs). 

%% When input signal has finite length, 

%% the output is finite length: 

%% 

%% LengthOfy = LengthOfx + NumCoeffs - 1 

%% 

%% Given finite-length signals x and y, 

%% we can determine how many filter 

%% coefficients b there are. 

%% 

%% If the input signal is infinite in 

%% length, then the output could be 

%% either infinite or finite in length. 

  

%% Define input and output signals. Give 

%% an equal number of x and y values if 

%% x is to be considered infinite length. 

 

x = [ 1 1 1 1 1 1 ];  %% Midterm 1.3(a) 

y = [ 1 0 0 0 0 0 ]; 

 

%% Determine Nmax based on input signal 

%% Finite-length   length(y) - length(x) + 1 

%% Infinite-length length(x) 

if ( length(x) == length(y)  ) 

    Nmax = length(x); 

else 

    Nmax = length(y) - length(x) + 1; 

end 

  

b = zeros(1, Nmax); 

b(1) = y(1) / x(1); 

for k = 2:Nmax 

    numer = y(k); 

    n = k; 

    for m = 1:(k-1) 

        if (n >= 1) 

            numer = numer - b(m) * x(n); 

        end 

        n = n - 1; 

    end 

    b(k) = numer / x(1); 

end 

 

Designing 

Averaging 

Filters 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf


Problem 1.4.  Mystery Systems.  24 points.  

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 8000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 8000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

8000 Hz

10 𝑠
= 800 Hz2.  Sampling rate 𝑓𝑠 is 16000 Hz. 

In each part below, identify the unknown system as one of the following with justification: 

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies 

2. upsampler – give upsampling factor 

3. downsampler – give downsampling factor 

4. pointwise nonlinearity – give the integer exponent k to produce the output 𝑦[𝑛] = 𝑥𝑘[𝑛] 

In the grayscale color map, white has highest magnitude value. 

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  12 pts.  

 
In the output spectrogram, principal frequencies between 2000 and 4000 Hz are severely 

attenuated and other principal frequencies are passed.  No new frequencies are created, so it is 

likely an LTI filter. This is a bandstop filter similar to HW 2.3.  See next page for the Matlab code. 

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  12 points.  

 
Output spectrogram has about 3x the frequency values on vertical axis over the same time interval 

vs. input spectrogram. Upsampling by 3 gives input chirp signal plus replicas every 16 kHz. Two 

replicas are visible -- a replica from 16 to 24 kHz and a replica from -32 to -40 kHz which aliases 

to 16 to 8 kHz due to a sampling rate of 48 kHz.  Upsampling by 3 per HW 2.2(e).  See next page. 

HW 1.2 1.3 & 2.2 In-Lecture #1 Assignment 

Handout Common Signals in Matlab 

Midterm 1: 1.4 Sp11, 1.3 Sp15, 1.5 Sp19, 1.4 F19, 1.4 Sp20, 1.4 F21, 1.4 Sp20 

Lecture 4 

HW 1.1 1.3 

2.1 2.2 & 2.3 

Lab #3 

Lectures 

1 3 5 & 6 

JSK Ch. 7 

Midterm 1.4 

Sp22 

HW 0.3 & 2.2 

Lecture 4 

Midterm 

Problems 

1.2 Sp23 

1.2 F18 

1.2(d) Sp18 

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx


%% Midterm Problem 2.4(a) bandstop filter 

 

fs = 16000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

  

%% Design lowpass filter 

fnyquist = fs/2; 

fstop1 = 1800; 

fpass1 = 2000; 

fpass2 = 4000; 

fstop2 = 4200; 

ctfrequencies = [0 fstop1 fpass1 fpass2 fstop2 fnyquist]; 

idealAmplitudes = [1 1 0 0 1 1]; 

pmfrequencies = ctfrequencies / fnyquist; 

filterOrder = 400; 

h = firpm( filterOrder, pmfrequencies, idealAmplitudes ); 

h = h / sum(h .^ 2); 

  

y = conv(x, h); 

  

%%% Spectrogram parameters 

blockSize = 1024;  

overlap = 1023; 

figure; 

  

%%% Plot spectrogram of input signal 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

  

%%% Plot spectrogram of output signal 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

 

 

  



%% Midterm Problem 2.4(b) upsampling by 3 

 

fs = 16000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

  

%% Upsample by 3 

upsampleFactor = 3; 

y = zeros(1, upsampleFactor*length(x)); 

y(1:3:end) = x; 

  

%%% Spectrogram parameters 

blockSize = 1024;  

overlap = 1023; 

figure; 

  

%%% Plot spectrogram of input signal 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

  

%%% Plot spectrogram of output signal 

figure; 

spectrogram(y, blockSize, overlap, blockSize, upsampleFactor*fs, 'yaxis'); 

colormap gray; 
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1 15  Phase Modulation 
2 15  Equalizer Design 
3 30  8-QAM 
4 20  ADSL Receivers 
5 20  Potpourri 

Total 100   



Problem 2.1 Phase Modulation.  15 points.      
Phase modulation at a carrier frequency fc of a causal message signal m(t) is defined as 

Frequency modulation is defined as 

(a) Show that one can use a frequency modulator to generate a phase modulated signal using 
the block diagram below.  Give kp in terms of frequency modulation parameters.  5 points. 

 

 

 

 

 

 

 

 

(b) Give a version of Carson’s rule for the transmission bandwidth of phase modulation.  You 
do not have to derive it.  10 points. 

 
 
 
 
 
 

 
 

( ))(   2    2cos)( tmktfAts pccPM ππ +=









+= ∫

t

fccFM dmktfAts
0

 )(  2   2cos)( λλππ

)(tm
d   
dt 

Frequency 
Modulator 
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Problem 2.2  Equalizer Design.  15 points.    
You are given a discretized communication channel defined by the following sampled 

impulse response with a representing a real number: 
 

h[n] =  δ[n] – 2 a δ[n-1] + a2 δ[n-2] 
 
(a) For this channel, what would you propose to do at the transmitter to prevent intersymbol 

interference?  5 points. 
 

 
 
 
 

(b) Find the transfer function of the discretized channel.  5 points. 
 
 
 
 
 
(c) For this channel, design a stable linear time-invariant equalizer for the receiver so that the 

impulse response of the cascade of the discretized channel and equalizer yields a delayed 
impulse.  Please state any assumptions on the value of a.  5 points. 
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Problem 2.3 8-QAM.  30 points. 
This problem asks you to compare the two different 8-QAM constellations below.   

(i) Assume that the channel noise is additive white Gaussian noise with variance σ2 in 
both the in-phase and quadrature components. 

(ii) Assume that 0's and 1's occur with equal probability. 
(iii) Assume that the symbol period T is equal to 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Compute the average power for each 8-QAM constellation.  5 points. 
 
 
 

 
 

 
(b) Compute the formula for probability of symbol error for each 8-QAM in terms of the Q 

function.  Draw the decision regions you are using on the above constellations.  15 points. 
 
 
 
 
 
 
 
 
 

 
 

 
 
(c) Draw the optimal bit assignments for each symbol you would use for each of the 

constellations above on the constellations directly.  5 points. 
 

(d) How would you choose which 8-QAM constellation to use in a modem?  5 points. 

I 

Q 

2d 

2d I 

Q 

2d 

2d 
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Problem 2.4 ADSL Receivers.  20 points.    
 

Downstream ADSL transmission uses a symbol length N of 512, a cyclic prefix ν of 32 
samples, and a sampling rate of 2.208 MHz.  There are N/2 or 256 subchannels. 
 
A downstream ADSL receiver for data transmission is shown below.  The D/A converter has 16 
bits of resolution.  Use a word size of 16 bits for the analysis.  The time-domain equalizer is a 
32-tap FIR filter.  Please calculate the computational complexity and memory usage of the each 
function shown except for the receive filter and A/D converter. (From slide 18-8). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

             N/2 subchannels 
 
 
 
 
 
 
  
 
 
 
 
Function Multiply-

accumulates 
Compares Words of 

memory 
Time domain equalizer    
Remove cyclic prefix    
Serial-to-parallel converter    
Fast Fourier Transform    
Remove mirrored data    
Frequency domain equalizer    
QAM decoder    
Parallel-to-serial converter    

P/S QAM 
demod 

 
decoder 

invert 
channel 

= 
frequency 
domain 

equalizer 

N-FFT 
and  

remove 
mirrored 

data 

N real 
samples  

S/P remove  
cyclic 
prefix 

N real 
samples 

 receive 
filter 

+ 
A/D 
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Problem 2.5 Potpourri.  20 points.    
 

Please determine whether the following claims are true or false and support each answer 
with a brief justification. If you give a true or false answer without any justification, then you 
will receive zero points for that answer. 
 
 
(a) In a communication system design, digital communication should always be chosen over 

analog communications because digital communication systems are more reliable and more 
immune to noise and interference.  4 points. 

 
 
 
 
 
 

(b) Digital QAM is more popular than Digital PAM because it is easier to build a Digital QAM 
transmitter than a Digital PAM transmitter.  4 points. 

 
 
 
 
 
 

 
(c) Pulse shaping filters are designed to contain the spectrum of a digital communication 

signal. They are chosen to aid the receiver in locking onto the carrier frequency and phase. 
4 points. 

 
 
 
 
 
 

(d) IEEE 802.11a wireless LAN modems and ADSL/VDSL wireline modems employ 
multicarrier modulation.  802.11a modems achieve higher bit rates than ADSL/VDSL 
because 802.11a systems deliver the highest bits/s/Hz of transmission bandwidth.  4 points. 

 
 
 
 
 
 

(e) FM radio uses excess frequency to make transmission more resistant to fading in wireless 
channels.  4 points. 
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Problem 2.1.  Digital PAM Transmission.  15 points.  
 
Shown below is a block diagram for baseband pulse amplitude modulation (PAM) transmission. The 
system parameters include the following: 

• M is the number of points in the constellation 

• 2d is the constellation spacing in the PAM constellation. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter) 

• Ng is the length in symbols of the non-zero extent of the pulse shape 

• fsym is the symbol rate 
 
 
 
 
 
(a) Give a formula using the appropriate system parameters for the bit rate being transmitted. 

2 points. 
 
 

 
(b) The leftmost block performs upsampling by L samples.  What communication system parameter 

does L represent?  2 points. 
 
 
 
 

(c) Give a formula using the appropriate system parameters for the sampling rate for the D/A 
converter.  3 points. 
 
 
 
 

(d) Give a formula using the appropriate system parameters for the number of multiplication-
accumulation operations per second that would be required to compute the two leftmost blocks in 
the above block diagram (i.e., the blocks before the D/A converter) 
 

I. as shown in the block diagram?  4 points. 
 
 
 
 
 
 

II. using a filter bank implementation?  4 points. 
 
 

D/A Transmit 
Filter 

ak 
gT[m]   L 
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Problem 2.2  Equalizer Design.  15 points. 
You are given a discretized communication channel defined by the following sampled impulse 

response, where |a| < 1: 
 

h[n] =  an-1 u[n-1] 
 
(a) Give the transfer function of the channel.  2 points. 

 
 
 
 

(b) Does the channel have a lowpass, highpass, bandpass, bandstop, allpass, or notch response? 
2 points. 

 
 
 
 
 
(c) Design a causal stable discrete-time filter to equalize the above channel for a single-carrier 

communication system. 4 points. 
 
 
 
 
 
 
 

(d) Does the channel equalizer you designed in part (c) have a lowpass, highpass, bandpass, bandstop, 
allpass, or notch response?  2 points. 

 
 
 
 
 
 

(e) Using your answer in part (c), give the impulse response of the equalized channel.  5 points. 
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Problem 2.3 8-PAM vs. an 8-QAM constellation.  40 points. 
In this problem, assume that 

  (i) the channel noise for both in-phase and quadrature 
components is additive white Gaussian noise with 

variance of σ2 and mean of zero. 
 (ii) 0's and 1's occur with equal probability. 
(iii) the symbol period T is equal to 1. 

Please complete the comparison below of 8-PAM and 
the version of 8-QAM shown on the right. 

 
(a) Compute the average power for the 8-QAM constellation 
on the right.  5 points. 
 
 
 
 
 
(b) Draw your decision regions on the 8-QAM constellation shown above.  5 points. 
 
 
(c) Based on the decision regions in part (b), derive the formula for the probability of symbol error at 

the sampled output of the matched filter for the 8-QAM constellation in terms of the Q function 
and the SNR.  10 points. 

 
 
 
 
 
 
 
 
 
 

. 
 

I 

Q 
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(d) On the blank PAM constellation on the right, draw the 
8-PAM constellation with spacing between adjacent 
constellation points of 2d.  5 points. 
 
 
(e) Compute the average power for the 8-PAM constellation. 5 points. 
 
 
 
 
 
 
 
 
 
(f) Derive the formula for the probability of symbol error at the sampled output of the matched filter 

in the receiver for the 8-PAM constellation in terms of the Q function and the SNR.  5 points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(g) Which constellation, the 8-PAM constellation on this page or the 8-QAM constellation on the 

previous page, is better to use and why?  5 points. 
 
 
 

8-PAM 
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Problem 2.4 Multicarrier Communications.  15 points. 
 
Here are some of the system parameters for a standard-compliant ADSL transceiver: 

• Transmission bandwidth BT = 1.104 MHz 

• Sampling rate fsampling = 2.208 MHz 

• Symbol rate fsymbol = 4 kHz (same symbol rate in both downstream and upstream directions) 

• Number of subcarriers:  Ndownstream = 256 and Nupstream = 32 

• Cyclic prefix length is 1/16 of the symbol length 
 
(a) What is the ratio of the computational complexity of the downstream fast Fourier transform to the 

upstream fast Fourier transform in terms of real multiplication-accumulation (MAC) operations per 
second?  4 points. 

 
 
 
 
 
 
(b) During data transmission, what is the longest time domain equalizer that could be computed in real 

time on the C6701 digital signal processing board you have been using in lab?  4 points. 
 
 
 

 
 

 
(c) Which block in a multicarrier transceiver implements pulse shaping?  What is the pulse shape?       

4 points. 
 
 
 
 

 
 
(d) Every 69th frame in an ADSL transmission is a synchronization frame.  For use between 

synchronization frames, describe in words a method for symbol synchronization.  3 points. 
 
 
 
 
 
 
  

Fall 2005 Midterm #2

   



K -  73 

Problem 2.5 Potpourri.  15 points. 
 

Please determine whether the following claims are true or false and support each answer with a 
brief justification. If you give a true or false answer without any justification, then you will be 
awarded zero points for that answer. 
 
(a) In a modem, as much of the processing as possible in the baseband transceiver should be 

performed in the digital, discrete-time domain because digital communications is more reliable and 
more immune to noise and interference than is analog communications.  3 points. 

 
 
 
 
 
(b) Pulse shaping filters are designed to contain the spectrum of a transmitted signal in a 

communication system. In a communication system, the pulse shape should be zero at non-zero 
integer multiples of the symbol duration and have its maximum value at the origin.  3 points. 

 
 
 
 
 

(c) Although wired and wireless channels have impulse responses of infinite duration, each can be 
modeled as an FIR filter.  Wired channel impulse responses do not change over time, whereas 
wireless channel impulse responses change over time.  3 points. 

 
 
 
 
 

(d) A receiver in a digital communication system employs a variety of adaptive subsystems, including 
automatic gain control, carrier recovery, and timing recovery.  A transmitter in a digital 
communication system does not employ any adaptive systems.  3 points. 

 
 
 
 
 
 
(e) All consumer modems for high-speed Internet access (i.e. capable of bit rates at or above 1 Mbps) 

employ multicarrier modulation.  3 points. 
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Problem 2.1.  Digital PAM Transmission.  28 points.  
 
Shown below is a block diagram for baseband digital pulse amplitude modulation (PAM) 
transmission. The system parameters (in alphabetical order) include the following: 

• 2d is the constellation spacing in the PAM constellation. 

• fsym is the symbol rate. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter). 

• L is the upsampling factor, a.k.a. the oversampling ratio 

• M is the number of points in the constellation, where M = 2J. 

• Ng is the length in symbols of the non-zero extent of the pulse shape. 
 
 
 
 
 

 
(a) What does ak represent?  Give a formula using the appropriate system parameters for the values 

that ak could take.  3 points 
 
 
(b) What communication system parameter does the upsampling factor L represent?  3 points. 

 
 

(c) Give a formula for the data rate in bits per second of the transmitter.  4 points. 
 

 
(d) Give formulas using the appropriate system parameters for the implementation complexity 

measures in the table below that would be required to compute the two leftmost blocks in the 
above block diagram (i.e., the blocks before the D/A converter).  18 points. 
 

 Multiplication-accumulation 
operations per second 

Memory Usage in Words Memory Reads and 
Writes in words/second 

As shown 
above 

   

Using a 
filter bank 

   

D/A Transmit 
Filter 

ak 
gT[m]   L 
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Problem 2.2  Digital PAM Reception.  24 points  
 
As in problem 2.1, shown below is a block diagram for baseband digital pulse amplitude modulation 
(PAM) transmission. The system parameters (in alphabetical order) include the following: 

• 2d is the constellation spacing in the PAM constellation. 

• fsym is the symbol rate. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter). 

• L is the upsampling factor, a.k.a. the oversampling ratio 

• M is the number of points in the constellation, where M = 2J. 

• Ng is the length in symbols of the non-zero extent of the pulse shape. 
 
 
 
 
 
Here is a block diagram for baseband digital PAM reception: 

 
 
The blocks in the baseband digital PAM receiver are analogous to the blocks in the digital baseband 
PAM transmitter.  The hat above the ak term in the receiver means an estimate of ak in the transmitter.  
Assume that the channel only consists of additive white Gaussian noise.   Assume synchronization. 
 
Please describe in words each of the missing blocks (a)-(c) and how to choose the parameters (e.g. 
filter coefficients) for each block.  Each part is worth 8 points. 
 
(a) 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
(c)

A/D (a) (b) (c) 
kâ

D/A Transmit 
Filter 

ak 
gT[m]   L 
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Problem 2.3  Equalizer Design.  24 points. 
 

Consider a discrete-time baseband model of a communication channel that consists of a linear time-
invariant finite impulse response (FIR) filter with impulse response h[n] plus additive white Gaussian 
noise w[n] with zero mean, as shown below: 

 

 
During modem training, the transmitter transmits a short training signal that is a pseudo-noise 
sequence of length seven that is known to the receiver.  The bit pattern is 1 1 1 0 1 0 0.   The bits are 
encoded using 2-level pulse amplitude modulation (but without pulse shaping) so that 
 

• for x[n] equal to the sequence 1, 1, 1, -1, 1, -1, -1, 

• the channel output r[n] is equal to the sequence 0.982, 2.04, 2.02, -0.009, 0.040, -2.03, -0.891. 
 
(a) Assuming that h[n] has two non-zero coefficients, i.e. h[0] and h[1], estimate their values to three 

significant digits.  6 points. 
 

 
 
 

(b) Using the result in (a), estimate the coefficients for a two-tap FIR filter c[n] to equalize the 
channel.  What value of the delay are you assuming?  6 points. 

 
 
 
 

(c) Without changing the training sequence, describe an algorithm that the receiver can use to estimate 
the true length of the FIR filter h[n].  You do not have to compute the length.  6 points. 

 
 
 
(d) In a receiver, for a training sequence of 8000 samples and an FIR equalizer of 100 coefficients, 

would you advocate using a least-squares equalizer design algorithm or an adaptive equalizer 
design algorithm for real-time implementation on a DSP processor?  Why?  6 points. 

 
 

x[n] 
h[n] 

w[n] 

+ 

r[n] 
c[n] 

Channel 
Model 

Equalizer 

y[n] 
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Problem 2.4 Potpourri.  24 points. 
 

Please determine whether the following claims are true or false.  If you believe the claim to be false, 
then provide a counterexample.  If you believe the claim to be true, then give supporting evidence 
that may includes formulas and graphs as appropriate.  If you give a true or false answer without any 
justification, then you will be awarded zero points for that answer.  If you answer by simply 
rephrasing the claim, you will be awarded zero points for that answer. 
 
(a) A common baseband model for wired and wireless channels is as an FIR filter plus additive white 

Gaussian noise.  4 points. 
 
 
 
 
(b) When a Gaussian random process is input to a linear time-invariant system, the output is also a 

Gaussian random process where the mean is scaled by the DC response of the linear time-invariant 
system and the variance is scaled by twice the bandwidth.  4 points. 

 
 

 
 
(c) Frequency shift keying is another type of multicarrier modulation method in which one or more 

subcarriers are “turned on” to represent the digital information being transmitted.  The only use of 
frequency shift keying in a consumer electronics product is in telephone touchtone dialing (i.e. 
dual-tone multiple frequency signaling).  4 points. 

 
 
 
 

(d) All modems in currently available consumer electronics products for very high-speed Internet 
access (i.e. capable of bit rates at or above 5 Mbps) employ multicarrier modulation. 
4 points. 

 
 
 
 
(e) The TI TMS320C6713 digital signal processing board you have been using in lab can compute the 

fast Fourier transform operation for downstream ADSL reception in real time using single-
precision floating-point arithmetic.  4 points. 

 
 
 
 
(f) In ADSL, the pulse shape used in the transmitter is a square root raised cosine.  4 points. 
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Problem 2.1.  Baseband Digital PAM Transmission.  27 points.  

Shown below is part of a baseband digital pulse amplitude modulation (PAM) transmitter. The system 
parameters (in alphabetical order) include the following: 

• 2d is the constellation spacing in the PAM constellation. 

• fs is the sampling rate. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter). 

• L is the upsampling factor, a.k.a. the oversampling ratio 

• M is the number of points in the constellation, where M = 2J. 

• Ng is the length in symbol periods of the non-zero extent of the pulse shape. 
 
 
 
 
 

 
(a) What does ak represent?  Give a formula using the appropriate system parameters for the values 

that ak could take.  3 points 
 
 
 
(b) What communication system parameter does the upsampling factor L represent?  3 points. 

 
 
 

(c) Give a formula for the bit rate in bits per second of the transmitter.  3 points. 
 

 
 

(d) Give formulas using the appropriate system parameters for the implementation complexity 
measures in the table below that would be required to compute the two leftmost blocks in the 
above block diagram (i.e., the blocks before the D/A converter).  18 points. 
 

 Multiplication-accumulation 
operations per second 

Memory usage in words Memory reads and 
writes in words/second 

As shown 
above 

 
 
 
 

  

Using a 
filter bank 

 
 
 
 

  

D/A Transmit 
Filter 

ak 
gT[m]   L 
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Problem 2.2  Baseband Digital PAM Reception.  27 points  

As in problem 2.1, shown below is part of a baseband digital pulse amplitude modulation (PAM) 
transmitter. The system parameters (in alphabetical order) include the following: 

• 2d is the constellation spacing in the PAM constellation. 

• fs is the sampling rate. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter). 

• L is the upsampling factor, a.k.a. the oversampling ratio 

• M is the number of points in the constellation, where M = 2J. 

• Ng is the length in symbols of the non-zero extent of the pulse shape. 

Last Four Blocks of the Digital PAM Transmitter 
 
 
 
 

Channel Model 

Additive white Gaussian noise. 

First Four Blocks of the Digital PAM Receiver 

 
 
The hat above the ak term in the receiver means an estimate of ak in the transmitter. 

Assume that the receiver is synchronized to the transmitter. 

Each block in the baseband digital PAM receiver is analogous to one block in the digital baseband 
PAM transmitter; e.g., the receive filter is analogous to the transmit filter. 

Please describe in words each of the missing blocks (a)-(c) and how to choose the parameters (e.g. 
filter coefficients) for each block.  Each part is worth 9 points. 
 
(a) 
 
 
 

 
 
(b) 
 
 

 
 
 
(c)

(a) Receive 
Filter 

(b) (c) 

D/A Transmit 
Filter 

ak    L gT[m] 

kâ
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Problem 2.3  QAM.  30 points. 
 

This problem asks you to evaluate two different 12-QAM constellations.  Assumptions follow: 
  (i) Each symbol is equally likely                                 (iii) Perfect carrier frequency/phase recovery 
 (ii) Channel only consists of additive white                 (iv) Perfect symbol timing recovery 
      Gaussian noise with zero mean and                         (v) Constellation spacing of 2d 

      and variance σ2 in both the in-phase (I)                   (vi) Symbol duration Tsym = 1 
      and quadrature (Q) components 

                                      Constellation #1                                                  Constellation #2 

 

(a) Compute the average signal power for each of the QAM constellations above.  6 points. 
 
 

 
 

(b) Draw your decision regions on the 12-QAM constellations shown above.  6 points. 
 
(c) Based on your decision regions in part (b), give a formula for the probability of symbol error at 

the sampled output of the matched filter for each of the 12-QAM constellations in terms of the Q 

function, i.e. Q(d/σ).  12 points. 
 
 
 
 
 
 
 

 
 

 
(d) Given the above assumptions and answers, which 12-QAM constellation would you choose? 

6 points. 

I 

 

2d 

2d 

2d 

I 

Q 

2d 

2d 

2d 

Q 
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Problem 2.4  Equalizer Design.  16 points. 

Consider a discrete-time baseband model of a communication system with transmitted signal x[n] and 
received signal r[n].  The channel model is a linear time-invariant (LTI) finite impulse response (FIR) 
filter with impulse response h[n] plus additive white Gaussian noise process with zero mean w[n]: 

 

During modem training, the transmitter transmits a short training signal that is a pseudo-noise 
sequence of length seven that is known to the receiver.  The bit pattern is 1 1 1 0 1 0 0.   The bits are 
encoded using 2-level pulse amplitude modulation (but without pulse shaping) so that 

• for x[n] equal to the sequence 1, 1, 1, -1, 1, -1, -1, 

• r[n] is equal to the sequence 0.982, 2.04, 2.02, -0.009, 0.040, -2.03, -0.891, ....  
 

(a) Assume that the equalizer is a two-tap LTI FIR filter.  Compute an equalizer impulse response c[n] 
for a transmission delay of zero.  7 points. 

 
 
 
 

 
 

 
(b) In a receiver, for a training sequence of 8000 symbols and an FIR equalizer of 100 coefficients, 

would you advocate using a least-squares equalizer design algorithm or an adaptive equalizer 
design algorithm for real-time implementation on a digital signal processor?  Why?  9 points. 

 

x[n] 
h[n] 

w[n] 

+ 

r[n] 
c[n] 

Channel 

Model 

 

 

   







































E(z) = B(z) - V(z) = B(z) - (1/K) B(z)

  

B(z) = K V(z)

V(z) = X(z) - H(z) E(z)
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Correction: Only the left constellation can be gray coded.



Spring 2014 objective function was y^2[m]; replace 2 u in spring 2014 solution with u
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Problem 2.1. Ideal Channel Model. 21 points. 

Consider the following block diagram of an ideal channel model: 

 

Assume that the delay  is positive and the gain g is not zero. 

(a) Give an algorithm to recover x[m] from y[m] assuming that the values of  and g are known.  

6 points.  

y[m] = g x[m-]  or equivalently x[m] = (1/g) y[m+] 

Discard the first samples of y[m] and scale by 1/g 

 

 

(b) For a pseudo-noise training sequence known to the transmitter and receiver, give an algorithm for 

the receiver to estimate the delay and gain g.  9 points. 

Assume that pseudo-noise training sequence x[m] has values of +1 and -1. 

Correlate y[m] with x[m]. 

Location of the first peak gives . 

Discard the first samples of y[m] to obtain y1[m]. 

Compute g as the average value of | y1[m] | divided by the average value of | x[m] |. 

Using averaging of all samples gives a more accurate estimate the ideal channel model for 

an actual physical channel. 

 

(c) Given a sequence of -1 and +1 values, how could you verify whether or not it is a maximal length 

pseudo-noise sequence?  6 points. 

The sequence length N must be 2r – 1 where r is an integer and r  > 1 

The normalized autocorrelation R[m] of the sequence is 1 at the origin and -1/N otherwise. 

𝑹[𝒎] =
𝟏

𝑵
∑ 𝒙[𝒌]𝒙[𝒎 + 𝒌]

𝑵−𝟏

𝒌=𝟎

 

The magnitude of the discrete Fourier transform of the sequence is constant except at DC 

where it has a much smaller value of 1. 

  



Problem 2.2  QAM Communication Performance. 27 points.  

Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 

decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

 Left Constellation Right Constellation 

(a) Peak transmit power 18 d2 34 d2 

(b) Average transmit power 10 d2 18 d2 

(c) Number of type I regions 4 0 

(d) Number of type II regions 8 12 

(e) Number of type III regions 4 4 

(f) Probability of symbol error 

for additive Gaussian noise 

with zero mean & variance 2 
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Draw the decision regions for the right constellation on top of the right constellation.  3 points. 

The I and Q axes are decision boundaries.  The decision regions must cover the entire I-Q plane. 

Fill in each entry (a)-(f) in the above table for the right constellation.  Each entry is worth 3 points. 

Due to symmetry in the constellation, one can compute parts (a) and (b) from one quadrant. 

Transmit power for each constellation point is 2 d2, 10 d2, 26 d2 and 34 d2. 

Peak power is 34 d2 and average power is 18 d2. 

For part (f), P(correct) = 1 – P(error) and  

𝑷(𝐞𝐫𝐫𝐨𝐫) =
𝟏𝟐

𝟏𝟔
(𝟏 − 𝑸 (

𝒅

𝝈
)) (𝟏 − 𝟐𝑸 (

𝒅

𝝈
)) +

𝟒

𝟏𝟔
(𝟏 − 𝑸 (

𝒅

𝝈
))

𝟐

= 𝟏 −
𝟏𝟏

𝟒
𝑸 (

𝒅

𝝈
) +

𝟕

𝟒
𝑸𝟐 (

𝒅

𝝈
) 

Which of the two constellations would you advocate using?  Why?  Please give at least two reasons. 

6 points.   The left constellation is the better choice because it has 

Lower peak transmit power 

Lower average transmit power 

Lower peak-to-average transmit power 

Lower probability of symbol error vs. signal-to-noise ratio (SNR) 

Gray coding whereas the right constellation does not  

2d 

I 

Q 

2d 

I 

Q 

2d 
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Problem 2.3. Narrowband Interference.  28 points. 

Consider a baseband pulse amplitude modulation communication system in which the narrowband 

interference is stronger than the transmitted signal and additive noise at the receiver input. 

Design a causal second-order adaptive infinite impulse response (IIR) filter to remove the interference: 

 Zero locations are at exp(j ω0) and exp(-j ω0) 

 Pole locations are at r exp(j ω0) and r exp(-j ω0) 

Relationship between input x[m] and output y[m] is 

y[m] = x[m] – (2 cos ω0) x[m-1] + x[m-2] + (2 r cos ω0) y[m-1] - r2 y[m-2] 

To guarantee stability, we will set the pole radius r to a constant value so that 0 < r < 1. 

We will adapt the frequency location of the notch, ω0. 

(a) Determine an objective function J(y[m]).  6 points. 

To minimize the power of the narrowband interferer, let 𝐽(𝑦[𝑚]) =
1

2
𝑦2[𝑚] 

(b) What initial value of ω0 would you use?  Why?  6 points 

If the narrowband interferer were outside the transmission band, then the matched filter in 

the receiver would attenuate it.  Let the initial value of ω0 be in the middle of the 

transmission band in order to quickly adapt it to the location of the interferer. 

(c) Compute the partial derivative of y[m] with respect to ω0.  You may assume that the partial 

derivative of y[m] with respect to ω0 is 0 for m < 0.  6 points. 

System is causal, so x[m] = 0 for m < 0 and y[m] = 0 for m < 0. 

y[m] = x[m] – (2 cos ω0) x[m-1] + x[m-2] + (2 r cos ω0) y[m-1] - r2 y[m-2] 

y[m-1] = x[m-1] – (2 cos ω0) x[m-2] + x[m-3] + 2 r cos ω0) y[m-2] - r2 y[m-3] 

y[m-2] = x[m-2] – (2 cos ω0) x[m-3] + x[m-4] + (2 r cos ω0) y[m-3] - r2 y[m-4] 

𝒅𝒚[𝒎]

𝒅𝝎𝟎
= 𝟐 𝐬𝐢𝐧(𝝎𝟎) 𝒙[𝒎 − 𝟏] − 𝟐 𝒓 𝐬𝐢𝐧(𝝎𝟎) 𝒚[𝒎 − 𝟏] + (𝟐 𝒓 𝐜𝐨𝐬(𝝎𝟎))

𝒅𝒚[𝒎 − 𝟏]

𝒅𝝎𝟎
− 𝒓𝟐

𝒅𝒚[𝒎 − 𝟐]

𝒅𝝎𝟎
 

𝐋𝐞𝐭 𝒗[𝒎] =
𝒅𝒚[𝒎]

𝒅𝝎𝟎
 where v[-1] = 0 and v[-2] = 0, 

𝒗[𝒎] = 𝟐 𝐬𝐢𝐧(𝝎𝟎) 𝒙[𝒎 − 𝟏] − 𝟐 𝒓 𝐬𝐢𝐧(𝝎𝟎) 𝒚[𝒎 − 𝟏] + 𝟐 𝒓 𝐜𝐨𝐬(𝝎𝟎) 𝒗[𝒎 − 𝟏] − 𝒓𝟐 𝒗[𝒎 − 𝟐] 

(d) Based on your answers in (a), (b), and (c), derive an update equation to adapt ω0.  6 points. 

𝝎𝟎[𝒎 + 𝟏] = 𝝎𝟎[𝒎] − 𝝁
𝒅𝑱(𝒚[𝒎])

𝒅𝝎𝟎
]

𝝎𝟎=𝝎𝟎[𝒎]

= 𝝎𝟎[𝒎] − 𝝁 𝒚[𝒎]
𝒅𝒚[𝒎]

𝒅𝝎𝟎
]

𝝎𝟎=𝝎𝟎[𝒎]

 

𝝎𝟎[𝒎 + 𝟏] = 𝝎𝟎[𝒎] − 𝝁 𝒚[𝒎] 𝒗[𝒎] 

𝒚[𝒎] = 𝒙[𝒎] − 𝟐 𝐜𝐨𝐬(𝝎𝟎[𝒎]) 𝒙[𝒎 − 𝟏] + 𝒙[𝒎 − 𝟐] + 𝟐 𝒓 𝐜𝐨𝐬(𝝎𝟎[𝒎]) 𝒚[𝒎 − 𝟏] − 𝒓𝟐 𝒚[𝒎 − 𝟐]  

𝒗[𝒎] = 𝟐 𝐬𝐢𝐧(𝝎𝟎[𝒎]) 𝒙[𝒎 − 𝟏] − 𝟐 𝒓 𝐬𝐢𝐧(𝝎𝟎[𝒎]) 𝒚[𝒎 − 𝟏] + 𝟐 𝒓 𝐜𝐨𝐬(𝝎𝟎[𝒎]) 𝒗[𝒎 − 𝟏] − 𝒓𝟐 𝒗[𝒎 − 𝟐] 

(e) For the answer in (d), what value of the step size would you recommend?  Why?  4 points. 

