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1.0 Introduction (3 points) 

This mini-project uses a sum of sinusoids to synthesize a recorded musical note played on a violin. A 

musical note consists of a principal frequency of the note plus its harmonics. Our goal will be to use a 

sum of sinusoids to analyze and synthesize a recorded note played by a musical instrument.  In the sum 

of sinusoids, we will use frequencies that are harmonics of a fundamental frequency, and some of those 

will be close in value to the principal frequency of the note being played and its harmonics. 

 

2.0 Overview (5 points) 

A continuous-time periodic signal with period T0 in seconds is composed of a constant term plus 

frequency components at integer multiples (harmonic) of a fundamental frequency f0 where f0 = 1 / T0.  

Fourier series analysis computes the constant term plus the magnitude and phase of each frequency term: 

 

where  and    

 

For any real-valued signal x(t), 𝑎−𝑘 = 𝑎𝑘
∗  where 𝑎𝑘 =

1

2
𝐴𝑘𝑒𝑗𝜙𝑘  , as shown in Section 3.1 of [2], 

 

 

 

We can synthesize x(t) by keeping a finite number of terms.  Sometimes, the synthesis is exact. 

When propagating in air, audio signals consist of propagating acoustic pressure waves.  A microphone 

can convert the intensity of the impinging acoustic pressure wave into an analog continuous-time voltage 

signal, which an analog-to-digital converter can convert into a digital discrete-time audio signal.  For 

playback, a digital-to-analog converter will convert the digital discrete-time audio signal into an analog 

continuous-time voltage signal, which can be converted into acoustic pressure waves by an audio 

speaker.  Common sampling rates for voice include 8000 Hz, 16000 Hz, and 32000 Hz as well as 11025 

Hz and 22050 Hz and for audio include 44100 Hz (audio CD) and its multiple 88200 Hz as well as 

48000 Hz for digital audio tape and its multiples 96000 Hz and 192000 Hz. 

 

3.0 Analyzing a Music Recording 

There are many ways to create a digital audio signal, including recording from a microphone, reading 

from a file, and generating sound from a formula.  In this section, we’ll download a recording of an 

acoustical instrument, play the recording, and analyze the recording in the time and frequency domains. 

3.1 Download the Recording 

We analyzed a recording of a violin playing ‘C’ in the fourth octave (‘C4’) on the Western scale which 

has a principal frequency of 261.63 Hz.  The recording is from a collection of single notes of different 
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principal frequencies played by different acoustic instruments from Prof. Dan Ellis at Columbia 

University and sampled at 11025 Hz.  We will analyze the recording in ‘violin-C4.wav’. 

3.2 Time-Domain Analysis 

We can now analyze the musical note in the time domain. 

(a) 6 points. A time-domain plot of the musical note is 

generated in Matlab and shown on the right.  The note lasts 

for 3.491s. 

% Read the contents of the audio file 

waveFilename = 'violin-C4.wav'; 

[instrumentSound, fs] = audioread(waveFilename); 

 

% Play back the recording with automatic scaling 

soundsc(instrumentSound, fs); 

  

% Plot the waveform in the time domain 

N = length(instrumentSound); 

Ts = 1/fs; 

Tmax = (N-1)*Ts; 

t = 0 : Ts : Tmax; 

figure; 

plot(t, instrumentSound); 

xlabel('Time [s]'); 

ylabel('Signal amplitude'); 

 

(b) 6 points. We computed the average value of the signal using MATLAB:   

mean(instrumentSound) 

  -0.0016 

The average value (DC component) is close to 0 relative to the amplitudes of the rest of the audio signal. 

It is common to remove the average value in speech and audio signals because the average value would 

occupy bits in the sampled data but cannot be perceived by the human auditory system. Moreover, 

playback systems typically pass frequencies within the range of human hearing of 20 Hz to 20 kHz.  

 

(c) 6 points. We estimated the principal frequency of the note 

being played from the time-domain plot.   First, we zoomed 

into the time-domain plot from 1.5s to 1.6s using the 

MATLAB command 

xlim( [1.5 1.6] ); 

To estimate the principal frequency, we counted the number 

of periods, estimated the fundamental period by dividing the 

duration of time by the number of periods, and inverted the 

estimate of the fundamental period.  

i. See the zoomed plot from 1.5s to 1.6s on the right. 

