
Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

Spring 2024 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans

Homework #6 Solutions

6.1 Phase Locked Loop (PLL)

Johnson, Sethares & Klein, exercise 10.21, on page 210. Oscillators that can adjust their phase

in response to an input signal are more expensive than free-running oscillators. Figure 10.12 [on

page 211] shows an alternative implementation of the Costas loop.

a. Show that this is actually carrying out the same calculations (albeit in a different order) as the

implementation in Figure 10.9 [on page 208].

b. Write a simulation (or modify costasloop.m) to implement this alternative.

Prologue: In a receiver, the carrier phase can vary with time due to time-varying channel

response and mismatch in the carrier frequency used in downconversion to the carrier frequency

used in the transmitter for upconversion. Please see the epilogue for more info. Also please see

the marker board notes on the setup for the steepest descent version of the Costas Loop.

Solution for part a: For the Costas Loop implementations, we’re asked to show that the update

equations for [k] are the same. In solving the problem, we’ll need to use trigonometric identities

sin(A+B) = sin(A) cos(B) + cos(A) sin(B)

cos(A+B) = cos(A) cos(B) - sin(A) sin(B)

We’ll need to assume that the phase [k] is slowly varying with time. This assumption implies

that cos([k]) is approximately constant for small values of [k], which allows the reordering of

modulation by cos([k]) and lowpass filtering in each branch. The reordering of modulation by

sin([k]) and lowpass filtering is performed similarly. It is a common assumption in PLLs that

the phase being tracked is slowly varying with time (see the Epilogue for more info).

u[k]

v[k

]

http://www.ece.utexas.edu/~bevans/courses/realtime
http://users.ece.utexas.edu/~bevans/courses/realtime/homework/pictures/2019-11-18%20HW%206.1%20On%20Office%20Board.jpg

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

The sampling index is k and the sampling time is Ts.

 [k+1]= [k] - µ u[k]v[k] where u[k] and v[k] are the inputs fed to the final multiplier. Let u[k]

be the top input entering the multiplier and v[k] be the bottom input entering the multiplier.

u[k] = cos q[k]() LPF 2 r[kT
s
] cos 2p f

0
kT

s(){ }- sin q[k]() LPF 2 r[kT
s
] sin 2p f

0
kT

s(){ }

= LPF 2 r[kT
s
]cos 2p f

0
kT

s() cos q[k](){ }- LPF 2 r[kT
s
] sin 2p f

0
kT

s() sin q[k](){ }

= LPF 2 r[kT
s
] cos 2p f

0
kT

s()cos q[k]() - sin 2p f
0
kT

s()sin q[k]()(){ }
= LPF 2 r[kT

s
] cos 2p f

0
kT

s
+q[k](){ }

v[k] = cos q[k]() LPF 2 r[kT
s
] sin 2p f

0
kT

s(){ }+ sin q[k]() LPF 2 r[kT
s
] cos 2p f

0
kT

s(){ }

= LPF 2 r[kT
s
]sin 2p f

0
kT

s()cos q[k](){ }+ LPF 2 r[kT
s
]cos 2p f

0
kT

s()sin q[k](){ }

= LPF 2 r[kT
s
] sin 2p f

0
kT

s()cos q[k]() + cos 2p f
0
kT

s()sin q[k]()(){ }
= LPF 2 r[kT

s
] sin 2p f

0
kT

s
+q[k](){ }

The above simplified expressions for u[k] and v[k] implement directly Figure 10.9. Both

implementations perform the same mathematical operations for a slowly varying phase offset.

Solution for part b: The following Matlab code simulates the alternative Costas loop.

Initially, phoff=-1.0 is set in pulrecsig.m.

The alternative Costas Loop method tracks the

phase successfully.

