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Spring 2014    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

 Homework #0 Solutions on Review of Signals and Systems Material 

Problem 0.1.  Continuous-Time Sinusoidal Generation. 

In practice, we cannot generate a two-sided sinusoid cos(2  fc t), nor can we wait until the end 

of time to observe a one-sided sinusoid cos(2  fc t) u(t). 

In the lab, we can turn on a signal generator for a short time and observe the output in the time 

domain on an oscilloscope or in the frequency domain using a spectrum analyzer.  

Consider a finite-duration cosine that is on from 0 sec to 1 sec given by the equation 

c(t) = cos(2  fc t) rect(t – ½) 

where fc is the carrier frequency (in Hz). 

Part (a).  Using MATLAB, LabVIEW Mathscript or GNU Octave, plot c(t) for -0.5 < t < 1.5 for fc = 

10 Hz. Turn in your code and plot. You may find the rectpuls command useful. Give a formula 

for the Fourier transform of c(t) for a general value of fc. 

Solution: Use MATLAB to plot the signal c(t) = cos(2  f0 t) rect(t - ½) for -0.5 < t < 1.5.  We’ll 

need to pick a sampling rate fs so that fs > 2 fmax to obey the sampling theorem.  The value of fmax 

could be computed using the answer in part (d) but we know from the modulation property of the 

Fourier transform that fmax is f0 plus the bandwidth of rect(t - ½) .  Let’s overample: fs = 100 Hz. 

 

Part (b). Sketch by hand the magnitude of the Fourier transform of c(t) for a general value of fc. 

Using MATLAB, LabVIEW Mathscript or GNU Octave, plot the magnitude of the Fourier transform 

of c(t) for fc = 8 Hz. Turn in your code and plot. 

Solution:  Taking the Fourier transform of c(t) we obtain 

MATLAB code 
Ts = 0.01; 

t= -0.5 : Ts : 1.5;  

f0 = 10; 

x = cos(2*pi*f0*t); 

h = rectpuls(t-0.5); 

c = x .* h; 

figure  

plot(t,c) 

grid 

title('Truncated Cosine') 

xlabel('t') 

ylabel('c(t)') 
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by using the Fourier transform property that multiplication in the time domain is convolution in 

the frequency domain.  We then lookup the Fourier transforms of cosine and rectangular pulse: 
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where sinc(x) = sin( x) / ( x).   Then, 

 
When plotting by hand, the first term on the right hand side of the equation is centered at 

f0=0/2, and the second is centered at –f0=-0/2.  We can then take the absolute value: 

 
When plotting in Matlab, we can plot the full formula for the Fourier transform magnitude.  

 

A spectrum analyzer would display the above magnitude spectrum plus noise. 

 

Part (c). Describe the differences between the magnitude of the Fourier transforms of c(t) and a two-

sided cosine of the same frequency. What is the bandwidth of each signal? 

MATLAB code 
f0=8;  

f=[-20:0.1:20];  

C = 0.5*exp(-j*pi*(f-f0)).*sinc(f-f0) + 

0.5*exp(-j*pi*(f+f0)).*sinc(f+f0);  

plot(f,abs(C))  

grid 

title('Plot of Magnitude of Fourier 

Transform of c(t)')  

xlabel('f (Hz)')  

ylabel('|C(f)|')  
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Solution: Bandwidth is the non-zero extent in positive frequencies of the signal's spectrum.  

Fourier transform of the two-sided cosine x(t) = cos(2  f0 t) is X() =  ((+0)+ (-0)): 

 

Each Dirac delta has width of zero and area of .   Bandwidth is zero. 

From the plot in part (c), the bandwidth of C() is not zero.  This is because of the 

multiplication of the two-sided cosine by rect(t - ½) in the time domain. 

Each of the following is a valid method to estimate the bandwidth of bandpass signal C(): 

 Set amplitude threshold of magnitude spectrum at an arbitrary point below which 
amplitudes are treated as if zero.  If we use 0.15 as the threshold for the plot in part (c), 
then we can eyeball the estimated bandwidth of C() to be 1.5 Hz. 

