\% In-Lecture \#4 Assignment related to Homework 5.1 Steepest Descent

\% This assignment introduces steepest descent algorithms.
\% Please see Figure 6.15 at the top of page 116 in JSK's Software Receiver \% Design book.
\% Also, see the introduction to the steepest descent algorithms marker board explanation from the homework \#5 hints for problem 5.1.
\% Also, see problem 2.1 on Spring 2016 Midterm \#2.
\% Consider performing an iterative minimization of objective function $\% J(x)=x^{\wedge} 2-14 x+49=(x-7)^{\wedge} 2$
$\%$ via the steepest descent algorithm (JSK equation (6.5) on page 116). $\left.\% x[k+1]=x[k]-\mu \frac{d J(x)}{d x}\right]_{x=x[k]}$
\% a. Visualize and analyze the shape of the objective function $J(x)$.
$\% \quad 1)$ Plot $J(x)$ for $5<x<9$. Give the Matlab code for your answer.
$\mathrm{x}=[5$: 0.01 : 9];
$J=x . \wedge 2-14 * x+49$;
figure;
plot (x, J); $\% \%$ At end of document
\% 2) Describe the plot.
\% Answer: It's a concave up parabola (bowl)
\% 3) How many local minima do you see?
\% Answer: 1 at $x=7$
\% 4) Of the local minima, how many are global minima?
\% Answer: The local minimum is also a global minimum.
b. As first step in deriving steepest descent update equation,
\% compute the first derivative of $J(x)$ with respect to x .
\% Answer: $\mathrm{dJ}(\mathrm{x}) / \mathrm{dx}=2 \mathrm{x}-14$
$\% \mathrm{c}$. Implement the steepest descent algorithm in Matlab with $x[0]=5$.
$\% \quad 1)$ What value of x did steepest descent reach in 50 iterations with $\mathrm{mu}=0.01$?
\% Answer: $x=6.2568$
\% 2) What value of x did steepest descent reach in 50 iterations with mu=0.1?
\% Answer: $x=7.0$
$\% \quad 3)$ Is the above value the global minimum of $J(x)$? Why or why not?
\% Answer: Yes, the objective function has only one minimum.

```
% polyconverge.m find the minimum of J(x) via steepest descent
N=50; % number of iterations
```

```
mu=0.01; % algorithm stepsize
x=zeros(1,N); % initialize sequence of x values to zero
x(1)=5.0; % starting point x(1)
for k=1:N-1
    x(k+1)= x(k) - (2*x(k)-14)*mu; % update equation
end
figure;
stem(x); % to visualize approximation
x(N)
```

Plots for $\mathrm{mu}=0.01$

Plot of $J(x)$ vs. x

Plot of x vs. iterations

Plots for $\mathrm{mu}=0.1$

Plot of $J(x)$ vs. x

Plot of x vs. iterations