% pllconverge.m simulate costas loop
% input rsc from pulrecsig.m

pulrecsig;
r=rsc; % rsc is from pulrecsig.m
fl=500; ff=[0 .01 .02 1]; fa=[1 1 0 0];
h=remez(fl,ff,fa); % LPF design
mu=.003; % algorithm stepsize
fc=1000; % assumed freq. at receiver
theta=zeros(1,length(t)); theta(1)= 0; % initialize estimate vector
zs=zeros(1,fl+1); zc=zeros(1,fl+1); % initialize buffers for LPFs
for k=1:length(t)-1 % z's contain past fl+1 inputs
 zs=[zs(2:fl+1), 2*r(k)*sin(2*pi*fc*t(k))];
 zc=[zc(2:fl+1), 2*r(k)*cos(2*pi*fc*t(k))];

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

 lpfs=fliplr(h)*zs'; lpfc=fliplr(h)*zc'; % new output of filters
 lpfs_c=lpfs*cos(theta(k));
 lpfs_s=-lpfs*sin(theta(k));
 lpfc_c=lpfc*cos(theta(k));
 lpfc_s=lpfc*sin(theta(k));
 update=(lpfc_c+lpfs_s)*(lpfc_s+lpfs_c);
 theta(k+1)=theta(k)-mu*update; %algorithm update
end
plot(t,theta),
title('Phase Tracking via the Costas Loop')
xlabel('time'); ylabel('phase offset')

Epilogue: Suppose there is a mismatch between the carrier frequency, f1 in the receiver and the

carrier frequency, f0 in the transmitter, we would show that the offset in carrier frequency, (f1 - f0)

can be expressed as a form of phase offset. We can assume (f1 - f0) is very small but nonzero.

With an ideal channel assumption, we have,

𝑟(𝑡) = 𝑠(𝑡) = 𝑚(𝑡) cos(2𝜋𝑓1𝑡 + 𝜃1)

After downconversion in the receiver, we have,

𝑟(𝑡) cos(2𝜋𝑓0𝑡 + 𝜃0) = 𝑚(𝑡) cos(2𝜋𝑓1𝑡 + 𝜃1) cos(2𝜋𝑓0𝑡 + 𝜃0) =
1

2
 𝑚(𝑡) (cos(2𝜋𝑓1𝑡 + 𝜃1 + 2𝜋𝑓0𝑡 + 𝜃0) + cos(2𝜋𝑓1𝑡 + 𝜃1 − 2𝜋𝑓0𝑡 − 𝜃0))

using the identity cos(u) cos(v) = ½ cos(u - v) + ½ cos(u + v). Lowpass filtering will attenuate

the first term and pass the second term in the parenthesis to give

�̂�(𝑡) =
1

2
 𝑚(𝑡) cos(2𝜋(𝑓1 − 𝑓0)𝑡 + 𝜃1 − 𝜃0)

We define 𝜙(𝑡) = 2𝜋(𝑓1 − 𝑓0)𝑡 + 𝜃1 − 𝜃0 as the time-varying phase offset. The time-varying

phase offset 𝜙(𝑡) is a low-frequency signal with principal frequencies −|𝑓1 − 𝑓0|, 0 and |𝑓1 − 𝑓0|

where 𝑓0 and 𝑓1 are close in value. The maximum relative error between the two frequencies is

often set by the communication standard. A maximum relative error of 10-3 would mean that if

𝑓0 and 𝑓1 were approximately 1 GHz, then |𝑓1 − 𝑓0| ≤ 1 MHz.

The spectrum of transmitted baseband signal, 𝑀(𝑓), passband signal, 𝑆(𝑓), and received

baseband signal, �̂�(𝑓) are shown. Estimation for phase offset is still necessary to correct for the

phase offset. A software approach can be used to correct for phase error; however, the cutoff

frequency of the lowpass filter needs to have bandwidth of W + |f0 - f1|.