 Measure width of the mainlobe in the magnitude spectrum between the two zero 
crossings on either side of the carrier frequency.  For the magnitude spectrum in part 
(c), we can eyeball the estimated bandwidth to be 2 Hz. 

 Estimate the power bandwidth to capture 90% of the area under the power spectrum.   
With a center frequency of 8 Hz, a bandwidth of 20 Hz would only occupy 55% of the 
total area.  This approach does not work all that well in this case.  More discussion next.  

First, we define a function called myfun in file myfun.m to compute |C(f)|: 

function mag_C = myfun(f) 

f0=8;  

mag_C = abs(0.5*exp(-j*pi*(f-f0)).*sinc(f-f0) + ... 

0.5*exp(-j*pi*(f+f0)).*sinc(f+f0)); 

Next, we can approximate the total area under the magnitude spectrum by using 1000 Hz 

in place of ∞ and using the numerical integration function quad: 

area = quad(@myfun,0,1000); 

Finally, frequencies 0 to 20 Hz only contain 55% of the area: 

area1 = quad(@myfun,0,20); 

We are better off eyeballing the bandwidth from the plot of the magnitude spectrum. 
 

Problem 0.2.  Downconversion. 

A signal x(t) is input to a mixer to produce the output y(t) where y(t) = x(t) cos(0 t) and 

() () 
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0 = 2  f0 and f0 = 2 kHz.  A block diagram of the mixer is shown below on the left.  The 

Fourier transform of x(t) is shown below on the left. 

 

Part (a). Using Fourier transform properties, derive an expression for Y(f) in terms of X(f). 

Solution:  Fourier transform of y(t) = x(t) cos(0 t) is Y(ω) = 
2

1
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Part (b). Sketch Y(f) vs. f  

 

 

 

Part (c). What operation would you apply to the signal y(t) in part (b) to obtain a baseband signal? 

The process of extracting the baseband signal from a bandpass signal is known as downconversion. 

Solution: Baseband signal may be obtained by applying a lowpass filter to y(t) that passes 

frequencies in [-1,1] kHz and attenuates frequencies at and above 3 kHz in absolute value.  

Problem 0.3.  Sampling in Continuous Time. 

Sampling the amplitude of an analog, continuous-time signal f(t) every Ts seconds can be 

modeled in continuous time as y(t) = f(t) p(t) where p(t) is the impulse train defined by 
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Ts is known as the sampling duration.  The Fourier series expansion of the impulse train is  

where s = 2  / Ts is the sampling rate in units of radians per second. 

Part (a). Plot the impulse train. 

Solution: Plot of the impulse train  
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The notation (A) means that the area under the Dirac delta is A. This is important because 

the value of the Dirac delta at the origin is undefined. 

Part (b).  Note that in part (a), p(t) is periodic. What is the period? 

Solution: A signal x(t) is periodic with period T if x(t) = x(t  T) for all t.  The smallest value of T 

for which x(t) is periodic is called the fundamental period. The impulse train )(tp is periodic with 

fundamental period sT . The fundamental period is used in the Fourier series expansion of the 

impulse train where the sampling rate in rad/s is s = 2  / Ts : 

 Part (c).  Using the Fourier series representation of p(t) given above, please give a formula for 

P(), which is the Fourier transform of p(t). Express your answer for P() as an impulse train in the 

Fourier domain. 

Solution: We apply the Fourier transform to p(t) given immediately above to compute  
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Part (d). What is the spacing of adjacent impulses in the impulse train in P() with respect to 

frequency  in rad/s?  

Solution:  The spacing of the impulse train P() in  is s, which is the distance between 

adjacent impulses in the Fourier domain.  

Problem 0.4. Discrete-Time Sinusoidal Generation. 

