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Spring 2025    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

Homework #5 Solutions 

 

A Hamming window is an even symmetric pulse about the midpoint with endpoints having value 

0.08. The Matlab command for the Hamming window is hamming. The amplitude values of the 

causal Hamming window of length N samples is defined as  

w[n] = 0.54 - 0.46 cos(2 π n / (N - 1)) for n = 0, 1, ..., N-1. 

Due to even symmetry, group delay of a Hamming pulse of length N samples is (N-1)/2 samples.  

Problem 5.1 Steepest Descent. 30 pts. 

Johnson, Sethares & Klein, exercise 6.23, page 117. Explore the behavior of steepest descent by 

running polyconverge.m with different parameters, but use J(x) = x2 – 14x + 49. Derive the 

adaptive equations for x to find the minimum value of J(x). For part (a), use values of µ of -0.01, 

0.00, 0.01, 0.1, 1.0, 10.0. For parts (b) and (c), use µ of 0.01.  

Solution Prologue: The objective function J(x) has the form of a least squares problem because 

we can factor the objective function J(x) = (x – 7) 2. That is, we’re trying to find x that minimizes 

the squared distance to the desired answer of 7. This is also called a least squares problem. For 

the rest of the semester, we’ll be making heavy use of the adaptive least mean squares approach 

in this problem to solving a wide variety of least squares problems, esp. as related to 

compensating for impairments experienced by propagating signals.  Examples in a 

communication receiver include carrier frequency and phase recovery, symbol synchronization, 

automatic gain control and channel equalization.  We’ll explore those subsystems in homework 

assignments #6 and #7. 

The basic idea of steepest descent is illustrated in Figure 6.15 at the top of JSK page 116. We are 

trying to find x* that minimizes a cost/objective function J(x). We want to update x at each 

iteration so that we make progress toward the minimum value. The minimum value will be 

reached when J’(x*) = 0. If our current value for x > x*, then we want to decrease x. If our 

current value for x < x*, then we want to increase x.  We know which direction to update x based 

on the value of J’(x). This is important because we generally don’t know the value of x*. The 

update equation for iteration k+1 to realize these goals is shown in JSK (6.5): 

𝑥[𝑘 + 1] = 𝑥[𝑘] − 𝜇
𝑑

𝑑𝑥
𝐽(𝑥)]

𝑥=𝑥[𝑘]
 

Here, the step size  is a constant positive value that controls by how much x is updated in each 

iteration.  Generally,  is kept small, e.g. 0.1 or 0.01 or even 0.001. When  is zero, no update to 

the initial guess is made during the iterations. When J’(x[k]) = 0, the minimum value of the 

objective function is reached, and x[k+1] = x[k]. 

 

a) Use values of µ of -0.01, 0.00, 0.01, 0.1, 1.0, 10.0. Can mu be too large or too small? 
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Solution: We modify “polyconverge.m” to evaluate the effect of step size on the convergence: 

% polyconverge.m find the minimum of J(x)=x^2-14x+49 via steepest descent 
N=500;                          % number of iterations 
mu=[-.01 0 .01 .1 1 10];        % algorithm stepsize 
x=zeros(size(1,N));             % initialize x to zero 
x(1)=8;                         % starting point x(1) 
all = zeros(length(mu), N); 
for i=1:length(mu) 
    for k=1:N-1                      
      x(k+1)=(1-2*mu(i))*x(k)+14*mu(i);    % update equation 
    end 
    all(i,:)= x; 
    subplot(3,2,i); plot(all(i,:)); title(strcat('mu = ',num2str(mu(i)))); 
end 

 

 

In the update equation, a positive (negative) value of  corresponds to finding the minimum 

(maximum) of the objective function. When  is zero, no update to the initial guess is made. 

From the plots, we see convergence when the step size  is 0.01 or 0.1, divergence for  of -0.01 

or 10, oscillation for  of 1, and trivial convergence for  of 0. In fact,  is used to estimate the 

next value x[k+1] using the current value x[k], and it should be 0 <  < 1. 