𝑚(t) s(t)

cos(2πf
1
t + θ

1
)

Transmitter

r(t) �̂�(t)

cos(2πf
0
t + θ

0
)

Receiver

LPF

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

6.2 Timing Recovery

Johnson, Sethares & Klein, exercise 12.17, page 265. Consider a resampler with input x(kT) and

output x(kT + τ). Use the approximation in Exercise 12.16(b) to derive an approximate gradient-

descent algorithm that minimizes the fourth-power performance function

𝐽𝐹𝑃(𝜏) =
1

𝑁
∑ 𝑥4(𝑘𝑇 + 𝜏)

𝑘0+𝑁

𝑘=𝑘0+1

for a suitably large N. [Note: Sampling time Ts has been replaced by the symbol time T.]

Prologue: In the receiver, the symbol timing offset, , is the offset to the start of the current

symbol period. An offset of - T and + T would be at the start of the previous and next symbol

period, respectively. During the kth symbol, the receiver estimates the symbol timing offset, and

uses it to delay (if positive) or advance (if negative) the time that the (k+1)st symbol is sampled.

It is okay if a symbol timing recovery algorithm converges to a timing offset of , - T or + T.

Midterm #2 spring 2021 problem 2.1(d) applies steepest ascent for symbol timing recovery.

We should visualize objective function JFP () to see if we should maximize or minimize it. The

objective function is an average of N fourth-power objective functions, and the concavity of each

depends on the value of the rolloff parameter for the square root raised cosine pulse shape, as

plotted at the end of the solution to this problem. The concavity is down for of 0.2 or 0.3 and

up for of 0.4, 0.5 or 1. We use = 0.2 in this problem. We provide scatter plots for JFP()

toward the end of the solution for this problem when the update for minimizes JFP().

A plot of the fourth-power objective from Fig. 2.11 on page 264 in JSK is shown over one symbol

period. The objective function is periodic with period equal to the symbol time:

f W -W

M(f)

f
1
 -f

1
+W -f

1
-W

S(f)

f
1
+W f

1
-W f -f

1
 f

f
1

- f
0
+W

�̂�(f)

- f
1
+f

0
 +W f

1
- f

0
- W

- f
1
+f

0
- W

http://www.ece.utexas.edu/~bevans/courses/realtime
https://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2021.pdf

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

Solution for part a: The objective function sums fourth-order objective functions applied to the

future N symbol periods and divides the result by N. In an implementation, we would buffer N

symbol periods of samples. The implementation complexity increases with value of N.

𝐽𝐹𝑃(𝜏) ≈ 𝑎𝑣𝑔 {(𝑥(𝑘𝑇 + 𝜏))
4

}

The approximation in Exercise 12.16(b) is for the first derivative with respect to of the signal

that results from sampling at the symbol time.

𝑑𝑥(𝑘𝑇 + 𝜏)

𝑑𝜏
= lim

𝜀→0

𝑥(𝑘𝑇 + 𝜏) − 𝑥(𝑘𝑇 + 𝜏 − 𝜖)

𝜖
≈

𝑥(𝑘𝑇 + 𝜏) − 𝑥(𝑘𝑇 + 𝜏 − 𝜖)

𝜖

Differentiating JFP () with respect to 𝜏 and reordering differentiation and averaging operations

gives,

𝑑𝐽𝐹𝑃(𝜏)

𝑑𝜏
≈ 4𝑎𝑣𝑔 {𝑥3(𝑘𝑇 + 𝜏)

𝑑𝑥(𝑘𝑇 + 𝜏)

𝑑𝜏
}

The gradient descent update equation to minimize JFP() can written as follows:

𝜏[𝑘 + 1] = 𝜏[𝑘] − �̅�
𝑑𝐽𝐹𝑃(𝜏)

𝑑𝜏
|

𝜏=𝜏[𝑘]

 𝜏[𝑘 + 1] = 𝜏[𝑘] − 4 𝜇 ̅𝑎𝑣𝑔{𝑥3(𝑘𝑇 + 𝜏[𝑘])} (
𝑥(𝑘𝑇 + 𝜏[𝑘]) − 𝑥(𝑘𝑇 + 𝜏[𝑘] − 𝜖)

𝜖
)

𝜏[𝑘 + 1] = 𝜏[𝑘] − 𝜇 ∑ 𝑥3(𝑘𝑇 + 𝜏[𝑘]) (𝑥(𝑘𝑇 + 𝜏[𝑘]) − 𝑥(𝑘𝑇 + 𝜏[𝑘] − 𝜖))

𝑘0+𝑁

𝑘=𝑘0+1

where 𝜇 =
4�̅�

𝜖𝑁
 has been combined into a single constant. From Exercise 12.16, we would like to

have a small > 0 where T. From the problem statement, we should use a suitably large N.

