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LTI filters and frequency selectivity

Linear time-invariant (LTT) systems have many useful properties. We can utilize these properties to design
frequency selective filters.

Mathematical definitions

Additivity

Let 1 (t) and x»(t) be arbitrary input signals to
a system S. The system satisfies additivity if

S{z1(t) + 22(1)} = S{z1 (D)} + S{za(t)}

Time-invariance

Let z(¢) be an arbitrary input to a system S and
let y(t) = S{z(t)} be the corresponding
output. The system S is time-invariant if, for
any time shift 7,

S{a(t—7)} =yt —7)

Homogeneity

Let z(t) be an arbitrary input to a system S.
The system satisfies homogeneity if, for any
constant a,

S{az(t)} = aS{z(t)}

Linear time-invariant (LTI)

A system is linear time-invariant (LTT) if it
satisfies the additivity, homogeneity, and time-
invariance properties. A common way for a
system to fail to violate these properties is if the
system has has nonzero initial conditions.

Properties of LTI systems

An LTI system is uniquely characterized by its impulse response. The Frequency response of an LTI system is
the Fourier transform of its impulse response.

Impulse response and convolution

Continuous time

A continuous time impulse, (also known as the
Dirac delta) can be defined as a unit area pulse
in the limit that its duration approaches zero.

5(t) = lim zect(t/€)
e—0 €

If a system is LTI, then its impulse response
h(t) = 8{4(t)} uniquely characterizes the
system. The output y(¢) of an LTI system is the
convolution between the input 2(¢) and the
system’s impulse response h(t).

[0.9)

ult) = a(t) + 1) = [

T=—00

z(t — 7)h(r)dr

Discrete time

A discrete time impulse, (also known as the
Kronecker delta) can be defined as a piecewise
function.

1 n=0
(5 =
"] {0 n+0
If a system is LTI, then its impulse response
h[n] = §{d[n]} uniquely characterizes the
system. The output y[n] of an LTI system is the

convolution between the input z[n]| and the
system’s impulse response h[n].
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Frequency response

Complex exponentials are eigenfunctions of LTI systems. Combined with the previous property, This allows us

to uniquely characterize a system by its frequency response.

Eigenfunctions:

If application of the system S to the signal () results in scaling only (i.e. S{z(t)} = Az(¢) for some
constant A ) then we say that z(t) is an eigenfunction of the system and ) is the corresponding

eigenvalue.

Continuous time

If the input to an LTI system is a complex
exponential z(t) = e, then the
corresponding output is

y(t) = H(jw)e™

where H (jw) (called the frequency response) is
the Fourier transform of the impulse response
or, equivalently, the Laplace transform of the
impulse response evaluated as s = jw.

H(jw) = F{h(t)} = L{P(t)}] s

We often write H (w) instead of H(jw) or H(e/*).

Magnitude and phase response

Discrete time

If the input to an LTI system is a complex
exponential z[n] = e/", then the
corresponding output is

yln] = H(e)e

where H(e?) (called the frequency response)
is the Discrete-time Fourier transform of the
impulse response or, equivalently, the Z
transform of the impulse response evaluated at
z=e"

H(e™) = DIFT{h[n]} = Z{hln]}]._.

The frequency response is, in general, complex valued. Typically, we represent it in terms of its magnitude and

phase.

Magnitude response = |H(w)| = \/Re{H(w)}2 + Im{H(w)}?

Phase response = /H(w) = atan2(Im{H (w)}, Re{H(w)})

where atan2 is the two argument arctangent.

It is common to use the magnitude/phase representation when measuring and plotting the frequency response
of a system. Typically, the magnitude response is expressed in decibels

Magnitude response in decibels = 101log, |H (w)|* = 201ogo |H (w)|

In MATLAB, the freqz function will calculate and plot the magnitude and phase response of a discrete-time
LTI system. The freqz function computes the the z-transform and replaces z = e/ to convert to the frequency

domain, which might not always be valid.
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Frequency selectivity

The goal of a filter is to suppress or attenuate some signal components while retaining or boosting others. We
often group LTI filters into six categories based on their frequency selectivity, i.e. the arrangement of frequency
bands that are boosted relative to the bands which are attenuated.
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Lowpass
4 Mag. (dB)
I
0r TApass T
Astop
| l |
| —
0 F_.. F Fsi2  f(H2)

pass = stop

Continuous time lowpass example

Impulse response:

h(t)
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Discrete time moving average

Impulse response:
hin] = (8ln] + 3l — 1] +-+-5fn — 4]

Frequency response:
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Highpass
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Continuous time highpass example

Impulse response:
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Discrete time first order difference

Impulse response:
1
hln) = < (éln] — éln — 1)

Frequency response:
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Bandpass
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Continuous time bandpass example

Impulse response:
h(t) = e ' cos (27t)u(t)

Frequency response:
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Discrete time bandpass example

Impulse response:
h[n] = e ™/ cos (%n) uln]

Frequency response:

1
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Bandstop and notch
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Continuous time bandstop example

Impulse response:
h(t) = 6(t) — 2e (1 — t)u(t)

Frequency response:
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Discrete time notch example

Impulse response:
hln] = 26[n] — 272 cos (gn>u[n]

Frequency response:

h(t)
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Allpass filters have a flat magnitude response but affect the signal’s phase. Two common examples are the ideal

delay and the Hilbert transform.