Given iteration xi+1 = f (xi), initial guess x0, and interval [a, b] that contains iterates x0, x1, x2, …, 

the fixed-point theorem says that the iterates x0, x1, x2, …, will converge to a fixed point x*= f (x*) 

if | f '(x) | < 1 for all x ϵ [a, b].  With f(x) = (1 – 2) x + 14 , we have f '(x) = 1 – 2 and 

guarantee | f '(x) | < 1 for 0 <    regardless of the initial guess. 

The choice of  has an analogy with the location of a single real-valued pole in a discrete-time 

LTI system. Consider J (x) = (x – 7)2. Then, J '(x) = 2x – 14 and 
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x[k+1] = x[k] -  (2 (x[k] - 7)) = (1 - 2 ) x[k] + 14  

This is a recursive difference equation with a pole at 1 - 2 . When  = 0, the pole is 1, which is 

BIBO unstable. When  = 1, the pole is at -1, which is also BIBO unstable. The update is BIBO 

stable when 0 <  < 1.  For  = 0.01, the pole location is at 0.98, which corresponds to a 

narrowband lowpass filter. The lowpass filter would smooth out updates to the value of x[k] and 

hence x[k] would not increase as much in each iteration. See JSK pages 117-118. 

 

b) Use µ of 0.01, and try N = 5, 40, 100, 5000. Can N be too large or too small? 

Solution: We modified “polyconverge.m” to see effect of number of iterations on convergence: 

% polyconverge.m find the minimum of J(x)= x^2-14x+49 via steepest descent 
N=[5 40 100 5000];      % number of iterations 
mu=.01;                 % algorithm stepsize 
x=zeros(1);             % initialize x to zero 
x(1)=8;                 % starting point x(1) 
y = zeros(4); 
for i=1:length(N) 
    for k=1:N(i)-1                       
      x(k+1)=(1-2*mu)*x(k)+14*mu;    % update equation 
    end 
    y(i)= min(x); 
    subplot(2,2,i); plot(x); title(strcat('Iterations, N = ', 

int2str(N(i)))); 
end 
 

y % show minimum 

 
The above plots show convergence vs. number of iterations for  = 0.01. 
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With N = 5, 40 and 100, we do not have enough iterations to converge to 7 for a step size of

. The minimum values we can achieve are tabulated below: 

N Min 

5 7.9224 

40 7.4548 

100 7.1353 

500 7.0000 

If we use a step size of 0.1, we converge to x = 7 with about 200 iterations. In practice, the 

number of iterations required depends on the desired numerical precision.  

 

c)  Try a variety of values of x(1). Can x(1) be too large or too small? 

Solution: Changing the initial guess for x did not affect the value for x after convergence. It will 

affect the speed of convergence, for a fixed step size, depending on how far the starting value is 

from the minimum. We used the following code to obtain our results: 

% polyconverge.m find the minimum of J(x)= x^2-14x+49 via steepest descent 
N=600;                          % number of iterations 
mu=.01;                         % algorithm stepsize 
x=zeros(size(1,N));             % initialize x to zero 
for i=1:100 
    x(1)=randi([-1000 1000],1,1); % starting point x(1) 
    for k=1:N-1                      
      x(k+1)=(1-2*mu)*x(k)+14*mu; 
    end         % update equation 
    plot (x); 
    hold on; 
end 
hold off; 
title('Effect of Starting Point');  

This plot shows 100 different starting points 

ranging from -1000 to 1000, all curves 

converge to our desired value of x = 7. 

Epilog: The choice of objective function 

influences the run-time complexity and convergence behavior of the steepest descent algorithm.  

In this problem, which uses mean squared error for the objective function, the steepest descent 

algorithm converges regardless of the initial guess as long as mu is a small enough positive 

value. If the objective function had been (x – 7)4 instead of (x – 7)2, the per-iteration complexity 

would have tripled and convergence would have depended on the initial guess and mu (see Fall 

2013 Midterm #2.1).  Using a mean squared error objective function generally leads to low run-

time complexity and good convergence behavior. These adaptive least mean squared (LMS) 

methods are commonly used in equalizers, echo cancellers, automatic gain control, and phase 

lock loops, which have applications in speech, audio, image, video and communication systems.  