We need a very small  > 0, e.g.  = 0.001, to ensure that the adaptation converges. 

Or apply fixed-point theorem to 0[m+1] = f(0[m]) and solve for  for | f ’ (0[m]) | < 1 



Simulation of Problem 2.3 is provided below for additional information and insight.  A Matlab 

simulation was neither required nor expected to answer this or any other problem on the test. 

Using the Matlab code below to simulate the solution to problem 2.3, we generate 10,000 samples 

of a narrowband interferer centered at a discrete-time frequency of 0.65  rad/sample for x[m] 

and pass it through the adaptive IIR notch filter to generate y[m].  We set  = 0.001. The 

adaptive IIR notch filter properly adapts the notch frequency 0 from 0.5  rad/sample to 0.65  

rad/sample (about 2.04).  After the adaptive IIR notch filter converges, the reduction in average 

power was about 240 dB.  Average power in x[m] is 5 x 10-5, and average power in y[m] after 

sample index 3000 is 4.1 x 10-29.  

%%% Adaptive IIR Notch Filter 
%%% Date: December 7, 2015 

%%% Programmer: Prof. Brian L. Evans 

%%% Affiliation: The University of Texas at Austin 

 

%%% Generate narrowband interferer 

w0 = 0.65*pi; 

mmax = 10000; 

mmax = mmax + 2;            %%% two init conditions 

mindex = 3 : mmax; 

x = [0 0 cos(w0*mindex)];   %%% two init conditions 

 

%%% IIR Notch Filter with input x(m) and output y(m) 

%%% notch frequency is w0 

%%% zeros: exp(j w0) and exp(-j w0) 

%%% poles: r exp(j w0) and r exp(-j w0) 

w0 = 0.5*pi; 

r = 0.9; 

y = zeros(1, length(x));    %%% two init conditions 

 

%%% Settings for adaptive update 

mu = 0.001;  
v = zeros(1, length(x)); 

w0vector = zeros(1, length(x)); 

Jvector = zeros(1, length(x)); 

 

for m = 3 : mmax 

  y(m) = x(m) - 2*cos(w0)*x(m-1) + x(m-2) + ... 

         2*r*cos(w0)*y(m-1) - r^2*y(m-2); 

  v(m) = 2*sin(w0)*x(m-1) - 2*r*sin(w0)*y(m-1) + ... 

         2*r*cos(w0)*v(m-1) - r^2*v(m-2); 

  w0 = w0 - mu*y(m)*v(m); 

 

  %%% Storage of values for w0 and objective fun 

  w0vector(m) = w0; 

  Jvector(m) = 0.5*(y(m)^2); 

end 

The adaptive IIR notch filter converged in about 300 

iterations when  = 0.01. 

The above Matlab code is available online at 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/AdaptiveIIRNotchFilter.m  

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/AdaptiveIIRNotchFilter.m


Problem 2.4. Potpourri.  24 points 

In a communication receiver, a finite impulse response (FIR) channel equalizer may be designed by 

various methods.  For this problem, the channel equalizer will operate at the sampling rate.  

Consider the following channel model: 

 

Here, a0 represents time-varying fading gain and the FIR filter models the channel impulse response. 

(a) Describe why the channel impulse response is modeled by a finite impulse response.  6 points. 

Wireless channels – Model reflection and absorption of propagating electromagnetic waves in 

air.  Truncate infinite impulse response after significant decay has occurred. 

Wired channels – Model transmission line as RLC circuit.  Truncate the infinite impulse 

response after significant decay has occurred. 

(b) Describe what a channel equalizer tries to do.  6 points. 

Time domain – Shortens channel impulse response to reduce intersymbol interference.  

Impulse response of the cascade of the channel and the channel equalizer would ideally be a 

single impulse at index  with gain g.  See the ideal channel model in problem 2.1. 

Frequency domain – Compensates for frequency distortion in the channel.  Frequency 

response of the cascade of the channel and the channel equalizer would ideally be allpass. 

(c) When the transmitter is transmitting a known training sequence, would you recommend using a 

least squares method or an adaptive least mean squares method for the channel equalizer?  Please 

justify your answer for each criterion below.  6 points.  Adaptive LMS method. 

Communication performance – The channel model has time-varying fading gain. The adaptive 

LMS equalizer tracks the channel during training. LS equalizer gives best average equalizer 

over the training sequence and may be mismatched to the current state of the channel. 

Implementation complexity – The adaptive LMS method is based on vector additions and 

scalar-vector multiplications, whereas the LS equalizer is based on matrix multiplication and 

inversion.  The adaptive LMS method requires less computation and far less memory. 

(d) If the noise contained a narrowband interferer in the transmission band, would a separate notch 

filter be needed in addition to the channel equalizer?  Why or why not?  6 points. 

An adaptive LMS equalizer or an LS equalizer seeks to make the cascade of the channel and 

the equalizer have an allpass frequency response. The equalizer will seek to equalize not only 

the channel impulse response but fading, noise and interference. Hence, the equalizer will try 

to notch out narrowband interference; however, because it is an FIR filter, the equalizer’s 

notch will only have a mild reduction when compared to an IIR notch filter.  See next page. 

Note: Certain multicarrier systems will simply not transmit data over parts of the transmission 

band corrupted by narrowband interference.  This is known as interference avoidance. 



Simulation of Problem 2.4(d) provided below for additional information and insight.  A Matlab 

simulation was neither required nor expected to answer this or any other problem on the test. 

To simulate problem 2.4(d), we can add a narrowband interferer to the channel equalizer design 

problems in homework assignment 7.1 (least squares equalizer) and 7.2 (adaptive least mean 

squares equalizer) from the spring 2014 version of the course: 

http://users.ece.utexas.edu/~bevans/courses/rtdsp/homework/solution7.pdf 

We add the following code to add a sinusoidal narrowband interferer at 0.65  rad/sample: 

w0 = 0.65*pi; 

samples = length(r); 

nindex = 0 : (samples-1); 

r = r + cos(w0*nindex); 

after the line 

r=filter(b,1,s);               % output of channel 

The average power in the narrowband interferer is one-seventh of the average power of the 

transmitted signal after passing through the FIR filter in the channel model. 

The best LS equalizer has a length of 40 and delay  = 23, and gave 46 symbol (bit) errors.  

Without the narrowband interferer, there are 0 bit errors. 

The best adaptive LMS equalizer has a length of 40 and delay  = 29, and gave 128 symbol (bit) 

errors.  Without the narrowband interferer, there are 0 bit errors. 

Here are the magnitude responses of the equalized channels.  Please note the notches at the 

narrowband frequency of 0.65  rad/sample: 

LS equalized channel   Adaptive LMS equalized channel 

(20 dB notch at 0.65     (15 dB notch at 0.65 

An IIR notch filter can deliver 50 dB (or more) of attenuation at the narrowband frequency.  See 

the simulations for an adaptive IIR notch filter in problem 2.3. 

http://users.ece.utexas.edu/~bevans/courses/rtdsp/homework/solution7.pdf
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Problem 2.1. Steepest Descent Algorithm. 21 points. 
The steepest descent algorithm seeks to find a minimum 
value of an objective function by descending into a valley of 
an objective function J(x), as shown on the right. 

The optimum value occurs when the first derivative of the 
objective function is zero.  When the first derivative is 
zero, the steepest descent algorithm will stop updating. 

(a) We seek to minimize J(x) = ½ (x – x0)2 where x0 is a constant.  Write the update equation for 
x[k+1] in terms of x[k]. 6 points.  

 
 

(b) The update equation in part (a) can be interpreted as a first-order linear time invariant (LTI) system 
with output x[k+1] and previous output x[k] for k ≥ 0.  

 
i. Give a formula for the input signal for the linear time-invariant system?  3 points. 

 

 
 

ii. What is the initial guess of x, i.e. x[0]?  3 points. 
 

 
 

iii. What is the pole location?  3 points. 
 

 
 

iv. Give the range of step size values that make the LTI system bounded-input bounded-
output stable.  3 points. 
 

 
 

v. What values of the step size lead to the first-order LTI system being a lowpass filter?  
3 points. 
 
The angle of a pole near the unit circle indicates the center of the passband. 
A real positive pole near the unit circle indicates a lowpass filter. 
With the pole at 1 – µ , we would like µ  to be small and positive (0 < µ  < 0.25). 

x[k +1]= x[k]−µ ∂J(x)
∂x x=x[k ]

x[k +1]= x[k]−µ  (x[k]− x0 )

x[k +1]= (1−µ) x[k] +  µx0

µ  x0  u[k]

x[0]= 0 to satisfy linear and time-invariant properties

1−µ

|1−µ |<1  ⇒  −1< 1−µ <1  ⇒   -2 < -µ < 0  ⇒   0 < µ < 2

116 Chapter 6. Sampling with Automatic Gain Control

direction. Similarly, hill climbing begins with an initial guess of the location
of the maximum, evaluates which direction climbs the most rapidly, and then
makes a new estimate along the uphill direction. With luck, the new estimates are
better than the old. The process repeats, hopefully getting closer to the optimal
location at each step. The key ingredient in this procedure is to recognize that
the uphill direction is defined by the gradient evaluated at the current location,
while the downhill direction is the negative of this gradient.

To apply steepest descent to the minimization of the polynomial J(x) in (6.4),
suppose that a current estimate of x is available at time k, which is denoted x[k].
A new estimate of x at time k + 1 can be made using

x[k + 1] = x[k] − µ
dJ(x)

dx

∣
∣
∣
∣
x=x[k]

, (6.5)

where µ is a small positive number called the stepsize, and where the gradi-
ent (derivative) of J(x) is evaluated at the current point x[k]. This is then
repeated again and again as k increments. This procedure is shown in Fig-
ure 6.15. When the current estimate x[k] is to the right of the minimum,
the negative of the gradient points left. When the current estimate is to the
left of the minimum, the negative gradient points to the right. In either case,
as long as the stepsize is suitably small, the new estimate x[k + 1] is closer
to the minimum than the old estimate x[k]; that is, J(x[k + 1]) is less than
J(x[k]).

J(x)

Minimum

Derivative is 
slope of line
tangent to 

J(x) at x

Gradient direction
has same sign as

the derivative

xn xp

Arrows point in minus gradient
 direction-towards the minimum

Figure 6.15 Steepest descent
finds the minimum of a function
by always pointing in the
direction that leads downhill.

To make this explicit, the iteration defined by (6.5) is

x[k + 1] = x[k] − µ(2x[k] − 4),

or, rearranging,

x[k + 1] = (1 − 2µ)x[k] + 4µ. (6.6)

In principle, if (6.6) is iterated over and over, the sequence x[k] should approach
the minimum value x = 2. Does this actually happen?

JSK, Figure 6.15 

Homework 5.1 solution 
and its in-class discussion  

Homework 5.1 solution 
and its in-class discussion  



  
Problem 2.2  QAM Communication Performance. 27 points.  

Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 34d 2 26d 2 
(b) Average transmit power 18d 2 14d 2 
(c) Draw the decision regions for the right constellation on top of the right constellation. 
(d) Number of type I regions 0 4 
(e) Number of type II regions 12 8 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 
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(h) Gray coding possible? No No 

For parts (a) and (b), due to symmetry in the constellation on the right, we can look at upper 
right quadrant for power calculations:  d+jd, 3d+jd, 3d+j3d, 5d+jd.  Power is proportional to I2 + 
Q2, i.e. 2d2, 10d2, 18d2, and 26d2, respectively.  Peak power is 26d2.  Average power is 14d2. 
For part (g), the constellation on the right has the same number of type I, II and III constellation 
regions as a standard 16-QAM constellation (i.e. 4-PAM in in-phase and 4-PAM in quadrature 
directions).  We can reuse symbol error probability from the standard 16-QAM constellation. 

(i) Give a fast algorithm to decode a received symbol amplitude into a symbol of bits using the left 
constellation above.  Using divide & conquer, we need J comparisons for a constellation of J bits. 
Bit #1: Q > 0 
Bit #2: I > 0.  Now we know which of the four quadrants we’re in. 
Upper right quadrant: 
   Bit #3 is set to I > 4d. 
   Bit #4 is set to I > 2d if Bit #3 set and set to Q < 2d otherwise. 
 

Homework 6.3 
Fall 2015 Midterm 2.2 

 



Problem 2.3. Estimating SNR at a Receiver.  28 points. 
Signal-to-noise ratio (SNR) is application-
independent measure of signal quality. 
Consider a signal x[m] passing through an 
unknown system that is received as r[m]. 
We model the unknown system as a linear 
time-invariant (LTI) finite impulse response 
(FIR) filter plus an additive Gaussian noise 
signal w[m] with zero mean and variance σ2,  
as shown on the right. 

Impulse response of the LTI FIR system is h[m].   
(a) An application-independent way to estimate the SNR at r[m] is to send signal x1[m] of M samples 

to receive r1[m], wait for a very short period of time, and send x1[m] again to receive r2[m]: 
 

r1[m] = h[m] * x1[m] + w1[m]    for  m = 0, 1, …, M-1 
r2[m] = h[m] * x1[m] + w2[m]    for  m = 0, 1, …, M-1 
 

i. Derive an algorithm to estimate σ2 by subtracting r2[m] and r1[m].  9 points. 
 r2[m] – r1[m] =  (h[m]*x1[m] + w2[m]) – (h[m]*x1[m] + w1[m]) =  w2[m] – w1[m] = v[m] 

 
ii. How long should we wait between the two transmissions of x1[m]?   5 points. 

Group delay of FIR filter h[m] to prevent overlap in the two transmissions at receiver. 
 

(b) In a pulse amplitude modulation (PAM) system, the received signal r[m] goes through a matched 
filter and downsampler.  The downsampler output is the received symbol amplitude.  
 
i. During training, transmitted and received symbol amplitudes are known.  Use this fact to 

estimate the SNR for each training symbol at the downsampler output.  9 points. 
Let 𝒂𝒏be the transmitted symbol amplitude and 𝒂𝒏be the received symbol amplitude 
for symbol index n.  (Index m is the sample index.)  Noise power is 𝒂𝒏 − 𝒂𝒏 𝟐. 

SNR =
Signal  Power
Noise  Power =

𝑎!!

𝑎! − 𝑎! ! 

ii. Based on the noise power at the downsampler output, give a formula for σ2. 5 points 
A continuous-time matched filter changes the additive noise power σ2 by 1/Tsym. 
In discrete-time, a matched filter changes the additive noise power by 1/L where L is the 
number of samples per symbol period.  So, 𝝈𝟐 = 𝑳 𝒂𝒏 − 𝒂𝒏 𝟐.  

σ v
2 = E v2[m]{ }−E 2 v[m]{ }

E v2[m]{ }= E w2[m]−w1[m]( )2{ }= E w2
2[m]{ }− 2E w1[m]w2[m]{ }+E w1

2[m]{ }= 2σ 2

E v[m]{ }=
1
M

v[m]= 1
M

w2[m]−w1[m]( ) = 1
M

w2[m]−
m=0

M−1

∑
m=0

M−1

∑
m=0

M−1

∑ 1
M

w1[m]= 0
m=0

M−1

∑

Note: E w1[m]w2[m]{ }=
1
M

w1[m]w2[m]= 0 
m=0

M−1

∑ because w1[m] and w2[m] have zero mean.

H
om

ew
or

k 
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1 
 



Problem 2.4. Acoustics of a Concert Hall.  24 points 
Some audio playback systems have the option to emulate a specific 
concert hall. 
One implementation is to convolve an audio track with the impulse 
response h[m] of the concert hall.  
To estimate the impulse response of the concert hall, we place a 
speaker on stage and a microphone at one of the seats. 

 
(a) Give two examples of the training signal x[m] you could use.  

Why?  6 points. 
 
Pseudo-noise sequence (maximal length preferred) 
Chirp signal that sweeps over all audio frequencies 

Audio track 
 

(b) Set up steepest descent algorithm to update h[m] so that r[m] is as close to h[m] * x[m] as possible. 
i. Give an objective function to be minimized.  6 points. 

 
y[m] = r[m] – h[m] * x[m] 
 
J(y[m]) =  (½) y2[m] 
 

ii. Give the update equation for the vector ℎ of FIR coefficients.  6 points. 
 

 
 

iii. What values would you recommend for the step size µ?  6 points. 
 
We would like small positive µ  values, e.g. µ  = 0.001. 

 

h[m]* x[m]= h[0] x[m]+ h[1] x[m−1]+ h[2] x[m− 2]+...+ h[M −1] x[m− (M −1)]

Let h
→

[m]= [ h[0]   h[1]   h[2]   ....   h[M -1] ] 

and x
→

[m]= [ x[m]   x[m−1]   x[m− 2]   ....  x[m− (M −1)]  ]  

h
→

[m+1]= h
→

[m]−µ ∂J(y[m])

∂h
→

[m]
= h

→

[m]−µ  y[m] ∂y[m]

∂h
→

[m]
= h

→

[m]+µ  y[m] x
→

[m]   
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Problem 2.1. Interpolation. 21 points. 
Interpolation can change the sampling rate of discrete-time signal x[n] through discrete-time 
operations of upsampling by L and then filtering: 
 
 
 

 
 

(a) Give a formula for f2 in terms of f1. 3 points.  
f2 = L f1 

(b) Specify the filter’s passband frequency ωpass and stopband frequency ωstop in rad/sample to pass as 
many frequencies in x[n] as possible and reduce artifacts due to upsampling.  6 points. 

x[n] contains frequencies from -(½) f1 to -(½) f1 due to the sampling theorem f1 > 2 fmax. 
For sampling rate f1, cos(2 π  (½) f1 t) becomes cos(π  n), which does not alias. 
The filter operates at sampling rate f2 = L f1. 

Answer #1:  𝝎𝒑𝒂𝒔𝒔 = 𝟐𝝅
𝟏
𝟐𝒇𝟏
𝒇𝟐
= 𝟐𝝅

𝟏
𝟐𝒇𝟏
𝑳𝒇𝟏

= 𝝅
𝑳
 and 𝝎𝒔𝒕𝒐𝒑 = 𝟏.𝟏𝝎𝒑𝒂𝒔𝒔 to allow 10% rolloff.  

Answer #1 makes sure that all frequencies in x[n] are passed, but a frequency band equal 
to 10% of (½) f1 of artifacts due to upsampling also passes. 

Answer #2:  𝝎𝒑𝒂𝒔𝒔 = 𝟎.𝟗𝝎𝒔𝒕𝒐𝒑 to allow 10% rolloff and 𝝎𝒔𝒕𝒐𝒑 = 𝟐𝝅
𝟏
𝟐𝒇𝟏
𝒇𝟐
= 𝟐𝝅

𝟏
𝟐𝒇𝟏
𝑳𝒇𝟏

= 𝝅
𝑳
.  

Answer #2 makes sure that all artifacts due to upsampling fall into the stopband, but with a 
loss in the upper 10% of the frequency content in x[n]. 

(c) If x[n] is represented with B bits, specify the passband tolerance Apass in dB and the stopband 
attenuation Astop in dB.  6 points. 

With a representation of B bits, SNRdB = C0 + 6 B = Psignal – Pnoise . 
Passband magnitude response will be approximately 1 in linear units, which is 0 dB. 
Astop = -SNRdB = -C0 - 6 B 
Apass = 20 log10 (1-Δ) where Δ  is the quantization step size:  𝚫 = 𝟏

𝟐𝑩!𝟏
 

(d) Give an advantage for each type of interpolation filter below.  6 points. 
 

i. Finite impulse response filter.  (a) Always bounded-input bounded-output stable; 
(b) Has efficient polyphase filter bank form that saves factor of L in multiplication-
add and read operations/second, factor of 2 in write operations/second, and factor of 
L in storage of current and previous values x[n]; (c) Can have linear phase over all 
frequencies if impulse response is symmetric or anti-symmetric about its midpoint. 
 

ii. Infinite impulse response filter. (a) Small group delay; (b) Lower order for same 
magnitude specification with 10% rolloff, but the polyphase filter bank form for the 
FIR filter would have a more efficient implementation. 



Problem 2.2  QAM Communication Performance. 27 points.  
Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 
Each part below is worth 3 points.  Please fully justify your answers. 
 Left Constellation Right Constellation 
(a) Peak transmit power 18d 2 26d 2 
(b) Average transmit power 10d 2 12d 2 
(c) Draw the decision regions for the right constellation on top of the right constellation. 
(d) Number of type I regions 4 4 
(e) Number of type II regions 8 8 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

 
 

 

The right constellation has symmetry.  The upper right quadrant of constellation points is 
rotated by 90 degrees in the upper left quadrant, 180 degrees in the lower left quadrant, etc. 

In part (b), the average transmit power can be computed using the upper right quadrant. 

In part (c), the boundaries of the decision regions for the right constellation are drawn are the 
in-phase (I) axis, quadrature (Q) axis and dashed lines. 

In part (g), the probability of symbol error expression for the right constellation is the same as 
that of the left because the number of type I, type II and type III regions are the same. 
(h) Which of the constellations would you advocate using?  Why?  Please give two reasons. 6 points. 
Left constellation has lower peak transmit power, lower average transmit power, and lower 
transmit peak-to-average power ratio.  It can be gray coded, but right constellation cannot.  
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Problem 2.3. Phase Locked Loop (PLL).  28 points. 
The discrete-time transmitter below is for pulse amplitude modulation (PAM) with upconversion: 

 
 

 
 

a[n]  symbol amplitude  fs sampling rate  g[m] pulse shape 
J       bits/symbol   L samples/symbol  ωc     carrier frequency 

 

The discrete-time PAM receiver below has two downconversion paths, and one feeds into the PLL: 
 

 

 

 

 

 

θ[m] is the carrier phase offset, and h[m] represents a lowpass finite impulse response (FIR) filter. 

(a) When the receiver carrier phase matches the transmitter carrier phase, i.e. when θ[m] = 0, show 
that q[m] is zero.  6 points. 

q[m] = LPF{x[m]} = LPF{-r[m] sin(ωc m + θ[m])} = LPF{-v[m] cos(ωc m) sin(ωc m + θ[m])} 
Here, v[m] is a lowpass signal because the pulse shaping filter g[m] is lowpass. 
The lowpass filter (LPF) h[m] has the same bandwidth as lowpass filter g[m]. 
q[m] = LPF{ (-½) v[m] ( sin(θ[m]) + sin(2 ωc m + θ[m]) ) } = (-½) v[m] sin(θ[m]) 
Hence, when θ[m] = 0, q[m] = 0.  Please note that the receiver does not know v[m]. 

(b) Develop a steepest descent algorithm to estimate the carrier phase offset, θ[m], per the steps below. 
 

i. Give an objective function.  6 points. 
J( q[m] ) = (½) q2[m] 
 

ii. Give an update equation for θ[m+1] in terms of θ[m].  9 points. 

𝜽 𝒎+ 𝟏 = 𝜽 𝒎 − 𝝁
𝒅𝑱 𝒒 𝒎
𝒅𝜽 𝒎 = 𝜽 𝒎 − 𝝁  𝒒 𝒎   𝑳𝑷𝑭 −𝒓 𝒎 𝐜𝐨𝐬 𝝎𝒄 + 𝜽 𝒎  

𝜽 𝒎+ 𝟏 = 𝜽 𝒎 + 𝝁  𝒒 𝒎   𝒊[𝒎]   Note: This is a version of the Costas loop. 

iii. Give an initial value of θ[m].  3 points. 
 

Objective function can go to zero at θ[m] at 0, 90o, 180o, etc.  Let θ[0] = 0. 
 

iv. What values of the step size, µ, would you use. Why?  4 points. 
 

Small positive values to guarantee convergence, e.g. µ  = 0.01 or µ  = 0.001. 

where 



Problem 2.4. Communication System Design.  24 points 
For M-level pulse amplitude modulation systems, the 
probability of a symbol error in the receiver is 

𝑃!""#" =
2(𝑀 − 1)

𝑀   𝑄
𝑑
𝜎 𝑇!"#  

where 

2d is spacing between adjacent constellation points in Volts, 

σ2 is variance of the noise in the communication channel, 
Tsym is symbol time, and 

𝑄 𝑥 =
1
2𝜋

𝑒
!!!
! 𝑑𝑦

!

!
 

Solution prolog: Bit rate is fsym log2(M) where fsym = 1 / Tsym.   Peak transmit power is (M-1)2 d2. 
M has minor impact on symbol error probability because 2 (M-1) / M is in interval [1, 2).  

(a) How would you choose M, d and Tsym for a high-speed communication link with probability of 
symbol error of 10-3.  9 points. 

High-speed communication link means a large fsym or equivalently a small Tsym. 
High-speed communication link would need a large value of M. 

Choose a large value of d to offset the small value of Tsym. 
The end result will be a high-power, high-speed communication link. 

(b) How would you choose M, d and Tsym for a low-speed control channel with probability of symbol 
error of 10-7.  The control channel would allow the feedback of information from receiver to 
transmitter, such as estimated SNR and channel impulse responses, with high accuracy. 9 points. 
Low-speed communication link means a small fsym or equivalently a large Tsym. 

To get 10-7 symbol error probability, Q function argument needs to be slightly more than 5. 
By setting M = 2 for 2-PAM or BPSK, we can make d as large as possible. 

The peak and average transmit power will be proportional to d2. 
(c) Give an optimal encoding for symbols of bits for the 8-PAM constellation below.  In what sense is 

your encoding optimal?  6 points. 
Gray coding minimizes the number of bit errors when there is a symbol error. 

One of many possible Gray codings is shown below. 

          110               111             101             100              000              001              011              010 

Q function 
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Problem 2.1. Decimation. 21 points. 
Decimation can change the sampling rate of discrete-time signal x[n] through discrete-time operations 
of filtering and then downsampling by M. 
 

 
(a) Give a formula for y[n] in terms of v[ ]. 3 points. 

 

The downsampler accepts a block of M samples as input, and then outputs the first sample 
and discards the rest.  Hence, y[n] = v[M n]. 
 

(b) Give a formula for f2 in terms of f1. 3 points.  
 

M times as many samples are at the downsampler input than at the downsampler output: 

𝒇𝟐 =
𝟏
𝑴𝒇𝟏 

(c) Specify the filter’s passband frequency ωpass and stopband frequency ωstop in rad/sample to pass as 
many frequencies in x[m] as possible and reduce as many artifacts due to downsampling in y[n] as 
possible.  6 points. 
y[n] contains frequencies from -(½) f2 to (½) f2 due to the sampling theorem f2 > 2 fmax 
The lowpass filter operates at sampling rate f1 = M f2. 

Answer #1:  𝝎𝒑𝒂𝒔𝒔 = 𝟐𝝅
𝟏
𝟐𝒇𝟐
𝒇𝟏
= 𝟐𝝅

𝟏
𝟐𝒇𝟏
𝑴𝒇𝟏

= 𝝅
𝑴

 and 𝝎𝒔𝒕𝒐𝒑 = 𝟏.𝟏𝝎𝒑𝒂𝒔𝒔 to allow 10% rolloff.  
Answer #1 makes sure that the filter passes all frequencies in y[n], but a frequency band 
equal to 10% of (½) f2 of artifacts due to downsampling also passes. 

Answer #2:  𝝎𝒑𝒂𝒔𝒔 = 𝟎.𝟗𝝎𝒔𝒕𝒐𝒑 to allow 10% rolloff and 𝝎𝒔𝒕𝒐𝒑 = 𝟐𝝅
𝟏
𝟐𝒇𝟐
𝒇𝟏
= 𝟐𝝅

𝟏
𝟐𝒇𝟏
𝑴𝒇𝟏

= 𝝅
𝑴

.  
Answer #2 makes sure that all artifacts due to downsampling fall into the stopband, but with 
a loss in the upper 10% of the frequency content in y[n]. 

(d) In converting an audio signal sampled at 48 kHz to a speech signal sampled at 8 kHz, 
 

i. What is the value of M?  3 points.  𝑴 = 𝟒𝟖  𝐤𝐇𝐳
𝟖  𝐤𝐇𝐳

= 𝟔 
ii. Would you use a finite impulse response filter or an infinite impulse response filter.  Why?  

6 points 
In audio systems, phase response is important.   For real-time audio systems, having 
low group delay and low implementation complexity are also important. 
Answer #1: Linear phase FIR filter— linear phase over all frequencies and low 
complexity due to polyphase form. May have high group delay. Always BIBO stable. 
Answer #2: IIR filter— approximate linear phase over passband, low complexity due 
to low order, and low group delay. Implementation may become BIBO unstable.  



Problem 2.2  QAM Communication Performance. 27 points.  
Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 
 
Each part below is worth 3 points.  Please fully justify your answers. 
 
 Left Constellation Right Constellation 
(a) Peak transmit power 18d 2 34d 2 
(b) Average transmit power 10d 2 16d 2 
(c) Draw the decision regions for the right constellation on top of the right constellation. 
(d) Number of type I regions 4 0 
(e) Number of type II regions 8 12 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

 
 

𝟏𝟏
𝟒 𝑸

𝒅
𝝈 −

𝟕
𝟒𝑸

𝟐 𝒅
𝝈  

 
(h) Which constellation has a lower probability of symbol error vs. signal-to-noise ratio?  Why? 
      6 points.   

𝐒𝐍𝐑𝒍𝒆𝒇𝒕 =   𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒕  𝑺𝒊𝒈𝒏𝒂𝒍  𝑷𝒐𝒘𝒆𝒓
  𝑨𝒗𝒆𝒓𝒂𝒈𝒆  𝑵𝒐𝒊𝒔𝒆  𝑷𝒐𝒘𝒆𝒓

= 𝟏𝟎𝒅𝟐

𝝈𝟐
→ 𝒅

𝝈
= 𝑺𝐍𝐑𝒍𝒆𝒇𝒕

𝟏𝟎
 

 

𝐒𝐍𝐑𝒓𝒊𝒈𝒉𝒕 =   𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒕  𝑺𝒊𝒈𝒏𝒂𝒍  𝑷𝒐𝒘𝒆𝒓
  𝑨𝒗𝒆𝒓𝒂𝒈𝒆  𝑵𝒐𝒊𝒔𝒆  𝑷𝒐𝒘𝒆𝒓

= 𝟏𝟔𝒅𝟐

𝝈𝟐
→ 𝒅

𝝈
= 𝑺𝐍𝐑𝒓𝒊𝒈𝒉𝒕

𝟏𝟔

Q(x) 

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛
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For the same SNR value, the probability of symbol error 
will be lower for the left constellation because the quantity 
d/σ will be larger and the Q function is monotonically 
decreasing with respect to its argument. 

Note: Gray coding, which minimizes the number of bit errors when 
there is a symbol error, is not relevant to the answer here in part (h). 



Problem 2.3. Blind Channel Equalization.  28 points. 
Blind channel equalization occurs without a training sequence, as shown below. 

When the transmitted sequence x[k] is binary phase shift keying (BPSK), i.e. is +1 or -1, an adaptive 
method can be based on the fact that x2[k] = 1. 

Assume a two-tap finite impulse response (FIR) 
equalizer with its first coefficient fixed at one: 

w[k] = δ[k] + w1 δ[k-1] 
(a) Using the objective function 

J(k) = ¼ (1 - r2[k] )2 
derive the adaptive update equation for w1.  16 points 

𝒘𝟏 𝒌+ 𝟏 = 𝒘𝟏 𝒌 − 𝝁
𝒅𝑱 𝒌
𝒅𝒘𝟏 𝒘𝟏!𝒘𝟏 𝒌

= 𝒘𝟏 𝒌 − 𝝁  
𝟏
𝟒   𝟐 𝟏− 𝒓𝟐 𝒌    −𝟐𝒓 𝒌   

𝒅𝒓 𝒌
𝒅𝒘𝟏

   

 
𝒓 𝒌 = 𝒚 𝒌 +𝒘𝟏  𝒚 𝒌− 𝟏  

 
𝒘𝟏 𝒌+ 𝟏 = 𝒘𝟏 𝒌 + 𝝁   𝟏− 𝒓𝟐 𝒌   𝒓 𝒌   𝒚 𝒌− 𝟏  

 
 
 

 
(b) Give an initial value for w1.  Why did you choose that value?  3 points 

 

When w1 = 1, the equalizer is lowpass, which would equalize a highpass channel. 
When w1 = -1, the equalizer is highpass, which would equalize a lowpass channel. 
Since we don’t know the channel frequency response, we initialize w1 = 0. 
 

(c) What range of values would you use for the step size µ?  Why?  3 points 
 

We would like a small, positive value for the step size, e.g. 0.01 or 0.001.  The smaller the 
positive value, the better the smoothing of the derivative of the objective function. 
 

(d)  How would you adjust the objective function for 4-level pulse amplitude modulation?  6 points 

BPSK (2-PAM) has symbol amplitude values of -1 and +1; each has a power level of 1. 
4-PAM has symbol amplitude values of –3, -1, +1, and +3, which have power levels of 9, 1, 1, 
and 9, respectively.  Assuming equally likely probability among the four levels, the average 
power is 5.  We can adjust the objective function as follows:  J(k) = ¼ (5 - r2[k] )2 

 
  

This approach minimizes dispersion.  It is known as the 
constant modulus algorithm as well as the Godard 
algorithm.  Please see JSK Section 13.5 on pages 290-292. 



Problem 2.4.  Channel Equalization With Training.  24 points 
For the finite impulse response (FIR) channel equalizer on the right: 

(a) Give two reasons why pseudo-noise is a good choice 
for the training sequence.  3 points. 

1. PN sequence has all frequencies in it. 
2. PN sequence it is easy to generate in the  

transmitter and receiver, e.g. by using a 
feedback shift register. 

3. PN sequence, when correlated against the 
receive signal, gives a peak when finding the 
same PN sequence and the transmit signal, 
which can be used to find propagation delay. 

(b) Here is the update equation for an adaptive least mean squares FIR filter with  coefficients w: 

w[k+1] = w[k] – µ e[k] y[k] 

where y[k] = [ y[k]  y[k-1]  …  y[k-(N-1) ]  and  e[k] = r[k] – g x[k - Δ]  and  r[k] = FIR{ y[k] } 

i. How many multiplications are needed per iteration?  How does this compare with an FIR filter? 
6 points 

g x[k - Δ]  needs 1 multiplication, r[k] = FIR{ y[k] } needs N multiplications, 

µ e[k] needs 1 multiplication, and µ e[k] y[k] needs N multiplications, 
which is a total of 2 N + 2 multiplications per iteration. 

