Native Signal Processing

Ravi Bhargava

Laboratory of Computer Architecture

Electrical and Computer Engineering Department

The University of Texas at Austin

November 22, 1999

Motivation

- Need new ways to support emerging applications
 - Multimedia
 - Signal processing
 - 3D graphics
- Many applications have similar properties
 - Large streams of data
 - Data parallelism
 - Small data types
 - Tight loops
 - High percentage of computations
 - Common computations (e.g. MAC)

Target Applications

- IP telephony gateways
- Multi-channel modems
- Speech processing systems
- Echo cancelers
- Image and video processing systems
- Scientific array processing systems
- Internet routers
- Virtual private network servers

Basic Idea

- Extend capabilities of general-purpose processor
 - Additions to the instruction set architecture
 - Additions to the CPU state
- Exploit Data Parallelism
 - Single Instruction Multiple Data (SIMD)
 - Multiple operations using one functional unit

SIMD

• Use one register to store many pieces of data

Packed byte (eight 8-bit elements)								
63	56 55	48 47	40 39	32 31	24 23	16 15	8 7	
Packed word (four 16-bit elements)								
63		48 47		32 31		16 15		
Packed doubleword (two 32-bit elements) 63 32 31								
Quadword (64-bit element)								

Packed Arithmetic

Unsigned Packed Add with Saturation

Packed Arithmetic

• Multiply Accumulate

a 3	a2	a1	a0
*	*	*	*
b3	b2	b1	b0

MMX Example

• 16-bit Vector Dot-Product

Dot-Product (cont.)

Alternative Dot-Product

Useful in certain cases

Alternative Dot-Product (cont.)

• Interleaving the Data

Support for NSP

Libraries

- Most common type of support
- Tradeoff speed for robustness

Compiler

- Can't do too much, but getting better
- Can use macros, annotations, and "intrinsics"

Operating System

- Needs to know about any new registers and states
- Needs to know about any new exceptions

Common Concerns

- Organizing SIMD data
 - Packing and unpacking SIMD registers
 - Shuffling data within the register
 - "swizzling", "scatter and gather"
 - Permute units
- Aligning data
 - Special load and store instructions
 - New data types in compilers
 - Padding data types

New Instructions

- Packed Comparisons
- Packed maximum, minimum
- Packed Average
- Packed Sum of absolute differences
- Multiply-accumulate
- Conversion: signed, data length, data type
- Approximations: reciprocal, reciprocal square root
- Prefetch
- Store fence

Evolution of NSP

- Visual Instruction Set (VIS)
 - First NSP extension found on Sun's UltraSPARC
- MMX
 - First x86 NSP extensions, created for Intel's Pentium
- 3DNow!
 - Addition of FP SIMD instructions on AMD's K6-2
- Altivec
 - Adds new CPU State for Motorola's G4 PowerPC
- Streaming SIMD Extensions
 - New x86 FP SIMD for Intel's Pentium III

VIS

- Uses 64-bit floating point registers
- Data formats "tailored for graphics"
- No saturation arithmetic
- Only 8-bit x 16-bit multiplication
- Implicit assumptions about rounding & number of significant bits
- 3% increase in die area
- C Macros and "MediaLib" for development

VIS Tailored for Graphics

Assumes pixels will be most common data

UltraSPARC with VIS

3DNow! on K6-II

- 21 new SIMD instructions
 - Including floating point SIMD instructions
 - PREFETCH instruction
 - Approximation and intra-element instructions
- Two 32-bit FP instructions in one register
 - Two 3DNow! instructions possible per cycle
 - Latency of two cycles, throughput of one cycle
- Aliased to the FP registers (like MMX)

3DNow! on the K6-II

Streaming SIMD Extension

- 70 new instructions
- 8 new 128-bit SSE registers (OS support)
- Execute two SSE instructions simultaneously
 - Double-cycle through existing 64-bit hardware
 - 2 micro-ops per SSE instruction
 - Latency often two cycles or greater
- Explicit scalar SSE instructions
- Prefetch to various levels of cache
- Non-allocating stores
- 10% increase in die area

Pentium III

3DNow! on the Athlon

- Zero switching overhead back to FP!
- Most instructions have one cycle latency
- 24 more instructions
 - 12 more integer SIMD instructions
 - 7 more data manipulation instructions
 - 5 "unique" DSP instructions
 - Packed FP to Integer word conversion with sign extend
 - Packed FP negative accumulate
 - Packed FP mixed negative-positive accumulate
 - Packed integer word to FP conversion
 - Packed swap double-word

Athlon

Altivec

- 162 new instructions
 - Intra-element: rotate, shift, max, min, sum across
 - Approximations: log2, 2 raised to an exponent
 - No explicit SAD instruction
- Separate 32-entry, 128-bit vector register file
- Floating-point and fixed-point data types
- Instructions have three source operands

Altivec (cont.)

Permute Unit

- Shuffle data from any of the 32 byte locations in two operands to any of 16 byte locations in the destination
- Permute instructions one cycle

Vector Unit

- Three sub-units
- Simple fixed-point one cycle
- Complex fixed-point three cycles
- Floating-point four cycles

Applications using 3DNow!

- 3D games and engines
 - Descent 4, Diablo 2, Quake III, Unreal 2
- 3D video card drivers
 - Matrox, Diamond, ATI, nVidia, 3DLabs, 3dfx
- Graphics APIs
 - OpenGL, DirectX, Glide
- Other apps
 - Naturally Speaking, LiveArt98, WinAMP, PicVideo,
 PC-Doctor, QuickTech, XingMP3

Additional Information

- MMX talk and additional references
 - http://www.ece.utexas.edu/~ravib/mmxdsp/
- NSP talk outline and links
 - http://www.ece.utexas.edu/~ravib/nsp/