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Problem 1.1 Filter Analysis.  28 points.  
Consider the following averaging filter with N coefficients.  It is a causal, linear time-invariant (LTI), 
finite impulse response (FIR), discrete-time filter with input x[n] and output y[n] described by 

𝑦[𝑛] =
1
𝑁 𝑥

[𝑛] +
1
𝑁 𝑥

[𝑛 − 1] + ⋯+
1
𝑁 𝑥

[𝑛 − (𝑁 − 1)] 

for n ³ 0.  For example, when N = 2, y[n] = (½) x[n] + (½) x[n-1] = ( x[n] + x[n-1] ) / 2 
which is the average of the current input sample x[n] and previous input sample x[n-1]. 

Please answer the following questions for an averaging filter for N coefficients. 
(a) What are the initial conditions and their values?  Why?  6 points. 

Look at the first output value y[0] to see what the initial conditions are. 

𝒚[𝟎] =
𝟏
𝑵𝒙

[𝟎] +
𝟏
𝑵𝒙

[−𝟏] + ⋯+
𝟏
𝑵𝒙

[−(𝑵 − 𝟏)] 
Initial conditions are x[-1], x[-2], …, x[-(N-1)] and they must be zero as a 
necessary condition for the system to be linear and time-invariant. 
Also, the initial conditions correspond to setting the memory location in each delay element 
in the block diagram in part (b) to zero. 
Note: A causal system does not depend on future input 
values, or current/future output values.  

(b) Draw the block diagram of the filter relating input x[n] and 
output y[n]. 6 points. 
Block diagram for an FIR filter from lecture slide 3-20: 
The values of the FIR coefficients are 

𝒂𝒊 =
𝟏
𝑵 					𝐟𝐨𝐫	𝒊 = 𝟎, 𝟏, … ,𝑵 − 𝟏 

(c) Derive a formula for the transfer function in the z-domain 
and the region of convergence.  4 points. 
Take z-transform of both sides of the difference equation with initial conditions being zero:  

𝒀(𝒛) =
𝟏
𝑵𝑿

(𝒛) +
𝟏
𝑵 	𝒛

"𝟏	𝑿(𝒛) + ⋯+
𝟏
𝑵 	𝒛

"(𝑵"𝟏)	𝑿(𝒛) 

𝑯(𝒛) =
𝒀(𝒛)
𝑿(𝒛) =

𝟏
𝑵 +

𝟏
𝑵 	𝒛

"𝟏 +⋯+
𝟏
𝑵 	𝒛

"(𝑵"𝟏) =
𝟏
𝑵?𝟏 + 	𝒛

"𝟏 +⋯+ 	𝒛"(𝑵"𝟏)@			𝐟𝐨𝐫	𝒛	 ≠ 	𝟎	 

(d) Give a formula for the discrete-time frequency response of the filter.  Justify the steps.  3 points. 
Since region of convergence 𝒛	 ≠ 	𝟎 includes the unit circle, we substitute z = e jw  in part (c): 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒆𝒋𝝎) =
𝟏
𝑵?𝟏 + 	𝒆

"𝒋	𝝎 +⋯+ 	𝒆"𝒋	(𝑵"𝟏)	𝝎@ 

(e) What is the group delay of the filter?  3 points. 
Answer #1: Since the impulse response {	𝟏

𝑵
, 𝟏
𝑵
, . . . , 𝟏

𝑵
	} is even symmetric 

about its midpoint at 𝒏 = 𝑵"𝟏
𝟐

, the group delay is 𝑵"𝟏
𝟐

 samples. 