Consider a causal discrete-time linear time-invariant system with input x[n] and output y[n] 

being governed by the following difference equation: 

y[n] = (2 cos 0) y[n-1] - y[n-2] +  (sin 0) x[n-1] 

The impulse response of the above system is a causal sinusoid with discrete-time frequency 0 

in units of rad/sample. The value of 0 would normally be in the interval [-, ).  You will be 

implementing the above difference equation in C in lab #2 on a programmable digital signal 

processor for real-time sinusoidal generation. 

Part (a). Draw the block diagram for this system using add (or summation), multiplication (or gain), 

and delay blocks. Please label delay blocks with the text z-M  to denote a delay of M samples. Use 

arrowheads to indicate direction of the flow of signals. 

Solution:  Block diagram of the given filter with input x[n] and output y[n] and with 

coefficients b1 = sin 0 and a1 = 2 cos 0 : 
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Part (b). Please state all initial conditions. Please give values for the initial conditions to satisfy 

the stated system properties. 

Solution:  Initial conditions can be found by calculating the first few output values: 

y[0] = (2 cos 0) y[-1] - y[-2] + (sin 0) x[-1] 

y[1] = (2 cos 0) y[0] - y[-1] + (sin 0) x[0] 

Hence, the initial conditions are given by y[-1], x[-1] and y[-2].  These values correspond to 

the initial values in the delay-by-one-sample blocks, which are denoted by z -1.  

The impulse response is given as h[n] = sin(0  n) u[n].  That is, for x[n] = [n], the output is 

y[n] = h[n], which gives y[-1] = h[-1] = 0 and y[-2] = h[-2] = 0 and x[-1] = [-1] = 0, 

For the system to satisfy the linearity property, the initial conditions must be zero.  Same 

goes for the system property of time-invariance.  We will show this on slides 3-11 and 3-12. 

Part (c). Find the equation for the transfer function in the z-domain, including the region of 

convergence. 

Solution:  y[n] = (2 cos 0) y[n-1] - y[n-2] + (sin 0) x[n-1] 

Taking z-transform of both sides, we get 

Y(z) = (2 cos 0)  z-1 Y(z) - z-2 Y(z) + (sin 0) z-1 X(z) 

=> 
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To find the region of convergence, we need to find the poles of this transfer function:  

1 - (2 cos 0) z-1 + z-2 = 0 

By multiplying each side by z2 (assuming that z ≠ 0): 

z2 - (2 cos 0) z + 1 = 0 

Roots are located at ½ (-b  sqrt()).  Here, 
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Since  < 0, there are two complex roots: 
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Both poles have a magnitude of 1.  As a result, they lie on the unit circle in the z-plane. 

Since the system is causal, the region of convergence will be outside of the circle of radius 

equal to the magnitude of the pole with the greatest magnitude, i.e. |z| > 1. 

Part (d). Compute the inverse z-transform of the transfer function in part (c) to find the impulse 

response of the system. 

Solution:  By using inverse z-transform tables, the above H(z) with the given region of 

convergence will have an impulse response of h[n] = sin(0  n) u[n]. 

Part (e). Using MATLAB, LabVIEW Mathscript or GNU Octave, plot the impulse response 

obtained in part (d) for 0 equal to 0, π, and a value in the interval (0, π) of your choosing. Turn 

in your code and plots. 

Solution:  0 is 0 rad/sample (left), π rad/sample (center), and π/4 rad/sample (right): 

   

Sample MATLAB code for 0 = π/4:  

  

 

In the middle plot, which is for 0 = π rad/sample, all amplitude values should have been 

zero.  Non-zero values are due to numerical error in computing sin(0  n) for 0 ≤ n ≤ 25 in 

floating-point arithmetic.  The values are on the order of 10-15, which is very close to zero.  

w0 = pi/4; 
n = [0:25]; 
u = stepfun(n,0); 
x = sin(w0*n); 
h = x.*u; 
figure, stem(n,h); 