(b) Implement the algorithm in part (a) using clockrecOP.m as a basis and compare the behavior

with the output power maximization approach in terms of convergence speed (i.e. number of

iterations needed for the same value of the step size to find the symbol timing offset tau).

Solution for b: We modify clockrecOP.m, which uses symbol time of 1s and 2 samples/symbol.

We use a timing offset of 0.5s, a rolloff () of 0.2, and 5000 random 2-PAM symbols. In the update

equation, step size 𝜇 =
4�̅�

𝜖𝑁
. We set 𝜖 to 0.01 and N to 40, and try �̅� 𝜖{.001, .01, .05, 5}.

clc; close all; clear all;
% clockrec4thpower.m: clock recovery maximizing output power
% prepare transmitted signal
n=5000; % number of symbols
m=2; % oversampling factor (samples/symbol)
constel=2; % 2-pam constellation
beta=0.2; % rolloff parameter for srrc
l=50; % 1/2 length of pulse shape (in symbols)
chan=[1]; % T/m "channel"

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

toffset= 0.5; % initial timing offset
% s=srrc(syms, beta, P, t_off);
% Generate a Square-Root Raised Cosine Pulse
pulshap=srrc(l,beta,m,toffset); % srrc pulse shape
s=pam(n,constel,1); % random data sequence with var=1
sup=zeros(1,n*m); % upsample the data by placing...
sup(1:m:end)=s; % ... p zeros between each data point
hh=conv(pulshap,chan); % ... and pulse shape
r=conv(hh,sup); % ... to get received signal
matchfilt=srrc(l,beta,m,0); % filter = pulse shape
x=conv(r,matchfilt); % convolve signal with matched filter

% run symbol clock recovery algorithm
epsilon = 0.01;
N = 40;
mubar = [0.001 0.01 0.05 5];
mu = 4*mubar/(epsilon*N); % algorithm stepsize

for count=1:length(mu)
 tnow=l*m+1; tau=0; xs=zeros(1,n); % initialize variables
 tausave=zeros(1,n); tausave(1)=tau; i=0;
 JFP=zeros(1,n);
 epsilon=0.01;
 tmax=length(x) - l*m - (N+1)*m; % max time for simulation
 while tnow < tmax % run iterations
 i=i+1;
 xs(i)=interpsinc(x,tnow+tau,l); % interp at tnow+tau
 % Update equation for tau
 dJFP_dtau = 0; % dJ_FP(tau) / d(tau)
 for k0 = 1 : N
 x_deltap = interpsinc(x,tnow+k0*m+tau,l); % value to right
 x_deltam = interpsinc(x,tnow+k0*m+tau-epsilon,l); % value to left
 dx = x_deltap - x_deltam; % approximate dx/dtau
 dJFP_dtau = dJFP_dtau + (x_deltap^3)*dx; % derivative
 end
 tau = tau - mu(count) * dJFP_dtau; % update tau
 tnow=tnow+m; tausave(i)=tau; % save for plotting
 end

 % plot results
 figure(count);
 subplot(2,1,1), plot(xs(1:i-9),'b.') % plot constellation diagram
 grid on;
 title_str = ['constellation diagram, mu = ' num2str(mu(count))];
 title(title_str);
 ylabel('estimated symbol values')
 subplot(2,1,2), plot(tausave(1:i-9)) % plot trajectory of tau
 grid on;
 ylabel('offset estimates'), xlabel('iterations')
end

In Figures A, B, and C, the rate of convergence is faster for larger values of µ. If µ is too large,

iterations may diverge as shown in Figure D. In all Figures, converges to -0.5s instead of 0.5s;

however, both offsets led to the start of a symbol because the symbol time is 1s.