An FIR filter requires N multiplications per iteration. 
ii. How many words of memory are needed the adaptive FIR filter?  How does this compare with 

an FIR filter? 6 points 

2 N + 2 words— two vectors of N elements each, i.e. w[k] and y[k], as well as µ and e[k] 

2 N words for an FIR filter. 

iii.  What range of values would you use for the step size µ?  Why?  3 points 
The step size must be in the interval (0, 2) for convergence. 

We would like a small, positive value for the step size, e.g. 0.01 or 0.001.  The smaller the 
positive value, the better the smoothing of the derivative of the objective function. 

(c) For a training sequence of length 2N, would you advocate using a least squares equalizer or an 
adaptive least mean squares equalizer?   6 points 

Because the training sequence length is so short relative to the equalizer length, a least 
squares equalizer will perform better than an adaptive least mean squares equalizer.  That 
is, the adaptive least mean squares equalizer will not have enough training data to converge 
to a meaningful solution. 

Note: In homework problem 7.2, the training sequence was 250 times the equalizer length. 



 
The University of Texas at Austin 

Dept. of Electrical and Computer Engineering 
Midterm #2 

 
Prof. Brian L. Evans 

 
Date: December 11, 2017      Course: EE 445S 

 
 
 
 
Name:     Pullman     Auggie    

Last,      First   
 
 
 
 
 

• The exam is scheduled to last 50 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets.  You may not share materials with other students.  
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network. 

Disable all wireless access from your standalone computer system.  
• Please turn off all smart phones and other personal communication devices. 
• Please remove headphones. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers unless instructed otherwise.  When justifying your answers, 

you may refer to the Johnson, Sethares & Klein (JSK) textbook, the Welch, Wright and 
Morrow (WWM) lab book, course reader, and course handouts.  Please be sure to 
reference the page/slide number and quote the particular content in your justification. 

 
 

Problem Point Value Your score Topic 
1 24  Interpolation 
2 27  QAM Communication Performance 
3 28  Baseband Pulse Amplitude Modulation 
4 21  Potpourri 

Total 100   
  



Problem 2.1. Interpolation. 24 points.  Lecture Slides 7-14 to 7-15 and 13-6 to 13-10; JSK Sec. 6.4. 
Interpolation can change the sampling rate of discrete-time signal x[n] through discrete-time 
operations of upsampling by L and then filtering: 
 
 
 
 

 
 

 
 

(a) Give a formula for v[m] in terms of x[ ]. 3 points. 
 

For each input sample, the upsampler copies it to the output and then outputs L-1 zeros. 

𝒗 𝒎 = 𝒙
𝒎
𝑳 𝐢𝐟 𝒎 = 𝒌𝑳 𝐰𝐡𝐞𝐫𝐞 𝒌 𝐢𝐬 𝐚𝐧 𝐢𝐧𝐭𝐞𝐠𝐞𝐫

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
 

 

(b) Give a formula for f2 in terms of f1. 3 points. 

Upsampler has L times more samples on its output than its input: 𝒇𝟐 = 𝑳 𝒇𝟏 

(c) Specify the filter’s passband frequency ωpass and stopband frequency ωstop in rad/sample to pass as 
many frequencies in x[n] as possible and reduce as many artifacts due to upsampling in y[m] as 
possible.  6 points.  HW 2.2, 2.3 & 3.1; Lecture Slides 5-16 & 13-8; JSK Sec. 7.2. 
The maximum continuous-time frequency captured in x[n] is ½ f1. Any continuous-time 
frequencies in v[m] that are at or above ½ f1 are artifacts of the upsampling process. 
The lowpass filter attenuates frequencies at or above ½ f1  and operates at sampling rate f2 . 

Answer #1: 𝝎𝐬𝐭𝐨𝐩 = 𝟐𝝅
𝟏
𝟐𝒇𝟏
𝒇𝟐
= 𝟐𝝅

𝟏
𝟐𝒇𝟏
𝑳𝒇𝟏

= 𝝅
𝑳
 and 𝝎𝐩𝐚𝐬𝐬 = 𝟎.𝟗 𝝎𝐬𝐭𝐨𝐩 to allow a 10% rolloff. 

Answer #2: 𝝎𝐩𝐚𝐬𝐬 = 𝟐𝝅
𝟏
𝟐𝒇𝟏
𝒇𝟐
= 𝟐𝝅

𝟏
𝟐𝒇𝟏
𝑳𝒇𝟏

= 𝝅
𝑳
 and 𝝎𝐬𝐭𝐨𝐩 = 𝟏.𝟏 𝝎𝐩𝐚𝐬𝐬 to allow a 10% rolloff. 

Answer #3: 𝝎𝐜𝐮𝐭𝐨𝐟𝐟 =
𝝅
𝑳
 , 𝝎𝐩𝐚𝐬𝐬 = 𝟎.𝟗𝟓 𝝎𝐜𝐮𝐭𝐨𝐟𝐟, 𝝎𝐬𝐭𝐨𝐩 = 𝟏.𝟎𝟓 𝝎𝐜𝐮𝐭𝐨𝐟𝐟 to allow a 10% rolloff. 

(d) To ensure that the amplitude values of x[n] remain unchanged after upsampling and filtering, give 
a constraint on the impulse response of the filter.  6 points. Lecture Slides 7-10, 7-11, 7-13 & 13-8. 

The impulse response of the filter h[m] must be 1 at one multiple of L for index m and zero 
at all other multiples of L for index m.  Sinc and raised cosine pulses have this property. 

(e) Give the formula for an infinite impulse response that meets the conditions for (c) and (d) above. 
6 points.  Lecture Slides 4-5, 4-7, 4-8, 7-10, 7-11 & 7-13. 

Start with a two-sided continuous-time sinc pulse 𝒉 𝒕 =
𝐬𝐢𝐧 𝟐𝝅 𝟏𝟐 𝒇𝟏  𝒕  

𝟐𝝅 𝟏𝟐 𝒇𝟏  𝒕
= 𝐬𝐢𝐧 𝝅 𝒇𝟏 𝒕  

𝝅 𝒇𝟏 𝒕
 for 

−∞ < 𝒕 < ∞. This is an ideal lowpass filter that passes frequencies up to ½ f1 .  Sample h(t) 
at a sampling rate of 𝒇𝟐 = 𝑳 𝒇𝟏 to obtain 𝒉 𝒎 = 𝐬𝐢𝐧 𝝎𝟎 𝒎  

𝝎𝟎 𝒎
 where 𝝎𝟎 =

𝝅
𝑳
 . 

Note: Solution would also have worked with a two-sided continuous-time raised cosine pulse.  



Problem 2.2  QAM Communication Performance. 27 points.  See also Spring 2017 Midterm 2.2. 
Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. HW 6.3; Slides 15-12 to 15-16. 

 Left Constellation Right Constellation 
(a) Peak transmit power 18d 2 34d 2 
(b) Average transmit power 10d 2 14d 2 
(c) Draw the decision regions for the right constellation on top of the right constellation. Yes. 
(d) Number of type I regions 4 2 
(e) Number of type II regions 8 10 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

 
 

𝟐𝟑
𝟖 𝑸

𝒅
𝝈 − 𝟐𝑸𝟐

𝒅
𝝈  

 

𝑷𝒄 =
𝟐
𝟏𝟔
𝑷𝒄𝑰 +

𝟏𝟎
𝟏𝟔
𝑷𝒄𝑰𝑰 +

𝟒
𝟏𝟔
𝑷𝒄𝑰𝑰𝑰 =

𝟏
𝟖
𝟏− 𝟐𝒒 𝟐 + 𝟓

𝟖
𝟏− 𝒒 𝟏− 𝟐𝒒 + 𝟐

𝟖
𝟏− 𝒒 𝟐 where 𝒒 = 𝑸 𝒅

𝝈
 

𝑷𝒄 = 𝟏− 𝟐𝟑
𝟖
𝒒+ 𝟏𝟔

𝟖
𝒒𝟐 and 𝑷𝒆 = 𝟏− 𝑷𝒄 =

𝟐𝟑
𝟖
𝒒− 𝟐𝒒𝟐 = 𝟐𝟑

𝟖
𝑸 𝒅

𝝈
− 𝟐𝑸𝟐 𝒅

𝝈
  

(h) Which constellation has lower probability of symbol error vs. signal-to-noise ratio? Why? 6 points.  

Left constellation: 𝐒𝐍𝐑 = 𝟏𝟎𝒅𝟐

𝝈𝟐
which means that 𝒅

𝝈
= 𝐒𝐍𝐑

𝟏𝟎
 

Right constellation: 𝐒𝐍𝐑 = 𝟏𝟒𝒅𝟐

𝝈𝟐
which means that 𝒅

𝝈
= 𝐒𝐍𝐑

𝟏𝟒
 

Q(x) falls off faster than exponential for increasing x. Slide 14-26. 
For the same SNR, the left constellation will have a larger d / σ  
value and hence lower symbol error probability. Slide 14-29.   
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Q(x) 



Problem 2.3. Baseband Pulse Amplitude Modulation.  28 points.   JSK Ch. 8 & Sec. 9.1. 
A baseband pulse amplitude modulation transmitter is described as [Lecture Slides 13-3 to 13-6] 

 
A baseband pulse amplitude modulation receiver is shown below [Lecture Slide 14-7] 

 
where 

a[n]  symbol amplitude  fs sampling rate  g[m] pulse shape 
J       bits/symbol   L samples/symbol  h[m] FIR filter 
 

(a) What two roles does the finite impulse response (FIR) filter h[m] play? 4 points. Lect. Slide 16-11. 

Matched filter (i.e. matched to pulse shape g[m]) and anti-aliasing filter for downsampler. 
(b) For the rest the problem, the FIR filter h[m] will be replaced with an adaptive FIR equalizer. 

 

i. Give initial values for the coefficients of h[m].  6 points.  Lect. Slide 14-15; JSK Sec. 11.5. 

Use the optimum matched filter:  𝒉 𝒎 = 𝒈 𝑳−𝒎 .  That is, flip g[m] w/r to m and 
delay it by enough samples to make it causal.  The delay might be different than L. 

ii. During training, we will adapt the FIR equalizer coefficients based on the error vector in 
the decision device, i.e. 

𝑒 𝑛 = 𝑎 𝑛 − 𝑎 𝑛  
 

Give an objective function 𝐽 𝑒 𝑛 .  6 points.  Note: Decision-directed FIR equalizer. 

We want to minimize the error vector (i.e. decision error):  𝑱 𝒆 𝒏 = 𝟏
𝟐
𝒆𝟐[𝒏]. HW 7.2. 

iii. Denote the FIR coefficients at iteration k as a vector ℎ! and derive the update equation for 
ℎ!!!, where k is a symbol index. 9 points.  Let 𝑵𝒉 be the number of coefficients in 𝒉𝒌. 
Because we would like to minimize the objective function, [HW 7.2] 

𝒉𝒌!𝟏 = 𝒉𝒌 − 𝝁
𝒅
𝒅𝒉𝒌

𝑱 𝒆 𝒌 = 𝒉𝒌 − 𝝁 𝒆 𝒌 𝒅
𝒅𝒉𝒌

𝒂 𝒌 = 𝒉𝒌 − 𝝁 𝒆 𝒌 𝒅
𝒅𝒉𝒌

𝒓[𝒌𝑳]  

With 𝒓 𝒌𝑳 = 𝒉 𝟎 𝒚 𝒌𝑳 + 𝒉 𝟏 𝒚 𝒌𝑳− 𝟏 + ∙∙∙ , [Midterm #2 Review Slide 9] 

𝒉𝒌!𝟏 = 𝒉𝒌 − 𝝁 𝒆 𝒌  𝒚 𝒌  where 𝒚 𝒌 =  𝒚 𝒌𝑳    𝒚 𝒌𝑳− 𝟏   ∙∙∙    𝒚 𝒌𝑳−𝑵𝒉 − 𝟏   

iv. What range of values would you recommend for µ?   3 points. 

Small positive value, e.g. µ = 0.01. Must be positive to descend error surface. Cannot 
be too large; otherwise, iteration will fail to converge.  HW 5.1, 6.1, 6.2, 7.2 & 7.3.  



Problem 2.4.  Potpourri.  21 points 
(a) Give formulas for the system delay and computational complexity vs. the length Lg of a square root 

raised cosine pulse shape used in a baseband digital pulse amplitude modulation transmitter and 
receiver.  System delay is from the time that the bit stream goes into the transmitter to the time that 
it would appear at the receiver output.  12 points. 
We can refer to the baseband PAM block diagram in Problem 2.3.  There are two finite 
impulse response (FIR) filters of 𝑳𝒈 coefficients each. 

Group delay through the raised cosine pulse shaping filter in the transmitter is ½ 𝑳𝒈 samples 
and the group delay through the matched filter in the receiver is ½ 𝑳𝒈 samples. 

Total delay in the baseband PAM system is 𝑳𝒈 samples.  Since we’re only analyzing the 
baseband PAM system, we’re not including the delay in the analog front ends and channel. 

The computational complexity is 𝟐𝑳𝒈 multiplication-accumulation operations per sample 
since there are two FIR filters, each with 𝑳𝒈 coefficients. 

References: HW 2.3(d) & 5.3; Lecture Slides 5-14, 13-6 & 13-17; JSK Sec. 7.2 & Ch. 8 

(b) Consider a digital pulse amplitude modulation system in which a transmitter sends a training 
sequence that the receiver uses to adapt a variety of subsystems to compensate for different 
impairments.  For each receiver subsystem below, specify the name of an algorithm (or describe an 
algorithm) that could be used during data transmission (i.e. when no training data is available) to 
update each system. 

i. Automatic Gain Control. 3 points.  See HW 7.3. 

Adaptive gain control to drive sampler output power to a specified level. JSK Sec. 6.7. 
Update gain c(t) using N current/previous A/D output values. Lecture slide 16-5. 

c(t) = (1 + 2 f0 – f-128 – f127) c(t – τ) or 𝒄 𝒕 = 𝟐𝒄𝟎!𝝐𝑵
𝒄!𝟏𝟐𝟖!𝒄𝟏𝟐𝟕!𝝐𝑵

𝒄 𝒕− 𝝉   

 
ii. Channel Equalization. 3 points.  See HW 7.1 & 7.2. 

Decision-directed equalization. Error prone without training data. JSK Sec. 13.4. 
Dispersion-minimizing equalization, a.k.a. constant modulus algorithm. JSK Sec. 13.5. 

 
iii. Symbol Clock Recovery.  3 points.  See HW 6. 

Decision-directed timing recovery. Error prone without training data. JSK Sec. 12.3. 
Two single-pole complex bandpass filters plus nonlinearity. Lecture slide 16-10. 

Prefilter + squaring block + bandpass filter + phase locked loop. Lab 5 Part 2. 
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Problem 2.1. Baseband Pulse Amplitude Modulation. 24 points. 
A baseband pulse amplitude modulation transmitter is described as 

 
where 

a[n] symbol amplitude fs sampling rate fsym symbol rate g[m] pulse shape 
J  bits/symbol   L samples/symbol Ng symbol periods in a pulse shape 

For Ng = 4 and L = 20, a plot is shown below for 10 symbol periods over 0 to 30 ms of s[m] after it had 
passed through a digital-to-analog converter, and the symbol amplitudes a[n] are shown as a stem plot: 

 
(a) What is the value of J, the number of bits per symbol?  Why?  3 points. 

From the stem plot, the symbol amplitudes are -6, -2, 2, and 6.  Four levels means J = 2 bits. 
(b) If the spacing between constellation points is 2d, what is the value of d?  Why?  3 points. 

4-PAM has symbol amplitudes of -3d, - d, d, and 3d.  Hence, d = 2. 
(c) Draw a constellation map with Gray coding.  3 points. 

Gray coding means that the bit patterns in two adjacent symbols only differ by 
one bit to minimize the number of bit errors when a symbol error occurs.  !  

(d) Accurately compute the symbol time, Tsym, in milliseconds.  3 points. 
The symbol period is (30 ms) / (10 symbol periods) = 3 ms. 

(e) Give a formula for the pulse shape, g[m].  How many samples are in g[m]?  6 points. 

Start with continuous-time sinc pulse 𝒈 𝒕 =
𝐬𝐢𝐧 𝟐𝝅 𝟏𝟐 𝒇𝒔𝒚𝒎  𝒕  

𝟐𝝅 𝟏𝟐 𝒇𝒔𝒚𝒎  𝒕
= 𝐬𝐢𝐧 𝝅 𝒇𝒔𝒚𝒎 𝒕  

𝝅 𝒇𝒔𝒚𝒎 𝒕
 for 

−∞ < 𝒕 < ∞. Sample h(t) at 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎 to get 𝒉 𝒎 = 𝐬𝐢𝐧 𝝎𝟎 𝒎  
𝝎𝟎 𝒎

 where 𝝎𝟎 =
𝝅
𝑳
 . 

The pulse shape has Ng L = 80 samples in it. 
(f) Infer an upper bound on the amplitude of s[m] as a function of d, J and Ng.  6 points. 

(2J – 1) d Ng because (2J – 1) d is the maximum symbol amplitude and Ng symbol periods are 
added in a baseband signal. 

Lecture Slides 7-14 & 7-15; 
Lecture 13; JSK Ch. 8; 
Lab #5; HW 5.2, 5.3, 6.1, 6.2 



MATLAB Code Used to Create the Baseband PAM Signal Plot in Problem 2.1 
 
% Spring 2018 Midterm #2 
% m is sample index 
% n is symbol index 
% 
% Simulation parameters 
N = 12;      % Number symbol periods to generate 
% Pulse shape g[m] 
Ng = 4;      % Number symbol periods in pulse 
L = 20;      % Samples/symbol period in pulse 
f0 = 1/L; 
midpt = Ng*L/2; 
m = (-midpt) : (midpt-1); 
g = sinc(f0*m); 
% 4-PAM symbol amplitudes 
d = 2; 
pamLevels = 4; 
symAmp = (2*randi(pamLevels,[1,N]) - 5)*d; 
symAmp(1) = d; 
symAmp(2) = -d; 
symAmp(3) = -(pamLevels-1)*d; 
symAmp(4) = (pamLevels-1)*d; 
symAmp(5) = (pamLevels-1)*d; 
symAmp(6) = -(pamLevels-1)*d; 
symAmp(7) = (pamLevels-1)*d; 
symAmp(8) = -(pamLevels-1)*d; 
symAmp(9) = -(pamLevels-1)*d; 
symAmp(10) = (pamLevels-1)*d; 
% Baseband PAM signal for N symbol periods 
mmax = N*L; 
v = zeros(1,mmax); 
v(1:L:end) = symAmp;        % interpolation 
s = conv(v, g);             % pulse shaping 
slength = length(s);        % trim result 
s = s(midpt+1:slength-midpt+1); 
% Plots 
Tsym = 3; 
fsym = 1/Tsym; 
fs = L*fsym; 
Ts = 1/fs; 
Mmax = length(s); 
m = 0 : (Mmax-1); 
t = m*Ts; 
Nmax = Mmax / L; 
n = 0 : (Nmax-1); 
figure; 
plot(t,s); 
hold on; 
stem(n*Tsym,symAmp); 
hold off; 
xlim( [0 (Nmax-2)*Tsym-Ts] );   % Plot N-2 symbol periods 
ylim( [-11 11] ); 
xlabel('Time (ms)'); 
title('Baseband PAM Signal s(t)'); 

  



Problem 2.2  QAM Communication Performance. 28 points.  
Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 18d 2 20d 2 
(b) Average transmit power 10d 2 11d 2 
(c) Draw the decision regions for the right constellation on top of the right constellation. 
(d) Number of type I regions 4 4 
(e) Number of type II regions 8 8 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

3𝑄
𝑑
𝜎 −

9
4𝑄

! 𝑑
𝜎  

 
𝟑𝑸

𝒅
𝝈 −

𝟗
𝟒𝑸

𝟐 𝒅
𝝈  

 
 

The symbol error probability for the right constellation is the same as the symbol error 
probability of the left constellation because the right constellation has the same number of type I, 
II and III decision regions. 
 
(h) Consider using the constellations in upconverted QAM.  In the QAM receiver, how would the 
Costas loop for the phase locked loop perform for the right constellation vs. the left constellation? 
7 points.  

The Costas loop is an adaptive method based on steepest descent for tracking the phase offset at 
in a receiver at the sampling rate.  The update in phase offset is the stepsize times the output of 
in-phase and the quadrature baseband channels (JSK page 208).  In the right constellation, 
either the in-phase component or the quadrature component is zero for half of the constellation 
points.   That is, for these 8 out of 16 constellation points, there is no transmit power in either the 
in-phase or quadrature channel.  During these symbol periods, the Costas loop will not adapt, or 
if it adapts, it will be solely due to thermal noise and other impairments in the system.  

Lecture Slides 15-12 to 15-15; 
JSK Sections 16.1-16.4; 
Lab #6; HW 6.1, 6.3 



Problem 2.3. QAM Constellation Derotation.  24 points.  
A baseband Quadrature Amplitude Modulation (QAM) receiver is given below 

 
where 𝚤[𝑛] and 𝑞 𝑛  are the received in-phase and quadrature symbol amplitudes at symbol index n. 
At the receiver, the QAM constellation may rotate due to a mismatch in the carrier frequencies. 

A phase locked loop running at the sampling rate could track the time-varying phase that is due to the 
carrier frequency mismatch. 

An alternative is to derotate the constellation at the symbol rate by multiplying the complex symbol 
𝚤 𝑛 + 𝑗 𝑞[𝑛] by 𝑒!", i.e. 𝑖 𝑛 + 𝑗 𝑞 𝑛 = 𝚤 𝑛 + 𝑗 𝑞 𝑛 𝑒!" = 𝚤 𝑛 + 𝑗 𝑞 𝑛 (cos𝜃 + 𝑗 sin𝜃): 

𝑖 𝑛 = 𝚤 𝑛 cos𝜃 −  𝑞 𝑛 sin𝜃   and    𝑞 𝑛 = 𝑞 𝑛 cos𝜃 +  𝚤 𝑛 sin𝜃 

We will adapt the phase offset 𝜃 based on the error vector magnitude 𝑒[𝑛] in the decision device, i.e.  

𝑒! 𝑛 = 𝑖 𝑛 − 𝚤 𝑛 ! + 𝑞 𝑛 − 𝑞 𝑛 ! 
 

(a) Give an objective function 𝐽 𝑒 𝑛 .  6 points. 

𝑱 𝒆 𝒏 =  
𝟏
𝟐 𝒆

𝟐 𝒏 =
𝟏
𝟐 𝒊 𝒏 − ! 𝒏 𝟐 + 𝒒 𝒏 − 𝒒 𝒏 𝟐 

(b) Derive the update equation for 𝜃!!!, where k is a symbol index. 9 points. 

We seek to update the phase offset to minimize the mean squared error measure in part (a) 
and the update would occur at the symbol rate: 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁
𝒅𝑱 𝒆 𝒌
𝒅𝜽

𝜽!𝜽𝒌

= 𝜽𝒌 − 𝝁
𝒅
𝒅𝜽

𝟏
𝟐 𝒊 𝒌 − ! 𝒌 𝟐 + 𝒒 𝒌 − 𝒒 𝒌 𝟐

𝜽!𝜽𝒌
 

Using the chain rule for differentiation, 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 𝒊 𝒌 − ! 𝒌
𝒅𝒊[𝒌]
𝒅𝜽 + 𝒒 𝒌 − 𝒒 𝒌

𝒅𝒒[𝒌]
𝒅𝜽

𝜽!𝜽𝒌

 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 𝒊 𝒌 − ! 𝒌 −! 𝒌 𝐬𝐢𝐧𝜽−  𝒒 𝒌 𝐜𝐨𝐬𝜽
+ 𝒒 𝒌 − 𝒒 𝒌 −𝒒 𝒌 𝐬𝐢𝐧𝜽+  ! 𝒌 𝐜𝐨𝐬𝜽

𝜽!𝜽𝒌
 

Lecture Slide 16-4; 
JSK Section 16.7; 
Lab #6; HW 5.1, 6.1, 6.3 



Using the fact that 𝒊 𝒌 = ! 𝒌 𝐜𝐨𝐬𝜽−  𝒒 𝒌 𝐬𝐢𝐧𝜽 and 𝒒 𝒌 = 𝒒 𝒌 𝐜𝐨𝐬𝜽+  ! 𝒌 𝐬𝐢𝐧𝜽, 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 𝒊 𝒌 − ! 𝒌 −𝒒 𝒌 + 𝒒 𝒌 − 𝒒 𝒌 𝒊 𝒌
𝜽!𝜽𝒌

 

And finally, we have the computationally simple update for the phase offset to be 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 ! 𝒌 𝒒 𝒌 − 𝒒 𝒌 𝒊[𝒌]  
 

(c) What range of values would you recommend for µ?   3 points. 

For convergence, use small positive values for µ , e.g. 0.01 or 0.001, should be used. 
When µ is zero, the update equation would not be able to update. 
When µ is either negative or a large positive number, the update will diverge. 

 
(d) This method can work with or without a training sequence.  If you were to use a training sequence, 

which one would you use?  Why?  6 points. 

When using a training sequence, we’d know i[k] and q[k] in advance to compute the update 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 ! 𝒌 𝒒 𝒌 − 𝒒 𝒌 𝒊[𝒌]  

To generate the symbol amplitudes, one could use a maximal-length pseudo-noise to generate 
the bit stream and then use the constellation map to generate the equivalent symbol 
amplitudes. 

 

Please see JSK Section 16.7 Baseband Derotation on page 384.  Please note that angle in the 
above problem θ  is actually –θ  in JSK Section 16.7.  If one multiplies both sides of the update 
equation by -1, 

𝜽𝒌!𝟏
𝑱𝑺𝑲 = 𝜽𝒌

𝑱𝑺𝑲 − 𝝁 𝒊 𝒌 𝒒 𝒌 − 𝒒 𝒌 ! 𝒌  

  



Problem 2.4.  Potpourri.  24 points 
(a) What is the primary advantage of using symbol amplitudes of -3d, -d, d and 3d for 4-level pulse 

amplitude modulation instead of d, 3d, 5d, and 7d?  6 points. 
First set of symbol amplitudes:  peak power is 9d2 and average power is 5d2. 
Second set of symbol amplitudes:  peak power is 49d2 and average power is 21d2. 
Symbol amplitudes of -3d, -d, d and 3d have much lower peak and average power. 

(b) How will fifth-generation (5G) cellular communication systems be able to provide 10 times the 
average and peak bit rates of fourth-generation (4G) cellular 
communication systems?   6 points. 
Bit rate is proportional to bandwidth. 
For QAM, bit rate is J fsym where J is the number of bits/symbol and fsym is the symbol rate, 
and the transmission bandwidth is (1+α) fsym where α  is the rolloff 
parameter for the raised cosine (or square root raised cosine). 
5G and 4G communication systems divide a wide transmission band in 
narrow transmission bands, and each narrowband transmission carries a 
QAM signal.  The narrowband QAM signals are transmitted in parallel. 
To achieve 10x the average and peak bit rates, 5G will use 10x the transmission bandwidth.  
The 28 GHz millimeter wave band will one of the bands used to give the larger bandwidth. 

(c) For each communication subsystem below, advocate using either a discrete-time digital 
implementation or a continuous-time analog implementation. 

i. Baseband processing. 3 points. 
Discrete-time digital implementation.  Baseband processing occurs in both the 
transmitter and receiver.  Baseband bandwidth W, which is half of the transmission 
bandwidth, is generally small enough to enable cost effective analog-to-digital and 
digital-to-analog converters running at sample rates fs > 2 W and cost effective 
processing using programmable processors.  A discrete-time digital implementation 
would allow a lot of flexibility in how the baseband signal could be processed. 

ii. Upconversion to carrier frequencies greater than 1 GHz. 3 points. 
Continuous-time analog implementation.  The transmission 
band is from fc – W to fc + W where fc is the carrier frequency 
and W is the baseband bandwidth.  For a discrete-time 
digital implementation, the digital-to-analog converter would have to run at a 
sampling rate of at least 2 (fc + W). When fc > 1 GHz, the digital-to-analog converter, 
and programmable processors would not be able to keep up. 

(d) In the automatic gain control (AGC) block diagram given below, the analog-to-digital converter 
outputs r[m] which is a signed integer of B bits.  Give a formula that uses r[m] and the adapted 
gain c(t) to create a floating-point approximation of r1(t).  This type of floating-point analog-to-
digital conversion is used in practice, e.g. in cellular basestations.  6 points. 

𝒓 𝒕 = 𝒄(𝒕)𝒓𝟏(𝒕) and hence 𝒓𝟏(𝒕) =
𝒓 𝒕
𝒄 𝒕

 

Gain c(t) should not be 0: 

𝒓𝟏[𝒎] =
𝒓[𝒎]
𝒄[𝒎] 

Lecture Slides 
13-3, 14-27, 
15-10, 15-16 
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Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver. 30 points.  
A bandpass pulse amplitude modulation (PAM) receiver is described as 

 
where m is the sampling index and n is the symbol index, and where 

𝑎[𝑛] received symbol amplitude fs sampling rate fsym symbol rate 
g[m] raised cosine pulse   J  bits/symbol  L samples/symbol 
Μ number of levels, i.e. M = 2J  ωc carrier frequency in rad/sample 

The only impairment being considered is additive thermal noise. 
(a) Give a formula for the bit rate.  3 points. 

J fsym. Units: [bits/symbol] x [symbols/s] = [bits/s] 
(b) Draw the spectrum of r(t).  See sketch on right. 

What is the transmission bandwidth?  6 points. 

fsym (1 + α) where α  is the raised cosine rolloff in [0, 1] 
(c) Give a formula for the minimum sampling rate that would prevent aliasing of the frequencies in the 

transmitted bandpass PAM signal when processed in the receiver.  3 points. 

fs > 2 fmax where fmax = 2 fc + ½ fsym (1 + α) where α  is the rolloff factor in [0, 1] 

(d) Describe the three roles that the lowpass filter plays.  6 points. 
Demodulating filter to extract the baseband signal 
Anti-aliasing filter for the downsampling by L operation 
Matched filter to filter out-of-band noise 

(e) Give a formula for the optimal choice for the impulse response of the lowpass filter.  What 
measure is being optimized?  6 points. 

Impulse response of the optimal matched filter is k  g*[L – m] where k  is any non-zero gain. 

(f) Give a fast algorithm for the Decision Block to decode the received M-PAM symbol amplitude 
𝑎 𝑛  into the most likely symbol of bits.  Your algorithm should work for any finite M.  6 points. 

Transmitted symbol amplitude value 𝒂 𝒏  is from the set {…, -3d, - d, d, 3d, …}.  See below. 
Received symbol amplitude 𝒂[𝒏] = 𝒂 𝒏 + 𝒗[𝒏] where 𝒗[𝒏] is random variable due to noise. 
Divide-and-conquer algorithm will eliminate half of possible constellation points each step.  

Find first bit: Compare 𝒂[𝒏] against 0 and negate 𝒂[𝒏] if negative 
Find nth bit: Compare 𝒂 𝒏  against 2J-n d and if true, subtract 2J-n d from 𝒂 𝒏  
Use bit pattern as unsigned index into a table of bit patterns corresponding to symbol 
amplitudes d, 3d, …, 2J-1 d,-d, -3d, …, -2J-1 d.  (Not necessary for constellation map below). 
Algorithm takes J comparisons, J subtractions and 1 memory read.  2J values are stored. 

  

𝒂[𝒏] 
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Problem 2.2  QAM Communication Performance. 27 points.  
Consider the two 16-QAM constellations below.  Constellation spacing is 2d.  

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 18d 2 26d 2 
(b) Average transmit power 10d 2 15d 2 
(c) Draw the decision regions for the right constellation on top of the right constellation. 
(d) Number of type I regions 4 4 
(e) Number of type II regions 8 8 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

3 𝑄
𝑑
𝜎 −

9
4𝑄

! 𝑑
𝜎  𝟑 𝑸

𝒅
𝝈 −

𝟗
𝟒𝑸

𝟐 𝒅
𝝈  

(h) Express d/σ as a function 
of the Signal-to-Noise Ratio 
(SNR) 

SNR =
10𝑑!

𝜎!  

𝑑
𝜎 =

SNR
10  

𝐒𝐍𝐑 =
𝟏𝟓𝒅𝟐

𝝈𝟐  

𝒅
𝝈 =

𝐒𝐍𝐑
𝟏𝟓  

 

(i) In simulation, we can test the communication performance for different SNR settings by changing 
the variance of the additive Gaussian noise model.  How would you use different SNR settings in a 
field test where the amount of noise power is not under our control?  3 points. 
Received SNR = Average Transmit Signal Power / Average Noise Power 
Answer #1: Adjust d to adjust the average transmit signal power. 
Answer #2: Add noise at the receiver.  

Note:  The right constellation below is impractical.  It consumes too much power and cannot 
be Gray coded.  For best results in mapping the received symbol amplitude to a symbol of bits, 
one should find the closest constellation point in Euclidean distance.  For rectangular-shaped 
constellations, such as the left constellation, thresholding would give the same minimum 
symbol error results as Euclidean distance but would lead to a fast divide-and-conquer 
algorithm using J comparisons for M = 2J levels (no multiplications needed). Lectures 15 & 16 
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Problem 2.3. Impedance Mismatch.  25 points. 
After a system starts up and begins to operate, the temperature inside the system will increase.  Power 
management inside the system can also cause significant changes in the temperature of the system. 
These temperature changes cause changes in the resistance, capacitance, and inductance in the system, 
which can in turn causes changes to the impedance mismatch to any wired connections to the system. 
Impedance mismatch can be compensated by means of 
an adaptive finite impulse response (FIR) filter h[m] 
that predistorts the signal x[m] prior to digital-to-analog 
(D/A) conversion. 
D/A and analog-to-digital (A/D) converters are 
synchronized via a common sampling clock. 
Let Nh = Number of coefficients in h[m] 

(a) How could you determine a fixed value of Δ without 
the need for training?  6 points. 

The delay Δ  represents the delay through the 
adaptive filter, the D/A converter (1 sample) and the A/D converter (1 sample).  The adaptive 
filter won’t have symmetry in its impulse response about the midpoint; i.e., the group delay 
won’t be a constant.  The worst-case delay is Nh – 1 samples. So, Δ  = (Nh – 1) + 2 = Nh + 1. 