We used the Data Tips Tool in MATLAB to click 

on the start of the first period at 1.50295s and end of 

the last period 1.599s to estimate the fundamental period.  25 periods are in the above plot. 

ii. We compared the estimated and actual principal frequency of a ‘C4’ note using the following 

https://www.ee.columbia.edu/~dpwe/
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MATLAB code 

fundPeriod = (1.599 - 1.50295) / 25 

fundFrequency = 1 / fundPeriod 

C4fundFrequency = 261.63 

fundFrequencyRelErr = (C4fundFrequency - fundFrequency) / C4fundFrequency 

 

which yielded the following answers to five significant digits: 
 

fundPeriod = 0.0038420 

fundFrequency = 260.28 

C4fundFrequency = 261.63 

fundFrequencyRelErr = 0.0051557 

The estimated fundamental frequency was 260.28 Hz and the actual fundamental frequency for a ‘C4’ 

note is 261.63 Hz, which is a relative error of 0.52%. 

The fundamental frequency in the audio signal corresponds to the fundamental frequency of the string 

of the violin being played. On a violin, the string is attached on both ends, and the violinist places a 

finger on the string to shorten its length to play a certain note. When the note is played, the string 

produces standing waves at the frequency of the note and its harmonics.  The vibration in the string 

causes the instrument to vibrate which produces the acoustic waves that we hear. 

(d) 6 points. The sampling rate of the original recording in the The McGill University Master 

Samples collection was 44100 Hz and the sampling rate of recording in the file ‘violin-C4.wav’ is 11025 

Hz.  The ratio between these sampling rates is 4:1. 

3.3 Frequency-Domain Analysis 

We can now analyze the recorded instrument in the frequency and time-frequency domains.  For the 

frequency domain analysis, we’ll use the Fast Fourier Transform (FFT) algorithm to compute the Fourier 

series.  See Appendix A for the connection between the FFT and the Fourier series. 

(a) 6 points. We plot the frequency content of the recorded 

speech is shown to the right in terms of the magnitude of each 

frequency component. Due to sampling at 11025 Hz, we capture 

frequencies in (-5512.5 Hz, 5512.5 Hz) because of the sampling 

theorem fs > 2 fmax where fmax is the highest frequency of interest 

and hence fmax < ½ fs.  The computation uses the discrete-time 

Fourier series— see Appendix A for the connection to the 

continuous-time Fourier series. 

% Read the contents of the audio file 

waveFilename = 'violin-C4.wav'; 

[instrumentSound, fs] = audioread(waveFilename); 

 

% Plot the magnitude of the frequency content 

% using the discrete-time Fourier series 

fourierSeriesCoeffs = fft(instrumentSound); 

N = length(instrumentSound); 

freqResolution = fs / N; 

ff = (-fs/2) : freqResolution : (fs/2)-freqResolution; 

figure; 

plot(ff, abs(fftshift(fourierSeriesCoeffs))); 

xlabel('f'); 

f 

Spectrum 

http://www.music.mcgill.ca/~jwapnick/mums/
http://www.music.mcgill.ca/~jwapnick/mums/
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(b) 6 points. Using the frequency-domain representation in part 

(a), we found the gain, frequency, and phase for the highest 

peak in positive frequencies.  We can use a Data Tip in 

MATLAB to find frequency at the peak as shown on the right, 

which is 261.45 Hz, determine the corresponding index into the 

Fourier series coefficients vector, and compute the gain and 

phase from the Fourier series coefficient value. 

Keep in mind that the first element in a vector in MATLAB is 

at index 1 and fourierSeriesCoeffs has N = 38500 discrete-

time Fourier series coefficients Xk.  We are going to ignore 

normalization between discrete-time and continuous-time 

Fourier series coefficients (see Appendix A) and handle the 

difference at audio playback using the soundsc command.  For the fourierSeriesCoeffs vector, 

• At index 1, it contains X0 = a0. Should be real-valued and relatively small in magnitude. 

• At index 2, it contains X1 = a1 for frequency fs / N = 0.286363… Hz.  