Answer #2:  We factor the frequency response into amplitude A(w) and phase q(w) form: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 		
𝟏
𝑵	𝒆

"𝒋	/𝑵"𝟏𝟐 0𝝎 	H𝒆𝒋	/
𝑵"𝟏
𝟐 0𝝎 + 𝒆𝒋	/

𝑵"𝟑
𝟐 0𝝎 +⋯+ 𝒆"𝒋	/

𝑵"𝟑
𝟐 0𝝎 + 𝒆"𝒋	/

𝑵"𝟏
𝟐 0𝝎I 
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𝑯𝒇𝒓𝒆𝒒(𝝎) = 		
𝟐
𝑵	𝒆

"𝒋	/𝑵"𝟏𝟐 0𝝎 	H𝐜𝐨𝐬 H
𝑵 − 𝟏
𝟐 I + 𝐜𝐨𝐬 H

𝑵 − 𝟑
𝟐 I +⋯I 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 		
𝟐
𝑵	H𝐜𝐨𝐬 H

𝑵 − 𝟏
𝟐 I + 𝐜𝐨𝐬 H

𝑵 − 𝟑
𝟐 I +⋯INOOOOOOOOOOOPOOOOOOOOOOOQ

𝑨(𝝎)

	𝒆
𝒋	/"𝑵"𝟏𝟐 0𝝎3445446

𝜽(𝝎) = |	𝑨(𝝎)|	𝒆	𝒋	𝚯(𝝎)	 

Discontinuities in the phase occur at frequencies eliminated by the filter, i.e. when |A(w)| is 
zero. When A(w) is negative, the phase q(w) will shift by p, which won’t affect the derivative: 

𝑮𝑫(𝝎) = −
𝒅
𝒅𝝎 	𝜽

(𝝎) =
𝑵 − 𝟏
𝟐  

FIR filters with linear phase must have even or odd symmetry w/r midpoint of impulse response. 

(f) The averaging filter, for N ³ 2, is not only a lowpass filter, but can also be used to filter out the 
discrete-time frequency 2p/N rad/sample and its harmonics up to and including p rad/sample. 
By denoting fs as the sampling rate, 

i. What continuous-time frequency f0 corresponds to discrete-time frequency 2p/N ?  3 points. 

𝝎𝟎 = 𝟐𝝅
𝒇𝟎
𝒇𝒔
= 𝟐𝝅

𝟏
𝑵 		𝐰𝐡𝐢𝐜𝐡	𝐠𝐢𝐯𝐞𝐬	𝒇𝟎 =

𝒇𝒔
𝑵  

ii. What continuous-time frequency f1 corresponds to discrete-time frequency p ?  3 points. 

𝝎𝟏 = 𝟐𝝅
𝒇𝟏
𝒇𝒔
= 𝝅		𝐰𝐡𝐢𝐜𝐡	𝐠𝐢𝐯𝐞𝐬	𝒇𝟏 =

𝟏
𝟐𝒇𝒔 

Epilog. When N = 1, the impulse response is a discrete-time impulse d[n] whose frequency response 
is all-pass. The z-transform and discrete-time Fourier transform are a constant value of 1. 

When N ³ 2, the impulse response is a rectangular pulse of N samples in duration. In continuous-
time, the Fourier transform of a rectangular pulse of length T seconds is a sinc with its first zero at 
2p/T rad/s (homework 0.1). In discrete-time, the frequency domain is periodic with period 2p.  The 
discrete-time Fourier transform of a rectangular pulse of N samples is a periodic sinc: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = ` 𝒉[𝒏]	𝒆"𝒋𝝎𝒏 = ` H
𝟏
𝑵I

(𝒆"𝒋𝝎)𝒏
𝑵"𝟏

𝒏;𝟎

=
𝟏
𝑵b

𝟏 − 𝒆"𝒋𝑵𝝎

𝟏 − 𝒆"𝒋𝝎 c =
<

𝒏;"<

𝐬𝐢𝐧 e𝑵𝟐 𝝎f

𝑵	𝐬𝐢𝐧 e𝝎𝟐fNOOPOOQ
𝑫𝑵(𝝎)

𝒆"𝒋/
𝑵"𝟏
𝟐 0𝝎 

Below, we plot the amplitude function DN(w) on the left and its magnitude on the right for N = 10: 
 
  
w = -pi : 0.001 : pi; 
N = 10; 
d = sin(N*w/2) ./ (N * sin(w/2)); 
figure; 
plot(w, d) 
ylim( [-0.4, 1.2] ); 
xlim( [-pi, pi] ); 
figure; 
plot(w, abs(d)); 
ylim( [0, 1.2] ); 
xlim( [-pi, pi] ); 
 w w 

2𝜋
𝑁  

DN(w) | DN(w) | 

Midterm 1 Problem 1.4(a)   

2𝜋
𝑁  

. 