(b) Give an objective function 𝐽 𝑒 𝑚 .  3 points. 

We would like to minimize the error between r[m] and s[m]:  

𝑱 𝒆 𝒎 =
𝟏
𝟐 𝒆

𝟐[𝒎] 

(c) Give the update equation for the vector ℎ of FIR coefficients. 12 points. 

𝒉 𝒎+ 𝟏 = 𝒉 𝒎 − 𝝁 
𝒅𝑱(𝒆 𝒎 )

𝒅𝒉 𝒉!𝒉[𝒎]
 

𝒆 𝒎 = 𝒓 𝒎 − 𝒔[𝒎] and 𝒔 𝒎 = 𝒙[𝒎− 𝚫] 

Since 𝒔[𝒎] does not have any dependence on 𝒉, 
𝒅𝑱(𝒆 𝒎 )

𝒅𝒉
= 𝒆 𝒎

𝒅𝒆[𝒎]
𝒅𝒉

= 𝒆 𝒎
𝒅𝒓[𝒎]
𝒅𝒉

 

Please see the next page for several ways to complete the derivation. 

(d) What range of values would you recommend for the step size µ?   Why?  4 points. 

For convergence, use small positive values for µ , e.g. 0.01 or 0.001, should be used. 
When µ is zero, the update equation would not be able to update. 
When µ is either negative or a large positive number, the update will diverge. 
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Solution #1 for (c):  Assume there is no impedance mismatch.  In this case, 𝒚[𝒎] experiences a 
one sample delay through the D/A converter and a one sample delay through the A/D converter: 
𝒓 𝒎 = 𝒚[𝒎− 𝟐] 
𝒚 𝒎 = 𝒉𝟎 𝒙 𝒎 + 𝒉𝟏 𝒙 𝒎− 𝟏 + 𝒉𝟐 𝒙 𝒎− 𝟐 +⋯𝒉𝑵𝒉!𝟏 𝒙 𝒎− 𝑵𝒉 − 𝟏  
𝒅𝑱(𝒆 𝒎 )

𝒅𝒉
= 𝒆 𝒎

𝒅𝒓[𝒎]
𝒅𝒉

= 𝒆 𝒎
𝒅𝒚[𝒎− 𝟐]

𝒅𝒉
= 𝒆 𝒎  𝒙[𝒎− 𝟐] 

where  𝒙 𝒎− 𝟐 = [ 𝒙 𝒎− 𝟐      𝒙 𝒎− 𝟑      𝒙 𝒎− 𝟒      ⋯       𝒙 𝒎−𝑵𝒉 − 𝟏  ] 
Initial guess for the filter coefficients: 𝒉 =  𝟎 𝟎 ⋯𝟎 𝟏  to match Δ  = (Nh – 1) + 2 = Nh + 1. 
Solution #2 for (c):  Model a finite number of reflections between A/D converter output and 
impedance by using an FIR filter 𝒗(𝒕). We’ll use a discrete-time version of the FIR filter: 
𝒓 𝒎 = 𝒗 𝒎 ∗ 𝒚 𝒎 = 𝒗 𝒎 ∗ 𝒙 𝒎 ∗ 𝒉 𝒎 = 𝒗 𝒎 ∗ 𝒙 𝒎 ∗ 𝒉 𝒎  
We know 𝒙 𝒎 .  Let’s assume that we know 𝒗 𝒎  for now. 
Define 𝒘 𝒎 = 𝒗 𝒎 ∗ 𝒙 𝒎  and hence 𝒓 𝒎 = 𝒘 𝒎 ∗ 𝒉 𝒎 : 
𝒓 𝒎 = 𝒉𝟎 𝒘 𝒎 + 𝒉𝟏 𝒘 𝒎− 𝟏 +⋯+ 𝒉𝑵𝒗!𝟏 𝒘 𝒎− 𝑵𝒗 − 𝟏  
𝒅𝑱(𝒆 𝒎 )

𝒅𝒉
= 𝒆 𝒎

𝒅𝒓[𝒎]
𝒅𝒉

= 𝒆 𝒎  𝒘[𝒎]  

where 𝒘 𝒎 = [ 𝒘 𝒎      𝒘 𝒎− 𝟏     ⋯     𝒘 𝒎− 𝑵𝒉 − 𝟏  ] 
We can solve for 𝒗 𝒎  as a least-squares filter or an adaptive filter. 
Solution #2 Algorithm 
𝒗 =  𝟎 𝟎 𝟏 𝟎⋯𝟎 𝟎  which has Nv elements   and    𝝁 = 𝟎.𝟎𝟏 
Adapt 𝒗[𝒎] to learn reflections without pre-distortion filter enabled 

𝒚 𝒎 = 𝒙 𝒎  
𝒒 𝒎 = 𝒗𝟎 𝒚 𝒎 + 𝒗𝟏 𝒚 𝒎− 𝟏 +⋯+ 𝒗𝑵𝒗!𝟏 𝒚 𝒎− 𝑵𝒗 − 𝟏  
𝒅 𝒎 = 𝒓 𝒎 − 𝒒[𝒎] 
𝒚 𝒎 = [ 𝒚 𝒎     𝒚 𝒎− 𝟏   ⋯   𝒚 𝒎− 𝑵𝒗 − 𝟏 ] 
𝒗 𝒎+ 𝟏 = 𝒗 𝒎 − 𝝁 𝒅 𝒎  𝒚 𝒎  

𝚫 = 𝑵𝒗 − 𝟏  and  𝝁 = 𝟎.𝟎𝟏  and  𝒉 =  𝟏 𝟎 𝟎 𝟎⋯𝟎 𝟎  which has Nh elements 
Adapt both the pre-distortion filter and the reflection model 

𝒚 𝒎 = 𝒉𝟎 𝒙 𝒎 + 𝒉𝟏 𝒙 𝒎− 𝟏 + 𝒉𝟐 𝒙 𝒎− 𝟐 +⋯𝒉𝑵𝒉!𝟏 𝒙 𝒎− 𝑵𝒉 − 𝟏  
𝒘 𝒎 =  𝒘 𝒎     𝒘 𝒎− 𝟏    𝒘 𝒎− 𝟐   ⋯   𝒘 𝒎− 𝑵𝒉 − 𝟏   and  𝒘 𝒎 = 𝒗 𝒎 ∗ 𝒙 𝒎  
𝒆 𝒎 = 𝒓 𝒎 − 𝒔[𝒎]  and  𝒔 𝒎 = 𝒙[𝒎− 𝚫] 

𝒉 𝒎+ 𝟏 = 𝒉 𝒎 − 𝝁 
𝒅𝑱(𝒆 𝒎 )

𝒅𝒉 𝒉!𝒉[𝒎]
= 𝒉 𝒎 − 𝝁 𝒆 𝒎  𝒘[𝒎]  

𝒒 𝒎 = 𝒗𝟎 𝒚 𝒎 + 𝒗𝟏 𝒚 𝒎− 𝟏 + 𝒗𝟐 𝒚 𝒎− 𝟐 +⋯𝒗𝑵𝒗!𝟏 𝒚 𝒎− 𝑵𝒗 − 𝟏  
𝒅 𝒎 = 𝒓 𝒎 − 𝒒[𝒎] 
𝒚 𝒎 = [ 𝒚 𝒎     𝒚 𝒎− 𝟏   ⋯   𝒚 𝒎− 𝑵𝒗 − 𝟏 ] 
𝒗 𝒎+ 𝟏 = 𝒗 𝒎 − 𝝁 𝒅 𝒎  𝒚 𝒎  



Problem 2.4.  Symbol Timing Recovery.  18 points 
We add symbol timing recovery and correction to the bandpass pulse amplitude modulation (PAM) 
receiver in Problem 2.1: 

 
where m is the sampling index and n is the symbol index, and where 

𝑎[𝑛] received symbol amplitude fs sampling rate fsym symbol rate 
g[m] raised cosine pulse shape  J  bits/symbol  L samples/symbol 
Μ number of levels, i.e. M = 2J  ωc carrier frequency in rad/sample 

The block diagram of the symbol timing recovery and correction subsystem follows: 

 
Upper filter hupper[m] locks onto (passes) continuous-time frequency fc + ½ fsym and the lower filter 
hlower[m] locks onto (passes) fc - ½ fsym .  The thicker/bold lines indicate complex-valued signals. 

The sample timing offset is τs , which accumulates over L samples to give the symbol timing offset τ. 
(a) Design a first-order complex-valued infinite impulse response (IIR) filter for hupper[m].  6 points. 

Center frequency: 𝝎𝒖𝐩𝐩𝐞𝐫 = 𝟐𝝅
𝒇𝒄 ! 𝟏𝟐 𝒇𝒔𝒚𝒎

𝒇𝒔
 

Normally, we would use a pole at radius close to one. 
For this case, we’ll place the pole on the unit circle. 

(b) Design this block to convert from the 
sampling rate to the symbol rate.  6 points. 

Downsampler by L. 
(c) Design a filter to smooth the rotation 

signal cos 2 𝜋 𝑓!"# 𝜏 𝑛  𝑛 .  6 points. 

Let 𝒙 𝒏 = 𝐜𝐨𝐬 𝟐 𝝅 𝒇𝒔𝒚𝒎 𝝉 𝒏  𝒏 . 
Use a first-order lowpass IIR filter 
𝒑 𝒏 = 𝒄 𝒑 𝒏− 𝟏 + 𝟏− 𝒄  𝒙[𝒏] 
where the pole location c = 0.9. 

When m = L, output is exp(j 2 π fsym τ): 
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Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver Tradeoffs. 24 points. 
A bandpass pulse amplitude modulation (PAM) receiver is described as 

 
where m is the sampling index and n is the symbol index, and has system parameters 

𝑎[𝑛] received symbol amplitude fs sampling rate fsym symbol rate 
g[m] raised cosine pulse   J  bits/symbol  L samples/symbol 
Μ number of levels, i.e. M = 2J  ωc carrier frequency in rad/sample 

The only impairment being considered is additive thermal noise w(t). 
Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal. 

(a) For the additive thermal noise w(t), 
i. What is the probability distribution used to model the amplitude values of w(t)?  3 points. 

Gaussian distribution N(0, σ2).  Each amplitude value is statistically independent.  
The mean is zero, and the variance σ2 indicates the average noise power. 

ii. What is the justification for using that probability distribution?  3 points. 

Thermal noise is due to the random motion of particles due to temperature.  For 
electromagnetic waves, the particles are electrons.  As temperature increases, the 
random motion is faster and the noise power is higher.  Each electron received is 
statistically independent from the transmitted waveform and other electrons. As the 
number of electrons tends to infinity, the additive effect would converge to a Gaussian 
distribution due to the Central Limit Theorem (a.k.a. Law of Large Numbers). 

(b) If an optimal matched filter is used for the LPF, 

i. Which signal in the receiver is being optimized?  3 points.  Estimated symbol ampl. 𝒂[𝒏] 
ii. By what measure is the signal in part (b)i optimal?  3 points. Signal-to-noise ratio (SNR) 

(c) Give formulas for communication signal quality measures below in terms of system parameters: 
i. Bit rate.   3 points.   J fsym.  Units: [bits/symbol] x [symbols/s] = [bits/s] 

ii. Probability of symbol error.  3 points. 

𝑷𝒆𝒓𝒓𝒐𝒓𝑷𝑨𝑴 = 𝟐 
𝑴− 𝟏
𝑴  𝑸

𝒅
𝝈 𝑻𝒔𝒚𝒎 = 𝟐 

𝑴− 𝟏
𝑴  𝑸

𝒅
𝝈 𝑳 𝑻𝒔  

(d) Based on the formulas in (c), what’s the impact on bit rate and probability of symbol error if 

i. Transmit power is increased.  3 points. On slide 14-27, transmit power is 𝟏
𝟑
𝑴𝟐 − 𝟏 𝒅𝟐. 

(1) M increases, d is same.  Increase in bit rate.  Mild increase in symbol error prob. 
(2) M is same, d increases.  No effect on bit rate.  Large decrease in symbol error prob. 

ii. Number of samples/symbol, L, is increased.  3 points.  When L increases, fsym = fs  / L, 
decreases, and hence bit rate decreases.   Large decrease in symbol error probability.  



Problem 2.2  QAM Communication Performance. 30 points.  
Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 
Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 18d 2 50d 2 
(b) Average transmit power 10d 2 20d 2 
(c) Draw the type I, II and/or III decision regions for the right constellation on top of the right 
constellation that will minimize the probability of symbol error using such decision regions. 
Avoid Type I regions because they have the highest probability of symbol error.  We 
always have four Type III regions.  So, maximize the number of Type II regions. 
(d) Number of type I regions 4 0 
(e) Number of type II regions 8 12 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

 
 

𝟏𝟏
𝟒
𝑸

𝒅
𝝈

−
𝟕
𝟒
𝑸𝟐

𝒅
𝝈

 

(h) Express d/σ as a function 
of the Signal-to-Noise Ratio 
(SNR) in linear units 

SNR =
10𝑑!

𝜎!  

𝑑
𝜎 =

SNR
10  

𝐒𝐍𝐑 =
𝟐𝟎𝒅𝟐

𝝈𝟐  

𝒅
𝝈 =

𝐒𝐍𝐑
𝟐𝟎  

 

(i) In a 16-QAM receiver for the right constellation, an estimated symbol amplitude -3d  - j0.5d. 
What is the decoded transmitted constellation point using 

• Your constellation regions given above. 3 points.   -3d  - j 0.5d would map to d – j d. 
• Smallest Euclidean distance. 3 points.  The closest constellation point to -3d - j0.5d in 

Euclidean distance is -3d + jd. 

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛
σσ
dQdQ 2

4
93

Point of 
peak 
power 

Note:  The right constellation is impractical.  It consumes too much power and cannot be Gray coded.  
For lowest symbol error probability in mapping a received symbol amplitude to a symbol of bits, find 
the closest constellation point in Euclidean distance.  For rectangular constellations, such as the one on 
the left, thresholding would give the same minimum symbol error results as Euclidean distance but 
leads to a fast divide-and-conquer algorithm using J comparisons for M = 2J levels (no multiplications). 
 



Problem 2.3. Quadrature Amplitude Modulation (QAM) Receiver Design.  28 points. 
Some QAM receivers have a separate analog-to-digital (A/D) converter for the in-phase component 
and the quadrature component, as shown below. 

 

 
 

 
 

 
 

 
System parameters:  B bits at A/D output, 2d constellation spacing, fs sampling rate, fsym symbol rate, 
J bits/symbol, L samples/symbol, and M constellation points (i.e. M = 2J).  B is much greater than J. 
Assume a rectangular, uniformly spaced, QAM constellation. 

(a) If the signal-to-noise ratio (SNR) due to thermal noise in the system increases by 6 dB, and the 
system is matching the SNR due to thermal noise with the SNR due to quantization noise, 

i. How many additional bits are possible for each A/D converter?  3 points. 
Each 6 dB gain in SNR yields one extra A/D bit:  SNRdB = C0 + 6 B for B bits. 

ii. What is the overall dB/bit increase in the system? 4 points. 
2 bits have been added, i.e. 3 dB/bit.  For QAM systems, SNRdB = C1 + 3 B for B bits. 

(b) What is the largest value of d that prevents clipping in the A/D converter?  3 points. 
In the QAM receiver above, each A/D converter converts a received baseband PAM signal.   
Rectangular, uniformly spaced, QAM constellations have a PAM in-phase and quadrature 
constellations.  In Problem 2.2, the left 16-QAM constellation has 4-PAM in-phase and 4-
PAM quadrature constellations.  4-PAM symbol amplitudes are -3d, -d, d and 3d.  Due to 
raised cosine pulse shaping, the amplitude of the baseband PAM signal lies in (-6d, 6d). 
Each A/D converter produces a signed B-bit integer whose values are from -2B-1 to 2B-1 – 1. 
Set -6d = -2B-1 and solve for d.  Or, to make d an integer, set -8d = -2B-1 and solve for d.   

(c) Receiver supports up to 16-QAM.  For a 4-QAM training signal, develop an adaptive automatic 
gain control (AGC) algorithm.  Gain c(t) will be applied to the in-phase and quadrature channels.  
The gain sampled at the symbol time, c[n] = c(n Tsym), will be adapted every symbol period. 
For the 16-QAM receiver, signals 𝒊 𝒏  and 𝒒[𝒏] represent transmitted symbol amplitudes 
from a 4-PAM constellation.  Their possible values are -3d, -d, d and 3d.  Their values are 
independent of the gain c(t).  Use the value of d computed in part (b). 
When using a pulse shape with zero crossings at multiples of the symbol period other than 
the current symbol, e.g. a raised cosine pulse shape, and without any symbol timing error, 
! 𝒏 = ! 𝑳𝒏 = 𝑸[ 𝒓𝑰(𝒏 𝑻𝒔𝒚𝒎) 𝒄(𝒏 𝑻𝒔𝒚𝒎) ] and 𝒒 𝒏 = 𝒒 𝑳𝒏 =  𝑸[ 𝒓𝑸(𝒏 𝑻𝒔𝒚𝒎) 𝒄(𝒏 𝑻𝒔𝒚𝒎) ] . 
We’ll also assume Q[x] ≈ x to be able to compute derivatives.  

rI(t) 

rQ(t) 



See the explanation in part (c) above, which sets the stage for the following solutions. 

i. Give an objective function 𝐽 𝑛 .  6 points. 

Solution #1:  𝑱 𝒏 = 𝟏
𝟐
𝒊 𝒏 − ! 𝒏 𝟐 + 𝟏

𝟐
𝒒 𝒏 − 𝒒 𝒏 𝟐 

Solution #2:  𝑱 𝒏 = 𝟏
𝟐
𝒆𝟐[𝒏] where 𝒆[𝒏] = 𝒊 𝒏 − ! 𝒏 + 𝒒 𝒏 − 𝒒 𝒏  

Drawback: positive in-phase error can be offset by negative quadrature 
error, and vice-versa.  Solution #1 is better.  Both are decision-directed. 

Solution #3:  During 4-QAM training, each A/D converter will see a 2-PAM baseband 
signal.  We can modify the “naïve” AGC algorithm from Johnson, Sethares & Klein, 
e.g. J(n) in (6.15) and update in (6.16) on page 123.  This “naïve” AGC performed the 
best of the three AGC algorithms evaluated in homework 7.3 w/r to additive noise. 

𝑱 𝒏 = 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝒄 𝒏
!𝟐[𝒏]
𝟑 − 𝒅𝟐 +  

𝒒𝟐[𝒏]
𝟑 − 𝒅𝟐   

ii. Derive an update equation for gain c[n].  Compute all derivatives.  Simplify result.  9 points 
Solution #1:  Minimize the objective function: 

𝒄 𝒏+ 𝟏 = 𝒄 𝒏 − 𝝁 
𝒅𝑱 𝒏
𝒅𝒄 𝒏 = 𝒄 𝒏 − 𝝁 𝒊 𝒏 − ! 𝒏 −

𝒅![𝒏]
𝒅𝒄[𝒏] + 𝒒 𝒏 − 𝒒 𝒏 −

𝒅𝒒[𝒏]
𝒅𝒄[𝒏]   

𝒄 𝒏+ 𝟏 = 𝒄 𝒏 − 𝝁  ! 𝒏 − 𝒊 𝒏  𝒓𝑰 𝒏 + 𝒒 𝒏 − 𝒒 𝒏  𝒓𝑸 𝒏   
 Since we do not know either 𝒓𝑰[𝒏] = 𝒓𝑰(𝒏 𝑻𝒔𝒚𝒎) or 𝒓𝑸[𝒏] = 𝒓𝑸(𝒏 𝑻𝒔𝒚𝒎), we’ll roll 

them into the step size parameter µ .  That is, we’ll treat 𝒓𝑰 𝒏 = 𝒓𝑸 𝒏 = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭. 
𝒄 𝒏+ 𝟏 = 𝒄 𝒏 − 𝝁  ! 𝒏 − 𝒊 𝒏  + 𝒒 𝒏 − 𝒒 𝒏   

Solution #2: Minimize the objective function: 

𝒄 𝒏+ 𝟏 = 𝒄 𝒏 − 𝝁 
𝒅𝑱 𝒏
𝒅𝒄 𝒏 = 𝒄 𝒏 − 𝝁 𝒆 𝒏  

𝒅𝒆[𝒏]
𝒅𝒄 𝒏  

𝒄 𝒏+ 𝟏 = 𝒄 𝒏 − 𝝁 𝒆 𝒏  −𝒓𝑰 𝒏 − 𝒓𝑸 𝒏  
Since we do not know either 𝒓𝑰[𝒏] = 𝒓𝑰(𝒏 𝑻𝒔𝒚𝒎) or 𝒓𝑸[𝒏] = 𝒓𝑸(𝒏 𝑻𝒔𝒚𝒎), we’ll roll 
them into the step size parameter µ .  That is, we’ll treat 𝒓𝑰 𝒏 = 𝒓𝑸 𝒏 = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭. 

𝒄 𝒏+ 𝟏 = 𝒄 𝒏 − 𝝁 (−𝒆 𝒏 ) = 𝒄 𝒏 − 𝝁  ! 𝒏 − 𝒊 𝒏  + 𝒒 𝒏 − 𝒒 𝒏    
After the approximations in solutions #1 and #2, they’ve become the same solution. 

Solution #3:  We modify (6.16) on page 123 in JSK: 

𝒄 𝒏+ 𝟏 = 𝒄 𝒏 − 𝝁 
𝒅𝑱 𝒏
𝒅𝒄 𝒏 = 𝒄 𝒏 − 𝝁 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐬𝐢𝐠𝐧(𝒄 𝒏 ) !𝟐 𝒏 − 𝒅𝟐 + 𝒒𝟐 𝒏 − 𝒅𝟐  

 
iii. What range of values would you recommend for the step size µ?   Why?  3 points. 

Use a small positive value for the step size µ , such as 0.01 or 0.001, for convergence of 
the steepest descent algorithm.  A step size of zero will prevent any updates.  A 
negative step size and a large positive step size will cause divergence. 

  



Problem 2.4.  Bandpass Pulse Amplitude Modulation Receiver Decisions.  18 points 
A bandpass pulse amplitude modulation (PAM) receiver is described as 

 
where m is the sampling index and n is the symbol index, and has system parameters 

𝑎[𝑛] received symbol amplitude fs sampling rate fsym symbol rate 
g[m] raised cosine pulse   J  bits/symbol  L samples/symbol 
Μ number of levels, i.e. M = 2J  ωc carrier frequency in rad/sample 

The only impairment being considered is additive thermal noise w(t). 
Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal. 

(a) Consider an 8-PAM bandpass transmitter. 
i. Draw an 8-PAM constellation map with Gray coding 

on the right. 6 points 
Gray code means that the symbols of bits between two  
adjacent constellation points only differ by one bit. 
The idea is to minimize the number of bit errors when  
there is a symbol error so that the receiver can use 
error correcting codes to try to correct for the flipped bit. 

ii. Explain how you would build a lookup table for the 
constellation map in part (a)i.  3 points 

Use the symbol of bits as an unsigned integer index into 
a lookup table (array) of symbol amplitudes with entries 
{ d, 3d, 7d, 5d, -d, -3d, -7d, -5d }. 

 
(b) Consider an M-PAM bandpass receiver.  The decision block quantizes the estimated symbol 

amplitude 𝑎[𝑛] for M-PAM into a symbol of bits.  Give formulas for the computational complexity 
as a function of M for each decision block quantization algorithm below.  9 points. 

i. Compare 𝑎[𝑛] against each constellation point in the transmitter constellation map. 

M calculations, O(M) 
ii. Divide-and-conquer to discard half of the candidate constellation points each comparison. 

log2 M calculations, O(log2 M) 

iii. Determine the index of the closest constellation point using round ! ! !!
!!

, limit the 
unsigned index to a value between 0 and M-1 inclusive, and then use the unsigned index to 
find the symbol of bits in the lookup table for the constellation map. 

Floating-point subtraction, division, and round operations.  Constant time.  O(1). 

010 
011 
001 
000 
100 
101 
111 
110 

 7d 
 5d 
 3d 
   d 
  -d 
-3d 
-5d 
-7d 
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Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver Tradeoffs. 24 points.  
A bandpass pulse amplitude modulation (PAM) receiver is described as 

 
where m is the sampling index and n is the symbol index, and has system parameters 
𝑎[𝑛] transmitted symbol amplitude 𝑎[𝑛] received symbol amplitude 
2d constellation spacing   fs sampling rate  fsym symbol rate 
g[m] raised cosine pulse with rolloff α J  bits/symbol   L samples/symbol 
Μ number of levels, i.e. M = 2J  Ng symbol periods in g[m] ωc carrier freq. in rad/sample 

The only impairment is additive thermal noise w(t) modeled as zero-mean Gaussian with variance σ2. 

Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal. 
(a) Give formulas for communication signal quality measures below in terms of system parameters: 

i. Bit rate.   3 points.   J fsym.  Units: [bits/symbol] x [symbols/s] = [bits/s] 
ii. Probability of symbol error.  3 points 

𝑷𝒆𝒓𝒓𝒐𝒓𝑷𝑨𝑴 = 𝟐 𝑴!𝟏
𝑴

 𝑸 𝒅
𝝈

𝑻𝒔𝒚𝒎 = 𝟐 𝑴!𝟏
𝑴

 𝑸 𝒅
𝝈

𝑳 𝑻𝒔   

(b) Draw the spectrum for r(t).  What is the transmission bandwidth in Hz?   6 points. 

 

𝐓𝐫𝐚𝐧𝐬𝐦𝐢𝐬𝐬𝐢𝐨𝐧 𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡 = 𝒇𝒔𝒚𝒎 𝟏+ 𝜶 ; 𝒇𝟏 = 𝒇𝒄 −
𝟏
𝟐
𝒇𝒔𝒚𝒎 𝟏+ 𝜶 ; 𝒇𝟐 = 𝒇𝒄 +

𝟏
𝟐
𝒇𝒔𝒚𝒎 𝟏+ 𝜶  

(c) For the lowpass filter (LPF), 
i. What three roles does it play?  3 points.  Demodulating filter, anti-aliasing filter for 

downsampling operation, and matched filter to maximize SNR at downsampler output 
ii. If its impulse response is equal to g[m], give a formula for its bandwidth.  3 points 

𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝒉 = 𝟐𝝅
𝟏
𝟐𝒇𝒔𝒚𝒎 𝟏!𝜶

𝒇𝒔
= 𝝅

𝑳
𝟏+ 𝜶  by using 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎 

(d) For the cascade of the lowpass filter (LPF) and downsampling by L, 
i. How many multiplications per second are required?  3 points 

L2 Ng fsym , because the FIR filter has Ng L coefficients and runs at rate L fsym. 
ii. What would the savings be if the cascade were realized in polyphase form?  Why?  3 points. 

The downsampler only keeps 1 sample of every block of L samples produced by the 
FIR filter.  A polyphase form would only compute the 1 sample by using a bank of L 
filters, each with Ng coefficients, running at the symbol rate.  Savings by a factor of L.  

Lectures 13 & 14 
JSK Ch. 8 & 11 
Lab #5 & WWM Ch. 17 
HW 5.2, 5.3, 6.1, 6.2 
Midterm 2.1 F18 & Sp19 
Handout P 

Lecture Slide 26-10 (Midterm #2 Review) 



Problem 2.2  QAM Communication Performance. 30 points.  
Consider the two 12-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 10d 2 50d 2 
(b) Average transmit power 22

3 𝑑! ≈ 7.33𝑑! 
𝟐𝟒𝟖
𝟏𝟐 𝒅𝟐 ≈ 𝟐𝟎.𝟔𝟕𝒅𝟐 

(c) Draw the type I, II and/or III decision regions for the right constellation on top of the right 
constellation that will minimize the probability of symbol error using such decision regions. 
(d) Number of type I regions 4 1 
(e) Number of type II regions 4 7 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

3 𝑄
𝑑
𝜎 − 𝑄!

𝑑
𝜎  

 

𝟏𝟏
𝟒 𝑸

𝒅
𝝈 −

𝟏𝟏
𝟔 𝑸𝟐

𝒅
𝝈  

(h) Express d/σ as a function 
of the Signal-to-Noise Ratio 
(SNR) in linear units 

SNR =
22
3

𝑑!

𝜎!  

𝑑
𝜎
=

3
22
SNR ≈ 0.369 SNR 

𝐒𝐍𝐑 =
𝟔𝟐
𝟑

𝒅𝟐

𝝈𝟐  

𝒅
𝝈
=

𝟑
𝟔𝟐

𝐒𝐍𝐑 ≈ 𝟎.𝟎𝟒𝟖𝟒 𝐒𝐍𝐑 

 

(i) In a 12-QAM receiver for the right constellation, an estimated symbol amplitude is –5d – jd. What 
is the decoded transmitted constellation point using 

• Your constellation regions given above. 3 points.  –d – j d 
• Smallest Euclidean distance. 3 points.  -5d + j d 

Lecture 15 
Lecture 16 
JSK Ch. 16 
Lab #6 
HW 6.3 
Midterm 2.2 
Problems in 
Sp18, F18 
and Sp19 
Handout P 

Note:  The constellation on the right is impractical.  It consumes too much power.  For the lowest 
symbol error probability in mapping a received symbol amplitude to a symbol of bits, find the closest 
constellation point in Euclidean distance.  For rectangular constellations, such as for 16-QAM, using 
rectangular decision regions would give the same minimum symbol error results as Euclidean distance 
but has a fast divide-and-conquer algorithm using J comparisons for M = 2J levels (no multiplications). 
 



Problem 2.3. Channel Equalization.  28 points. 
In the discrete-time system on the right, the equalizer 
operates at the sampling rate. 
The equalizer is a finite impulse response (FIR) filter 
with N real coefficients w0, w1, … wN-1 : 
r[m] = w0  y[m] + w1 y[m-1] + …+ wN-1 y[m - (N-1)] 

Channel model is an FIR filter with impulse response 
h[m] in cascade with additive noise n[m]. 
(a) What two training sequences for x[m] could you use?  Why?  6 points. 

Pseudo-noise sequences and chirp sequences have all discrete-time frequencies present in 
them.  Either can be independently generated by the receiver.  A pseudo-noise sequence can 
be generated using only logical operations and memory. 

(b) For one of the training sequences in part (a), describe how you would estimate the delay parameter 
Δ in the ideal channel model. 3 points. 
The receiver can correlate the received signal y[m] against the anticipated training sequence 
x[m], and we can take the location of the first peak to be Δ  samples. 

(c) For an adaptive FIR equalizer, derive the update equation for the vector of FIR coefficients 𝑤 for 
the objective function J(e[m]) = | e[m] |.  Here, 𝑤 =  𝑤!  𝑤!  ⋯   𝑤!!! .  Please use the fact that 
!
!"

𝑥 = sign 𝑥  except at x = 0 which we will extend to include x = 0.  What value should sign(x) 
take at x = 0 for the adaptive update?  Let 𝑤[𝑚] =  𝑤! 𝑚     𝑤! 𝑚  ⋯   𝑤!!! 𝑚   .  12 points. 

We would like to drive the error e[m] to zero and hence minimize J(e[m]) = | e[m] |. 

𝒘 𝒎+ 𝟏 = 𝒘 𝒎 − 𝝁 𝒅𝑱 𝒆[𝒎]
𝒅𝒘 𝒘!𝒘[𝒎]

= 𝒘 𝒎 − 𝝁 𝐬𝐢𝐠𝐧(𝒆 𝒎]  𝒚 𝒎   

where 𝒚[𝒎] =  𝒚 𝒎    𝒚 𝒎− 𝟏   ⋯   𝒚[𝒎− (𝑵− 𝟏)  ]. 

If error e[m] reaches zero, then we’d stop the update, so we’ll need sign(0) = 0. 
(d) Compare your answer in (c) with an adaptive least mean squares (LMS) equalizer.  For the LMS 

approach, use 𝐽 𝑒 𝑚 =  !
!
𝑒! 𝑚  which leads to the update equation 

𝑤 𝑚 + 1 = 𝑤 𝑚 − 𝜇 𝑒 𝑚  𝑦 𝑚  

where 𝑦 𝑚 =  𝑦 𝑚    𝑦 𝑚 − 1   ⋯   𝑦[𝑚 − (𝑁 − 1)  ].  Would you use (c) or (d)?  4 points. 

The update equation in (c) will scale 𝒚[𝒎] by either +µ , –µ,  or 0.  Large errors are treated 
the same way as non-zero small errors.  In part (d), the offset is proportional to the error 
value.  The update will initially make rapid progress and then slow down as it approaches 
the optimal answer.  Parts (c) and (d) have similar complexity: they would compute either 
µ  sign(e[m]) or µ  e[m] before multiplying that scalar value by the vector 𝒚[𝒎]. 

(e) For your answer in (c), what values of the step size (learning rate) µ would you use?  3 points. 
Use a small positive value for the step size µ , such as 0.01 or 0.001, for convergence of the 
steepest descent algorithm.  A step size of zero will prevent any updates.  A negative step size 
and a large positive step size will cause divergence. 

JSK Sec. 2.12 & 13.1-13.3; HW 5.1, 6.1, 6.2, 7.2; Slides 16-6 to 16-8; In-Lecture Problems 2&3; 
Midterm Problems: 2.2 F12, 2.1 Sp13, 2.1 F13, 2.1 Sp14, 2.3 Sp17, 2.3 Sp17, 2.3 Sp17 

 



Problem 2.4.  Total Harmonic Distortion.  18 points 

Total harmonic distortion is a measure of the power in the harmonics of a fundamental frequency. 
Design a discrete-time, linear time-invariant (LTI), infinite impulse response (IIR) comb filter to 
• Pass harmonics of a 1 kHz tone, i.e. 2 kHz, 3 kHz, etc. 
• Not pass 0 kHz or 1 kHz frequencies. 
Assume a sampling rate of 48 kHz. 
Please give the transfer function of your design and explain your reasoning to get there. 
 
 

We’ll use a cascade of an IIR comb filter, IIR DC notch filter, and IIR filter to notch 1 kHz. 

• IIR comb filter:  𝒚 𝒏 = 𝒙 𝒏 − 𝜶 𝒚[𝒏−𝑲].  Zero initial conditions to ensure LTI properties. 
Transfer function: 𝑯𝒄𝒐𝒎𝒃 𝒛 = 𝟏

𝟏 ! 𝜶 𝒛!𝑲
 which has K poles with radius 𝜶𝑲 and uniformly 

spaced in phase, where 𝜶 < 𝟏 for bounded-input bounded-output (BIBO) stability.   