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

 Figure A: µ = 0.01 Figure B: µ = 0.1

 Figure C: µ = 0.5

We create a scatter plot of the values of computed during each simulation vs. the value of the

objective function JFP () for each by changing the while loop in the above code as follows:

 while tnow < tmax % run iterations
 i=i+1;
 xs(i)=interpsinc(x,tnow+tau,l); % interp at tnow+tau
 % Update equation for tau
 dJFP_dtau = 0; % dJ_FP(tau) / d(tau)
 objfun = 0;
 for k0 = 1 : N
 x_deltap = interpsinc(x,tnow+k0*m+tau,l); % value to right
 x_deltam = interpsinc(x,tnow+k0*m+tau-epsilon,l); % value to left
 dx = x_deltap - x_deltam; % approximate dx/dtau
 dJFP_dtau = dJFP_dtau + (x_deltap^3)*dx; % derivative
 objfun = objfun + (x_deltap^4);
 end
 JFP(i) = objfun / N;
 tau = tau - mu(count) * dJFP_dtau; % update tau
 tnow=tnow+m; tausave(i)=tau; % save for plotting
 end
 figure(count + length(mu));
 scatter(tausave, JFP);

The scatter plots of objective function JFP () vs. symbol timing offset look very similar, so we

only give the plot for µ = 0.01. The initial guess of is zero, and the final value is -0.5s.

Figure D: µ = 50

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

Below, the fourth-order power function is plotted as a function of the timing offset τ to visualize

the action of the adaptive element. The error surface is plotted for different roll-off factors, β = 0,

0.1, 0.2, 0.3, 0.4, and 0.5. As β increases from 0.1 to 0.4, the surface gains more (local) minima.

These plots represent the values of τ to which the adaptive element may converge, which may

yield lower performance.

% clockrecDDcost.m: draw error surfaces for cluster variance performance
% in terms of chosen pulse shape
clc; close all; clear all;
l=10; % 1/2 duration of pulse shape
beta= [0 0.1 0.2 0.3 0.4 0.5 1]; % rolloff for pulse shape
m=20; % evaluate at m different points
for count=1:length(beta)
 ps=srrc(l,beta(count),m); % make srrc pulse shape
 psrc=conv(ps,ps); % convolve 2 srrc's to get rc
 psrc=psrc(l*m+1:3*l*m+1); % truncate to same length as ps
 cost=zeros(1,m); n=20000; % experimental performance
 x=zeros(1,n);
 for i=1:m % for each offset
 pt=psrc(i:m:end); % rc is shifted i/m of a symbol
 for k=1:n % do it n times
 rd=pam(length(pt),4,5); % random 4-PAM vector
 x(k)=sum(rd.*pt); % received data point w/ ISI
 end
 cost(i)=sum(x.^4)/length(x); % performance function
 end

 offset=(0:m-1)/m;
 figure(count);
 plot(offset,cost)
 title_str = ['Beta = ' num2str(beta(count))];
 title(title_str);
 xlabel('timing offset \tau')
 ylabel('value of cost functions')
end

O

b
je

ct
iv

e
fu

n
ct

io
n
 J

F
P

 (
)

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

6.3 Simulation of 4-QAM and 16-QAM Transmission

Johnson, Sethares & Klein, exercise 16.2, page 362. Use qamcompare.m as a basis to implement

a 16-QAM modulation as shown in Figure 16.2. Compare this system to 4-QAM on the basis of

a. amount of spectrum used, and

b. required power in the transmitted signal.

What other trade-offs are made when moving from a 4-QAM to a 16-QAM modulation scheme?

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

Solution: In this problem, we compare 4-QAM modulation with 16-QAM modulation in terms

of spectral use and required power in the transmitted signal.

