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In data analysis, e.g. number of new confirmed 
COVID-19 cases in Texas each day as shown on 
the right, we’ll often see a moving average to 
help us discern an underlying trend.  The trend 
in certain segments of the data might show a 
decrease or increase in what’s being measured.  
A moving average averages out, or smoothes 
out, rapid fluctuations in the data.  This is 
equivalent to keeping low frequency 
information and attenuating high frequency 
information in the data. 

For a data sequence x[n], a seven-sample 
moving average can be computed as follows: 

𝑦[𝑛] =
1

7
( 𝑥[𝑛] + 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2] + 𝑥[𝑛 − 3] + 𝑥[𝑛 − 4] + 𝑥[𝑛 − 5] + 𝑥[𝑛 − 6] ) 

for 𝑛 ≥ 0.  The output y[n] is the average of the current data point x[n] and the six previous 
data points.  This difference equation is also known as a seven-coefficient averaging filter. 

Analysis.  We analyze the frequency response for a linear time-invariant (LTI) system using the 
discrete-time Fourier transform.  A necessary condition for a system to be LTI is that the system 
must initially be “at rest”.  In this case, it means that the initial conditions must be zero.  We 
can identify the initial conditions in several ways.  One way is to start computing output values: 

𝑦[0] =
1

7
( 𝑥[0] + 𝑥[−1] + 𝑥[−2] + 𝑥[−3] + 𝑥[−4] + 𝑥[−5] + 𝑥[−6] ) 

The six initial conditions correspond to the six memory locations storing the previous six input 
values.  When n = 0, there are no previous input values.  We initialize the six memory locations 
{ 𝑥[𝑛 − 1], 𝑥[𝑛 − 2], 𝑥[𝑛 − 3], 𝑥[𝑛 − 4], 𝑥[𝑛 − 5], 𝑥[𝑛 − 6] } to zero to make the system be 
initially at rest.  Initializing data variables and arrays to zero is a common programming practice. 

There are many ways to find the discrete-time Fourier transform of the seven-coefficient LTI 
averaging filter.  One way is to find the impulse response and then find its discrete-time Fourier 
transform.  The impulse response is the response of a system to a discrete-time impulse: 

ℎ[𝑛] =
1

7
( 𝛿[𝑛] + 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] + 𝛿[𝑛 − 3] + 𝛿[𝑛 − 4] + 𝛿[𝑛 − 5] + 𝛿[𝑛 − 6] ) 

The impulse response h[n] is a rectangular pulse that is seven samples long with amplitude 1/7 
as shown on the next page.  We can find the Fourier transform from the z-transform: 

𝐻(𝑧) =
1

7
(1 + 𝑧−1 + 𝑧−2 + 𝑧−3 + 𝑧−4 + 𝑧−5 + 𝑧−6)   for  𝑧 ≠ 0 

Since the region of convergence 𝑧 ≠ 0 includes the unit circle, we can substitute 𝑧 =  𝑒𝑗 𝜔 : 

𝐻𝑓𝑟𝑒𝑞(𝜔) = 𝐻(𝑒𝑗 𝜔) =
1

7
(1 + 𝑒−𝑗𝜔 + 𝑒−2𝑗𝜔 + 𝑒−𝑗3𝜔 + 𝑒−𝑗4𝜔 + 𝑒−𝑗5𝜔 + 𝑒−𝑗6𝜔) 

Number of new confirmed COVID-19 cases in The 
State of Texas as of Feb. 7, 2021, reported by The 
State of Texas Department of State Health Services. 

https://txdshs.maps.arcgis.com/apps/opsdashboard/index.html#/ed483ecd702b4298ab01e8b9cafc8b83
https://txdshs.maps.arcgis.com/apps/opsdashboard/index.html#/ed483ecd702b4298ab01e8b9cafc8b83


We can factor out the middle term (due to the phase shift corresponding to the mid-point of 
the impulse response at sample index (L-1)/2) to reveal that the phase is linear in frequency: 

𝐻𝑓𝑟𝑒𝑞(𝜔) =
1

7
𝑒−𝑗3𝜔 (𝑒𝑗3𝜔 + 𝑒𝑗2𝜔 + 𝑒𝑗𝜔 + 1 + 𝑒−𝑗𝜔 + 𝑒−𝑗2𝜔 + 𝑒−𝑗3𝜔) 

𝐻𝑓𝑟𝑒𝑞 (𝜔) =
1

7
(1 + 2 cos(𝜔) + 2 cos(2𝜔) + 2 cos (3𝜔)) 𝑒−𝑗3𝜔 = 𝐴(𝜔) 𝑒−𝑗3𝜔  

Amplitude 𝐴(𝜔) is a sinc with period 2 and the phase is −3𝜔 which is a line with slope of −3.  
Please note that 𝐴(𝜔) has positive, zero, and negative values, and is not the magnitude.  

The impulse response (on right) is a rectangular pulse of 
7 samples with amplitude 1/7.  The pole-zero plot for H(z) 
shows zeros at angles (frequencies) that are multiples of 

2/7 rad/sample except at zero.  Magnitude response is 

lowpass with a null bandwidth of 2/7 rad/sample and 

frequencies at multiples of 2/7 rad/sample are zeroed 
out except at 0 rad/sample.  Phase response is linear 
except for the discontinuities at frequencies that are  
zeroed out (not passed) by the filter at multiples of 

2/7 rad/sample except at 0 rad/sample. 

Design a lowpass discrete-time LTI filter with a null 
bandwidth of 60 Hz that eliminates multiples of the 
powerline frequency 60 Hz up to half of the sampling 
rate.  The sampling rate is 420 Hz. 

Answer: The null bandwidth in discrete-time frequency 

is 𝜔0 = 2𝜋
𝑓0

𝑓𝑠
= 2𝜋

60 𝐻𝑧

420 𝐻𝑧
=

2

7
𝜋 rad/sample.  The null 

bandwidth for an LTI averaging filter with L coefficients 

is 2/L; hence, L = 7.  Averaging filter with 7 coefficients 
will eliminate 60 Hz, 120 Hz, and 180 Hz for a sampling 
rate of 420 Hz. 
 
 
 

Impulse response for LTI averaging 
filter with L coefficients (L = 7 here) 

Poles & zeros of H(z) for LTI averaging 
filter with 7 coefficients in Matlab: 
h = (1/7)*ones(1, 7); zplane(h) 

Phase response for LTI averaging 
filter with 7 coefficients in Matlab.  
Using the highlighted points, the 
slope is estimated to be -3.0002. 

Magnitude response for LTI 
averaging filter with 7 coefficients.  
Magnitude of a periodic sinc.  Zeros 

at multiples of 2/7 except 0. 

 

w = -pi : (2*pi/100000) : pi; 

H = (1/7)*(1 + exp(-j*w) + exp(-j*2*w) + exp(-j*3*w) + exp(-j*4*w) + exp(-j*5*w) + exp(-j*6*w)); 

figure; plot(w, abs(H)); xlim( [-pi, pi] );    %%% plot the magnitude response 

figure; plot(w, phase(H)); xlim( [-pi, pi] );  %%% plot the phase response 

  


