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 is a signal or pulse generated by the transmitter

 is additive noise

 is the received signal

g(t)

w(t)

x(t) = w(t) + ∑K

k=1 akg(t − Tk)



Contains copies of  which are

Goal: create a filter  which will help us to detect and characterize any copies of 
that are present in .

x(t) = w(t) +
K

∑
k=1

akg(t − Tk)

g(t)

h(t) g(t)
x(t)



Application: Radar/Sonar
Transmitter and receiver are at known locations (possibly the same location).
The transmitter sends a pulse  (often a chirp signal).
The signal propagates through space, and may reflect off of objects
The receiver listens for the reflections and records them into 

Goal: create a filter  which will help us to detect and characterize any copies of 
that are present in .

g(t)

x(t)

h(t) g(t)
x(t)



Application: Digital Communication
Transmitter and receiver are at different (possibly unknown) locations
The transmitter sends a sequence of pulses  (often a raised cosine).
Pulses are known to be separated by 

Goal: create a filter  which will help us to detect and characterize any copies of 
that are present in .

g(t)

Tsym

h(t) g(t)
x(t)



The received signal is

Application of a filter  can be analyzed in terms of its effects on  and 
separately

To make predictions about  or , we want to minimize the power of the filtered noise
while maximizing the remaining signal.

The optimal filter can be derived formally by maximizing the signal to noise ratio.

The optimal filter can be derived informally by considering the definition of convolution.

x(t) = w(t) +
K

∑
k=1

akg(t − Tk)

h(t) w(t) akg(t − Tk)

y(t) = h(t) ∗ x(t)

= h(t) ∗ w(t)

filtered noise

+
K

∑
k=1

h(t) ∗ akg(t − Tk)


filtered pulses

ak Tk



Informal Derivation
Question: what filter  should I apply to  to help me detect and characterize any
copies of ?

Ideally, the answer should be useful to both of the applications.

Simplification: assume that , , and  must all be real. Then, convolution and
cross-correlation have a simple relationship

New question: what function  should I cross-correlate with  to help me detect and
characterize any copies of ?

h(t) x(t)
g(t)

x(t) g(t) h(t)

x(t) ∗ g(t) = x(t) ⋆ g(−t)

x(t) ⋆ g(t) = x(t) ∗ g(−t)

h(t) x(t)
g(t)



Convolution and Cross-correlation
Why is it called cross-correlation? What is the relationship to correlation in
probability/statistics?

In statistics, correlation measures similarity between two collections of samples.



What is correlation?
Let  be the current time. Imagine you collect some data.

k 1 2 3 4 5
 = abs(  - 11:00am) 9 51 26 122 250

 = Number of people in line 5 3 2 1 2

The data are drawn from random variables  and . The correlation between these random
variables is

The sample correlation of the collected data is

tc

⋯

x[k] tc ⋯

y[k] ⋯

X Y

ρ(X,Y ) =
cov(X,Y )

√var(X)var(Y )

r(x, y) =
K

∑
k=1

(x[k] − μx)(y[k] − μy)
1

σxσy



What is correlation?

Correlation is an inner product. An inner product measures similarity of two signals.

Positive correlation indicates similarity between  and . Negative correlation indicates
similarity between  and . Noise will lower the correlation.

If  then .

r(x, y) =
K

∑
k=1

(x[k] − μx)(y[k] − μy)
1

σxσy

Inner product of two discrete signals x1[n],x2[n] =
∞

∑
k=−∞

x1[k]x2[k]

Inner product of two continuous signals x1(t),x2(t) = ∫
∞

τ=−∞

x1(τ)x2(τ)dτ

x y

−x y

y[k] = a


>0

x[k] + w

noise

0 < r < 1



Convolution and cross-correlation as an inner product
The convolution operation is defined as:

The cross-correlation operation is nearly identical to convolution, but without the 'flip'

x1[n] ∗ x2[n] =
∞

∑
k=−∞

x1[k]x2[n − k]

x1(t) ∗ x2(t) = ∫
∞

τ=−∞

x1(τ)x2(t − τ)dτ

x1[n] ⋆ x2[n] =
∞

∑
k=−∞

¯̄¯̄¯̄¯̄¯̄¯
x1[k]x2[n + k]

x1(t) ⋆ x2(t) = ∫
∞

τ=−∞

¯̄¯̄¯̄¯̄¯̄¯̄
x1(τ)x2(t + τ)dτ



Convolution and cross-correlation as an inner product
An inner product takes two signals and returns a number.