Magnitude response: Peaks at integer multiples of fs / K between [ -½ fs , ½ fs ). 

• IIR DC notch filter.  𝒚 𝒏 = 𝒙 𝒏 − 𝒙 𝒏− 𝟏 + 𝒓 𝒚[𝒏− 𝟏].  Zero initial conditions for LTI. 
Transfer function: 𝑯𝟎 𝒛 = 𝟏! 𝒛!𝟏

𝟏 ! 𝒓 𝒛!𝟏
 which has a zero at z = 1 and pole at z = r. 

• IIR notch filter to remove f1 = 1 kHz which is a discrete-time frequency of 𝝎𝟏 = 𝟐𝝅 𝒇𝟏
𝒇𝒔

 . 

Second-order IIR filter with zeros on the unit circle at −𝝎𝟏 and 𝝎𝟏 ; poles at same angle. 

Transfer function: 𝑯𝟏 𝒛 = 𝟏 ! 𝒛𝟏 𝒛!𝟏 𝟏 ! 𝒛𝟐 𝒛!𝟏

𝟏 ! 𝒑𝟏 𝒛!𝟏 𝟏 ! 𝒑𝟐 𝒛!𝟏
 with 𝒛𝟏 = 𝒆𝒋𝝎𝟏, 𝒛𝟐 = 𝒆!𝒋𝝎𝟏, 𝒑𝟏 = 𝒓 𝒆𝒋𝝎𝟏, and 

𝒑𝟐 = 𝒓 𝒆!𝒋𝝎𝟏. 
 
Overall transfer function:  𝑯 𝒛 = 𝑯𝒄𝒐𝒎𝒃 𝒛  𝑯𝟎 𝒛  𝑯𝟏 𝒛  
Parameters:  K = 48, α  = 0.9, and r = 0.95. 
 
See the next page for MATLAB code and plots (not required to answer the question). 
 

  

Harmonic Distortion: JSK Sec. 3.5; Slides 8-13 & 8-14 
Comb Filters: Lab #7; WWM Ch. 10; In-Lecture Prob. 4; https://en.wikipedia.org/wiki/Comb_filter 
Notch Filters: Lecture Slide 6-6; HW 3.1; Midterm Problems 1.1 Sp06, 1.3 F19, 2.3 F15 

 



% UT Austin   EE 445S Real-Time DSP Lab 
% Fall 2019        Prof. Brian L. Evans 
  
% Midterm Question 2.4 
% Design an IIR comb filter that 
% (1) passes harmonics on 1 kHz 
% (2) does not pass 0 or 1 kHz 
  
fs = 48000;   % Sampling rate 
N =  48000;   % 1 Hz accuracy in plots 
  
% IIR Comb Filter Design 
% Input-Output relationships in the time 
% domain is y[n] = x[n] - alpha * y[n-delay] 
delay = 48;   % IIR filter order 
alpha = 0.9; 
numerComb = 1; 
denomComb = zeros(1, delay+1); 
denomComb(1) = 1; 
denomComb(delay+1) = -alpha; 
  
% Design DC IIR notch filter to remove 0 kHz 
z0 = 1; 
p0 = 0.95; 
numer0 = [1 -z0]; 
denom0 = [1 -p0]; 
  
% Design IIR notch filter to remove 1 kHz 
f1 = 1000; 
z1 = exp(-j*2*pi*f1/fs); 
z2 = conj(z1); 
p1 = 0.95*z1; 
p2 = conj(p1); 
numer1 = [1 -(z1+z2) z1*z2]; 
denom1 = [1 -(p1+p2) p1*p2]; 
  
% Combine the three filters into 1 section 
% IIR Comb + DC Notch + 1 kHz notch 
% Convolution implements polynomial multiplication 
numer = conv(numerComb, numer0); 
numer = conv(numer, numer1); 
denom = conv(denomComb, denom0); 
denom = conv(denom, denom1); 
  
% Frequency response 
figure;  
freqz(numer, denom, N, fs); 
ylim([-20 30]); 
  
% Pole-zero diagram. 
figure; 
zplane(numer, denom); 
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Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver Tradeoffs. 24 points.  
A bandpass pulse amplitude modulation (PAM) receiver is described as 

 
where m is the sampling index and n is the symbol index, and has system parameters 
𝑎[𝑛] transmitted symbol amplitude 𝑎[𝑛] received symbol amplitude 
2d constellation spacing   fs sampling rate  fsym symbol rate 
g[m] raised cosine pulse with rolloff α J  bits/symbol   L samples/symbol 
Μ number of levels, i.e. M = 2J  Ng symbol periods in g[m] ωc carrier freq. in rad/sample 

The only impairment is additive thermal noise w(t) modeled as zero-mean Gaussian with variance σ2. 

Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal. 
Give a formula for each quantity below in terms of the symbol rate fsym and describe how much the 
quantity changes when the symbol rate increases. 
(a) Bit rate in bits/s.  4 points.  Bit rate J fsym increases linearly when fsym increases. 
(b) Transmission bandwidth in Hz.  4 points. 

Transmission bandwidth fsym (1 + α) increases 
linearly when fsym increases. 

(c) Sampling rate fs.  4 points.  
Sampling rate L fsym increases linearly when fsym increases.  (Alternately, fs > 2 fmax where 
fmax = fc + ½ fsym and fc > fsym .  The product 2 fmax increases linearly when fsym increases.) 

(d) Probability of symbol error.  4 points.  Recalling that Tsym = 1 / fsym , 

𝑷𝒆𝒓𝒓𝒐𝒓𝑷𝑨𝑴 = 𝟐 𝑴!𝟏
𝑴

 𝑸 𝒅
𝝈

𝑻𝒔𝒚𝒎 = 𝟐 𝑴!𝟏
𝑴

 𝑸 𝒅
𝝈 𝒇𝒔𝒚𝒎

 increases when 

fsym increases because Q(x) is monotonically decreasing vs. x !  
Increase in 𝑷𝒆𝒓𝒓𝒐𝒓𝑷𝑨𝑴  is proportional to 𝑻𝒔𝒚𝒎 in low SNR (small 
positive x) and faster than exponential in 𝑻𝒔𝒚𝒎 for high SNR 
(large positive x).  Slide 14-26: 𝑸(√𝝆) ≤ 𝟏/√𝟐𝝅  𝒆^(−𝝆/𝟐)/√𝝆 for large positive ρ . 

(e) Implementation complexity in multiplications per second. 8 points. (r) means r multiplications/s. 
Analog-to-digital (A/D) converter would have at least an analog filter, sampler, quantizer (0). 
Generate 𝐜𝐨𝐬 𝝎𝒄𝒎  via lookup table (0), diff. equ. (2 L fsym) or math library call (30 L fsym). 
Multiply r[m] and 𝐜𝐨𝐬 𝝎𝒄𝒎  to produce v[m] (L fsym) 
LPF plus downsampler takes (L2 Ng fsym) in direct form or (L Ng fsym) in polyphase form 
Decision block algorithm: Euclidean distance (2 M fsym) or using comparisons (0)  
Implementation complexity increases linearly when fsym increases 

Lectures 13 & 14 
JSK Ch. 8 & 11 
Lab #5 & WWM Ch. 17 
HW 5.2, 5.3, 6.1, 6.2 
Midterm 2.1 F19 
Handout P 

Slide 14-25  

𝑸(𝒙) =
𝟏
𝟐
𝐞𝐫𝐟𝐜 !

𝒙
√𝟐
! 



Problem 2.2  QAM Communication Performance. 30 points.  Problem continues onto the next page.  
Part I. Consider choosing a 32-QAM constellation.                        Constellation #2:  Power Efficient 

           Constellation #1:  8x4 rectangular 

 
Constellation spacing is 2d. Pulse shape energy is 1. Symbol time Tsym is 1s.  

Compute the peak and average power for constellation #2.  3 points each. 
 Constellation #1 Constellation #2 
(a) Peak transmit power 58𝑑! 𝟑𝟒𝒅𝟐 
(b) Average transmit power 26𝑑! 𝟐𝟎𝒅𝟐 
Constellation #2 has the lowest peak and average power 
possible, and is commonly used in practice. 

Part II. For constellation #2, we’re going to introduce a 
type IV constellation region.  We’ll also use it in Part III. 
On the right, decision region boundaries are shown by 
the in-phase (I) axis, quadrature (Q) axis and dashed lines. 
Type IV region has a diagonal line separating two nearest 
neighbors on a corner.  It’s a union of a type II region 
(finite in one dimension and infinite in the other) and half 
of a type III region (quarter plane). 
We now have eight type IV regions instead of four type III 
regions (quarter planes at corner points). 
 Constellation #1 Constellation #2 
(c) Number of type I regions 12 16 
(d) Number of type II regions 16 8 
(e) Number of type III regions 4 0 
(f) Number of type IV regions 0 8 
(g) Symbol error probability for additive 
Gaussian noise, zero mean & variance σ2 

13
4

 𝑄
𝑑
𝜎

−
21
8
𝑄!

𝑑
𝜎

 
see next page 

(h) Express d/σ as a function of Signal-
to-Noise Ratio (SNR) in linear units SNR = 26

𝑑!

𝜎!
 

!
!
= !"#

!"
≈ 0.196 SNR  

𝐒𝐍𝐑 = 𝟐𝟎 𝒅𝟐

𝝈𝟐
 

𝒅
𝝈
=

𝐒𝐍𝐑
𝟐𝟎

≈ 𝟎.𝟐𝟐𝟒 𝐒𝐍𝐑 

 

Lectures 15 & 16; JSK Ch. 16; Lab #6; HW 6.3 & 7.3; Handout P; Midterm 2.2 on 32-QAM in Sp13; 
Other Midterm 2.2 problems in F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19 



(a) We find the constellation points with the largest radii.  There are 8 such points.  The two in 
the upper right quadrant are 3d + j5d and 5d + j3d.  Their radius is 𝟑𝟒𝒅𝟐.  Peak power is 34d2. 

(b) We can use the fact that the constellation has quadrant symmetry to compute the average 
power in the upper right quadrant.  The instantaneous power calculations for the constellation 
points are 2d2, 10d2, 10d2, 18d2, 26d2, 26d2, 34d2, 34d2, which has an average of 20d2. 

(g) As a shorthand notation, we’ll use 𝒒 = 𝑸 𝒅
𝝈

.  The probabilities of correct detection for the 
type I, II, and III constellation regions, respectively, follow from Lecture Slides 15-13 and 15-14: 

Type I.  𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰 = 𝟏− 𝟐𝒒 𝟐 

Type II.  𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑰 = 𝟏− 𝟐𝒒 𝟏− 𝒒  

Type III.  𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑰𝑰 = 𝟏− 𝒒 𝟐 

 
For the type IV constellation region, we’ll use the constellation point 5d + j3d: 

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑽 = 𝑷 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & −𝒅 < 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 < 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 + 𝟐𝒅  

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑽 = 𝑷 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 − 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 < 𝟐𝒅  

Let 𝒛 = 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 − 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎  be a random variable.  Assuming that 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎  and 
𝒗𝑰 𝒏𝑻𝒔𝒚𝒎  are statistically independent, z has zero mean and its variance is equal to the variance 
of 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎  plus the variance of 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 , per Spring 2016 Midterm #2 Problem 2.3. 

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑽 = 𝑷 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & 𝒛 < 𝟐𝒅  

𝑷𝒆𝒓𝒓𝒐𝒓𝒕𝒐𝒕𝒂𝒍 = 𝟏− 𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍  
Given the difficulty in finding a closed-form solution for the symbol error probability using type 
I, II and IV constellation regions, we’ll find the lower and upper bounds instead. 

Lower bound: Using only type I, II, III regions, we have 𝟏𝟔
𝟑𝟐

 , 𝟏𝟐
𝟑𝟐

 and 𝟒
𝟑𝟐

 
probabilities for each region: 

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟏
𝟐
𝟏− 𝟐𝒒 𝟐 + 𝟑

𝟖
𝟏− 𝟐𝒒 𝟏− 𝒒 + 𝟏

𝟖
𝟏− 𝒒 𝟐  

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟏
𝟐
𝟏− 𝟒𝒒+ 𝟒𝒒𝟐 + 𝟑

𝟖
𝟏− 𝟑𝒒+ 𝟐𝒒𝟐 + 𝟏

𝟖
𝟏− 𝟐𝒒+ 𝒒𝟐   

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟏− 𝟐𝟕
𝟖
𝒒+ 𝟐𝟑

𝟖
𝒒𝟐  

𝑷𝒆𝒓𝒓𝒐𝒓𝒕𝒐𝒕𝒂𝒍 = 𝟏− 𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟐𝟕
𝟖
𝒒− 𝟐𝟑

𝟖
𝒒𝟐 = 𝟐𝟕

𝟖
𝑸 𝒅

𝝈
− 𝟐𝟑

𝟖
𝑸𝟐 𝒅

𝝈
  

Upper bound: Using only type I and II regions, which would leave quarter plane gaps in each 
quadrant at 5d + j5d, -5d + j5d, etc., 

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟏
𝟐
𝟏− 𝟐𝒒 𝟐 + 𝟏

𝟐
𝟏− 𝟐𝒒 𝟏− 𝒒 = 𝟏− 𝟕

𝟐
𝒒+ 𝟑𝒒𝟐  

𝑷𝒆𝒓𝒓𝒐𝒓𝒕𝒐𝒕𝒂𝒍 = 𝟏− 𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟕
𝟐
𝒒− 𝟑𝒒𝟐 = 𝟕

𝟐
𝑸 𝒅

𝝈
− 𝟑𝑸𝟐 𝒅

𝝈
= 𝟐𝟖

𝟖
𝑸 𝒅

𝝈
− 𝟐𝟒

𝟖
𝑸𝟐 𝒅

𝝈
  



Summary: There is very little difference between the lower and upper bounds.  Almost all of the 
symbol error probability is in the type I and type II regions.   

Note:  The symbol error probability expression has the form 𝒄𝟎 𝑸 𝒅
𝝈
− 𝒄𝟏 𝑸𝟐 𝒅

𝝈
.  As 𝝈 → ∞, 

knowing that d is positive, the symbol error probability goes to 𝒄𝟎 𝑸 𝟎 − 𝒄𝟏 𝑸𝟐 𝟎  where 
𝑸 𝟎 = 𝟎.𝟓 .  Generally, 𝒄𝟎 > 𝒄𝟏 .  As 𝝈 → 𝟎,  the symbol error probability goes to 0.   
Randomly guessing a M-PAM symbol amplitude gives an symbol error probability of 𝑴!𝟏

𝑴
 . 

Part III.  In the receiver, finding the nearest constellation point to the received QAM symbol amplitude 
using Euclidean distance provides high-accuracy in the symbol detection.  Complexity is proportional 
to the number of levels M = 2J = 32 where J=5 is the number of bits in a symbol:  64 multiplications, 
96 additions, and 64 memory reads in words for each (I, Q) symbol amplitude. 

We introduced the type IV region in part II to unlock a low-complexity divide-and-conquer method 
that is just as accurate as using Euclidean distance but only needs to use comparison operations.  
Describe the method and compare its complexity with the Euclidean distance method.  9 points. 
Let (i, q) be the received symbol amplitude.  

1. If i > 0, then in right-half plane; otherwise, in left-half plane 
2. If q > 0, then in upper half plane; otherwise, in bottom half plane 

Remaining steps are for the upper right quarter plane (i.e. for i > 0 and q > 0): 
3. If i > 4d,  

If q < 2d, then point 3 
Else If q > i, then point 8 
Else point 6 

Else If i < 2d, 
If q > 4d, then point 7 
Else If q < 2d, then point 1 
Else point 4 

Else If q > 4d, then point 8 
Else If q < 2d, then point 2 
Else point 5 

The above divide-and-conquer algorithm uses 4, 5 or 6 comparisons (5.375 on average) and takes 
J+1 comparisons and memory reads. 
 
Euclidean distance method computes the Euclidean distance squared from the received symbol 
amplitude (i, q) to each symbol amplitude in the constellation map (I, Q):  (i – I)2 + (q – Q)2 .  The 
square root is an unnecessary calculation—it doesn’t change the ordering among the distances. 

Its complexity is 2x2J multiplications, 3x2J additions, 2x2J memory reads and 2J comparisons. 
 
In practice, QAM constellations are as large as J = 8 in cellular and Wi-Fi, and J = 15 for ADSL.  
The difference between linear and exponential complexity can be significant.  

Midterm 2.2(i) Sp16 
Midterm 2.1(f) F18 



Problem 2.3. Nonlinear Channel Equalization.  28 points. 
In the discrete-time system on the right, the equalizer 
operates at the sampling rate. 

The channel has significant nonlinear distortion. 
We’re going to use a nonlinear equalizer of the form 

r[m] = a0 + a1  y[m] + a2 y2[m] + …+ aN yN[m] 
where a0, a1, a2, … aN are real-valued coefficients.  

The channel model includes additive noise n[m] that  
has a Gaussian distribution with zero mean and variance σ2. 

(a) Give a training sequence for x[m] that you would use?  Why?  3 points. 
Pseudo-noise sequences and chirp sequences have all discrete-time frequencies present in 
them.  Either can be independently generated by the receiver.  A pseudo-noise sequence can 
be generated using only logical operations and memory. 

(b) For one of the training sequences in part (a), describe how you would estimate the transmission 
delay parameter Δ in the ideal channel model.   3 points. 
The receiver can correlate the received signal y[m] against the anticipated training sequence 
x[m], and we can take the location of the first peak to be Δ  samples. 

(c) What objective function would you use?  Why?  6 points. 
We would like to minimize the error between r[m] and s[m]:  𝑱 𝒆 𝒎 = 𝟏

𝟐
𝒆𝟐[𝒎] 

By driving e2[m] to zero, we also drive e[m] to zero.   
Another advantage is that the amount of the offset in the parameter update at each iteration 
will be proportional to the error— the update will rapidly converge for large errors and 
slowly converge for small errors, provided that the step size has been chosen correctly. 

Another advantage is relatively low computational complexity. 

(d) For an adaptive nonlinear equalizer, derive the update equation for the vector of coefficients 𝑎 
for the objective function in part (c).  Here, 𝒂 =  𝑎!  𝑎!  𝑎!  ⋯   𝑎! .  12 points. 

𝒆 𝒎 =  𝒓 𝒎 −  𝒔[𝒎] 

𝒂 𝒎+ 𝟏 = 𝒂 𝒎 − 𝝁 
𝒅𝑱 𝒆 𝒎

𝒅𝒂 𝒂!𝒂 𝒎
= 𝒂 𝒎 − 𝝁 𝒆[𝒎] 𝒚 𝒎  

where 𝒚 𝒎 = [ 𝟏    𝒚 𝒎     𝒚𝟐 𝒎    ⋯     𝒚𝑵 𝒎   ] . 

(e) For your answer in (c), what values of the step size (learning rate) µ would you use?  4 points. 

Use a small positive value for the step size µ , such as 0.01 or 0.001, for convergence of the 
steepest descent algorithm.  A step size of zero will prevent any updates.  A negative step size 
and a large positive step size will cause divergence. 
  

JSK Sec. 2.12 & 13.1-13.3; HW 5.1, 6.1, 6.2, 7.2; Slides 16-6 to 16-8; In-Lecture Problems 2&3; 
Midterm #2 Problems: 2.2 F12; 2.1 Sp13; 2.1 F13; 2.1 Sp14; 2.3 Sp17; 2.4 Sp17; 2.3 F17; 2.3 F19 

 



Problem 2.4.  Potpourri.  18 points 
(a) A handheld garage door opener transmits a binary request to an automatic garage door control unit.  

The binary request is to open the garage door if closed, and close the garage door if open. 
Please describe the signals based on PN sequences that the garage door opener would transmit to 
indicate that it is sending its binary request to the automatic garage door control unit (receiver)? 
The transmission/reception would have to be 
• Reliable -- a very high probability of correct detection 
• Secure -- nearly impossible for an opener meant for another 

unit to work on your garage door. 
Initialization. At manufacturing, the opener and control unit are initialized with the same 
random 32-bit number that will be the value of the pseudo-noise (PN) shift register generator 
in both.  This will make it highly unlikely for openers of the same brand to open your garage. 
Transmission/Reception: The PN generator would be used to create a self-synchronizing data 
scrambler in the opener and descrambler in the control unit. The opener would scramble a 
text message (converted to bits) that contains a 16-bit number of how many times the opener 
has been pressed in its lifetime.  The number must be equal to or higher than that tracked by 
the control unit. This prevents an eavesdropper from playing back a recorded transmission 
to open your garage.  An opener will repeat the transmission 10 times to improve reliability. 

(b) Steepest descent algorithm to minimize an objective (cost) function. 
Steepest descent algorithm for parameter x is 

𝒙 𝒎+ 𝟏 = 𝒙 𝒎 − 𝝁 𝒅𝑱 𝒙
𝒅𝒙 𝒙!𝒙 𝒎

  

to minimize the objective function J(x) given a 
positive value for step size (learning rate) µ . 

i. Draw an objective function that has at least one global minimum value 
and at least one local minimum that is not a global minimum. 3 points. 

ii. Give a way to determine if a steepest descent algorithm converged to an answer. 3 points. 
Method #1: Since J’(x) = 0 at a minimum,  𝑱′(𝒙) ≤ 𝟏𝟎!𝟕 for 10 iterations in a row. 
Method #2: For 10 iterations in a row, the relative change in x[m] is below a threshold 
 𝒙 𝒎+ 𝟏 − 𝒙 𝒎  ≤ 𝟏𝟎!𝟒  𝒙 𝒎  +  𝜺  where small ε  > 0 is added in case 𝒙 𝒎 ≈ 𝟎 

iii. How would you use multiple steepest descent algorithms running in parallel 
to reach a solution with a lower objective (cost) function?  3 points. 
Start each steepest descent algorithm with a different randomized initial 
guess and then choose the answer with smallest objective function value. 

iv. If you could only run one steepest descent algorithm, how could you modify 
it to get out of a possible local minimum?   3 points. 
Use the test in part (b)ii to determine if the algorithm might be a local minimum. 
Answer #1: Negate step size µ  to head toward a maximum value and then switch back.  
Downside is that it will take a long time to get out of a local minimum because near a 
local minimum, J’(x) is close to zero, and at a local minimum, J’(x) is zero. 
Answer #2: Temporarily switch to a large step size µ  and then switch back. 
Answer #3: Set the parameter to a random number and continue updating.  Once the 
iteration converges, compare the objective function value with the previous solution.  

x = -4 : 0.001 : 4; 
% p = [1 0 -10 10 48.5]; 
p = poly( [-3, -1, 1, 3 ] ); 
p(4) = 10; 
p(5) = p(5) + 39.5; 
Jx = polyval(p, x); 
plot(x, Jx); 

Global 
minimum 

Local 
minimum 

Lab #4; HW 4.1, 4.2, 4.3, 5.2; 
Wikipedia “garage door opener” 

In-Lecture Assignment 2 & 3; HW 5.1, 6.1, 6.2, 7.2, 7.3; 
Midterm #2 problems 2.2 F12; 2.1 Sp13; 2.1 Sp14; 2.3 F17 
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Problem 2.1. PAM Symbol Error Probability.  24 points. 
Consider a three-level baseband pulse amplitude modulation (PAM) system: 

2d constellation spacing  fs sampling rate   
fsym symbol rate   g[m] raised cosine pulse with rolloff a 
J bits/symbol   L samples/symbol 
M number of levels, i.e. M = 2J 𝑁! symbol periods in g[m] 
Ts sampling time   Tsym symbol time. 

The 3-PAM constellation is shown on the right (i.e. M = 3). 
This problem is asking you to analyze the 3-PAM system and enter your 
results in the table below to compare against 2-PAM and 4-PAM systems. 

For this problem, assume that Tsym = 1 s and hence fsym = 1 Hz. 
(a) What is the bit rate for the 3-PAM system?  Why?  4 points. 

Bit rate = J fsym .  With fsym = 1 Hz and J = log2 M = log2 3 » 1.585, the bit rate is 1.585 bits/s. 
 

(b) Give a symbol of bits for each symbol amplitude on the 3-PAM constellation.  Make sure that the 
bit encoding for adjacent symbols only differs by one bit (Gray coding).  6 points. 
Shown in bold on the constellation map above. 

 
(c) Derive 3-PAM symbol error probability. Thresholds are at -d and d.  8 points. 

The constellation regions are (-¥, -d), (-d, d), and (d, ¥). 
The region (-d, d) is an inner region, and the others are outer regions. (Lecture Slide 15-11). 
Assuming each symbol is equally likely to be transmitted, we use Lecture Slide 15-11 to find 

𝑷(𝒆) =
𝟏
𝟑𝑷𝑰

(𝒆) 	+	
𝟐
𝟑𝑷𝑶

(𝒆) = 	
𝟏
𝟑,𝟐𝑸 .

𝒅
𝝈12 +

𝟐
𝟑,𝑸.

𝒅
𝝈12 =

𝟒
𝟑𝑸.

𝒅
𝝈1 

 
(d) Derive the transmitted maximum power, average power, and peak-to-average power ratio. 6 points. 

The maximum symbol amplitude is 2d Volts. 
Maximum (peak) power is proportional to the maximum amplitude squared., which is 4d2. 
The average power, assuming each symbol is equally likely, is ( 4d2 + 0 +4d2 ) / 3 = (8/3) d2. 
 

M Bit rate Symbol Error 
Probability 

Peak Power Average Power Peak-to-Average 
Power Ratio 

2 1 bit/s 
𝑄 .

𝑑
𝜎1 𝑑$ 𝑑$ 1.0 

3 1.585 bits/s 𝟒
𝟑 	𝑸.

𝒅
𝝈1 𝟒	𝒅𝟐 𝟖

𝟑 	𝒅
𝟐 1.5 

4 2 bits/s 
		
3
2 	𝑄 .

𝑑
𝜎1 9	𝑑$ 5	𝑑$ 1.8 

3-PAM 
Constellation 

Symbol 
Amplitude 

Symbol 
of bits 

Note: All entries in the above table assume that Tsym = 1 s and hence fsym = 1 Hz. 

 Symbol 
Amplitude 

Symbol 
of bits 

3-PAM 
Constellation 

2d 

-2d 

0 

01 

00 

10 

Prologue. Lectures 13 & 14; JSK Ch. 8 & 11; Lab #5; WWM Ch. 17; 
HW 5.2, 5.3, 6.1, 6.2; Midterm 2.1 F19 & Sp20; Handout P 
 

Epilogue. Some communications standards, such as High-Speed Digital Subscriber Line 2 
(HDSL2), use PAM constellation sizes that are not powers of two. 



Problem 2.2  QAM Communication Performance. 27 points.  
Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 18d 2 50d 2 
(b) Average transmit power 10d 2 ((2+10+26+50)/4) d 2 = 22d 2 
(c) Draw the type I, II and/or III decision regions for the right constellation on top of the right 
constellation that will minimize the probability of symbol error using such decision regions. 
(d) Number of type I regions 4 0 
(e) Number of type II regions 8 12 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance s2 

 
 

𝟏𝟏
𝟒 𝑸.

𝒅
𝝈1 −

𝟕
𝟒𝑸

𝟐 .
𝒅
𝝈1 

(h) Express d/s as a function 
of the Signal-to-Noise Ratio 
(SNR) in linear units 

SNR =
10𝑑$

𝜎$ =>	
𝑑
𝜎 =

DSNR
10  𝐒𝐍𝐑 =

𝟐𝟐𝒅𝟐

𝝈𝟐 =>	
𝒅
𝝈 =

D𝐒𝐍𝐑
𝟐𝟐  

(g) Approach #1: Same number of types 1-3 regions as Sp19 2.2 gives same symbol error prob. 
Approach #2:  Lecture slides 15-13 to 15-15.  𝑷(𝒆) = 𝟏 − 𝑷(𝒄).  Let 𝒒 = 𝑸K𝒅

𝝈
L.  

𝑷(𝒄) = 𝟑
𝟒
𝑷𝟐(𝒄) +

𝟏
𝟒
𝑷𝟑(𝒄) =

𝟑
𝟒
(𝟏 − 𝒒)(𝟏 − 𝟐𝒒) + 𝟏

𝟒
(𝟏 − 𝒒)𝟐  

𝑷(𝒄) = 𝟑
𝟒
(𝟏 − 𝟑𝒒 + 𝟐𝒒𝟐) + 𝟏

𝟒
(𝟏 − 𝟐𝒒 + 𝒒𝟐) = 𝟏 − 𝟏𝟏

𝟒
𝒒 + 𝟕

𝟒
𝒒𝟐 and 𝑷(𝒆) = 𝟏 − 𝑷(𝒄) = 𝟏𝟏

𝟒
𝒒 − 𝟕

𝟒
𝒒𝟐 

(i) For an application, four of the 16 symbols have the most significance and we would like to transmit 
them with the lowest symbol error probability. Using the left constellation, which constellation 
points would you use to represent these four high-significance symbols?  Why?  3 points. 
Type III regions have the lowest symbol error probability among the three types. 
Use the four corner points in the left constellation for the four symbols of highest significance.  

50d2 
26d2 

10d2 
2d2 

÷
ø
ö

ç
è
æ-÷

ø
ö

ç
è
æ

ss
dQdQ 2

4
93

III II II II 

Transmit 
Power 

Constellation 
Region Type 

Quadrant 
Symmetry 

Prologue: Lectures 15 & 16; JSK Ch. 16; Lab #6; HW 6.3 & 7.3; Handout P; 
Midterm 2.2 problems in F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20 
 

Epilogue. Application for (i). Consider an image in a progressive format as a low-resolution plus a medium-
resolution plus a high-resolution image.  Since the low-resolution image is the most important part because 
it is needed by the other two resolutions, the low-res data would be carried by the four highest-significance 
symbols.  The medium- and high-resolution images would be carried by type 2 and 3 symbols, respectively. 

See below 
for work 



Problem 2.3. Interference Cancellation.  24 points. 
In wireless communication systems, transmitted signals experience a wide variety of impairments by 
the time they reach a receiver, including attenuation over distance traveled. 
A relay can be deployed to receive and decode a basestation transmission and then re-encode and 
retransmit the signal so that it arrives at a mobile phone with higher signal power. 
A relay can also receive and decode a mobile phone transmission and then re-encode and retransmit 
the signal so that it arrives at a basestation with higher signal power. 
When a relay receives and transmits signals at the same time and in the same frequency band, the 
propagation of the relay transmission to the relay receiver causes interference. 
The diagram below gives a baseband model for a relay system serving two mobile phones.  Mobile 
phone #1 is transmitting at the same time that the relay is receiving and transmitting. 

 
 

𝒚[𝒎] = 𝒉𝒖[𝒎] ∗ 𝒔𝒖[𝒎] + 𝒉𝒔𝒊[𝒎] ∗ 𝒔𝒅[𝒎] − 𝒄[𝒎] ∗ 𝒔𝒅[𝒎] = 𝒉𝒖[𝒎] ∗ 𝒔𝒖[𝒎] + (𝒉𝒔𝒊[𝒎] − 𝒄[𝒎]) ∗ 𝒔𝒅[𝒎] 

(a) What objective function would you use?  Why?  8 points. Adapt canceler to remove interference 
in r[m] and hence reduce its power: J(y[m]) = ½ y2[m].  Best removal when c[m] = hsi[m]. 

 

(b) For an adaptive FIR canceler, derive the update equation for the vector of FIR coefficients 𝑐 for 
the objective function in part (a).  Here, 𝑐 = [	𝑐,		𝑐-		𝑐$		⋯		𝑐/0-	].  12 points. 
Transmitted baseband relay signal sd[m] also serves as a reference signal to adapt the 
interference canceler. A training sequence is not needed.  Using steepest descent, 
 

𝒚[𝒎] = 𝒓[𝒎] − 𝒄𝟎	𝒔𝒅[𝒎] − 𝒄𝟏	𝒔𝒅[𝒎 − 𝟏] − ⋯− 𝒄𝑵0𝟏	𝒔𝒅[𝒎 − (𝑵 − 𝟏)] 
 

Let 𝒔W⃗ 𝒅[𝒎] = 	 [		𝒔𝒅[𝒎] 𝒔𝒅[𝒎 − 𝟏] ⋯ 𝒔𝒅[𝒎 − (𝑵 − 𝟏)]		] 
 

For steepest descent algorithm, let 𝒄W⃗ [𝒎] = [		𝒄𝟎[𝒎] 𝒄𝟏[𝒎] ⋯ 𝒄𝑵0𝟏[𝒎]		]: 
 

𝒄W⃗ [𝒎 + 𝟏] = 𝒄W⃗ [𝒎] − 𝝁	
𝒅
𝒅𝒄W⃗
𝑱(𝒚[𝒎])Z

𝒄4⃗ 6𝒄4⃗ ]𝒎]
= 𝒄W⃗ [𝒎] + 𝝁	𝒚[𝒎]	𝒔W⃗ 𝒅[𝒎] 

 

(c) For your answer in (b), what values of the step size (learning rate) µ would you use?   

The interference canceler does not know hsi[m], hu[m], or su[m], and uses knowledge of sd[m] 
and r[m] to adapt a finite impulse response (FIR) filter c[m] to subtract interference from r[m]: 

𝑟[𝑚] = ℎ9[𝑚] ∗ 𝑠9[𝑚]`aaabaaac
:;<=	=<>?@A	BC<DA	#-

+				ℎF?[𝑚] ∗ 𝑠G[𝑚]`aaabaaac
?DHA;:A;ADIA

 

𝑦[𝑚] = 𝑟[𝑚] − 𝑐[𝑚] ∗ 𝑠G[𝑚] 
 

Smart phone picture by Samer Daboul 

Prologue. JSK Sec. 2.12 & 13.1-13.3; HW 3.1, 5.1, 6.1, 6.2, 7.2; In-Lecture Assignment #4; 
Lectures 12-14; Lecture Slides 16-6 to 16-8; Midterm #2 Problem 2.3 F14 & 2.4 Sp16 

4 points. Use a small positive value for the step size µ, such as 0.01 or 0.001, for 
convergence of the steepest descent algorithm.  A step size of zero will prevent any 
updates.  A negative step size and a large positive step size will cause divergence. 
 

Epilogue 
Transmitting and 
receiving at the 
same time in the 
same frequency 

band is known as 
full duplex. 

Potential spectral 
efficiency gain 2x. 

Subscripts are 
d downlink, 

si self-interference 
and u uplink. 