• At index 3, it contains X2 = a2 for frequency 2 fs / N = 0.572727… Hz. 

• At index 19250, it contains X19249 = a19249 for frequency 19249 fs / N = 5512.214 Hz. 

• At index 19251, it contains X-19250 = a-19250 for frequency -19250 fs / N = -5512.5 Hz. 

• At index 38500, it contains X-1 = a-1 for frequency -1 fs / N = -0.286363…  Hz. 

We can convert a non-negative frequency to an index into an N-length FFT vector by 

N = length(instrumentSound); 

nonNegativeFrequency = 261.45; 

f0 = fs / N; 

fftIndex = round(nonNegativeFrequency / f0) + 1;   %%% Value is 914 

We extract the exponential Fourier series coefficient for 261.45 Hz by accessing the 914th element of 

the vector fourierSeriesCoeffs, which is a complex number.  The absolute value will give the 

magnitude and the angle will give us the phase in radians over [-, ]: 

abs(fourierSeriesCoeffs(fftIndex)) 

598.21 

angle(fourierSeriesCoeffs(fftIndex)) 

0.55884 

f 

Spectrum 
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Alternately, we automate finding gain, frequency, and phase 

for the highest peak in positive frequencies using 

[maxval, maxind] = max(abs(fourierSeriesCoeffs)); 

gainValue = abs(fourierSeriesCoeffs(maxind)) 

phaseValue = angle(fourierSeriesCoeffs(maxind)) 

freqValue = (maxind - 1)*fs/N 

 

(c) 6 points. Shown on the right is the spectrogram for the 

recorded audio signal.  The spectrogram analyzes the 

frequency content of a block of samples at a time.  Because 

the spectrogram only gets a small glimpse of the signal at any 

one time, the spectrogram would compute different strengths 

of the frequency components than analyzing the entire signal 

in one short as in part (a). By default, the spectrogram uses a 

blue-yellow color map where bright yellow corresponds to the 

frequency component with the highest power, and dark blue corresponds to the frequency component 

with the lowest power, on a decibel scale.  The frequency values for the yellow lines match the frequency 

values where the peaks occur in the spectrum plot in part (a). 

% Plot the spectrogram 

figure; 

blockSize = round(N/4); 

overlap = round(0.875 * blockSize); 

spectrogram(instrumentSound, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

From the spectrogram, we can extract the frequency corresponding to the strongest frequency 

component either manually or automatically.  Manually, we can place a “Data Tip” on the spectrogram 

and move it around horizontally and vertically with arrows on the keyboard.  Or we can write MATLAB 

code to compute it automatically by realizing that the spectrogram is a visualization of a matrix of 

magnitude values at a given value of frequency and delay in time.  Using the code below, we find that 

the maximum value is 164.4 in linear units.  The spectrogram plots power values. 

powVal = spectrogram(instrumentSound, blockSize, overlap, blockSize, fs, 'yaxis'); 

[maxValue, maxIndex] = max(abs(powVal), [], 'all', 'linear'); 

[row, col] = ind2sub(size(powVal), maxIndex); 

maxPowVal = abs(powVal(row, col)); 

(d) 6 points.  From the spectrogram, we see that the principal frequency of 261.45 Hz is present for the 

duration of the signal.  This is the horizontal yellow line closest to zero frequency. 

 

4.0 Synthesizing the Sound 

The previous section analyzed in the time and frequency domain a 

recording of a ‘C4’ note on the Western scale played by violin.  In 

this section, we use the Fourier series analysis to synthesize the 

sound using a small number of sinusoids. 

magnitude 

Spectrogram 

Spectrum 
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(a) 12 points. In our first algorithm, we will manually pick 

peaks in the spectrum using the Data Tips tool. On the right, the 

spectrum is zoomed to -1000 Hz < f < 1000 Hz and the Data 

Tips tool highlights the pair of the largest peaks as a starting 

point. We would need to find where the frequencies of 261.45 

Hz and -261.45 Hz fall in fourierSeriesCoeffs vector.   