. 

A lowpass averaging filter can be made more 
efficient by using all ones for the coefficients.  
In lab 7, we’ll learn about FIR comb filters 
which have even lower run-time complexity 
to eliminate a frequency and its harmonics. 

HW 1.2(a)   

Lecture Slide 4-6   

HW 1.2(a) 



Problem 1.2.  Filter Design.  24 points.  

Consider a second-order discrete-time linear time-invariant (LTI) infinite impulse response (IIR) filter. 
The biquad filter has zeros z0 and z1 and poles p0 and p1, and its transfer function in the z-domain is 

𝐻(𝑧) = 𝐶
(𝑧 − 𝑧>)(𝑧 − 𝑧?)
(𝑧 − 𝑝>)(𝑧 − 𝑝?)

 

Biquad is short for the “biquadratic” transfer function that is a ratio of two quadratic polynomials. 

In this problem, all of the poles and zeros will be real-valued. 
In each part below, design a biquad by placing real-valued poles and zeros to achieve the indicated 
frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass or notch) or indicate that no such 
biquad with real-valued poles and zeros could be designed. 

Please use O to indicate real-valued zero locations and X to indicate real-valued pole locations. 

Re(z) 

Im(z) 
(a) Lowpass filter 

Re(z) 

Im(z) 
(b) Highpass filter 

Re(z) 

Im(z) 
(c) Bandpass filter 

Re(z) 

Im(z) 
(d) Bandstop filter 

Re(z) 

Im(z) 
(e) Allpass filter 

Re(z) 

Im(z) 
(f) Notch filter 

X O 
z0 = -1 
z1 = -1 

(2) 

p0 = 0.9 
p1 = 0.9 

p0 = -0.9 
p1 = -0.9 

(2) 
X 

(2) 
O 

(2) 

z0 = 1 
z1 = 1 

O O X 
(2) 

z0 = -1 z1 = 1 p0 = 0 
p1 = 0 

X X 
p0 = -0.9 p1 = 0.9 z0 = 0 

z1 = 0 

O 
(2) 

X O X O 
p1 = 0.80 
z1 = 1.25 

P9 = -0.80 
z0 = -1.25 

X O X O 
p1 = 0.9 
z1 = 1.0 

p9 = -0.9 
z0 = -1.0 

Lecture Slides 6-5 to 6-10 

Midterm 1 
Spring 2007 Prob 1 

Fall 2011 Prob 1 
Fall 2016 Prob 1 

Spring 2019 Prob 2 
Fall 2019 Prob 2(b) 

Midterm 1 
Fall 2010 Prob 1 

Spring 2012 Prob 1 
Fall 2014, Prob 3 

Fall 2019, Prob 2(c) 
 

HW 3.1(c) 

HW 0.4 1.1 2.1 3.1 & 3.3 Labs 2 & 3 

In-Lecture #2 Assignment 

Midterm 1 
Fall 2019, Prob 1(f) 

Spring 2020, Prob 1(f) 
 

Similar to Midterm 1, Fall 2014, Prob 1.3 

For lowpass, highpass, 
bandpass and bandstop 
filters, place the poles 
at separate angles from 
the zeros.  Angles of 
poles near unit circle 
indicate passband 
frequencies.  Angles of 
zeros on or near unit 
circle indicate 
stopband frequencies.   

Allpass: Pole-zero 
pairs at same angle 
and reciprocal 
magnitudes. 

Handout O on 
All-pass Filters 



Epilog. Plots of the magnitude responses of the six filters using the freqz command.  All transfer 
functions were normalized so that maximum magnitude response would be 1 in linear units or 0 dB. 