Problem 2.4.  Communication System Design Tradeoffs.  25 points 
Describe the effect of increasing each pulse amplitude modulation system design parameter in the first 
column on the quantity in the other columns: increase, decrease or leave it blank to mean no effect. 
When considering the impact of increasing the parameter in the first column, assume that the values of 
the other parameters are held constant. 
After the table, justify your answers for each row. The row for J bits/symbol is given as an example. 
For the entry, “2d constellation spacing in Volts”, consider what happens when d increases. 

Parameter Transmit Power 
Consumption 

Transmission 
Bandwidth 

Bit Rate Symbol 
Error Rate 

Run-Time 
Complexity 

B bits in A/D 
output & D/A input 

  ? ? increase 

2d constellation 
spacing in Volts 

increase   decrease  

fsym symbol rate 
in Hz 

 increase increase increase increase 

J bits/symbol 
 

increase  increase increase increase 

L samples/symbol 
 

   decrease increase 

𝑁! symbol periods 
in pulse shape 

   decrease increase 

J bits/symbol. Increasing J increases number of constellation points, M = 2J. Peak transmit power is 
proportional to square of max amplitude (M-1)d and hence increases exponentially in J. Bit rate J fsym 
increases linearly with J.  For symbol error probability $	(K0-)

K
	𝑄 KG

Me𝑇FN=L, the constant in front is on 
the interval [1, 2) and increases slightly with J because M = 2J. In the transmitter, the constellation 
map has M = 2J entries and fast symbol decoding in the receiver takes J comparisons. 
B bits in A/D output & D/A input. Power consumption by a data converter is exponential in B.  
• Transmit power consumption (i.e. transmitted signal power).  As B increases, the power 

consumed in the transmitter increases but does not affect the transmit power consumption. 
• Bit rate.  Increasing B has no effect unless B < J.  In that case, the number of levels of 

resolution in the data converters 2B would not be enough to represent the 2J different symbol 
amplitudes uniquely and increasing B until B = J would increase the symbol rate. 

• Symbol error rate would not be affected because the parameters in the symbol error 
probability expression (J, d, s, and Tsym) remain the same per the problem statement except 
o when B < J, the number of levels of resolution in the data converters 2B would not be 

enough to represent the 2J different symbol amplitudes uniquely and in that case, 
increasing B until B = J would decrease the symbol error rate. 

Prologue. Lectures 8, 13 & 14; JSK Ch. 8 & 11; Lab #5; WWM Ch. 17; 
HW 5.2, 5.3, 6.1, 6.2; Midterm 2.1 Sp 19, F19 & Sp20; Handout P 
 



o when the SNR w/r to thermal noise in the receiver analog/RF front end is less than the 
A/D SNR w/ quantization noise power, and in the case, adding more bits to the A/D 
converter would decrease the symbol error rate until the two SNRs are equal. 

• Run-time complexity in memory and computation in a software receiver will increase as B 
increases from 8 to 9 bit due to switching from bytes to 16-bit integers to represent the A/D 
output and from 16 to 17 bits due to switching from 16-bit integers to 32-bit integers or 
floating-point numbers.  Multiplying two 32-bit IEEE floating-point numbers takes much 
longer than multiplying two 16-bit integers (4x as long on the TI TMS320C6748 DSP 
processor). 

2d constellation spacing in Volts. 
• Transmit power.  Peak and average transmit power increases with d2.   
• Symbol error rate 𝟐	(𝑴0𝟏)

𝑴
	𝑸 K𝒅

𝝈e𝑻𝒔𝒚𝒎L decreases with d because Q(x) is monotonically 
decreasing vs. x. 

fsym symbol rate in Hz. (Sp20 Midterm #2 Problem 2.1) 

• Transmission bandwidth fsym (1 + a) increases linearly with fsym where a is the rolloff factor. 
Bit rate J fsym increases linearly with fsym.  

• Symbol error rate 𝟐	(𝑴0𝟏)
𝑴

	𝑸 K𝒅
𝝈e𝑻𝒔𝒚𝒎L increases with fsym because Q(x) is decreasing vs. x and 

Tsym  = 1/fsym. 
• Run-time complexity in transmitter and receiver increases linearly with sampling rate L fsym. 

L samples/symbol. 

• Symbol error rate/probability. In the receiver, the matched filter correlates the received signal 
against a known pulse shape of L Ng samples, and the increase in the SNR is proportional to 
L Ng, which in turn decreases the symbol error probability. 

• Run-time complexity in the transmitter and receiver increases linearly with the sampling rate 
L fsym.  The pulse shape has L N samples.  It takes L Ng fsym multiplications/s for the 
transmitter pulse shaping filter and receiver matched filter when using an efficient polyphase 
filter bank implementation. 

𝐍𝐠 symbol periods in pulse shape. 

• Symbol error rate/probability. In the receiver, the matched filter correlates the received signal 
against a known pulse shape of L Ng samples to improve SNR.  Most of the improvement in 
SNR is due to the lowpass filtering out-of-band additive noise, and the stopband attenuation 
can increase with the FIR filter length.  When Ng increases, SNR improves and in turn the 
symbol error probability decreases.   

• Run-time complexity increases with Ng because the transmitter pulse shaping filter and 
receiver matched filter take L Ng fsym multiplications/s when using an efficient polyphase 
filter bank implementation 
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 Total 100   

mailto:bevans@ece.utexas.edu


Problem 2.1. Baseband PAM System.  24 points. 

Consider a baseband pulse amplitude modulation (PAM) system with 

the parameters on the right. 

The PAM system does not have A/D or D/A converters. 

The problem focuses on the following part of the baseband PAM system: 

 

 

 

 

 

where w(t) is a Gaussian random signal with zero mean and variance 2. 

Assume the receiver is synchronized with the transmitter in parts (a), (b) and (c). 

(a) Using the PAM System Parameters, give a formula for h(t) that maximizes the SNR at the 

estimated symbol amplitude y(Tsym)?  4 points. 

The optimal matched filter, per lecture slide 14-15, maximizes the SNR at the estimated 

symbol amplitude y(Tsym) which in turn minimizes the symbol error probability because it is 

a monotonically decreasing function vs. SNR.  The optimal matched filter impulse response is 

𝒉(𝒕) = 𝒌 𝒈∗(𝑻𝒔𝒚𝒎 − 𝒕) where k is a real-valued constant (k  0 in practice). 

(b) Using your answer in part (a), plot h(t) when g(t) is the rectangular pulse shown below.  4 points. 

 
(c) Using your answer in part (b), plot y(t) assuming there is no noise, 

i.e. w(t) = 0.  4 points. 

𝒚(𝒕) = 𝒈(𝒕) ∗ 𝒉(𝒕) + 𝒘(𝒕) ∗ 𝒉(𝒕) 

With 𝒘(𝒕) = 𝟎, 𝒚(𝒕) = 𝒈(𝒕) ∗ 𝒉(𝒕) 

Convolution gives a triangular pulse whose peak value 

occurs at the symbol time, 𝑻𝒔𝒚𝒎 .  Note that k can be negative. 

(d) Assume the receiver has an accurate Tsym but needs to find a symbol timing offset  to synchronize 

with the transmitter as shown below.  Develop an adaptive method to update  in the nth symbol 

period using analog continuous-time signal processing; e.g., a differentiator circuit will compute a 

derivative of an analog continuous-time signal.  Use g(t) and h(t) from part (b) 

i. Give an objective function. 6 points. 

ii. Give the update for n+1given n3 points. 

iii. How would you determine the value of the 

step size ?  3 points. 

See next two pages for two different solutions for (d). 

PAM System Parameters 

2d   constellation spacing 

fsym  symbol rate 

g(t)  pulse shape 

h(t)  matched filter impulse 

response 

J      bits/symbol 

k      constant 

levels, i.e. M = 2J 

n     symbol index 

𝑁𝑔   symbol periods in g(t) 

Tsym symbol time 

 

 

Since g(t) is real-valued, complex conjugation 

has no effect.  g(-t) flips it with respect to the 

vertical axis, and g(Tsym – t) delays the flipped 

version by Tsym and we’re back to where we 

started with g(t).  Gain k is real-valued (k  0). 

Prologue: Lectures 13, 14, 16; JSK Sec. 2.10 & 2.11; JSK Ch. 8, 11, 12; Lab #5; WWM Ch. 17; HW 5.1, 

6.1, 6.2, 7.3; In-Lecture Assignment #3 and #4; Midterm 2.4 F17 & 2.4 F18; Haykin Ch. 14; Handout M 

 

Lecture 

Slide 

14-17 

Lecture 

Slide 

14-14 

Epilogue: PAM, QAM, and many other receivers perform symbol timing recovery (a.k.a. symbol 

synchronization) to improve communication performance. Adaptive systems using steepest descent/ascent 

methods are possible to implement in analog continuous-time circuits. 



Solution #1 for 2.1(d):  (A student’s solution is below with additional information in blue): 

i.      Give an objective function. 6 points. 

Define the error 𝒆[𝒏] between what we have and what we would like to have: 

𝒆[𝒏] = 𝒚[𝒏] − 𝒚(𝑻𝒔𝒚𝒎) = 𝒚[𝒏] − 𝒌 𝑻𝒔𝒚𝒎 where 𝒚[𝒏] = 𝒚(𝒏 𝑻𝒔𝒚𝒎 + 𝝉). 

Define the objective function to be used to drive the error to zero: 

𝑱( 𝒆[𝒏] )  =  
𝟏

𝟐
 𝒆𝟐[𝒏] 

ii.     Give the update for n+1given n3 points. 

Seek to minimize the objective function to drive the error to zero: 

𝝉[𝒏 + 𝟏] = 𝝉[𝒏] − 𝝁 
𝒅

𝒅𝝉
 𝑱( 𝒆[𝒏] )]

𝝉=𝝉[𝒏]
 

𝝉[𝒏 + 𝟏] = 𝝉[𝒏] − 𝝁 𝒆[𝒏] 
𝒅

𝒅𝝉
 𝒚[𝒏]]

𝝉=𝝉[𝒏]
= 𝝉[𝒏] − 𝝁 𝒆[𝒏] 𝒚′(𝒏 𝑻𝒔𝒚𝒎 + 𝝉[𝒏]) 

Although not asked, which is why the text is in blue here, here’s the system diagram 

with the differentiator and adaptive element to perform the update: 

 

The approach can be extended to any pulse shape when using 𝒆[𝒏] = 𝒚[𝒏] − 𝒚(𝑻𝒔𝒚𝒎). 

iii.    How would you determine the value of the step size ?  3 points. 

Choose a small positive value by using trial-and-error in simulation: 

 A negative value for  would cause the objective function to be minimize which 

would lead to minimizing the signal power. 

 A value of zero for  means that the update will not change the initial value of . 

 A large positive  value will lead to divergence of the adaptive algorithm.  

 

  



Solution #2 for 2.1(d): 

i.      Give an objective function. 6 points. 

Seek to maximize the power at the estimated symbol amplitude y(nTsym + ): 

𝑱(𝒚(𝒕)) =
𝟏

𝟐
𝒚𝟐(𝒕) where 𝒚(𝒕) = 𝒈(𝒕) ∗ 𝒉(𝒕) + 𝒘(𝒕) ∗ 𝒉(𝒕).  In 𝒚(𝒕), the noise term 

𝒏(𝒕) = 𝒘(𝒕) ∗ 𝒉(𝒕) is a Gaussian random signal with zero mean and variance 
𝝈𝟐

𝑻𝒔𝒚𝒎
 

because 𝒉(𝒕) is a lowpass filter with bandwidth 
𝟏

𝟐 𝑻𝒔𝒚𝒎
 (Sec. 4.12 Gaussian Processes, 

Haykin’s Communication Systems) and 𝒘(𝒕) is a Gaussian random signal with zero 

mean and variance 2.  Any sample of 𝒏(𝒕) is a Gaussian random variable 𝑵 (𝟎,
𝝈𝟐

𝑻𝒔𝒚𝒎
).  

Average noise power is 
𝝈𝟐

𝑻𝒔𝒚𝒎
 regardless of sampling time. 

In 𝒚(𝒕), the deterministic signal term  

𝒈𝟎(𝒕) = 𝒈(𝒕) ∗ 𝒉(𝒕) has its instantaneous 

power change with the sampling time.  

Recall that k can be negative. 

 

ii.     Give the update for n+1given n3 points. 

𝝉[𝒏 + 𝟏] = 𝝉[𝒏] + 𝝁 
𝒅

𝒅𝝉
 𝑱( 𝒚(𝒏𝑻𝒔𝒚𝒎 + 𝝉) )]

𝝉=𝝉[𝒏]
 

 

𝝉[𝒏 + 𝟏] = 𝝉[𝒏] + 𝝁 𝒚(𝒏𝑻𝒔𝒚𝒎 + 𝝉[𝒏]) 
𝒅

𝒅𝒕
𝒚(𝒕)]

𝒕=𝒏𝑻𝒔𝒚𝒎+𝝉[𝒏]
 

This update is also represented by the block diagram in solution #1. 

 

A differentiator circuit can be as simple as an RC and or RL circuit where output is 

tapped across resistor in the RC circuit or inductor in the RL circuit.  The above is for 

a general pulse shape and its matched filter.  For h(t) in part (b), we can simplify the 

derivative of y(t) by using a linear time-invariant (LTI) model for differentiation with 

impulse response v(t) per JSK Appendix G.2 Derivatives and Filters: 

𝒅

𝒅𝒕
𝒚(𝒕) = 𝒗(𝒕) ∗ (𝒉(𝒕) ∗ 𝒙(𝒕)) = (𝒗(𝒕) ∗ 𝒉(𝒕)) ∗ 𝒙(𝒕) = (𝜹(𝒕) − 𝜹(𝒕 − 𝑻𝒔𝒚𝒎)) ∗ 𝒙(𝒕) = 𝒙(𝒕) − 𝒙(𝒕 − 𝑻𝒔𝒚𝒎) 

 

iii.    How would you determine the value of the step size ?  3 points. 

Same as the answer in solution #1 for 2.1(d)iii on the previous page.  

https://en.wikipedia.org/wiki/Differentiator


Problem 2.2  QAM Communication Performance. 27 points.  

Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 

decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 

(a) Peak transmit power 18d 2 34d 2 

(b) Average transmit power 10d 2 16d 2 

(c) Draw the type I, II and/or III decision regions for the right constellation on top of the right 

constellation that will minimize the probability of symbol error using such decision regions. 

(d) Number of type I regions 4 0 

(e) Number of type II regions 8 12 

(f) Number of type III regions 4 4 

(g) Probability of symbol error 

for additive Gaussian noise 

with zero mean & variance 2 

3𝑄 (
𝑑

𝜎
) −

9

4
𝑄2 (

𝑑

𝜎
) 

 

𝟏𝟏

𝟒
𝑸 (

𝒅

𝝈
) −

𝟕

𝟒
𝑸𝟐 (

𝒅

𝝈
) 

(h) Express d/ as a function 

of the Signal-to-Noise Ratio 

(SNR) in linear units 

SNR =
10𝑑2

𝜎2
 

𝑑

𝜎
= √

SNR

10
 

𝐒𝐍𝐑 =
𝟏𝟔𝒅𝟐

𝝈𝟐
 

𝒅

𝝈
= √

𝐒𝐍𝐑

𝟏𝟔
 

(g) Approach #1: Same number of type 1-3 regions as F2020 2.2 gives same symbol error prob. 

Approach #2:  Lecture slides 15-12 to 15-14.  𝑷(𝒆) = 𝟏 − 𝑷(𝒄).  Let 𝒒 = 𝑸 (
𝒅

𝝈
).  

𝑷(𝒄) =
𝟑

𝟒
𝑷𝟐(𝒄) +

𝟏

𝟒
𝑷𝟑(𝒄) =

𝟑

𝟒
(𝟏 − 𝒒)(𝟏 − 𝟐𝒒) +

𝟏

𝟒
(𝟏 − 𝒒)𝟐  

𝑷(𝒄) =
𝟑

𝟒
(𝟏 − 𝟑𝒒 + 𝟐𝒒𝟐) +

𝟏

𝟒
(𝟏 − 𝟐𝒒 + 𝒒𝟐) = 𝟏 −

𝟏𝟏

𝟒
𝒒 +

𝟕

𝟒
𝒒𝟐 and 𝑷(𝒆) = 𝟏 − 𝑷(𝒄) =

𝟏𝟏

𝟒
𝒒 −

𝟕

𝟒
𝒒𝟐 

 (i) For the right constellation, will using the type I, II, and III rectangular decision regions lead to 

Gray coding for symbols?  Either give a Gray coding for the right constellation, or show that it is not 

possible.  3 points.  Gray coding means that any two symbols in adjacent decision regions can 

only differ by one bit.  The constellation point at d + jd has five adjacent decision regions, and 

hence, we cannot encode each pair to differ by one bit because a 16-QAM symbol only has 4 bits. 

Constellation 

Region Type 

I, II or IIII 

Peak power of 

34d2 at symbol 

ampl. 3d + j5d 

Epilogue: The right constellation wouldn’t be used in practice.  The right constellation has higher peak 

power, average power, and peak-to-average power ratio than the left one.  Unlike the left constellation, the 

right constellation cannot be Gray coded and its rectangular decision regions do not give the same result as 

Euclidean distance.  Both constellations have a fast binary search decoding algorithm. 

Average power 

is average of 

2d 2, 10d 2, 18d 2 

and 34d 2 

Prologue: Lectures 15 & 16; JSK Ch. 16; Lab #6; HW 6.3 & 7.3; Handout P; 

Midterm 2.2 problems in F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20, F20 

 



Problem 2.3. QAM Receiver Architecture Tradeoffs.  28 points. 

In this problem, you evaluate tradeoffs in the two 

QAM receiver architectures on the right: 

(1) Single analog-to-digital (A/D) converter 

(2) Two A/D converters, one for the in-phase 

channel and one for the quadrature channel 

In both architectures,  

r1(t) is the baseband QAM signal 

i is the in-phase component 

q is the quadrature component 

J bits per symbol (assume J is even) 

M constellation points where M = 2J 

Please evaluate the following tradeoffs. 

(a) Which architecture consumes less power in 

its A/D converters?  How much less?  9 points. 

In an A/D converter, power consumption is proportional to the sampling rate fs and 2B where 

B is the number of bits of amplitude resolution at the A/D output. 

Assume the sampling rate is the same for all A/D converters. Difference is in number of bits. 

Arch #1: The single A/D converter has to support all possible symbol 

amplitudes, so 𝑩 ≥ 𝑱. Power consumption is proportional to 2J.   

Arch #2: Each A/D converter supports a PAM constellation of J/2 bits, i.e. 𝑩 ≥ 𝑱/𝟐.  

Power consumption is proportional to 𝟐 𝟐𝑱/𝟐 = 𝟐 (𝟐𝟎.𝟓 𝑱) = 𝟐 (𝟐𝟎.𝟓)
𝑱

= 𝟐 √𝟐
 𝑱
. 

For minimum number of bits for all converters, Arch #1 consumes 
𝟐𝑱

𝟐 √𝟐
 𝑱 =

√𝟐
 𝑱

𝟐
 more 

power.  This ratio is {1, 2, 4, 8} for J = {2, 4, 6, 8}. 

If we use the minimum sampling rates for all A/D converters, Arch #1 will consume another 

factor of 
𝒇𝒄+𝑾

𝑾
 more power than Arch #2.  Note that fc > W for sinusoidal modulation. 

Arch #1 uses a sampling rate of fs > 2 (fc + W).  Here, the baseband PAM bandwidth is 

W = ½ fsym (1+) where (1+) is the bandwidth expansion factor.  For a raised cosine pulse 

shape, is the rollof factor in [0, 1].  For a rectangular pulse, See lecture slide 7-10. 

Arch #2 uses a sampling rate of fs > 2 W because it is sampling a baseband PAM signal.  

Demodulation filters are the analog continuous-time lowpass filters in the A/D converters.   

(b) Describe an automatic gain control (AGC) algorithm for architecture #2 including equations.  The 

algorithm has access to both A/D converter outputs. Give the computational complexity. 6 points. 

We modify AGC algorithm for Arch #1 on lecture slide 16-5 for signed 8-bit A/D converters: 

c-128, c0, c127 are counts for the number of times -128, 0, or 127, respectively, occurs in last 

N/2 samples in the first A/D converter and last N/2 samples in the second A/D converter. 

f-128, f0, f127 represent how frequently outputs -128, 0, 127 occur where 𝒇𝒊 =
𝒄𝒊

𝑵
. 

Update gain c(t) every  seconds using c(t) = A c(t – ) where A = 1 + 2 f0 – f-128 – f127. 

Arch #1 

Arch #2 

Carrier and symbol 

recovery not shown 

Prologue: Lectures 14-16; JSK Sec. 2.8, 2.10, 3.2, 3.4, 3.6, 5.3, 6.7, 11.5, 11.6; JSK Ch. 16 & App. G; Lab 

#6; WWM Ch. 18; HW 3.1, 6.3, 7.3; Midterm #2 Problem 2.1 F14, 2.4 Sp15, 2.3 Sp18, 2.3 Sp19 

Lecture Slides 

15-6 to 15-8 



Computational complexity (same as that of arch. #1 algorithm) 

Substituting 𝒇𝒊 =
𝒄𝒊

𝑵
 , 𝑨 =

𝑵 + 𝟐𝒄𝟎 − 𝒄−𝟏𝟐𝟖 − 𝒄𝟏𝟐𝟕

𝑵
 .  Computing the numerator takes 3 additions 

and 1 left shift by one bit to implement multiplication by two.  We would like a floating-

point value for A.  Numerator takes integer values between 0 and 2N, inclusive.  We could 

create a lookup table of 2N+1 entries to store all precomputed floating-point values for A 

and use the numerator as index into the lookup table.  A is computed every  seconds. 

For each sample, we need 6 comparisons to update the 3 counters according to the values 

of ir[m] and qr[m].  We update the 3 counters based on values of ir[m-N/2] and qr[m-N/2] 

that will be discarded from the circular buffers of ir[m] and qr[m] values. (For reduced 

storage, we would store the values of the changes to the counters for each sample in a 

circular buffers instead of the ir[m] and qr[m] values themselves.)  Assume N is even. 

(c) Describe a carrier detection algorithm for architecture #2 including equations.  The algorithm has 

access to both A/D converter outputs.  Give the computational complexity.  6 points. 

We modify the carrier detection algorithm for Arch #1 on lecture slide 16-9 as follows: 

Let 𝒙[𝒎] =  𝒊𝒓
𝟐[𝒎] + 𝒒𝒓

𝟐[𝒎] be the instantaneous power of the in-phase and quadrature 

baseband PAM channels combined.  (We assume the in-phase and quadrature baseband 

PAM channels are orthogonal, i.e. 90 degrees or 270 degrees out of phase.  In practice, the 

two channels are close enough to orthogonal for the purposes of a carrier detection 

algorithm. The loss of orthogonality is called IQ imbalance.)   

Compute average power using first-order IIR filter 𝒑[𝒎] = 𝒄 𝒑[𝒎 − 𝟏] + (𝟏 − 𝒄) 𝒙[𝒎] 
where 0 < c < 1.  The pole location is c.  The closer c is to 1, the more selective the filter 

(i.e. the more narrow the passband and the larger the stopband attenuation in dB). 

 If there is no transmission being received, assume there is transmission 

if 𝒑[𝒎] is larger than a large threshold. 

 If there is transmission being received, assume that the transmission 

has stopped if 𝒑[𝒎] is smaller than a small threshold.  

Computational complexity (2x of that of arch #1 algorithm): 

𝒙[𝒎] =  𝒊𝒓
𝟐[𝒎] + 𝒒𝒓

𝟐[𝒎] takes 2 multiplications and 1 addition per sample. 

𝒑[𝒎] = 𝒄 𝒑[𝒎 − 𝟏] + (𝟏 − 𝒄) 𝒙[𝒎] takes 2 multiplications and 1 addition per sample. 

Total run-time computational complexity: 4 multiplications and 2 additions per sample 

plus one threshold operation applied periodically. 

(d) Which architecture would you advocate using? Why? Describe the tradeoffs considered.  7 points. 

Arch #1 A/D converter consumes more power than the combined power consumption of the 

A/D converters in Arch #2 by a factor of (
𝒇𝒄+𝑾

𝑾
) (

√𝟐
 𝑱

𝟐
). 

In comparing baseband discrete-time signal processing, Arch #1 has one channel equalizer as 

well as pointwise multiplication and generation of cosine and sine signals.  Arch #2 has two 

channel equalizers, but this is offset because Arch #2 runs at less than half the sampling rate. 

Arch #1 advantages: fewer components. 

Arch #2 advantages: lower power consumption in the A/D conversion (which dominates 

power consumption in an analog/RF frontend) and lower baseband discrete-time complexity.  

Lecture 

Slide 16-9 



Problem 2.4.  Potpourri.  21 points. 

Please determine whether the following claims are true or false and support each answer 

with a brief justification. A true or false answer without any justification will not earn any 

points.  

(a) PAM and QAM transmission using the same constellation size and symbol rate will always have 

the same symbol error rate when both receivers are operating at the same received SNR.  3 points. 

False. For same symbol rate, the symbol error rate (symbol 

error probability) for 4-QAM is much lower than that of 4-

PAM for received SNR greater than 0 dB.  The plot on the 

right of symbol error rate vs. SNR in dB is from Handout P: 

Communication Performance of PAM vs. QAM Handout. As 

SNR -> – dB, curves converge to ¾; see part (g). 

(b) Pulse shaping filters are designed to contain the spectrum of a transmitted signal in a 

communication system. In a communication system, the pulse shape should be zero at 

non-zero integer multiples of the symbol duration 

and have its maximum value at the origin. 3 points. 

First Claim is True. In a PAM transmitter, the pulse 

shaping filter determines the baseband bandwidth, which is ½ 

fsym (1+) where (1+) is the bandwidth expansion factor over the ideal lowpass filter.  After 

upconversion in the analog/RF front end, the PAM transmission bandwidth would be fsym 

(1+) as shown above (the plot is from Spring 2020 Midterm 2.1).  For a QAM transmitter, the 

baseband signal in the frequency domain would be centered at frequency fc with bandwidth 

fsym (1+) as shown above, and the transmission bandwidth after upconversion in the 

analog/RF front end would be 2 fc + fsym (1+).   

Second Claim is True. The pulse shape is used as the impulse response of an 

FIR filter that interpolates the output of upsampling by L, where L is the 

number of samples in a symbol period.  For a non-causal pulse shape 

centered at the origin, the pulse shape should be zero at non-zero integer 

multiples of L so that the symbol amplitudes pass through unchanged.  That 

is, the FIR filter implements convolution; as the impulse response (pulse 

shape) is flipped and slid across the input signal, the zero crossings at a non-

zero integer multiples of the symbol duration (L samples) ensure that the 

symbol amplitudes remain unchanged.  See the plot on the right for L = 4 

from Lecture Slide 13-8. 

(c) The LTI components of wired and wireless channels have impulse 

responses of infinite duration, and each can be modeled as an FIR filter. Wired 

channel impulse responses do not change over time, whereas wireless channel 

impulse responses change over time.  3 points. 

Midterm 2.4(a) 

Fall 2015 

Prologue: These questions are from the second half of the semester.  References are given with each part. 

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/PAMvsQAMHandout.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/PAMvsQAMHandout.pdf


First claim is true.  Wired channels have impulse responses that resemble RLC circuits.  

From the transmitter to receiver in wireless channels, there can be a direct path, paths 

involving one reflection (bounce), paths involving two reflections (bounces), etc.  We can 

truncate the impulse responses to model the impulse responses as FIR.  See Lecture 12 on 

Wireless Impairments, slides 12-5 to 12-8. 

Second claim is false.  Impulse responses in wired channels change with temperature because 

resistance, capacitance and inductance depend on temperature across the wire. 

(d) A receiver in a digital communication system employs a variety of adaptive 

subsystems, including automatic gain control, carrier recovery, and symbol timing 

recovery. A transmitter in a digital communication system does not employ any 

adaptive systems.  3 points. 

First claim is true. Adaptive methods based on steepest descent for carrier recovery and 

symbol timing recovery are subjects of homework problems 6.1 and 6.2.  The JSK textbook 

discusses adaptive methods automatic gain control (pp. 120-128), carrier recovery (pp. 198-

220) and symbol timing recovery (pp. 250-269), with many based on steepest descent. 

Second claim is false.  Several examples of adaptive systems in the baseband transmitter: 

1. Use feedback from the receiver to adapt the pause time (guard interval) after each symbol 

transmission to reduce inter-symbol interference in the receiver (see Lecture Slide 14-6). 

2. Compensate for impedance mismatches using adaptive predistortion (Midterm 2.3 Fall 

2018) or echo cancellation (Midterm 2.3 Fall 2014).  An impedance mismatch can occur 

between the baseband output and analog/RF front end input, and the mismatch can vary 

with time due to temperature.  Impedance mismatches can also occur between the analog/RF 

front end and the wired channel as well as at each junction in the wired channel.   

3. Nonlinear pre-distorter to improve the linearity of radio transmitter amplifiers.  

(e) When designing an FIR channel equalizer for a communication system using same 

amount of training data and the same filter length, an adaptive least mean-squares 

method should always be used over a least-squares method.  3 points. 

False. From Fall 2017 Midterm 2.4(c), when the training sequence length is short relative to 

the equalizer length, a LS equalizer will perform better because the adaptive LMS equalizer 

will not have enough training data to converge to a meaningful solution.  In homework 7.2 on 

the adaptive LMS method, the training sequence was 250 times the equalizer length.  

False. Another reason is that an adaptive LMS method can have an issue with stability.  

Stability requires a small enough positive value of the step size (learning rate). 

Adaptive LMS method would have much lower complexity than the LS method in this case. 

(f) In a communications system using a rectangular QAM constellation, the fastest and 

most accurate way for the receiver to find the constellation point closest to the 

received symbol amplitude is to use Euclidean distance.  3 points. 

Midterm 2.4(c) 

Fall 2015 

Midterm 2.2(i) 

Spring 2016 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2018.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2018.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2014.pdf
https://en.wikipedia.org/wiki/Predistortion
https://en.wikipedia.org/wiki/Radio_transmitter
https://en.wikipedia.org/wiki/Amplifier


False.  It is true that using Euclidean distance to find the constellation point closest to a 

received symbol amplitude is the most accurate but not the fastest way.  Euclidean distance 

requires 2 multiplications per constellation point and a square root operation for each of the 

M = 2J points constellation points for a J-bit symbol. (To reduce complexity, we use 

Euclidean distance squared to remove the square root.)  When using rectangular decision 

regions for a rectangular QAM constellation, such as in the left constellation in problem 2.2, 

we can use binary search. Binary search eliminates half of the remaining constellation points 

each step, which requires J comparisons vs. 2 2J multiplications. For rectangular QAM 

constellations, rectangular decision regions match those from using Euclidean distance. 

(g) When the received SNR is – dB, the symbol error rate is 100%.  That is, there is no 

chance that any symbol will be decoded correctly.  3 points   

False. As received SNR goes to – dB, noise swamps the signal.  Receiver can only randomly 

guess the symbol among a constellation of M symbols with an error probability of 
𝑴−𝟏

𝑴
. 
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1 21  Baseband PAM System 

2 33  PAM vs. QAM Communication Performance 

3 28  Decision-Directed Equalization 

4 18  Potpourri 

Total 100   

 

  



Problem 2.1. Baseband PAM System.  21 points. 

Consider a binary phase shift keying (BPSK) system, a.k.a. 

a two-level pulse amplitude modulation (2-PAM) system. 

The system parameters are described on the right: 

 J = 1 bit/symbol 

 L = 4 samples per symbol period 

 Pulse shape g[m] is a rectangular pulse of L = 4 samples in 

duration with amplitude 1/L. 

 A bit of value 0 is mapped to symbol amplitude -d, and 

a bit of value 1 is mapped to symbol amplitude d. 

(a) For the BPSK transmitter below, the input bit stream is 011.  

Plot the discrete-time signals a[n], y[m] and s[m].  9 points. 

 
 

 

 

(b) For the BPSK receiver below, assume there is no channel distortion or additive noise and assume 

that r[m] = s[m].  Plot the discrete-time signals r[m], h[m], v[m] and �̂�[𝑛] based on the BPSK 

transmitter in (a).  12 points. 

 
See the next page. 

  

PAM System Parameters 

a[n] symbol amplitude 

2d constellation spacing 

fs sampling rate 

fsym symbol rate 

g[m] pulse shape 

h[m] matched filter impulse resp. 

J bits/symbol 

L samples/symbol period 

 levels, i.e. M = 2J 

m sample index 

n symbol index 

Prologue: Lectures 13 & 14; JSK Sec. 2.10; JSK Ch. 8 & 11; Lab 5; HW 4.2, 4.3, 5.2, 6.1 & 6.2; 

Midterm 2.1: F17, Sp18, F18, Sp21 

 

Lecture 

Slide 13-8 



 
  

Matched filter 
𝒉[𝒎] = 𝒌 𝒈∗[𝑳 − 𝒎] 

Epilogue:  Four bits are output by the receiver (0011) even though only three bits were 

input to the transmitter (011). 

The reason is that we haven’t accounted for the group delay through the pulse shaping 

filter  of  
𝑳−𝟏

𝟐
 samples or the group delay through the matched filter also of 

𝑳−𝟏

𝟐
 samples. 

Prior to the downsampler in the receiver, we should discard the first 𝑳 − 𝟏 samples. 

 

r = [ -1 -1 -1 -1 1 1 1 1 1 1 1 1] / 4; 

h = [ 1 1 1 1 ]; 

v = conv(h, r); 

M = length(v); 

m = 0 : M-1; 

stem(m, v); 

ylim( [-1.05 1.05] ); 

xlabel('m'); 

ylabel('v[m]'); 

 



Problem 2.2  PAM vs. QAM Communication Performance. 33 points.  

Consider the 8-PAM (left) and 8-QAM (right) constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s. 

Each part below is worth 3 points.  Please fully justify your answers. 

 8-PAM Constellation 8-QAM Constellation 

(a) Peak transmit power 49d 2 10d 2 

(b) Average transmit power 21d 2 6d 2 

(c) Peak-to-average power ratio 49𝑑2

21𝑑2
=

7

3
≈ 2.33 

𝟏𝟎𝒅𝟐

𝟔𝒅𝟐
=

𝟓

𝟑
≈ 𝟏. 𝟔𝟕 

(d) Draw the type I, II and/or III decision regions for the right constellation on top of the right 

constellation that will minimize the probability of symbol error using such decision regions. 