Convolution and cross-correlation take two signals and return another signal

The new signal is no longer a function of the original time variable. Instead it's a function of
the relative time shift between the two signals.

For any particular time shift, cross-correlation tells us about about the similarity of 
and .

For any particular time shift, convolution tells us about the similarity of  and .

Inner product of two continuous signals x1(t),x2(t) = ∫
∞

τ=−∞

x1(τ)x2(τ)dτ

x1(t) ∗ x2(t) = ∫
∞

τ=−∞

x1(τ)x2(t − τ)dτ

x1(t) ⋆ x2(t) = ∫
∞

τ=−∞

¯̄¯̄¯̄¯̄¯̄¯̄
x1(τ)x2(t + τ)dτ

¯̄¯̄¯̄¯̄¯̄¯
x1(t)

x2(t)

x1(t) x2(−t)



Informal Derivation
Back to the question:

Assume that  and  are both real. What function should we cross-correlate with 
to help detect and characterize any copies of ?

x(t) g(t) x(t)
g(t)



Informal Derivation
Back to the question:

Assume that  and  are both real. What function should we cross-correlate with 
to help detect and characterize any copies of ?

x(t) g(t) x(t)
g(t)

Answer: The function that will produce a measure of similarity between  and 
for every possible time shift .

Answer: We should cross-correlate x(t) with the signal g(t) that we want to detect.

x(t) g(t − τ)
τ



Informal Derivation
What filter  should be applied to  to help detect and characterize any copies of 

?
h(t) x(t)

g(t)



Informal Derivation
What filter  should be applied to  to help detect and characterize any copies of 

?
h(t) x(t)

g(t)

Answer: The time-reversed filter  should match the known signal .h(−t) g(t)



Informal Derivation
What filter  should be applied to  to help detect and characterize any copies of 

?
h(t) x(t)

g(t)

Answer: The time-reversed filter  should match the known signal .h(−t) g(t)

Conclusion: The optimal filter is the matched filter: 

Disclaimer: if we allow complex signals then 

h(t) = g(−t)

h(t) =
¯̄¯̄¯̄¯̄¯̄¯̄¯
g(−t)







Simulation
In [14]: g = sinc(-2:(1/16):2);


E = sum(g.^2);


In [52]: symbols = reshape((dec2bin(uint8('meatball'))'),[28,2]);

amplitudes = upsample(2*bin2dec(serialized_data)-3,16);

pulses = conv(amplitudes,g/E,'same');

x = pulses + 0.2*randn(size(pulses));




Simulation
In [54]: quantize = @(x) 2*(round(0.5*x + 1.5)-1.5);


h = E*ones(16,1)/16;

y = conv(x,h,'same');

yT = quantize(downsample(y,16));


In [57]: number_errors = sum(abs((yT - downsample(amplitudes,16)))>0)


number_errors =



     8






Simulation
In [58]: h = g;


y = conv(x,h,'same');

yT = quantize(downsample(y,16));


In [61]: number_errors = sum(abs((yT - downsample(amplitudes,16)))>0)


number_errors =



     7






Formal Derivation
Application of a filter  can be analyzed in terms of its effects on  and 
separately

To make predictions about  or , we want to minimize the power of the filtered noise
while maximizing the remaining signal.

We want to maximize the signal to noise ratio at the times  Where a copy of  is
present.

h(t) w(t) akg(t − Tk)

y(t) = h(t) ∗ x(t)

= h(t) ∗ w(t)

filtered noise

+
K

∑
k=1

h(t) ∗ akg(t − Tk)


filtered pulses

ak Tk

Tk g(t)



Formal Derivation

Goal: maximize the peak pulse SNR

y(t) = h(t) ∗ x(t)

= h(t) ∗ w(t)

filtered noise

+
K

∑
k=1

h(t) ∗ akg(t − Tk)


filtered pulses

|g0(t)|
2

= |g(t) ∗ h(t)|
2

= output signal power

E [n2(t)] = E [(w(t) ∗ h(t))
2] = output noise power

η = =
Peak signal power

Average noise power

|g0(t)|2

E [n2(t)]



Formal Derivation
We don't know the amplitude values of  but we can find its power spectrum.