Here, we implement 4-QAM as 2-PAM in the in-phase component and 2-PAM in the quadrature

component. Likewise, we implement 16-QAM as 4-PAM in the in-phase component and 4-PAM

in the quadrature component. We modify the Matlab script qamcompare.m for 4-QAM in

Johnson, Sethares and Klein to simulate 16-QAM. The only line of code that changes is in bold:

N=1000; M=20; Ts=.0001; % #symbols, oversampling factor
time=Ts*(N*M-1); t=0:Ts:time; % sampling interval and time
s1=pam(N,4,1); s2=pam(N,4,1); % length N real 2-level signals
ps=hamming(M); % pulse shape of width M
fc=1000; th=-1.0; j=sqrt(-1); % carrier freq. and phase
s1up=zeros(1,N*M); s2up=zeros(1,N*M);
s1up(1:M:end)=s1; % oversample by M
s2up(1:M:end)=s2; % oversample by M
sp1=filter(ps,1,s1up); % convolve pulse shape with s1
sp2=filter(ps,1,s2up); % convolve pulse shape with s2
% make real and complex-valued versions and compare
vreal=sp1.*cos(2*pi*fc*t+th)-sp2.*sin(2*pi*fc*t+th);
vcomp=real((sp1+j*sp2).*exp(j*(2*pi*fc*t+th)));
max(abs(vcomp-vreal)) % verify that they're the same

(a) Even though a discrete-time QAM signal is bandpass, it is considered baseband because of the

low carrier frequency relative to the carrier frequency used for continuous-time transmission, such

as an RF frequency. Recall that a baseband signal has its energy concentrated near zero frequency

(DC). The baseband PAM bandwidth is 𝑓sym in lecture slide 7-10 for the rectangular pulse and
1

2
(1 + 𝛽)𝑓sym in lecture slide 7-13 for the raised cosine by replacing fs with fsym. For any carrier

frequency greater than or equal to 𝑓sym for the rectangular pulse shape and
1

2
(1 + 𝛽)𝑓sym for the

raised cosine pulse shape, the QAM baseband bandwidth doubles to 2 fsym for the rectangular pulse

and (1 +) fsym for the raised cosine pulse shape. Since 4-QAM and 16-QAM use the same pulse

shape, transmission bandwidth would be the same.

(b) The average, peak and peak-to-average ratio for transmit power is on lecture slide 15-16. A

higher peak-to-average ratio makes the power amplifier more expensive to fabricate.

Parameter d represents half of the distance in the in-phase or quadrature component to the

nearest neighbor in the constellation. Assuming energy in the pulse shape is one,

• 4-QAM has 2d2 average, 2d2 peak, and 1.0 peak-to-average ratio in transmit power

• 16-QAM has 10d2 average, 18d2 peak, and 1.8 peak-to-average ratio in transmit power

These power ratings increase with increasing number of QAM levels if d is kept the same value.

If we keep the average transmit power the same for 4-QAM and 16-QAM, then

or equivalently,

2

4

2

16 210 QAMQAM dd =

QAMQAMQAM ddd 4416 44.0
5

1
=

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

The probability of symbol error increases when d decreases.

(c) While larger constellations are able to offer faster bit rates and higher levels of spectral

efficiency, the larger constellations are considerably less resilient to noise and interference. While

it is possible to transmit more bits per symbol, if the energy of the constellation is to remain the

same, the points on the constellation must be closer together and the transmission becomes more

susceptible to noise. This results in a higher bit error rate than for smaller QAM constellations.

This is a tradeoff between obtaining higher data rates and meeting bit error rate requirements.

Plotting symbol error rate vs. signal-to-noise ratio (SNR)

is a very common first step in analyzing communication

system performance. The curve on the left plots the lower

bound on symbol error rate from a formula. The signal-

to-noise ratio (SNR) is measured in the receiver at the

output of the sampling of the matched filter output.