Adaptation occurs at each sample to amortize run-time complexity.  

01.0=
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Problem 5.2 Frame Synchronization. 40 pts. 

Johnson, Sethares & Klein, exercise 9.6, page 177. For the marker in part (b), please use a pseudo-

noise sequence of length 31 samples. Problem relates to homework problems 4.2 & 4.3. 

Another idealized assumption made in idsys.m is that the receiver knows the start of each 

frame; that is, it knows where each four-symbol group begins.  This is a kind of “frame 

synchronization” problem and was absorbed into the specification of a parameter l which 

appears in the code as 0.5*f1 + M.  With the default settings, l is 125.  This problem poses the 

following question:  “What if this is not known, and how can it be fixed?” 

a) Verify, using idsys.m, that the message becomes scrambled if the receiver is mistaken 

about the start of each group of four symbols Add a random number of 4-PAM symbols before 

the message sequence, but do not “tell” the receiver that you have done so (i.e., do not change 

l). What value of l would fix the problem? Can l really be known beforehand? 

Solution:  The string to be transmitted is represented using eight-bit ASCII characters.  Each 

eight-bit ASCII character is split into four 4-PAM symbols for transmission. 

 

 

 

Symbol amplitudes of 3, 1, and -1 were added before the message. Consequently, is a completely 

different message than the original message: 

 

Optional:  The same random symbols are applied to the same receiver but with time-varying 

fading channel plus automatic gain control (AGC), idsysmod2.m. The reconstruction message is 

scrambled in almost the same way but with slight variation since AGC does not perfectly restore 

power.  

The parameter l is the delay in samples through the transmitter and receiver in Fig. 9.1 on page 

166 in JSK.  The transmitter has a pulse shaping filter of length M samples, which has a group 

delay of (M-1)/2 samples; since M is even, we have a half-sample delay and we'll round up the 

group delay to M.  The receiver has a lowpass demodulating filter, which is a linear phase finite 

impulse response filter with a group delay of f1/2 samples where f1 is the order.  The receiver 

also has a pulse correlator filter (a.k.a. matched filter) of M samples, which has a group delay of 

(M-1)/2 samples; since M is even, we have a half-sample delay and we'll round up the group 

delay to M.  Assuming that the receiver is synchronized with the transmitter with respect to 

symbol timing, the total delay l is 0.5*f1 + M samples. 

When the receiver is not frame synchronized, then the actual delay l is 0.5*f1 + M samples plus 

an integer multiple of M samples, where the integer multiple is the number of symbols added 

before the message sequence.  In practice, the receiver will have to estimate the actual delay 

because the receiver has different symbol clock circuitry than that in the transmitter. 

 

%TRANSMITTER 
% encode text string as T-spaced 4-PAM sequence 
random_symbols = [3 1 -1]; 
str='01234 I wish I were an Oscar Meyer wiener 56789'; 
m=[random_symbols letters2pam(str)]; N=length(m); % 4-level signal length N 
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b) Section 8.5 proposed the insertion of a marker sequence as a way to synchronize the frame. 

Add a 31-symbol marker sequence just prior to the first character of the text. In the receiver, 

implement a correlator that searches for the known marker. Demonstrate the success of this 

modification by adding random symbols at the start of the transmission. Where in the receiver 

have you chosen to put the correlation procedure? Why? 

Solution:  The MATLAB code was modified as shown below. The random symbol amplitudes, 3, 

1 and -1, were added at the start of the transmission.  