 

 

 

 

 

 

figure; 
z0 = -1; z1 = -1; p0 = 0.9; p1 = 0.9; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = 1; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(a) Lowpass'); 
 
 
figure; 
z0 = 1; z1 = 1; p0 = -0.9; p1 = -0.9; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = -1; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(b) Highpass'); 
  
 
 
figure; 
z0 = -1; z1 = 1; p0 = 0; p1 = 0; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = j; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(c) Bandpass'); 
  
 
figure; 
z0 = 0; z1 = 0; p0 = -0.9; p1 = 0.9; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = 1; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(d) Bandstop'); 
  
 
figure; 
z0 = -1.25; z1 = 1.25; p0 = -0.8; p1 
= 0.8; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = 1; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(e) Allpass'); 
  
 
figure; 
z0 = -1; z1 = 1; p0 = -0.9; p1 = 0.9; 
numer = [1 -(z0+z1) z0*z1]; 
denom = [1 -(p0+p1) p0*p1]; 
z = j; zvec = [ 1 z^(-1) z^(-2) ]'; 
gain = (denom*zvec) / (numer*zvec); 
freqz( gain*numer, denom ) 
title('(f) Notch'); 
 



Problem 1.3 Analysis of Filter Designs.  24 points.  
Two discrete-time linear time-invariant (LTI) infinite impulse response (IIR) filter designs are below. 

Assume that both filters meet the same magnitude specifications.  All zeros are on the unit circle. 
  

Design #1 
Number of complex/real poles: 18 Complex 

Number of complex/real zeros: 18 Real 
Passband behavior: Monotonic 
Stopband behavior: Monotonic 

Design method: Butterworth 

Design #2 
Number of complex/real poles: 10 Complex  
Number of complex/real zeros: 10 Complex 

Passband behavior: Rippling  
Stopband behavior: Rippling 

Design method: Elliptic 

Please answer the following questions about the filter designs with justification.  3 points each. 
 Design #1 Design #2 
(a) Filter Order #poles = 18 #poles = 10 
(b) Bounded-Input Bounded 
Output (BIBO) Stability? 

Yes, all poles inside unit circle per 
Lecture Slides 6-15 and 6-16 

Yes, all poles inside unit circle per 
Lecture Slides 6-15 and 6-16 

(c) Approximate range of 
discrete-time frequencies in 
the passband in rad/sample 

Pole and zero angles separated; 
estimate outer pole locations gave 
pole angles from 0.395p to 0.505p 

Pole and zero angles separated; 
estimate outer pole locations gave 

pole angles from 0.4p to 0.5p 

(d) Frequency selectivity 
(lowpass, highpass, bandpass, 
bandstop, allpass or notch) 

 
Bandpass due to part (c) 

 
Bandpass due to part (c) 

(e) Number of multiplication 
operations using a cascade of 
biquads filter structure 

9 biquads x 5 mults = 45 mults 
Fall 2018, Problem 1.4(a) -OR- 
9 biquads x 4 mults = 36 mults 

because all zeros on unit circle per 
homework 3.3(b)(c) 

5 biquads x 5 mults = 25 mults 
Fall 2018, Problem 1.4(a) -OR- 
5 biquads x 4 mults = 20 mults 

because all zeros on unit circle per 
homework 3.3(b)(c) 

(f) Amount of memory 
storage (in words) using a 
cascade of biquads filter 
structure 

9 biquads x 5 words = 45 words 
Fall 2018, Problem 1.4(a) -OR- 
9 biquads x 4 words = 36 words 

because all zeros on unit circle per 
homework 3.3(b)(c) solution 

5 biquads x 5 words = 25 words 
Fall 2018, Problem 1.4(a) -OR- 
5 biquads x 4 words = 20 words 

because all zeros on unit circle per 
homework 3.3(b)(c) solution 

(g) Give an advantage of each 
design, and indicate which 
design you would choose. 