8-PAM inner constellation points 6  

8-PAM outer constellation points 2  

(e) Number of type I QAM regions  0 

(f) Number of type II QAM regions  4 

(g) Number of type III QAM regions  4 

(h) Probability of symbol error for 

additive Gaussian noise with zero 

mean & variance 2.  For QAM, the 

variance is 2 in the in-phase 

component and 2 in the quadrature 

component.  For PAM, the variance 

is 22 to keep the total noise power 

the same as in QAM. 

 
7

4
𝑄 (

𝑑

√2𝜎
) 

𝑷𝒄 =
𝟏

𝟐
𝑷𝒄

𝑰𝑰 +
𝟏

𝟐
𝑷𝒄

𝑰𝑰𝑰 

𝑷𝒄
𝑰𝑰 = (𝟏 − 𝒒)(𝟏 − 𝟐𝒒) 

𝑷𝒄
𝑰𝑰𝑰 = (𝟏 − 𝒒)𝟐 

𝑷𝒆 = 𝟏 − 𝑷𝒄 

𝑷𝒆 =
𝟓

𝟐
𝑸(

𝑑

𝜎
) −

𝟑

𝟐
𝑸𝟐 (

𝑑

𝜎
) 

(i) Express the argument of the Q 

function as a function of the Signal-

to-Noise Ratio (SNR) in linear units 

SNR =
21𝑑2

2𝜎2
 

𝑑

√2𝜎
= √

SNR

21
 

𝐒𝐍𝐑 =
𝟔𝒅𝟐

𝝈𝟐
 

𝒅

𝝈
= √

𝐒𝐍𝐑

𝟔
 

 

(j) Give a Gray coding for the 8-QAM constellation points on the constellation above. 3 points. 

 Gray coding means the bit pattern only differs by one bit in adjacent decision regions to 

minimize the number of bit errors when a symbol error occurs.  One approach is to use the 

first two bits to encode the quadrant, and third bit to specify which point in the quadrant. 

(k) Would you recommend using 8-PAM or 8-QAM?  Give two reasons.  3 points. 

Prologue: Lectures 13-16; JSK Ch. 16; Lab 5 & 6; HW 4.2, 4.3, 5.2, 6.3 & 7.3; Handout P PAM vs. QAM; 

Midterm 2.2 problems: F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20, F20 & Sp21 

 

I and Q axes are 

also decision region 

boundaries 

Both 8-PAM and 8-QAM would have the same bit rate.  Both can be Gray coded.  Choose 

8-QAM because it has a lower probability of symbol error for the same SNR, and lower 

maximum power, average power, and peak-to-average-power ratio for the same value of d.  

(8-QAM baseband Tx has at least 2x implementation complexity as 8-PAM; same for Rx.) 

𝒒 = 𝑸(
𝒅

𝝈
) 



 

Problem 2.3. Decision-Directed Equalization.  28 points. 

Consider the following baseband pulse amplitude modulation (PAM) receiver with an adaptive finite 

impulse response (FIR) equalizer placed immediately before the decision device: 

 
The adaptive FIR equalizer runs at the symbol rate and has N 

coefficients.  We place the coefficients in a vector 

�⃗⃗� = [ 𝑤0  𝑤1 …𝑤𝑁−1 ] 

Consider adapting the decision-directed equalizer during training. 

The error signal is 𝑒[𝑛] = �̂�[𝑛] − 𝑎[𝑛] which is the difference 

between the estimated and transmitted symbol amplitudes. 

This is similar to the adaptive least-mean squares (LMS) FIR 

filter in HW 7.2 except it runs at the symbol rate instead of the 

sampling rate and uses a different error measure. 

For the adaptive FIR equalizer, 

(a) Give an objective function 𝐽(𝑛).  6 points. 

We want drive the error to zero by driving the square of the 

error to zero:  𝑱(𝒏) =
𝟏

𝟐
𝒆𝟐[𝒏] 

(b) What is the initial value of the adaptive FIR equalizer 

coefficients you would use?  Why?  3 points. 

�⃗⃗⃗� [𝟎] = [ 𝟏 𝟎 𝟎…𝟎 ] is equivalent to the original receiver block diagram that does not have an 

adaptive filter.  So, if it’s not needed, it shouldn’t adapt.  Using all zeros means equalizer 

output �̂�[𝒏] will initially be zero, but equalizer will still adapt.  Any initialization works. 

(c) Derive an update equation for the adaptive FIR equalizer coefficients vector at iteration n 

�⃗⃗� [𝑛] = [ 𝑤0[𝑛] 𝑤1[𝑛]… 𝑤𝑁−1[𝑛] ] 
Compute all derivatives.  Simplify the result.  9 points 

�⃗⃗⃗� [𝒏 + 𝟏] = �⃗⃗⃗� [𝒏] − 𝝁 
𝒅𝑱(𝒏)

𝒅�⃗⃗⃗� 
]
�⃗⃗⃗� =�⃗⃗⃗� [𝒏]

 𝐰𝐡𝐞𝐫𝐞  
𝒅𝑱(𝒏)

𝒅�⃗⃗⃗� 
= 𝒆[𝒏]

𝒅𝒆[𝒏]

𝒅�⃗⃗⃗� 
= 𝒆[𝒏]

𝒅�̂�[𝒏]

𝒅�⃗⃗⃗� 
= 𝒆[𝒏] �⃗⃗� [𝒏] 

where �̂�[𝒏] = 𝒘𝟎 𝒚[𝒏] + 𝒘𝟏 𝒚[𝒏 − 𝟏] + 𝒘𝟐 𝒚[𝒏 − 𝟐] + ⋯+ 𝒘𝑵−𝟏 𝒚[𝒏 − (𝑵 − 𝟏)] and 

𝒅�̂�[𝒏]

𝒅𝒘𝒎
= 𝒚[𝒏 − 𝒎]  𝐬𝐨 

𝒅�̂�[𝒏]

𝒅�⃗⃗⃗� 
= �⃗⃗� [𝒏]  𝐰𝐡𝐞𝐫𝐞 �⃗⃗� [𝒏] = [ 𝒚[𝒏]   𝒚[𝒏 − 𝟏] …𝒚[𝒏 − (𝑵 − 𝟏)] ] 

�⃗⃗⃗� [𝒏 + 𝟏] = �⃗⃗⃗� [𝒏] − 𝝁 𝒆[𝒏] �⃗⃗� [𝒏]  

PAM System Parameters 

a[n] symbol amplitude 

�̂�[𝑛] estimated symbol 

amplitude 

2d constellation spacing 

fs sampling rate 

fsym symbol rate 

g[m] pulse shape 

h[m] matched filter impulse 

response 

J bits/symbol 

L samples/symbol period 

 levels, i.e. M = 2J 

m sample index 

n symbol index 

Tsym    symbol time 

Prologue. JSK Sec. 2.12 & 13.1-13.4; HW 5.1, 6.1, 6.2 & 7.2; 

In-Lecture Assignments 3 & 4; Lectures 12-14; Lecture Slides 16-6 to 16-8; 

Midterm #2 Prob 2.2 F12; 2.1 Sp13; 2.1 F13; 2.1 Sp14; 2.3 & 2.4 Sp17; 2.3 F17; 2.3 F19; 2.3 Sp20 



(d) What range of values would you recommend for the step size ?   Why?  3 points. 

Use small positive values for the step size such as 0.01 or 0.001 for convergence as seen on 

HW 7.2 on adaptive equalizers.  Using a large positive value can lead to instability.  Using 

value of zero would not update the value of the coefficients.  Using a negative value would 

maximize the objective function instead of minimizing it. 

(e) Is it possible for the adaptive equalizer to compensate symbol timing error?  Why or why not?  

7 points. 

During training, the error (vector) 𝒆[𝒏] is a measurement of all the remaining impairments, 

including symbol timing error. 

By driving the error (vector) 𝒆[𝒏] to zero, the adaptive equalizer can compensate linear 

magnitude and phase distortion that varies over the training period.  Compensating for 

phase distortion would include compensating for symbol timing error because compensating 

symbol timing error can be expressed as a phase shift.  (See Fall 2018 Midterm Problem 2.4.) 

 

Epilogue:  We can also use decision-directed methods when we’re not training.  That is, when an 

unknown message is being received, we can adjust the equalizer from 

 
to the following: 

 

The adjusted version can be “fooled” when there is a symbol error.  This version of the decision-

directed FIR equalizer described in JSK Section 13.4.  

[1] Erkan Acar, “How Error Vector Magnitude (EVM) Measurement Improves Your System-Level Performance”, 

Analog Devices, Technical Article, Dec. 2021. 

https://vertassets.blob.core.windows.net/download/071bd2de/071bd2de-9098-4d24-a7f5-cf47ab9c3aa8/how_evm_measurement_improves_system_level_performance.pdf


Problem 2.4.  Potpourri.  18 points. 

Please determine whether the following claims are true or false and support each answer with a brief 

justification. A true or false answer without any justification will not earn any points.  

(a) An increase in thermal noise power always causes a decrease in the signal-to-noise ratio (SNR) in 

the receiver after the analog-to-digital (A/D) converter.  3 points. 

False.  An A/D converter is shown on the right.  The analog 

lowpass filter attenuates noise at frequencies above 
𝟏

𝟐
𝒇𝒔 which will 

alias after sampling.  At the quantizer output, noise power will be 

the greater of the thermal noise power at the quantizer input and the 

quantization noise power introduced by the quantizer.  If the 

quantization noise power were greater than the thermal noise power, 

noise power at the quantizer output will be the quantization noise power, until the thermal 

noise power increases to exceed the quantization noise power.  So, an increase in the thermal 

noise power at the A/D input does not always cause a decrease in SNR at the A/D output.  

(Matched filter after the A/D converter will increase SNR by filtering out-of-baseband noise.) 

(b) For an M-level pulse amplitude modulation (PAM) transmitter using a raised cosine pulse shape 

and a B-bit digital-to-analog (D/A) converter, setting 𝐵 = log2𝑀 will avoid any clipping in 

amplitude of the input of the D/A converter.  3 points. 

False.  The number of bits B needed to avoid clipping in the transmitter depends on 𝑱 which 

is the number of bits in the PAM constellation, 𝒅 which is half of the distance between 

constellation points, and 𝒈[𝒎] which is the pulse shape.  PAM symbol amplitudes are in 

[ −(𝑴 − 𝟏)𝒅, (𝑴 − 𝟏)𝒅 ].  For a raised cosine pulse shape with max amplitude of 1, pulse 

shaping filter output values are in [ −𝟐(𝑴 − 𝟏)𝒅, 𝟐(𝑴 − 𝟏)𝒅 ] which requires 

𝐥𝐨𝐠𝟐(𝟒(𝑴 − 𝟏)𝒅) bits.  See lecture slides 13-6 and 15-8, and Spring 2019 Midterm 2.3(b). 

(c) PAM and QAM transmission using the same constellation size and symbol rate will always have 

the same bit rate.  3 points.  True.  For PAM and QAM, the bit rate in bits/s is 𝑱 𝒇𝒔𝒚𝒎 where 𝑱 is 

the number of bits/symbol and 𝒇𝒔𝒚𝒎 is the symbol rate in symbols/s.  Moreover, 𝑱 = 𝐥𝐨𝐠𝟐𝑴 

where 𝑴 is the constellation size.  Hence, the bit rate is 𝒇𝒔𝒚𝒎 𝐥𝐨𝐠𝟐𝑴.  See lecture slide 13-3. 

(d) The number of constellation points for a PAM system must always be a power of 2.  3 points. 

False.  The High-Speed Digital Subscriber Line 2 standard supports PAM constellation sizes 

that are not powers of two.  Also, Fall 2020 Midterm Problem 2.1 concerned 3-PAM systems. 

(e) In a QAM system, the only way to reduce the symbol error rate is to reduce the symbol rate.  

3 points. False. Symbol error rate for 16-QAM is 𝟑𝑸(
𝑑

𝜎
√𝑇𝑠𝑦𝑚) −

𝟗

𝟒
𝑸𝟐 (

𝑑

𝜎
√𝑇𝑠𝑦𝑚) per lecture 

slide 15-15. Q is monotonically decreasing (lecture slide 14-22).  In addition to reducing the 

symbol error rate by reducing the symbol rate 𝑓𝑠𝑦𝑚  or equivalently increasing the symbol 

time 𝑇𝑠𝑦𝑚, one can increase d, which is half of the distance between constellation points.  

Increasing d increases transmit power, which in turn increases SNR. 

(f) In a communication system, the sampling rate used in the receiver must always be equal to the 

sampling rate used in the transmitter.  3 points.  False.  Consider a transmitter that implements 

cosine modulation by a carrier frequency 𝒇𝒄 in discrete time. Sampling rate must be greater 

than 𝟐(𝒇𝒄 + 𝑾) where W is the baseband bandwidth.  The receiver will demodulate by first 

modulating the bandpass signal and the sampling rate must exceed 𝟐(𝟐𝒇𝒄 + 𝑾).  Receiver 

could use 2x sampling rate, and the number of samples per symbol period L would double. 

Prologue: These questions are from the second half of the semester.  References are given with each part. 

𝐒𝐍𝐑 =
𝐒𝐢𝐠𝐧𝐚𝐥 𝐏𝐨𝐰𝐞𝐫

𝐍𝐨𝐢𝐬𝐞 𝐏𝐨𝐰𝐞𝐫
 

Also, transmitter and receiver usually have different circuits.  Symbol timing recovery is 

used to synchronize the receiver sampling clock with the transmitter sampling clock.  
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Problem 2.1. Changing Sampling Rates.  19 points. 

Consider the two systems to change the sampling rate: 

 System A consists of linear time-invariant (LTI) 

filtering followed by downsampling by L. 

 System B consists of upsampling by L followed 

by LTI filtering. 

(a) Give a formula for 𝑓2 in terms of 𝑓1.  2 points.  

𝒇𝟐 =
𝟏

𝑳
𝒇𝟏 

(b) Give a formula for 𝑓4 in terms of 𝑓3.  2 points. 

𝒇𝟒 = 𝑳 𝒇𝟑 

(c) Assuming 𝐿 = 2, draw 𝑦𝑎[𝑛] corresponding to the input 𝑣𝑎[𝑚] shown below.  4 points. 

 
 

(d) Assuming that 𝐿 = 2, draw 𝑣𝑏[𝑚] corresponding to the input 𝑥𝑏[𝑛] shown below.  4 points. 

 
 

(e) Assume the filter in System B is a finite impulse response (FIR) filter with N coefficients. 

1. How many multiplication operations per second does System B use in the block diagram 

above?  3 points.  Upsampling does not require any multiplications.  An FIR filter with 

N coefficients requires N multiplications to compute one output sample in response to 

an input sample.  FIR filter processes 𝒇𝟒 samples per second.  Total:  𝑵 𝒇𝟒 mults/sec. 

2. How many multiplication operations per second would System B use if implemented as a 

polyphase filter bank?  4 points.  A polyphase filterbank uses a bank of L polyphase FIR 

filters, each with N/L coefficients, followed by a commutator to take the L parallel 

outputs and put them in sequential order.  Each polyphase FIR filter runs at the 

lower rate, 𝒇𝟑. Total: 𝑵 𝒇𝟑 mults/sec.  Savings in mults/sec by a factor of L because 

𝒇𝟒 = 𝑳 𝒇𝟑 . 

Prologue: Lectures 13 & 16; JSK Sec. 2.10; JSK Ch. 8 & 11; Lab 5; HW 2.2, 4.2, 4.3, 5.2, 6.1 & 6.2; 

Midterm 2.1 problems: F17, Sp18, F18, Sp21 & F21 

 

Lecture 

Slides 13-8 

and 26-7; 

HW 2.2(e) 

Lecture 

Slide 26-9; 

HW 2.2(d) 

Lecture Slides 13-9, 13-14 to 

13-16, and 26-8; HW 5.3 



 

Problem 2.2  QAM Communication Performance. 33 points.  

Consider the two 8-QAM constellations below.  Constellation spacing is 2d. 

 

 

 

 

 

 

Energy in the pulse shape is 1.  Symbol time Tsym is 1s. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 

(a) Peak transmit power 10d 2 8d 2 

(b) Average transmit power 6d 2 𝟒(𝟖𝒅𝟐) + 𝟐(𝟒𝒅𝟐) + 𝟐(𝒅𝟐)

𝟖
= 𝟓. 𝟐𝟓𝒅𝟐 

(c) Peak-to-average power ratio 10𝑑2

6𝑑2
=

5

3
≈ 1.67 

𝟖𝒅𝟐

𝟓. 𝟐𝟓𝒅𝟐
=

𝟑𝟐

𝟐𝟏
≈ 𝟏. 𝟓𝟐 

(d) Draw the type I, II and/or III decision regions for the right constellation on top of the right 

constellation that will minimize the probability of symbol error using such decision regions. 

(e) Number of type I QAM regions 0 0 

(f) Number of type II QAM regions 4 4 

(g) Number of type III QAM regions 4 4 

(h) Probability of symbol error for 

additive Gaussian noise with zero 

mean & variance 2. 

𝑃𝑒 =
5

2
𝑄 (

𝑑

𝜎
) −

3

2
𝑄2 (

𝑑

𝜎
) 

Same as left constellation 

due to same number of 

type I, II and III regions 

(i) Express the argument of the Q 

function as a function of the Signal-

to-Noise Ratio (SNR) in linear units 

SNR =
6𝑑2

𝜎2
 

𝑑

𝜎
= √

SNR

6
 

𝐒𝐍𝐑 =
𝟓. 𝟐𝟓𝒅𝟐

𝝈𝟐
 

𝒅

𝝈
= √

𝐒𝐍𝐑

𝟓. 𝟐𝟓
 

 

(j) Give one advantage of the left constellation vs. the right constellation. 3 points. 

 Gray coding minimizes the number of bit errors when there is a symbol error.  The bit 

pattern for each symbol only differs in one bit with that of the nearest neighbor.  Left 

constellation can be gray coded as shown above; right constellation cannot be gray coded 

because we only have two bits of freedom at each constellation point and the constellation 

points at locations d and -d have four nearest neighbors. 

 Binary search fast algorithm can be used for decoding the received symbol amplitude by 

finding the nearest constellation point.  Each iteration rules out half the points with a single 

Prologue: Lectures 13-16; JSK Ch. 16; Lab 5 & 6; HW 4.2, 4.3, 5.2, 6.3 & 7.3; Handout P PAM vs. QAM; 

Midterm 2.2 problems: F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20, F20, Sp21 & F21 

 



real-valued comparison. Binary search achieves same accuracy as selecting the constellation 

point that is closest in Euclidean distance to the received symbol amplitude.  For the right 

constellation, there is no vertical or horizontal line through the complex plane that will 

eliminate half the points; however, decoding the received symbol constellation using the 

decision regions will be as accurate as using Euclidean distance. 

 Rectangular constellation has 4-PAM (QPSK) in the in-phase component and 2-PAM (BPSK) 

in the quadrature component. The QAM receiver separates into a 4-PAM receiver in the in-

phase direction and 2-PAM receiver in the quadrature direction, which can simplify the 

design.  For example, one could apply a single Costas Loop to only the in-phase component to 

determine the phase offset for the baseband QAM carrier, instead of having to run eight 

Costas loops in parallel per homework problem 7.3.  The right constellation is not a 

rectangular constellation. 

(k) Give one advantage of the right constellation vs. the left constellation.  3 points. 

 Lower peak transmit power for same value of d 

 Lower average transmit power for same value of d 

 Lower average peak-to-average power ratio which makes it easier to design the power 

amplifier for the analog/RF chains in the transmitter and receiver 

 Lower symbol error rate vs. SNR.  The Q function is a non-negative monotonically decreasing 

function of its non-negative argument.  The probability of error expressions are identical in 

terms of  
𝒅

𝝈
.  Let SNR = 6 in linear units.  The value of 

𝒅

𝝈
 is 1 for the left constellation and 1.2 

for the right constellation, which means the right constellation has lower symbol error rate.  



Problem 2.3  Adaptive Spatial Filter. 24 points.  

A single sound source is recorded by several microphones 

simultaneously as shown on the right. 

The microphones are arranged in a line and separated  

by distance 𝑑.  Sound arrives at an unknown angle 𝜃. 

Sound arrives at the ith microphone with a different 

delay 𝑡𝑖 based on the distance to the source.  The source 

is far enough away for the propagation to be a plane wave. 

The signal recorded by the ith microphone 𝑟𝑖(𝑡) is delayed 

by 𝜏 seconds, and all the signals are added together before 

being sampled by an analog-to-digital converter: 

We would like to design an adaptive spatial filter that   

amplifies a signal located at an unknown angle 𝜃 by  

adapting the delays 𝜏1,  𝜏2, … , 𝜏𝑁. 

A known training signal 𝑥[𝑛] is sent by the source so that we can find the best values for 𝜏1,  𝜏2, … , 𝜏𝑁. 

Hence 𝑟𝑖(𝑡) = 𝑥(𝑡 − 𝑡𝑖) where 𝑥(𝑡) is the continuous-time version of the training signal 𝑥[𝑛]. 

(a) Training.  What training signal 𝑥[𝑛] would you send?  Why?  Describe its parameters.  6 points. 

We want x[n] to be easy to generate at the receiver, have good correlation properties and 

contain all discrete-time frequencies because the channel will attenuate/reject some 

frequencies. After digital-to-analog conversion (DAC) of x[n] at rate 𝒇𝒔, continuous-time 

signal 𝒙(𝒕) would have all frequencies –½ fs to ½ fs. 

Option #1:  Long maximal-length pseudo-noise sequence.  Length is 2r – 1 bits where r is the 

number of states in the PN generator.  Map 1 bit to +1 and 0 bit to -1 in amplitude.  As an 

audio signal, a PN sequence sounds like noise. 

Option #2: Chirp signal that sweeps from 0 Hz to 20 kHz (upper end of audible range) over 0 

to 𝒕𝒎𝒂𝒙 seconds.  𝒙(𝒕) = 𝐜𝐨𝐬(𝟐𝝅 𝜸 𝒕𝟐) where 𝜸 =
𝟏𝟎 𝐤𝐇𝐳

𝒕𝒎𝒂𝒙
 .  For the DAC, use 𝒇𝒔 > 𝟒𝟒 𝐤𝐇𝐳 .  

Since chirp sounds can be startling, we could use low-volume chirps, or chirps in 15-20 kHz 

range, where human hearing is less sensitive. 

(b) Propagation Delay.  Consider the signal received by the ith microphone 𝑟𝑖(𝑡).  Propose and 

explain an algorithm to find the delay 𝑡𝑖  from the source to the ith microphone.  6 points. 

Correlate output of ith microphone 𝒓𝒊(𝒕) against the training sequence, and the location of 

the first peak will provide an estimate of the delay 𝒕𝒊 from the source to the ith microphone. 

This method works because the correlation function provides a measure of similarity 

between 𝒓𝒊(𝒕) and delayed versions of 𝒙(𝒕).  We had seen this in HW 4.2, 4.3, and 5.2; lab #4 

on PN sequences; and labs 5-6 on matched (correlation) filtering. 

With the estimates of the 𝒕𝒊 values, we can determine the best 𝝉𝒊 values as follows without the 

need for an adaptive algorithm: 

𝒕𝒎𝒂𝒙 = 𝐦𝐚𝐱( [ 𝒕𝟏    𝒕𝟐     ⋯    𝒕𝑵] ) 

𝝉𝒊 = 𝒕𝒎𝒂𝒙 − 𝒕𝒊   𝐟𝐨𝐫 𝒊 = 𝟏, … , 𝑵 

Prologue: Lectures 12 & 13; JSK Sec. 2.10 & 2.12; JSK Sec. 3.7; JSK Ch. 8 & 11; 

Labs 5 & 6; HW 4.2, 4.3, 5.1, 5.2, 6.1, 6.2, 7.1, 7.2 & 7.3 

 



This will allow all the versions of the received training signal to be aligned in time and add 

constructively.  This assumes the sound source is not moving.  One of the advantages of an 

adaptive algorithm is to be able to track a moving sound source.  We can use the above 

calculation as the initial values for 𝝉𝒊 for the adaptive algorithm. 

(c) Adaptive Spatial Filter.  Develop a discrete-time adaptive algorithm to apply to 𝑦[𝑛] to determine 

the best set of delays 

𝜏 = [ 𝜏1    𝜏2     ⋯    𝜏𝑁] 

for the microphone array to amplify the sound coming from the source at an unknown angle 𝜃. 

1. Give an objective function and explain why you have chosen it.  3 points. 

𝑱( 𝒆[𝒏] ) =  
𝟏

𝟐
 𝒆𝟐[𝒏] where 𝒆[𝒏] = 𝒚[𝒏] − 𝒙[𝒏 − 𝒏𝟎] and 𝒏𝟎 is a constant average delay. 

We can choose 𝒏𝟎 = 𝟎 for simplicity.  Driving 𝒆𝟐[𝒏] to zero will drive 𝒆[𝒏] to zero. 

2. Give an adaptive steepest descent/ascent algorithm for 𝜏[𝑖 + 1] in terms of 𝜏[𝑖].  6 points. 

The adaptive steepest descent algorithm to minimize 𝑱( 𝒆[𝒏] ) is 

�⃑⃑�[𝒏 + 𝟏] = �⃑⃑�[𝒏] −  𝝁 
𝒅

𝒅�⃑⃑�
 𝑱( 𝒆[𝒏] )]

�⃑⃑�=�⃑⃑�[𝒏]
= �⃑⃑�[𝒏] −  𝝁 𝒆[𝒏] 

𝒅

𝒅�⃑⃑�
 𝒚[𝒏]]

�⃑⃑�=�⃑⃑�[𝒏]
 

since 𝒙[𝒏] does not depend on �⃑⃑�.  This would be a sufficient answer on the exam. 

To keep working the problem, 

𝒚(𝒕) = ∑ 𝒓𝒊(𝒕 − 𝝉𝒊) =

𝑵

𝒊=𝟏

∑ 𝒙(𝒕 − 𝒕𝒊 − 𝝉𝒊)

𝑵

𝒊=𝟏

 

𝒚[𝒏] = 𝒚(𝒏 𝑻𝒔) = ∑ 𝒙(𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊)

𝑵

𝒊=𝟏

 

𝒅

𝒅𝝉𝒊
 𝒚[𝒏] =

𝒅

𝒅𝝉𝒊
𝒙(𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊)   

At this point, we have not included knowledge of the microphone array geometry or the 

training signal.  If a chirp training signal is being used, then 𝒙(𝒕) = 𝐜𝐨𝐬(𝟐𝝅 𝜸 𝒕𝟐) and 

𝒅

𝒅𝝉𝒊
𝒙(𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊) =

𝒅

𝒅𝝉𝒊
𝐜𝐨𝐬(𝟐𝝅 𝜸 (𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊)𝟐) 

𝒅

𝒅𝝉𝒊
𝒙(𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊) =  𝟒𝝅 𝜸 (𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊) 𝐬𝐢𝐧(𝟐𝝅 𝜸 (𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊)𝟐)  

3. What values of the step size would you use?  Why?  3 points. 

We would like to small positive values of the step size 𝝁 such as 0.01 to ensure 

convergence of the algorithm.  Using 𝝁 = 𝟎 would not allow the iterative algorithm to 

update.  Using a negative 𝝁 would convert the steepest descent algorithm to minimize 

𝒆[𝒏] into a steepest ascent algorithm to maximize 𝒆[𝒏].  A large positive value would 

cause the steepest descent algorithm to diverge. 

  



Problem 2.4. Potpourri.  24 points. 

(a) Consider 16-QAM system transmitting at a 1200 bps (bits per second) using a 12-sample discrete-

time raised cosine pulse shaping filter.  What are the possible sampling rates in Hz?  12 points. 

Bit rate is 𝑱 𝒇𝒔𝒚𝒎 where 𝑱 is number of bits/symbol and 𝒇𝒔𝒚𝒎 is symbol rate in symbols/s or 

Hz.  With 𝑱 = 𝟒 bits/symbol due to 16-level QAM and a bit rate of 1200 bps, 𝒇𝒔𝒚𝒎 =  𝟑𝟎𝟎 𝐇𝐳. 

Pulse shape has 𝑵 = 𝑵𝒈 𝑳 samples where 𝑵𝒈 is number of symbol periods in the pulse shape 

and 𝑳 is number of samples in a symbol period. With 𝑵 = 𝟏𝟐 given in the question, possible 

factorizations are 𝑳 = 𝟏 and 𝑵𝒈  = 𝟏𝟐 ; 𝑳 = 𝟐 and 𝑵𝒈  = 𝟔 ; 𝑳 = 𝟑 and 𝑵𝒈  = 𝟒 ; 𝑳 = 𝟒 and 

𝑵𝒈  = 𝟑 ; 𝑳 = 𝟔 and 𝑵𝒈  = 𝟐 ; 𝑳 = 𝟏𝟐 and 𝑵𝒈  = 𝟏. 

With the sampling rate 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎, the possible sampling 

rates are 300, 600, 900, 1200, 1800, and 3600 Hz. 

(b) Consider a wireless communication system that uses two transmit antennas and two receive 

antennas.  This allows two signals 𝑥1[𝑛] and 𝑥2[𝑛] to be sent at the same time and over the same 

frequency band as shown below:  12 points 

 
Each antenna at the receiver receives both transmitted signals.   

The communication channel has a complex-valued scalar gain between the ith transmit antenna 

and jth receive antenna.  No other impairments are being modeled.   

The received signal is 

[
𝑦1

𝑦2
] = [

ℎ11 ℎ12

ℎ21 ℎ22
] [

𝑥1

𝑥2
] 

which can be written as 

�⃑� = 𝑯 �⃑� 

In the receiver, assume 𝑯 is known. 

Find two possible values for matrix 𝑮 in terms of 𝑯 that can allow us to estimate �⃑� from �⃑� via  

�⃑�𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑮 �⃑� 

Hints:  One way could equalize (invert) the channel.  Other could use a matched filtering approach. 

We want to find �⃑⃑⃑�𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 = 𝑮 �⃑⃑⃑� =  𝑮 𝑯 �⃑⃑⃑� so that we can recover �⃑⃑⃑� from �⃑⃑⃑�𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 .  

We can equalize (invert) the channel by using 𝑮 = 𝑯−𝟏 which would give 

�⃑⃑⃑�𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 = 𝑮 𝑯 �⃑⃑⃑� = 𝑯−𝟏 𝑯 �⃑⃑⃑� = �⃑⃑⃑� .  The closed-form formula for 𝑯−𝟏 is  

𝑯−𝟏 =
𝟏

𝒅𝒆𝒕(𝑯)
[

𝒉𝟐𝟐 −𝒉𝟏𝟐

−𝒉𝟐𝟏 𝒉𝟏𝟏
] 

In general, 𝑮 =  𝜶 𝑯−𝟏 for any non-zero scalar 𝜶. 

The idea of a matched filter is phase reversal.  For example, in pulse amplitude modulation, 

the matched filter impulse response is 𝒉[𝒎] =  𝒌 𝒈∗[𝑳 − 𝒎] where 𝒈[𝒎] is the pulse shape.  

For this problem, we let 𝑮 = 𝑯∗ where 𝑯∗ means the conjugate transpose of 𝑯∗: 

Figure from Lars Reichardt, 

Juan Pontes, Yoke Leen Sit, 
and Thomas Zwick, “Antenna 
Optimization for Time-
Variant MIMO Systems”, 
EuCap, 2011. 
 

𝑯∗ = [
𝒉𝟏𝟏

∗ 𝒉𝟐𝟏
∗

𝒉𝟏𝟐
∗ 𝒉𝟐𝟐

∗ ]  𝐬𝐨 𝐭𝐡𝐚𝐭  𝑯∗ 𝑯 = [
𝒉𝟏𝟏

𝟐 + 𝒉𝟐𝟏
𝟐 𝒉𝟏𝟏

∗ 𝒉𝟏𝟐 + 𝒉𝟐𝟏
∗ 𝒉𝟐𝟐

𝒉𝟏𝟐
∗ 𝒉𝟏𝟏 + 𝒉𝟐𝟐

∗ 𝒉𝟐𝟏 𝒉𝟏𝟐
𝟐 + 𝒉𝟐𝟐

𝟐
]   

Lecture slide 13-3 for bit rate; slides 13-9 

to 13-16 for pulse shape length; slide 13-7 

for sampling rate; Labs 5 & 6 

Lecture 12; JSK Sec. 2.1, 

2.10 & 2.12; JSK Ch. 8 & 11; 

Labs 5 & 6; HW 4.2, 4.3, 5.2, 

5.3, 6.1, 6.2, 7.1, 7.2 & 7.3   

https://www.researchgate.net/publication/224239772_Antenna_optimization_for_time-variant_MIMO_systems
https://www.researchgate.net/publication/224239772_Antenna_optimization_for_time-variant_MIMO_systems
https://www.researchgate.net/publication/224239772_Antenna_optimization_for_time-variant_MIMO_systems
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EE 445S Real-Time DSP Laboratory – Prof. Brian L. Evans 
Discussion on YouTube at https://www.youtube.com/watch?v=usu5Yp6EQfQ (32:30 to 47:39) 

Computational Complexity of Implementing a Tapped Delay Line on the C6700 DSP 

To compute one output sample y[n] of a finite impulse response filter of N coefficients (h0, h1, ... 
hN-1) given one input sample x[n] takes N multiplication and N-1 addition operations: 

y[n] = h0 x[n] + h1 x[n-1] + … + hN-1 x[n – (N-1)] 

Two bottlenecks arise when using single-precision floating-point (32-bit) coefficients and data 
on the C6700 DSP.  First, only one data value and one coefficient can be read from internal 
memory by the CPU registers during the same instruction cycle, as there are only two 32-bit data 
busses. The load command has 4 cycles of delay and 1 cycle of throughput. Second, 
accumulation of multiplication results must be done by four different registers because the 
floating-point addition instruction has 3 cycles of delay and 1 cycle of throughput. Once all of 
the multiplications have been accumulated, the four accumulators would be added together to 
produce one result. The code below does not use looping, and does not contain some of the 
necessary setup code (e.g. to initiate modulo addressing for the circular buffer of past input data).  
Cycle   Instruction 

1   LDW x[n]    ||   LDW h0 
2   LDW x[n-1]  ||   LDW h1    || ZERO accumulator0 
3   LDW x[n-2]  ||   LDW h2    || ZERO accumulator1 
4   LDW x[n-3]  ||   LDW h3    || ZERO accumulator2 
5   LDW x[n-4]  ||   LDW h4    || ZERO accumulator3 
6   LDW x[n-5]  ||   LDW h5    || MPYSP x[n], h0, product0 
7   LDW x[n-6]  ||   LDW h6    || MPYSP x[n-1], h1, product1 
8   LDW x[n-7]  ||   LDW h7    || MPYSP x[n-2], h2, product2 
9   LDW x[n-8]  ||   LDW h8    || MPYSP x[n-3], h3, product3 

10   LDW x[n-9]  ||   LDW h9    || MPYSP x[n-4], h4, product4 || 
  ADDSP product0, accumulator0, accumulator0 

11     LDW x[n-10] ||  LDW h10   || MPYSP x[n-5], h5, product5 || 
    ADDSP product1, accumulator1, accumulator1 

12   LDW x[n-11] ||  LDW h11   || MPYSP x[n-6], h6, product6 || 
        ADDSP product2, accumulator2, accumulator2 

    13   LDW x[n-12] ||  LDW h12   || MPYSP x[n-7], h7, product7 || 
              ADDSP product3, accumulator3, accumulator3 

14     LDW x[n-13] ||  LDW h13   || MPYSP x[n-8], h8, product8 || 
    ADDSP product4, accumulator0, accumulator0 

15 …  

The total number of execute cycles to compute a tapped delay line of N coefficients is the 
delay line length (N) + LDW throughput (1) + LDW delay (4) + MPYSP throughput (1) + 
MPYSP delay (3) + ADDSP throughput (1) + ADDSP delay (3) + adding four accumulators 
together (8) + STW throughput (1) + STW delay (4) = N + 26 cycles.  If we were to include 
two instructions to set up the modulo addressing for the circular buffer, then the total number 
of execute cycles would be N + 28 cycles. 
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Handout P: Communication Performance of PAM vs. QAM Handout 

 

Prof. Brian L. Evans 

 

In the transmitter, 

 Assume the bit stream on the transmitter side 0's and 1's appear with equal probability. 