%% #5.2b 
close all; clear all; clc; 
% TRANSMITTER 
% a) encode text string as T-spaced 4-PAM sequence 
random_symbols = [3 1 -1]; 
marker = [1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 

-1 1 1 1]; 
 

str='01234 I wish I were an Oscar Meyer wiener 56789'; 
m=[random_symbols marker letters2pam(str)];  
N=length(m); % 4-level signal of length N 
% zero pad T-spaced symbol sequence to create upsampled 
% T/M-spaced sequence of scaled T-spaced pulses (T=1) 
M=100;                        % oversampling factor 
mup=zeros(1,N*M);             % Hamming pulse filter with  
mup(1:M:N*M)= m;              % T/M-spaced impulse response 
p=hamming(M);                 % blip pulse of width M 
x=filter(p,1,mup);            % convolve pulse shape with data 
%figure(1), plotspec(x,1/M)    % baseband AM modulation 
t=1/M:1/M:length(x)/M;        % T/M-spaced time vector 
fc=20;                        % carrier frequency 
c=cos(2*pi*fc*t);             % carrier 
r=c.*x;                       % modulate message with carrier 

 
% RECEIVER 
% am demodulation of received signal sequence r 
c2=cos(2*pi*fc*t);             % synchronized cosine for mixing 
x2=r.*c2;                      % demod received signal 
fl=50; fbe=[0 0.1 0.2 1];      % LPF parameters  
damps=[1 1 0 0 ];  
b=firpm(fl,fbe,damps);         % create LPF impulse response 
x3=2*filter(b,1,x2);           % LPF and scale signal 
% extract upsampled pulses using correlation implemented  
% as a convolving filter; filter with pulse and normalize 
y=filter(fliplr(p)/(pow(p)*M),1,x3); 
% set delay to first symbol-sample and increment by M 
z=y(0.5*fl+M:M:N*M);    

  
% 1st method 
corr=xcorr(marker, z);                % do cross correlation 
[crccoef,index]=max(corr);            % location of largest correlation 
headstart=length(z)-index+1;          % place where header starts 
headstart = headstart + length(marker);   % place where message starts 
z = z([headstart:end]); 
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figure(2), plot([1:length(z)],z,'.') % plot soft decisions 
% decision device and symbol matching performance assessment 
mprime=quantalph(z,[-3,-1,1,3])'; % quantize alphabet 
cvar=(mprime-z)*(mprime-z)'/length(mprime); % cluster variance 
lmp=length(mprime); 
pererr=100*sum(abs(sign(mprime-m(1:lmp))))/lmp, % symbol error 
% decode decision device output to text string 
reconstructed_message=pam2letters(mprime) 

 

The message was successfully recovered using the receiver 

correlator shown above. The correlator was put after the alphabet 

quantizer (constellation demapping). Since the marker is known at 

the receiver, the index of the peak of the correlation is found by 

correlating the received message and marker. The index 

corresponds to the place where the marker starts. The offset 

needed to properly recover the message is the sum of the received 

message length, marker length, negative value of location of 

largest correlation, and one. 

Another possible method implementing the receiver correlator is shown below. The correlator is 

put after extracting upsampled pulses and before quantization. Since upsampled pulses correlated 

to upsampled header can provide the location of the marker, the receiver correlator code is added 

after the convolving filter. Later, the message is downsampled to symbol rate, taking into 

account the total offset.  

%RECEIVER 
% am demodulation of received signal sequence r 
c2=cos(2*pi*fc*t);             % synchronized cosine for mixing 
x2=r.*c2;                      % demod received signal 
fl=50; fbe=[0 0.1 0.2 1];      % LPF parameters  
damps=[1 1 0 0 ];  
b=firpm(fl,fbe,damps);         % create LPF impulse response 
x3=2*filter(b,1,x2);           % LPF and scale signal 
% extract upsampled pulses using correlation implemented  
% as a convolving filter; filter with pulse and normalize 
y=filter(fliplr(p)/(pow(p)*M),1,x3); 
% set delay to first symbol-sample and increment by M 