Lower maximum value of group 
delay due wider transition region 

per Spring 2020, Prob 1.3(c) 

Lower run-time complexity due to 
fewer multiplications in part (f) 

(h) Describe the frequency 
response if all poles are 
removed, including selectivity 

Bandpass FIR filter with 
center frequency of p/2 due to all 

zeros being at either p or -p 

Weak bandpass FIR filter with 
same center frequency with six 

frequencies removed 

 

Lecture Slides 6-5 to 6-10 
 

In-Lecture #2 Assignment 
 HW 1.1 2.1 3.1 & 3.3 

  
Labs 3 

  

See work on 
next page 

Midterm 1, Spring 2016, Prob 1.3 

See alternate 
answer on 
next page 

Storage of 
input & output 
samples should 
have been 
included  



(c) Poles are separated from the zeros in angles, and the poles are close to the unit circle.  The pole 
angles indicate the passband frequencies.  Below, I’ve estimated the pole angles by zooming into 
the pole-zero plots in the PDF file and measuring their locations with a ruler. 
Design #1. I estimated the pole location with the least positive angle to be at 0.3162 + j*0.9191, 
which is an angle of about 0.395p, and the pole with the greatest positive angle to be at -0.0147 + 
j*0.9706, which is an angle of about 0.505p.  The pole in the middle of the passband is measured 
to be 0.1360+j*0.8235, which has an angle of about 0.45p rad/sample. 

Design #2, I estimated the pole location with the least positive angle to be at 0.3051 + j*0.938, 
which is an angle of about 0.4p.  The pole with the greatest positive angle approximately resides 
on the imaginary axis, which is an angle of 0.5p.  The pole in the middle of the passband is 
measured to be 0.1496+j*0.9382, which has an angle of about 0.45p rad/sample. 
(g) Butterworth design:  Magnitude response is monotically decreasing with frequency (no 

rippling).  The attenuation in the stopband increases with increasing frequency.  The 
Butterworth desin has nearly linear phase over a wider range of passband frequencies than 
the Elliptic design (per homework problem 3.3). 
Elliptic design:  Magnitude response has much a sharper transition from the passband to 
either stopband. 

 
Epilog.  This filter was designed using the default 
specification in the filter design and analysis tool in 
Matlab for bandpass filter design: 

• Bandpass frequency selectivity 
• IIR fiilter 
• Minimum order design 
• fs =         48000 Hz 
• fstop1 =    7200 Hz    (0.3p rad/sample) 
• fpass1 =   9600 Hz    (0.4p rad/sample) 
• fpass2 = 12000 Hz    (0.5p rad/sample) 
• fstop2 = 14400 Hz    (0.6p rad/sample) 
• Astop1 =     60 dB 
• Apass =         1 dB 
• Astop2 =     80 dB 

 
To meet these magnitude specifications with a linear 
phase FIR filter, a Parks-McClellan design algorithm 
requires an FIR filter with order 52.  An FIR filter of 
order 52 would require 53 multiplication operations per 
output sample, compared with 20 for the elliptic IIR 
filter (implemented as a cascade of biquads) and 36 for 
the Butterworth IIR filter (implemented as a cascade of 
biquads).  The linear phase FIR filter has a group delay 
of 26 samples for all frequencies (i.e. order/2 samples). 

  

Group delay vs. frequency 

Butterworth 
Design 

Elliptic 
Design 



Problem 1.4.  Mixer.  24 points. 
Sinusoidal amplitude modulation upconverts a baseband (low-
frequency) signal into a bandpass (higher frequency) signal.  
A block diagram for sinusoidal amplitude modulation is shown on 
the right. The lowpass filter (LPF) enforces the baseband bandwidth 
to be f1. The bandpass filter (BPF) enforces the transmission 
bandwidth to be 2f1 centered at fc. 
The circuitry can be simplified by replacing the analog multiplier 
and cosine generator with a sampling block that operates at 
sampling rate fs. The sampler could be implemented with a pass 
transistor and a generator of a simpler periodic waveform. 
Assume ideal lowpass and bandpass filters shown on the right. 

Using the spectrum for X(f) on the right,  
(a) Draw V(f).  6 points.  

V(f) = HLPF(f) X(f). The lowpass 
filter only passes frequencies from -
f1 to f1, and signal x(t) only has 
frequencies between -f1 and f1. 