For the two-sided random noise signal , the Fourier transform may not exist, but its
power spectrum does.

n(t)

PN(f) = |N(f)|2

= N(f)
¯̄¯̄¯̄¯̄¯̄¯̄
N(f)

= F {n(t) ∗
¯̄¯̄¯̄¯̄¯̄
n(t)}

= F {Rn(t)}

n(t)



Formal Derivation
For a zero-mean Gaussian random process  with variance , the autocorrelation is 

Therefore, its power spectrum is 

The noise at the output of the matched filter is 

Its power spectrum is

n(t) σ2

Rn(t) = σ2δ(t)

Pn(f) = F {Rn(t)} = σ2

n(t) = w(t) ∗ h(t)

SN(f) = SW (f)SH(f) = |H(f)|2
N0

2

Average noise power = E [n2(t)] = ∫
∞

−∞

SN(f)df = ∫
∞

−∞

|H(f)|
2
df

N0

2



Formal Derivation
g0(t) = g(t) ∗ h(t)

G0(t) = H(f)G(f)

|g0(t)|2 = |F −1 {G0(f)} |2

= |F −1 {H(f)G(f)} |2

=
∣
∣
∣
∫

∞

−∞

H(f)G(f)ej2πfTdf
∣
∣
∣

2

η = = =
Peak signal power

Average noise power

|g0(t)|2

E [n2(t)]

∣∣∫
∞

−∞
H(f)G(f)ej2πfTdf∣∣

2

∫ ∞

−∞
|H(f)|

2
df

N0

2



Formal Derivation

Question: How do we maximize ?

η = =
Peak signal power

Average noise power

∣∣∫
∞

−∞
H(f)G(f)ej2πfTdf∣∣

2

∫ ∞

−∞
|H(f)|

2
df

N0

2

η



Formal Derivation

Question: How do we maximize ?

η = =
Peak signal power

Average noise power

∣∣∫
∞

−∞
H(f)G(f)ej2πfTdf∣∣

2

∫ ∞

−∞
|H(f)|

2
df

N0

2

η

Answer: Schwarz inequality can be used to determine an upper bound for the inner
product.

|⟨u, v⟩|2 ≤ |u|2|v|2

∣
∣
∣
∫ ϕ1(x)ϕ2(x)dx

∣
∣
∣

2

≤ ∫ |ϕ1(x)|2dx ∫ |ϕ2(x)|2dx



Formal Derivation

Question: How do we maximize ?

η = =
Peak signal power

Average noise power

∣∣∫
∞

−∞
H(f)G(f)ej2πfTdf∣∣

2

∫ ∞

−∞
|H(f)|

2
df

N0

2

η

Answer: Schwarz inequality can be used to determine an upper bound for the inner
product.

|⟨u, v⟩|2 ≤ |u|2|v|2

∣
∣
∣
∫ ϕ1(x)ϕ2(x)dx

∣
∣
∣

2

≤ ∫ |ϕ1(x)|2dx ∫ |ϕ2(x)|2dx

After some simplification, the maximum SNR becomes

ηmax = ∫
∞

−∞

|G(f)|2df
2

N0



In lecture assignment 4
In-Lecture Assignment Related to Homework #6
Consider performing an iterative
maximization of

via the steepest descent algorithm (JSK equation (6.5) on page 116) with the sign on the
update reversed from negative to positive so that the algorithm will maximize rather than
minimize; i.e.

where 

J(x) = 8 − x2 + 6 cos(6x)

x[k + 1] = x[k] + μ
dJ(x)

dx

x = x[k]



In lecture assignment 4
Visualize and analyze the shape of the objective function .

1. Plot  for . Give the Matlab code for your answer.
2. Describe the plot.
3. How many local maxima do you see?

J(x)

J(x) −5 < x < 5

In [123]: J = @(x) 8 - x.^2 + 6*cos(6*x);

x = linspace(-5,5,1000);

plot(x,J(x),'linewidth',2');




In lecture assignment 4
Implement the steepest descent algorithm in Matlab with  = 0.7.

1. To what value does the steepest descent algorithm converge?

2. Is the convergent value of x in the global maximum of J(x)? Why or why not?

x0

In [125]: dJdx = @(x) -2*x - 36*sin(6*x);

N=50;         % number of iterations

mu=0.001;     % algorithm stepsize

x=zeros(1,N); % initialize sequence of x values to zero

x(1)=0.7;     % starting point x(1)

for k=1:N-1

    x(k+1)= x(k) + (dJdx(x(k)))*mu;   % update equation

end

x(end)


ans =



    1.0376






In lecture assignment 4
In [126]: stem(x)