 
% 2nd method 
mup1=zeros(1,N*M);                         % Hamming pulse filter with  
mup1(1:M:length(marker)*M)= marker;        % T/M-spaced impulse response 
correl = xcorr(mup1,y);                    % do cross correlation 
[mp, index] = max(correl);                 % location of largest correlation 
header = N*M - index+1 + M*length(marker); % calculate an offset 
z=y(0.5*fl+header:M:N*M);                  % downsample to symbol rate 

  
figure(2), plot([1:length(z)],z,'.') % plot soft decisions 
% decision device and symbol matching performance assessment 
mprime=quantalph(z,[-3,-1,1,3])'; % quantize alphabet 
cvar=(mprime-z)*(mprime-z)'/length(mprime); % cluster variance 
lmp=length(mprime); 
pererr=100*sum(abs(sign(mprime-m(1:lmp))))/lmp, % symbol error 
% decode decision device output to text string 
reconstructed_message=pam2letters(mprime) 
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Optional:  The MATLAB code shown below is the 

scenario when a receiver correlator with a known 

marker is applied to the transmitted signal with a time-

varying fading channel + AGC. The value of stepsize 

mu in the AGC is changed from 0.0003 to 0.00001 to 

get more accuracy. As result, reconstructed_message 

= 012feeYefifieYefere an Oscar Meyer wiener 5678, 

which is not the same original message. However, 

AGC recovered significant portion of the signal. The 

transmitter would stay the same in this example.   

% TIME-VARYING FADING CHANNEL + AGC 
ds=pow(r);                 % desired average power of signal 
lr=length(r);              % length of transmitted signal 
fp=[ones(1,floor(0.2*lr)), 0.5*ones(1,lr-floor(0.2*lr))];  % flat fading 

profile 
r=r.*fp;                   % apply profile to transmitted signal 
g=zeros(1,lr); g(1)=1;     % initialize gain 
nr=zeros(1,lr); 
mu=0.0001;                 % stepsize 
for i=1:lr-1               % adaptive AGC element 
    nr(i)=g(i)*r(i);       % AGC output 
    g(i+1)=g(i)-mu*(nr(i)^2-ds); % adapt gain 
end 
r=nr;                      % received signal is still called r 

  
%RECEIVER 
% am demodulation of received signal sequence r 
c2=cos(2*pi*fc*t);                   % synchronized cosine for mixing 
x2=r.*c2;                            % demod received signal 
fl=50; fbe=[0 0.1 0.2 1]; damps=[1 1 0 0 ];  % design of LPF parameters 
b=firpm(fl,fbe,damps);               % create LPF impulse response 
x3=2*filter(b,1,x2);                 % LPF and scale downconverted signal 
% extract upsampled pulses using correlation implemented as a convolving 

filter 
y=filter(fliplr(p)/(pow(p)*M),1,x3);  % filter rec'd sig with pulse; 

normalize 
% set delay to first symbol-sample and increment by M 
z=y(0.5*fl+M:M:N*M);                 % downsample to symbol rate 

  
corr=xcorr(marker, z);                % do cross correlation 
[crccoef,index]=max(corr);            % location of largest correlation 
headstart=length(z)-index+1;          % place where header starts 
headstart = headstart + length(marker);   % place where message starts 
z = z([headstart:end]); 

  
%figure(2), plot([1:length(z)],z,'.')  % soft decisions 
% decision device and symbol matching performance assessment 
mprime=quantalph(z,[-3,-1,1,3])';    % quantize to +/-1 and +/-3 alphabet 
cvar=(mprime-z)*(mprime-z)'/length(mprime),  % cluster variance 
lmp=length(mprime); 
pererr=100*sum(abs(sign(mprime-m(1:lmp))))/lmp,  % symb err 
% decode decision device output to text string 
reconstructed_message=pam2letters(mprime)  % reconstruct message 
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c) One quirk of the system (observed in the eye diagram in Figure 9.8 on page 173) is that each 

group of four begins with a negative number. Use this feature (rather than a separate marker 

sequence) to create a correlator in the receiver that can be used to find the start of the frames. 

Solution: Different markers, -3 0 0 0 -3 0 0 0 … and -1 0 0 0 -1 0 0 0… , with various lengths, 

20, 40, and 80, were used in this problem. As we increase the length, maximum correlation value 

increases since there are more non-zero numbers that get correlated. Also, if we use a lower 

absolute value of marker numbers, we would get a smaller value of maximum correlation 

coefficient.  The result from the example with random_symbols = [3 1 -1] is shown below.  

