\% In-Lecture Assignment \#2 on April 13, 2020

\% Consider performing an iterative minimization of objective function $\% J(x)=x^{\wedge} 2-14 x+49=(x-7)^{\wedge} 2$
$\%$ via the steepest descent algorithm (JSK equation (6.5) on page 116).
$\left.\% x[k+1]=x[k]-\mu \frac{d J(x)}{d x}\right]_{x=x[k]}$
\% a. Visualize and analyze the shape of the objective function $J(x)$.
$\% \quad 1)$ Plot $J(x)$ for $5<x<9$. Give the Matlab code for your answer.
$x=[5: 0.01: 9] ;$
$\mathrm{J}=\mathrm{x} .{ }^{\wedge} 2-14 * \mathrm{x}+49$;
figure;
plot(x, J); $\% \%$ At end of document
\% 2) Describe the plot.
\% Answer: It's a concave up parabola (bowl)
$\% \quad 3)$ How many local minima do you see?
\% Answer: 1 at $x=7$
\% 4) Of the local minima, how many are global minima?
\% Answer: The local minimum is also a global minimum.
\% b. As first step in deriving steepest descent update equation,
\% compute the first derivative of $J(x)$ with respect to x.
\% Answer: $\mathrm{dJ}(\mathrm{x}) / \mathrm{dx}=2 \mathrm{x}-14$
$\% \mathrm{c}$. Implement the steepest descent algorithm in Matlab with $x[0]=5$.
\% 1) What value of x did steepest descent reach in 50 iterations with mu=0.01?
\% Answer: $x=6.2568$
\% 2) What value of x did steepest descent reach in 50 iterations with mu=0.1?
\% Answer: $x=7.0$
$\% \quad 3)$ Is the above value the global minimum of $J(x)$? Why or why not?
\% Answer: Yes, the objective function has only one minimum.

```
% polyconverge.m find the minimum of J(x) via steepest descent
N=50; % number of iterations
mu=0.01; % algorithm stepsize
x=zeros(1,N); % initialize sequence of x values to zero
x(1)=5.0; % starting point x(1)
for k=1:N-1
    x(k+1)=x(k) - (2*x(k)-14)*mu; % update equation
end
figure;
stem(x); % to visualize approximation
x(N)
```

Plots for $\mathrm{mu}=0.01$

Plot of $J(x)$ vs. x

Plot of x vs. iterations

Plots for $\mathrm{mu}=0.1$

Plot of $J(x)$ vs. x

Plot of x vs. iterations