 Assume that the symbol period T is equal to 1. 

In the channel, 

 Assume that the noise is additive white Gaussian noise with zero mean.  For QAM, the 

variance is 
2
 in each of the in-phase and quadrature components.  For PAM, the variance is 2 


2
.  The difference is the variance is to keep the total noise power the same in QAM and PAM. 

 Assume that there is no nonlinear distortion 

 Assume there is no linear distortion 

In the receiver, 

 Assume that all subsystems (e.g. automatic gain control and symbol timing recovery) prior to 

matched filtering and sampling at the symbol rate are working perfectly  

 Hence, assume that reception is synchronized with transmission 

Given these mostly ideal conditions, the lower bound on symbol error probability for 4-PAM when the 

additive white Gaussian noise in the channel has variance 2 
2
 is 











22

3 d
QPe  

Given the 4-QAM and 4-PAM constellations below, 

 
(a) Derive the symbol error probability formula for 4-QAM, also known as Quadrature Phase 

Shift Keying (QPSK), shown in Figure 1. 

 

(b) Calculate the average power of the QPSK signal given d. 

 

(c) Write the probability of symbol error for 4-PAM and 4-QAM as functions of the signal-to-

noise ratio (SNR). Superimposed on the same plot, plot the probability of symbol error for 4-

PAM and 4-QAM as a function of SNR. For the horizontal axis, let the SNR take on values 

from 0 dB to 20 dB. Comment on the differences in the symbol error rate vs. SNR curves. 

 

(d) Are the bit assignments for the PAM or QAM optimal with respect to bit error rate in Figure 

1? If not, then please suggest another bit assignment to achieve a lower bit error rate given 

the same scenario, i.e., the same SNR. The optimal bit assignment (in terms of bit error 

probability) is commonly referred to as Gray coding. 
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a) Based on lecture notes on slides 15-13 through 15-15, the case of 4-QAM corresponds to 

having the four corner points in the 16-QAM constellation.  So, the probability of correct 

detection is given by type 3 correct detection given on page 15-4 in the lecture notes. Since 

T=1, then the formula for the probability of correct detection is given 

by  
2

3 1 



















d
QcP . Thus the probability of error is given 

by   
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d
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d
QcPPe
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3 2111 . 

 

b) To obtain the energy of is , we notice that the sum of the squared coordinates will give you the 

energy of the signal is . To see this, notice that is  is represented by the following vector 









 ]

4
)12sin[(],

4
)12cos[(


iEiE in the  )()( 21 tt   coordinate system. Thus, it is 

immediate that EiiE 







 ]

4
)12[(sin]

4
)12[(cos 22 

. This implies that EPT
T

E
P  1; .  

  22 224
4

1
ddPAVG  . 

c) SNR is defined as 
2
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 . Substituting this into the Pe 

formula we obtain the following formulas: 
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SNR = 0:20; % dB scale SNR 
SNR_lin = 10.^(SNR/10); % linear scale SNR 
Pq = 2*qfunc(sqrt(SNR_lin)) - (qfunc(sqrt(SNR_lin))).^2; % QAM error 

Probability 
Pp = 3/2 * qfunc(sqrt(SNR_lin/5)); % PAM error Probability 
semilogy(SNR,Pq, 'Displayname', '4-QAM'); 
hold on; 
semilogy( SNR, Pp,'r','Displayname', '4-PAM'); 
title('4-PAM vs. 4-QAM Communication Performance'); 
ylabel('P_e'); xlabel('SNR (dB)'); 
legend('show'); 
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QAM performs much better than the PAM system due to the following reasons: first the 

noise variance in the PAM system is higher so we expect its error rate to be higher; on the 

other hand the PAM system is not fully utilizing the bandwidth as opposed to QAM. 

 

d) The bit assignments are not optimal because the difference between the bits across the 

decision regions are more than one bit while they can be made one by using Gray Coding 

since each decision region has only two neighbors. The following bit assignment is optimal. 
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Handout Q: Four Ways to Filter a Signal 

 

Problem:  Evaluate four ways to filter an input signal.  Run waystofilt.m on page 143 (Section 

7.2.1) of Johnson, Sethares & Klein using 

 h[n] that is a four-symbol raised cosine pulse with  = 0.75 (4 samples/symbol, i.e. 16 samples) 

 x[n] that is an upsampled 8-PAM symbol amplitude signal with d = 1 and 4 samples/symbol 

and that is defined as the following 32-length vector (where each number is a sample value) 

as 

x = [-7 0 0 0   -5 0 0 0   -3 0 0 0   -1 0 0 0   1 0 0 0    3 0 0 0   5 0 0 0   7 0 0 0] 

In the code provided by Johnson, Sethares & Klein, please replace plot with stem so that the 

discrete-time signals are plotted in discrete time instead of continuous time. 

Please comment on the different outputs.  Please state whether each method implements linear 

convolution or circular convolution or something else.  Please see the online homework hints. 

Hints:  To compute the values of h, please use the "rcosine" command in Matlab and not the 

"SRRC" command. The length of h should be 16. The syntax of the "rcosine" command is  
 

rcosine(Fd, Fs, TYPE_FLAG, beta) 

 

The ratio Fs/Fd must be a positive integer. Since the the number of samples per symbol is 4, 

Fs/Fd must be 4. The rcosine function is defined in the Matlab communications toolbox.  

Running the rcosine function with these parameters gives a pulse shape of 25 samples. We want 

to keep four symbol periods of the pulse shape. That is, we want to keep two symbol periods to 

the left of the maximum value, the symbol period containing the maximum value as the first 

sample, and the symbol period immediately following that:  

rcosinelen25 = rcosine(1, 4, 'fir', 0.75); 

h = rcosinelen25(5:20); 

stem(h) 
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Some of the methods yield linear convolution, and some do not. With an input signal of 32 

samples in length and a pulse shaping filter with an impulse response of 16 samples in length, 

linear convolution would produce a result that is 47 samples in length (i.e., 32 + 16 - 1).  

For the FFT-based method, the length of the FFT determines the length of the filtered result. An 

FFT length of less than 47 would yield circular convolution, but it wouldn't be linear 

convolution. When the FFT length is long enough, the answer computed by circular convolution 

is the same as by linear convolution.  

Consider when the filter is a block in a block diagram, as would be found in Simulink or 

LabVIEW. When executing, the filter block would take in one sample from the input and 

produce one sample on the output. How many times to execute the block? As many times as 

there are samples on the input. How many samples would be produced? As many times as the 

block would be executed.  

In particular, pay attention to the use of the FFT to implement linear filtering. A similar trick is 

used in multicarrier communication systems, such as DSL, WiFi (IEEE 802.11a/g), WiMax 

(IEEE 802.16e-2005), next-generation cellular data transmission (LTE), terrestrial digital audio 

broadcast, and handheld and terrestrial digital video broadcast.  

Solution: The filter is given by its impulse response h[n] that has a length of Lh samples.  The 

signal is given by x[n] and it has a length of Lx samples.  Both the impulse response and input 

signal are causal.  In this problem, Lh is 16 samples and Lx is 32 samples. 

 

The first way of filtering computes the output signal as the linear convolution of x[n] and h[n]: 







1

0

][  ][][*  ][][
hL

m

linear mnxmhnhnxny  

Linear convolution yields a signal of length Lx+Lh-1 = 47 samples. 

 

The second way is to use the filter command in Matlab/Mathscript.  The filter command 

produces one output sample for each input sample.  This is a common behavior for a filter block 

in a block diagram simulation framework, e.g. Simulink or LabVIEW.  When executing, the 

filter block would take in one sample from the input and produce one sample on the output. The 

scheduler will execute the block as many times as there are samples on the input.  So, the length 

of the filtered signal would be Lx = 32 samples.  To obtain an output of length of Lx+Lh-1 

samples, one would append Lh-1 zeros to x[n]. 

 

The third way is compute the output by using a Fourier-domain approach.  For linear 

convolution, the discrete-time Fourier transform of the linear convolution of x[n] and h[n] is 

simply the product of their individual discrete-time Fourier transforms.  The product could then 

be inverse transformed to find the filtered signal in the discrete-time domain.  That approach, 

however, is difficult to automate using only numeric calculations.  An alternative is to use the 

Fast Fourier Transform (FFT). 
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The FFT of the circular convolution of x[n] and h[n] is the product of their individual FFTs.  In 

circular convolution, the signals x[n] and h[n] are considered to be periodic with period N.  One 

period of N samples of the circular convolution is defined as  







1

0

]))[((  ]))[((][  ][][
N

m

NNNcircular mnxmhnhnxny  

where (())N means that the argument is taken modulo N.  We will henceforth refer to the circular 

convolution between periodic signals of length N as circular convolution of length N. On a 

programmable digital signal processor, we would use the modulo addressing mode to accelerate 

the computation of circular convolution. 

 

Circular convolution of two finite-length sequences x[n] and h[n] is equivalent to linear 

convolution of those sequences by padding (appending) Lx-1 zeros to h[n] and Lh-1 zeros to x[n] 

so that both of them are of the same length and using a circular convolution length of Lx+Lh-1 

samples.  This is the approach used in the FFT-based method in this problem. 

 

The FFT-based method to compute the linear convolution uses an FFT length of N of Lx+Lh-1.  

First, the FFT of length N of the zero-padded x[n] is computed to give X[k], and the FFT of 

length N of the zero-padded h[n] is computed to give H[k].  Second, the product Ycircular[k] = X[k] 

H[k] for k = 0,…, N-1 is computed.  Then, the inverse FFT of length N of Ycircular[k] is computed 

to find ycircular[n].   This third way results in an output signal of Lx+Lh-1 = 47 samples. 

 

The fourth way to filter a signal uses a time-domain formula.  It is an alternate implementation 

of the same approach used by the filter command.  Hence, this approach gives an output of 

length Lx = 32 samples. 

 
% waystofilt.m "conv" vs. "filter" vs. "freq domain" vs. "time domain" 

over=4; % 4 samples/symbol 

r=0.75; % roll-off 

rcosinelen25 = rcosine(1, 4, 'fir', 0.75); 

h = rcosinelen25(5:20); 

x= [-7 0 0 0   -5 0 0 0   -3 0 0 0  -1 0 0 0  1 0 0 0  3 0 0 0  5 0 0 0  7 0 0 0]; 

yconv=conv(h,x) ;                        % (a) convolve x[n] * h[n] 

n=1:length(yconv);stem(n,yconv) 

xlabel('Time');ylabel('yconv');title('Using conv function'); figure 

yfilt=filter(h,1,x) ;                    % (b) filter x[n] with h[n] 

n=1:length(yfilt);stem(n,yfilt) 

xlabel('Time');ylabel('yfilt');title('Using the filter command'); figure 

N=length(h)+length(x)-1;                 % pad length for FFT 

ffth=fft([h zeros(1,N-length(h))]);      % FFT of impulse response = H[k] 

fftx=fft([x, zeros(1,N-length(x))]);     % FFT of input = X[k] 

ffty=ffth .* fftx;                         % product of H[k] and X[k] 

yfreq=real(ifft(ffty));                  % (c)IFFT of product gives y[n] 

                                         % it’s complex due to roundoff 

n=1:length(yfreq); stem(n,yfreq) 

xlabel('Time');ylabel('yfreq');title('Using FFT'); figure                                          

z=[zeros(1,length(h)-1),x];              % initial state in filter = 0 

for k=1:length(x)                        % (d) time domain method 

  ytim(k)=fliplr(h)*z(k:k+length(h)-1)';         % iterates once for each x[k] 

end                                      % to directly calculate y[k]                                  

n=1:length(ytim); stem(n,ytim) 

xlabel('Time');ylabel('ytim');title('Using the time domain formula'); 

%end of function 
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Spring 2014    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

Discussion of handout on YouTube: http://www.youtube.com/watch?v=7E8_EBd3xK8 

Adding Random Variables and Connections with the Signals and Systems Pre-requisite 

Problem 

A key connection between a Linear Systems and Signals course and a Probability course is that when 

two independent random variables are added together, the resulting random variable has a probability 

density function (pdf) that is the convolution of the pdfs of the random variables being added together.  

That is, if X and Y are independent random variables and Z = X + Y, then fZ(z) = fX(z) * fY(z) where fR(r) 

is the probability density function for random variable R and * is the convolution operation.   This is 

true for continuous random variables and discrete random variables.  (An alternative to a probability 

density function is a probability mass function.  They represent the same information but in different 

formats.) 

 

a) Consider two fair six-sided dice.  Each die, when rolled, generates a number in the range of 1 

to 6, inclusive, with each outcome having an equal probability.  That is, each outcome is 

uniformly distributed.  When adding the outcomes of a roll of these two six-sided dice, one 

would have a number between 2 and 12, inclusive. 

1) Tabulate the likelihood for each outcome from 2 to 12, inclusive. 

2) Compute the pdf of Z by convolving the pdfs of X and Y.  Compare the result to the first 

part of this sub-problem (a)-(1). 

 

b) Compute the pdf of continuous random variable Z where Z = X + Y and X is a continuous 

random variable uniformly distributed on [0, 2] and Y is a continuous random variable 

uniformly distributed on [0, 4].  Assume that X and Y are independent. 

 

c) A constant value C can be modeled as a pdf with only one non-zero entry.  Recall that the pdf 

can only contain non-negative values and that the area under a continuous pdf (or equivalently 

the sum of a discrete pdf) must be 1. 

1) Plot the pdf of a discrete random variable X that is a constant of value C. 

2) Plot the pdf of a continuous random variable Y that is a constant of value C. 

3) Using convolution, determine the pdf of a continuous random variable Z where Z = X + 

Y.  Here, X has a uniform distribution on [0, 3] and Y is a constant of value 2.  Assume 

that X and Y are independent. 
 

Solution 

(a) (1) Likelihood for each outcome from 2 to 12 

Let Xbe the number generated when the first die is rolled and Y be the number generated when the 

second die is rolled. Since each outcome is uniformly distributed for each die, P(X = x) = 1/6 where x 

 {1, 2, 3, 4, 5, 6} and P(Y = y) = 1/6 where y {1, 2, 3, 4, 5, 6}: 

 

Z P(z) 

2 1/36 

3 2/36 

http://www.youtube.com/watch?v=7E8_EBd3xK8
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4 3/36 

5 4/36 

6 5/36 

7 6/36 

8 5/36 

9 4/36 

10 3/36 

11 2/36 

12 1/36 

 

(2) Adding the two random variables results in another random variable Z = X + Y which takes on 

values between 2 and 12, inclusive. Since the dice are rolled independently, the numbers generated are 

independent.  

. 

2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Z

P
Z
(z

) 

The result of the convolution of P
x
 and P

y
 

 
 

The convolution of two rectangular pulses of the same length N samples gives a triangular pulse of 

length 2N – 1 samples.   Example calculations: 

 

 

 
Evaluating the above convolution, we get the same pdf as obtained in the table. The output of the 

Matlab simulation of the convolution is displayed in the above graph. The conv method was used for 

the convolution. The stem method was used for plotting. 

(b) X is uniformly distributed on [0, 2]. Therefore  for all x [0,2]. Similarly, since Y is 

uniformly distributed on [0, 4], for all y [0, 4].  
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(c) (1)The answer is a Kronecker (discrete-time) impulse located at x = C. 

 

(2) For a continuous random variable we require that 1)( 




dxxf X
and this is satisfied by an 

continuous impulse (Dirac delta functional) at C. Mathematically, 1)( 




dxCx  

 

(3) X is uniformly distributed on [0, 3]. Therefore  for all x [0, 3]. Y has a constant value of 

2 and hence .  Since X and Y are independent, Z = X + Y implies that 

 

 

 

This follows from the fact that convolution by shifts )(zf X by 2. 

z 

fZ(z) 

1/4 

4  2 6 
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Property of Time-Invariance (Shift-Invariance) for a System Under Observation 

Prof. Brian L. Evans and Mr. Jaehong Moon 

The University of Texas at Austin, bevans@ece.utexas.edu  

September 20, 2018 and updated January 2, 2023, and January 23, 2023 

When evaluating system properties, we treat a system as a closed box and analyze the 
relationships between input signals and their corresponding output signals.  This process 
assumes that after inputting a signal, we can return the system to its original state. 

A continuous-time system with input signal 𝑥(𝑡) and output signal 𝑦(𝑡) is time-invariant 
(shift-invariant) if whenever the input signal is delayed by 𝑡0 seconds, then the output 
signal will always be delayed by 𝑡0 seconds as well for all real values of 𝑡0. 

A way to visualize the time-invariance property is to show the equivalence between 

 

 

That is, does 𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = 𝑦(𝑡 − 𝑡0) for all possible real constant values of 𝑡0? 

One-sided infinite observation.  Let’s consider the system under observation for 𝑡 ≥ 0−.  
Time 0− means a time of 0 seconds before occurrence of a Dirac delta occurring at the 
origin.  We can only observe 𝑥(𝑡) for 𝑡 ≥ 0− and 𝑦(𝑡) for 𝑡 ≥ 0−.  This means that we can 
only observe 𝑥(𝑡 − 𝑡0) for 𝑡 ≥ 𝑡0 and 𝑦(𝑡 − 𝑡0) for 𝑡 ≥ 𝑡0 . 

Example.  Consider a delay system that delays the input by T seconds, and we can only 
observe the input signal and the output signal for 𝑡 ≥ 0−. 

Conceptually, the delay block can be thought as a long wire that conducts electricity from 
the input to the output.  Assuming electrons travel at 2/3 the speed of light, the length of 
the wire would be (2/3) c T where c is the speed of light (3 x 108 m/s).  Such an 
implementation would be impractical, but nonetheless helpful in analyzing the system. 

The first observed output value 𝑦(0) would be due to the initial conditions in the delay 
system.  In fact, the first T seconds of the output would due solely to the initial conditions in 
the system.   For input 𝑥(𝑡) and output 𝑦(𝑡), once the initial conditions have been output, 
𝑦(𝑇) = 𝑥(0). That is, it takes T seconds for an input value (voltage) to arrive at the output. 

The initial conditions for the delay system consist of the voltage values at different points 
in the wire at t = 0. Let’s denote these voltage values v(t) for –T < t  0.  That is, 𝑣(0) will be 
first, and 𝑣(−𝑇) will be the last, value among the initial conditions to be output.  The spatial 
location for the voltage v(t) for –T < t  0 is (-2/3) c t meters from the output location. 

Let x(t) = 0 for 0  t < T and 1 for t  T.  For input x(t), the output is 

𝑦(𝑡) = [
𝑣(−𝑡) for 0 ≤  𝑡 <  𝑇

𝑥(𝑡– 𝑇) for 𝑡 ≥  𝑇
= [

𝑣(−𝑡) for 0 ≤ 𝑡 < 𝑇
0 for 𝑇 ≤  𝑡 < 2𝑇
1 for 𝑡 ≥ 2𝑇

 

mailto:bevans@ece.utexas.edu


Let’s keep the same initial conditions, i.e. v(t) for –T < t  0, and the same definition for 
signal x(t). Now, we input 𝑥(𝑡 − 𝑡0) into the delay system 

𝑥(𝑡 − 𝑡0) = [

𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 for 0 ≤  𝑡 <  𝑡0

0 for 𝑡0  ≤  𝑡 <  𝑇 + 𝑡0

1 for 𝑡 ≥  𝑇 + 𝑡0

 

and the output is 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = [

𝑣(−𝑡)
𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

for 0 ≤  𝑡 <  𝑇
for 𝑇 ≤  𝑡 <  𝑇 + 𝑡0

0
1

for 𝑇 + 𝑡0 ≤  𝑡 < 2𝑇 + 𝑡0

for 𝑡 ≥ 2 𝑇 + 𝑡0

= [

𝑣(−𝑡) for 0 ≤  𝑡 <  𝑇
𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 for 𝑇 ≤  𝑡 <  𝑇 + 𝑡0

𝑦(𝑡 − 𝑡0) for 𝑡 ≥ 𝑇 + 𝑡0

 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) only equals 𝑦(𝑡 − 𝑡0) for 𝑡 ≥  𝑇 + 𝑡0 because the initial conditions did not shift in 

time even though the input did.  

Plots of the signals are given next followed by an analysis of initial conditions: 

If the system were time-invariant, then 𝑦𝑠ℎ𝑖𝑓𝑡(𝑡) = 𝑦(𝑡 − 𝑡0) for all real 𝑡0 and 𝑡 ≥ 0−.  This 

holds for for 𝑡 ≥ 𝑇 + 𝑡0.  For 0 ≤  𝑡 <  𝑇 + 𝑡0, all unobserved values and initial conditions 
would have to be equal to a constant value. 



LTI filters and frequency selectivity
Linear time-invariant (LTI) systems have many useful properties. We can utilize these properties to design
frequency selective filters.

Mathematical definitions

Properties of LTI systems

An LTI system is uniquely characterized by its impulse response. The Frequency response of an LTI system is
the Fourier transform of its impulse response.

Impulse response and convolution

Additivity

Let  and  be arbitrary input signals to
a system . The system satisfies additivity if

x1(t) x2(t)

S

S {x1(t) + x2(t)} = S{x1(t)} + S{x2(t)}

Homogeneity

Let  be an arbitrary input to a system .
The system satisfies homogeneity if, for any
constant ,

x(t) S

a

S {ax(t)} = aS{x(t)}

Time-invariance

Let  be an arbitrary input to a system  and
let  be the corresponding
output. The system  is time-invariant if, for
any time shift ,

x(t) S

y(t) = S{x(t)}

S

τ

S {x(t − τ)} = y(t − τ)

Linear time-invariant (LTI)

A system is linear time-invariant (LTI) if it
satisfies the additivity, homogeneity, and time-
invariance properties. A common way for a
system to fail to violate these properties is if the
system has has nonzero initial conditions.

Continuous time

A continuous time impulse, (also known as the
Dirac delta) can be defined as a unit area pulse
in the limit that it’s duration approaches zero.

If a system is LTI, then its impulse response 
 uniquely characterizes the

system. The output  of an LTI system is the
convolution between the input  and the
system’s impulse response .

δ(t) = lim
ϵ→0

rect(t/ϵ)

ϵ

h(t) = S{δ(t)}

y(t)
x(t)

h(t)

y(t) = x(t) ∗ h(t) = ∫
∞

−∞

x(t − τ)h(τ)dτ

Discrete time

A discrete time impulse, (also known as the
Kronecker delta) can be defined as a piecewise
function.

If a system is LTI, then its impulse response 
 uniquely characterizes the

system. The output  of an LTI system is the
convolution between the input  and the
system’s impulse response .

δ[n] = {
1 n = 0

0 n ≠ 0

h[n] = S{δ[n]}

y[n]

x[n]

h[n]

y[n] = x[n] ∗ h[n] =
∞

∑
−∞

x[n − m]h[m]

 Dan Jacobellis | EE445S Real-time DSP Lab | University of Texas at Austin | Spring 2022  

 



Frequency response

Complex exponentials are eigenfunctions of LTI systems. Combined with the previous property, This allows us
to uniquely characterize a system by its frequency response.

Eigenfunctions:

If application of the system  to the signal  results in scaling only ( i.e.  for some
constant  ) then we say that  is an eigenfunction of the system and  is the corresponding
eigenvalue.

We often write  instead of  or .

Magnitude and phase response

The frequency response is, in general, complex valued. Typically, we represent it in terms of its magnitude and
phase.

where  is the two argument arctangent.

It is common to use the magnitude/phase representation when measuring and plotting the frequency response
of a system. Typically, the magnitude response is expressed in decibels

In MATLAB, the freqz function will calculate and plot the magnitude and phase response of a discrete-time
LTI system.

S x(t) S{x(t)} = λx(t)

λ x(t) λ

Continuous time

If the input to an LTI system is a complex
exponential , then the
corresponding output is

where  (called the frequency response) is
the Fourier transform of the impulse response
or, equivalently, the Laplace transform of the
impulse response evaluated as .

x(t) = ejωt

y(t) = H(jω)ejωt

H(jω)

s = jω

H(jω) = F{h(t)} = L{h(t)}|s=jω

Discrete time

If the input to an LTI system is a complex
exponential , then the
corresponding output is

where  (called the frequency response)
is the Discrete-time Fourier transform of the
impulse response or, equivalently, the Z
transform of the impulse response evaluated at 

.

x[n] = ejωn

y[n] = H(ejω)ejωn

H(ejω)

z = ejω

H(ejω) = DTFT{h[n]} = Z{h[n]}|z=ejω

H(ω) H(jω) H(ejω)

Magnitude response = |H(ω)| = √Re{H(ω)}2 + Im{H(ω)}2

Phase response = ∠H(ω) = atan2(Im{H(ω)}, Re{H(ω)})

atan2

Magnitude response in decibels = 10 log10 |H(ω)|2 = 20 log10 |H(ω)|

 Dan Jacobellis | EE445S Real-time DSP Lab | University of Texas at Austin | Spring 2022  
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Frequency selectivity
The goal of a filter is to suppress or attenuate some signal components while retaining or boosting others. We
often group LTI filters into six categories based on their frequency selectivity, i.e. the arrangement of
frequency bands that are boosted relative to the bands which are attenuated.
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 Dan Jacobellis | EE445S Real-time DSP Lab | University of Texas at Austin | Spring 2022  

 



Lowpass
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Continuous time lowpass example

Impulse response:

Frequency response:

h(t) = e−tu(t)

H(f) =
1

1 + 2πjf

Discrete time moving average

Impulse response:

Frequency response:

h[n] = δ[n] + δ[n − 1] + ⋯ δ(n − 5)

H(ω) = e−2jω sin (5ω/2)

5 sin (ω/2)

 Dan Jacobellis | EE445S Real-time DSP Lab | University of Texas at Austin | Spring 2022  

 



Highpass

0 f (Hz)

Mag. (dB)

Apass

Astop

|
Fpass

|
Fstop Fs/2

0

Continuous time highpass example

Impulse response:

Frequency response:

h(t) = δ(t) − e−tu(t)

H(f) =
2πjf

1 + 2πjf

Discrete time first order difference

Impulse response:

Frequency response:

h[n] =
1

2
(δ[n] − δ[n − 1])

H(ω) =
1

2
(1 − e−jω)

 Dan Jacobellis | EE445S Real-time DSP Lab | University of Texas at Austin | Spring 2022  

 



Bandpass
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Continuous time bandpass example

Impulse response:

Frequency response:

h(t) = e−t cos (2πt)u(t)

H(f) =
2πjf

(2π)2 + (2πjf)2

Discrete time bandpass example

Impulse response:

Frequency response:

h[n] = e−n/4 cos( π
2
n)u[n]

H(ω) =
1

1 + e−(2jω+¼)
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Bandstop and notch
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Allpass

Allpass filters have a flat magnitude response but affect the signal’s phase. Two common examples are the
ideal delay and the Hilbert transform.

Continuous time bandstop example

Impulse response:

Frequency response:

h(t) = δ(t) − 2e−t(1 − t)u(t)

H(f) =
(2πjf)2 + 1

(2πjf + 1)2

Discrete time notch example

Impulse response:

Frequency response:

h[n] = 2δ[n] − 2−n/2 cos( π
2
n)u[n]

H(ω) =
1 + e−2jω

1 + 1
2 e

−2jω
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https://en.wikipedia.org/wiki/Hilbert_transform
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When evaluating system properties, we treat a system as a closed box and analyze the 
relationships between input signals and their corresponding output signals.  This process 
assumes that after inputting a signal, we can return the system to its original state. 

A continuous-time system with input signal 𝑥(𝑡) and output signal 𝑦(𝑡) is time-invariant 
(shift-invariant) if whenever the input signal is delayed by 𝑡0 seconds, then the output 
signal will always be delayed by 𝑡0 seconds as well for all real values of 𝑡0. 

A way to visualize the time-invariance property is to show the equivalence between 

 

 

That is, does 𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = 𝑦(𝑡 − 𝑡0) for all possible real constant values for 𝑡0? 

 
Integrator.  An integrator captures the idea of conservation or storage [1].  “Capacitors can 
be modeled as integrators (capacitors are reservoirs for electric charge).” [1]  The 
integrator integrates the input signal 𝑥(𝑡); i.e., the output of the integrator is 

𝑦(𝑡) = ∫ 𝑥(𝜆)
𝑡

−∞

𝑑𝜆 

 
Two-sided infinite observation.  For this case, we observe the input and output signals 
for all time, i.e. −∞ < 𝑡 < ∞. We can determine if the system is time-invariant as follows.  
We delay the input signal 𝑥(𝑡 − 𝑡0) and analyze the resulting output signal  

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = ∫ 𝑥(𝜆 − 𝑡0) 𝑑𝜆 
𝑡

−∞

 

and see if it is equal to 𝑦(𝑡 − 𝑡0).  We can use a change of variables 𝜉 = 𝜆 − 𝑡0 which means 
that 𝑑𝜉 = 𝑑𝜆, 𝜉𝑢𝑝𝑝𝑒𝑟 = 𝑡 − 𝑡0 and 𝜉𝑙𝑜𝑤𝑒𝑟 = −∞ to obtain 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = ∫ 𝑥(𝜉) 𝑑𝜉 = 
𝑡−𝑡0

−∞

𝑦(𝑡 − 𝑡0) 

Conclusion: An integrator under two-sided observation in time is time-invariant. 
 
One-sided infinite observation.  In this case, we observe the input and output signals of 
the integrator for 𝑡 ≥ 0−.  Time 0− means a time of 0 seconds before occurrence of a Dirac 
delta occurring at the origin.  We will only allow positive values of 𝑡0 so that the delay for 
the input and/or output signals will be at times being observed. 



 

Under what conditions will the integrator be time-invariant? [2] 

The integrator output for 𝑡 ≥ 0− is 

𝑦(𝑡) = ∫ 𝑥(𝜆)
𝑡

−∞

𝑑𝜆 = ∫ 𝑥(𝜆)
0−

−∞

𝑑𝜆 + ∫ 𝑥(𝜆)
𝑡

0−

𝑑𝜆 = 𝐶0 + ∫ 𝑥(𝜆)
𝑡

0−

𝑑𝜆 

The scalar constant 𝐶0 captures the result of the integration of the input signal over time 
not observed from −∞ < 𝑡 < 0.  Delaying the output signal by 𝑡0 seconds gives 

𝑦(𝑡 − 𝑡0) = 𝐶0 + ∫ 𝑥(𝜆) 𝑑𝜆 
𝑡−𝑡0

0−

 

for 𝑡 ≥ 0−.  For 0− < 𝑡 <  𝑡0 , the integral accesses values of the input signal 𝑥(𝑡) from 
−𝑡0 < 𝑡 < 0 which we are not able to observe. 

When delaying the input signal 𝑥(𝑡 − 𝑡0), the resulting output signal for 𝑡 ≥ 0− is 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = 𝐶0 + ∫ 𝑥(𝜆 − 𝑡0) 𝑑𝜆 
𝑡

0−

 

That is, the integrator has its own time reference, and shifting the input or output signal in 
time does not affect the clock internal to the integrator. 

To help compare 𝑦(𝑡 − 𝑡0) and 𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡), we perform algebraic manipulations on  

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = 𝐶0 + ∫ 𝑥(𝜆 − 𝑡0) 𝑑𝜆 
𝑡

0−

 

We use a substitution of variables 𝜉 = 𝜆 − 𝑡0 which means that 𝑑𝜉 = 𝑑𝜆, 𝜉𝑢𝑝𝑝𝑒𝑟 = 𝑡 − 𝑡0 

and 𝜉𝑢𝑝𝑝𝑒𝑟 = −𝑡0 to obtain 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = 𝐶0 + ∫ 𝑥(𝜉) 𝑑𝜉 
𝑡−𝑡0

−𝑡0

 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = 𝐶0 + ∫ 𝑥(𝜉) 𝑑𝜉 
0−

−𝑡0

+ ∫ 𝑥(𝜉) 𝑑𝜉
𝑡−𝑡0

0−

 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = 𝐶0 + 𝐶1(𝑡0) + ∫ 𝑥(𝜉) 𝑑𝜉
𝑡−𝑡0

0−

 

For (1) and (2) to be equal for 𝑡 ≥ 𝑡0, 𝐶1(𝑡0) has to be zero for all values of 𝑡0.  That is, when 
integrating 𝑥(𝑡) with respect to 𝑡 from −𝑡0 to 0−, the answer is always 0 regardless of the 
value of 𝑡0.  The only way for this to happen is if 𝑥(𝑡) has amplitude of zero for −𝑡0 < 𝑡 <
0−.  This means that as 𝑡0 → ∞, 𝐶0 → 0. 

Alternately, as 𝑡0 → ∞, 𝐶1(𝑡0) → 𝐶0.  In the limit, a necessary condition for (1) and (2) to be 
equal for 𝑡 ≥ 𝑡0  is for 𝐶0 = 0 to solve 𝐶0 = 2 𝐶0. 

Conclusion: An integrator observed for 𝑡 ≥ 0− is time-invariant if the initial condition is 0. 
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