Marker length Max. corr. coefficient (3’s) Max. corr. coefficient (1’s) 

40 71.83 23.93 

60 98.76 32.92 

80 119.71 39.90 

% the receiver correlator comes after downsampling 
s = 20; % 40,60,80 the marker with different length 
marker = zeros(s,1); % fill in the marker with zeroes 
% marker(1:4:s) = -3; % assign -3 for every -3 0 0 0 -3 
marker(1:4:s) = -1; % assign -1 for every -3 0 0 0 -3 
corr = xcorr(z,marker); % do correlation 
[corrvalue index] = max(corr) % find the max correlation coef. and index 
headstart = abs(length(z)-index)+1; % calculate an offset 
z = z([headstart:end]); % truncate the message according to offset 
% and before symbol matching assessment 
figure(2), plot([1:length(z)],z,'.') % plot soft decisions 
% decision device and symbol matching performance assessment 

In all cases above, the message was recovered successfully. 

However, if we use smaller marker length such as 20, then the 

marker is not long enough to recover the message. 

Optional:  When the same Matlab code is applied to the 

receiver with time-varying fading channel +AGC, the 

reconstructed_message = 01234 I vifieYefefeeejeZscar Meyer 

wiener 5678. As mentioned before, AGC could restore 

significant power. However, there is still power loss and 

consequently distortion in received signal. 

d) The previous two exercises showed two possible solutions to the frame synchronization 

problem. Explain the pros and cons of each method, and argue which is a “better” solution. 

Solution:  Communication delay: Frame synchronization method in part (b) has a delay in the 

transmitter and receiver that is equal to the marker sequence length (31 symbols) before the 

message data occurs.  In part (c), there is no delay in the transmitter (because a training sequence 

isn’t sent) but there is a delay in the receiver equal to the correlation sequence of 20, 40 or 80 

symbols.  The method in part (c) needs a correlation sequence of at least 20 symbols to work 

well.  Hence, the receiver incurs a communication delay of 20 symbols. 

Communication throughput: Once the communication delay in the receiver has occurred as 

discussed above, each method will decode one symbol at the symbol rate. 
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Communication reliability: The method in part (b) is more accurate for a 31-symbol correlation 

sequence vs. a 20-symbol correlation in part (c).  Part (b) is correlated to already known 

pseudorandom marker; hence, it has a higher correlation coefficient. It is especially true if the 

marker is pseudo-noise (PN) sequence that is robust to frequency distortion and additive noise in 

the communication channel. The accuracy of the method in part (c) depends on many factors 

including the length of a negative marker, the value of the marker, and the transmitted signal. 

However, in general, the chances of detecting 2 negative values spaced apart is high; therefore, 

this method is less accurate compared to the one in part (b). 

Problem 5.3 Baseband PAM Transmitter. 30 pts. 

For a baseband pulse amplitude modulation (PAM) transmitter, please compare the 

implementation complexity of two approaches for interpolation: (a) upsampling followed by a 

finite impulse response (FIR) pulse shaping filter and (b) polyphase FIR filter bank, by completing 

the table on slide 13-14.  Draw block diagrams for both approaches.  Lecture 13 slides 8 through 

16 might also be helpful. 

(a) The block diagram of the first implementation can be represented in the following form:  

 

 

 

The upsampling by L block takes copies each input an to the output and then appends L-1 zeros. 

The pulse shaping (FIR) filter replaces zero values with interpolated values depending on the 

shape of its impulses response. In the following, symbol rate is fsym, the number of samples per 

symbol is L, and the duration of pulse shaping filter in symbol periods is Ng. 

Computation in MACs/s: The pulse shaping filter in the direct form has LNg coefficients and 

requires LNg multiplications per input sample.  The input samples arrive at the sampling rate, 

Lfsym. The upsampler does not require multiplication-addition operations. The multiplication-

addition operations per second is thus (LNg)(Lfsym). 