One can interpret the plot in a couple of ways. First, pick

a symbol error rate and take a horizontal cut across the plot.

At a symbol error rate of approximately 10-2, which occurs

in Wi-Fi and cellular communication channels, the formula

for SNR as a function of the number of bits per symbol, B,

is approximately C0 + (3 dB/bit) B where C0 is a constant. (For 16-QAM, 64-QAM, and 256-

QAM, C0 ≈ 4 dB, and for 4-QAM, C0 ≈ 2 dB.) For every 3 dB of improvement in SNR above C0,

we could add a bit to the QAM constellation and achieve the same symbol error rate. We can use

this information to modify the channel capacity bound given by Claude Shannon for QAM

𝐶 = 𝑊 log2(1 + SNR)

to give a bound on the achievable channel capacity of

𝐶 = 𝑊 log2 (1 +
SNR

Γ
)

Here, SNR is in linear units and W is the transmission bandwidth in Hz, or equivalently the QAM

baseband bandwidth. is the SNR gap converted to linear units, which captures impairments

other than the Gaussian model of thermal noise.

Second, pick a SNR value and take a vertical cut through the plot. At an SNR of 10 dB, the symbol

error rate for 4-QAM is two orders of magnitude lower than that of 16-QAM.

Another way to use a plot of symbol error rate vs. SNR is to simulate a communication system for

different SNR settings and scatter plot the results. This could allow comparison of two

equalization methods, two timing recovery methods, etc. Superimposing the lower bound from a

formula on the plot shows how close (or far away) the methods are from the ideal answer.

Epilog. In probability of symbol error analysis, there are two extreme points to keep in mind:

Figure 16.12 from pg. 379

http://www.ece.utexas.edu/~bevans/courses/realtime

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime

Signal power = 0 in linear units. SNR = 0 in linear units, which is - dB since the conversion is

SNRdB = 10 log10 SNR. The receiver can only randomly guess at the symbol of bits. For J bits,

the number of levels is M = 2J. The probability of error for a random guess is (M-1)/M.

Noise power = 0 in linear units. SNR = +, which is also + dB. Probability of error is 0.

It is a common approach to plot the probability of symbol error on a log-log scale. The vertical

axis would be the Probability of Symbol Error with marks at 100, 10-1, 10-2, etc. The horizontal

axis would be SNR in dB. In this log-log scale, the curves for the Probability of Symbol Error

vs. SNR for different constellation sizes (i.e. number of levels M) would not intersect.

PAM symbol error probability formula has the form 𝐶0 𝑄(𝐶1 √𝑆𝑁𝑅) where C0 and C1 are

constants. Q(x) is defined on lecture slide 14-22 and decays faster than a decaying exponential

(lecture slide 14-23). QAM symbol error probability formula has the form 𝐶2 𝑄(𝐶3 √𝑆𝑁𝑅) −

𝐶4 𝑄2(𝐶5 √𝑆𝑁𝑅) where C2, C3, C4 and C5 are constants (lecture slide 15-15). In both formulas,

SNR is in linear units.

When signal power and noise power are equal, the SNR in linear units is 1, or 0 dB.

In cellular LTE systems, the channel quality indicator (CQI) is a four-bit unsigned number that

indicates the received SNR in dB, with 0 meaning the connection is out of range. The remaining

numbers 1-15 indicate increasing SNR, where the mapping depends on LTE system settings. For

example, the mapping below on the left in purple is CQI times 2 dB. The CQI is used to choose

a QAM constellation size as shown below on the right.

http://www.ijiee.org/papers/201-X2020.pdf

https://ytd2525.wordpress.com/2014/02/02/cqi-

channel-quality-indicator/

http://www.ece.utexas.edu/~bevans/courses/realtime
http://www.ijiee.org/papers/201-X2020.pdf
https://ytd2525.wordpress.com/2014/02/02/cqi-channel-quality-indicator/
https://ytd2525.wordpress.com/2014/02/02/cqi-channel-quality-indicator/