(b) Draw S(f). 6 points. Assume an ideal 
sampler that closes the switch to gate the input voltage to the output instantaneously and opens 
switch instantaneously. Switch is closed/opened every Ts seconds where Ts = 1 / fs and fs is the 
sampling rate. We model the sampler as modulation by an impulse train p(t). 

 
 
 
 
 

𝑝(𝑡) = ` 𝛿(𝑡 − 𝑛	𝑇@)
<

A;"<

 

𝑃(𝑓) = 𝑓@ ` 𝛿(𝑓 − 𝑘	𝑓@)
<

B;"<

 

(c) Draw Y(f). 6 points. 
S(f) has spectrum of V(f) scaled by fs  
plus its replicas at offsets of integer  
multiples of fs.  We’ll set fc = k fs so that 
the BPF selects the kth replica. 

(d) Give formulas that describe all the possible 
values for fs so that the mixer implements 
sinusoidal amplitude modulation. 6 points. 
We would like the BPF selects the kth replica that matches the carrier frequency: fc = k fs 
We would also like to avoid aliasing by keeping gaps between adjacent replicas:  fs > 2 f1 

Sinusoidal Amplitude Modulation 

Mixer 

s(t) = v(t) p(t) 

𝑆(𝑓) = 𝑉(𝑓) ∗ 𝑃(𝑓) = 𝑉(𝑓) ∗ v𝑓@ ` 𝛿(𝑓 − 𝑘	𝑓@)
<

B;"<

w = 𝑓@ ` 𝑉(𝑓 − 𝑘	𝑓@)
<

B;"<

 

Lectures 1 & 4 
 

HW 0.1 0.2 0.3 1.3 2.2 3.2 Lab 2 

Midterm 1: Sp 2018, Prob 1.2; Fall 2017, Prob 1.2; Fall 2013, Prob 1.4 



We covered the mixer implementation in lecture on September 9, 2020, as part of lecture 1, and 
here’s the market board work.  The picture is linked into the Web page for lecture 1: 

 
 
Epilog: The idea of using the replicas generated by sampling for upconversion as in this problem 
can also be applied to downconversion.  Upconversion and downconversion using sampling is 
also called “bandpass sampling”.  More info is available on lecture slides 4-15 to 4-17 given below. 
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Bandpass Sampling
• Reduce sampling rate

Bandwidth: f2 – f1
Sampling rate fs must

be greater than analog
bandwidth fs > f2 – f1

For replica to be centered
at origin after sampling
fcenter = ½(f1 + f2) = k fs

Ideal Bandpass Spectrum

f1 f2 f–f2 –f1

Sample at fs

Sampled Ideal Bandpass Spectrum

f1 f2 f–f2 –f1

Lowpass filter to 
extract baseband

Bandpass Sampling

• Practical issues
Sampling clock tolerance:  fcenter = k fs
Effects of noise
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Bandpass Sampling
• Sampling theorem

Maximum frequency f2
fs > 2 f2

Ideal Bandpass Spectrum

f1 f2 f–f2 –f1

Bandpass Sampling

• Bandpass sampling
Bandwidth f2 – f1
fs > f2 – f1

• 2.4 GHz unlicensed band
f1 = 2.4 GHz
f2 = 2.5 GHz (2.499 GHz)
Bandwidth = 0.1 GHz
fc = 2.45 GHz

• Sampling theorem
fs = 5.0 GHz

• Bandpass sampling
fs = 0.245 GHz
20x more efficient

Sampling for Up/Downconversion
• Upconversion method

Sampling plus bandpass 
filtering to extract 
intermediate frequency 
(IF) band with fIF = kIF fs

f

fmax-fmax

ffs fIF-fIF -fs

Sample 
at fs

Bandpass Sampling
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f1 f2

f

–f2 –f1

f

–f2 –f1 -fIF fIF f1 f2

• Downconversion method
Bandpass sampling plus 
bandpass filtering to extract 
intermediate frequency (IF) 
band with fIF = kIF fs

Bandpass sampling 
is used to accelerate 
simulations of RF 
communication 
systems because of 
the large reduction 
in sampling rate and 
an equal amount of 
reduction in 
simulation runtimes. 