Memory size in words: The pulse shaping (FIR) filter has LNg coefficients and stores LNg 

current and previous input values.  The upsampling block has an internal memory of L words. 

Memory reads in words/s: To produce an output sample y[m], the pulse shaping (FIR) filter has 

to read LNg coefficients and LNg current and previous input values to compute the output y[m] = 

g0 x[m] + g1 x[m-1] + ….  The pulse shaping filter also has to read the index to the oldest sample 

in the circular buffer of the current and previous input values.  The pulse shaping (FIR) filter 

runs at the sampling rate, Lfsym.  The upsampler reads at the symbol rate fsym.  Therefore, memory 

reads in words/s for the direct structure would be (2LNg+1)(Lfsym) + fsym. 

Memory writes in words/s: The pulse shaping (FIR) filter writes the output sample, updates the 

index into the oldest sample of the circular buffer of the current and previous input values, and 

saves the input value to the circular buffer.  These two writes occur at sampling rate Lfsym.  The 

upsampler will output values at sampling rate Lfsym.  Memory writes in words/s would be 4Lfsym. 
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(b) The block diagram of the second implementation can be represented in the following form: 

 

 

 

 

 

 

 

 

 

 

Computation in MACs/s:  Each of the L polyphase FIR filters has Ng coefficients and runs at 

symbol rate of fsym.  The commutator does not require any multiplication-addition operations. 

The number of multiplication-addition operations per second is L Ng fsym.   

Memory size in words: Each of the L polyphase (FIR) filters has Ng coefficients.  Since all of the 

polyphase filters have the same input, they can share the same delay line, i.e. circular buffer of 

Ng  current and previous input values.  The commutator requires L words of memory to store the 

input values.  The memory size in words is LNg + L + Ng. 

Memory reads in words/s:  Each of the L polyphase (FIR) filters has to read Ng coefficients and 

Ng  current and previous input values, and the index to the oldest sample in the circular buffer of 

current and previous input values.  Each polyphase FIR filter runs at the symbol rate, fsym.  The 

commutator reads L inputs and runs at the symbol rate, fsym.  The total memory reads in words/s 

is (2Ng + 1) L fsym + L fsym. 

Memory writes in words/s:  Since the L polyphase filters will share the same delay line, i.e. the 

circular buffer of Ng current and previous input values, there would be two writes for the circular 

buffer at the symbol rate, fsym.  One write would be to update the current input value into the 

circular buffer, and the other would be to update the index to the oldest sample in the circular 

buffer.  Each polyphase filter would write its output at the symbol rate, fsym.  The commutator 

writes at the sampling rate, L fsym.  Memory writes in words/s would be (L+2) fsym + L fsym. 

 Multiplication 

additions/s 

Memory size in 

words 

Memory reads in 

words/s 

Memory writes in 

words/s 

Direct 

Structure 

L2 Ng fsym 2 L Ng + L (2 L Ng + 1) L fsym + 

fsym 

4 L fsym 

Filter Bank 

Structure 

L Ng fsym (L+1) Ng + L (2 Ng + 2) L fsym (2L + 2) fsym 

Savings  Factor of L Factor of L in size 

of circular buffer  

Factor of L 

approximately 

None when L = 1 

Factor of 2 for large L  

For a sanity check, the run-time complexity should be identical for both structures when L = 1. 
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The filter bank structure is more efficient in all four implementation complexity measures above 

vs. the direct structure, and yet the filter bank structure computes the exact same values for the 

baseband pulse amplitude modulation signal with the same accuracy.  This is an unusual 

situation in which there is a method with lower implementation complexity that gives the same 

signal quality.  It’s a rare win-win situation. 

When using a platform that could execute polyphase FIR filters in parallel, such as a field 

programmable gate array (FPGA), the filter bank structure would experience an additional 

speedup by a factor of L in multiplication-addition operations per second. 

http://www.ece.utexas.edu/~bevans/courses/realtime