Per Section 3(b), we convert a positive frequency 𝑓𝑘 = 261.45 

Hz via 𝑓𝑘 = 𝑘
𝑓𝑠

𝑁
 which means 𝑘 = 𝑁

𝑓𝑘

𝑓𝑠
= 38500 

261.45 Hz

 11025 Hz
=

913.  Since MATLAB vectors start at index 1, k = 913 means 

an index of 914 into the fourierSeriesCoeffs vector. 

We convert a negative frequency 𝑓𝑘 = -261.45 Hz via 𝑓𝑘 =

𝑓𝑠 (
𝑘

𝑁
− 1) which means 𝑘 = 𝑁 (

𝑓𝑘

𝑓𝑠
+ 1) = 38500 (

−261.45 Hz

 11025 Hz
+ 1) = 37587, which is index 37588. 

i.  Manually synthesize the audio signal by using the two largest peaks and then the four largest peaks. 

The two largest peaks are at 261.45 and -261.45 Hz which correspond to indices 914 and 37588.  

The next two largest peaks are at 522.9 and -522.9 Hz which correspond to indices 1827 and 36675. 

synthFourierSeriesCoeffs = zeros(N, 1); 

 

synthFourierSeriesCoeffs(914) = fourierSeriesCoeffs(914); 

synthFourierSeriesCoeffs(37588) = fourierSeriesCoeffs(37588); 

synthTwoPeaks = ifft(synthFourierSeriesCoeffs); 

soundsc(synthTwoPeaks, fs); 

pause(4); 

 

synthFourierSeriesCoeffs(1827) = fourierSeriesCoeffs(1827); 

synthFourierSeriesCoeffs(36675) = fourierSeriesCoeffs(36675); 

synthFourPeaks = ifft(synthFourierSeriesCoeffs); 

soundsc(synthFourPeaks, fs); 

pause(4); 

ii. Describe what each synthesized signal sounds like. 

Synthesizing the sound with two peak frequencies sounds like a pure tone. In the synthesized sound 

with four peak frequencies, I hear beat frequencies. 

 

(b) 12 points. We can automate how many of the largest peaks to keep by using the code below which 

keeps the Nkeep strongest frequency components: 

 
% Needs fourierSeriesCoeffs vector computed in Section 2.3 above 

N = length(fourierSeriesCoeffs); 

fourierSeriesCoeffsAbs = abs(fourierSeriesCoeffs); 

 

% Nkeep must be even to have an equal number of negative and positive freq.  

Nkeep = 10; 

frequenciesKept = zeros(Nkeep, 1); 

 

% Find the Nkeep strongest positive and negative frequency components 

synthSoundCoeffs = zeros(N, 1); 

f 
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for n = 1:Nkeep 

    [ai, i] = max(fourierSeriesCoeffsAbs); 

    synthSoundCoeffs(i) = fourierSeriesCoeffs(i); 

    fourierSeriesCoeffsAbs(i) = 0; 

 

    k = i - 1; 

    if ( k < N/2 ) 

       frequenciesKept(n) = fs*k/N; 

    else 

    frequenciesKept(n) = fs*((k/N) - 1); 

    end 

end 

 

% Convert Fourier series coefficients to time domain using inverse FFT 

synthSound = ifft(synthSoundCoeffs);     

soundsc(synthSound, fs); 

frequenciesKept 

 

i.  Keep 2, 4, 6, and 8 of the largest peaks and describe what you hear. 

2 peaks – sounds like a single tone at the same volume 

4 peaks – when compared to using two peaks, sounds like a single tone at a higher frequency and 

with an increase in volume at the very beginning and a decrease in volume at the very end. 

6 peaks – sounds like a single tone, but with an increase in volume at the very beginning and a 

decrease in volume at the very end. 

8 peaks – sounds the same as when using six peaks. 

 

ii. Give the peak frequencies of the peaks for each case of keeping 2, 4, 6, and 8 of largest peaks. 

2 peaks – frequencies 261.45 and -261.45 Hz 

4 peaks – frequencies 261.74 and -261.74 Hz plus above 

6 peaks – frequencies 262.02 and -262.02 Hz plus above  

8 peaks – frequencies 261.16 and -261.16 Hz plus above 

 

(c) 12 points. The algorithm in part (b) will keep the peaks at -261.45 Hz and 261.45 Hz, then keep the 

second highest peaks at -261.74 and 261.74 Hz, and so forth.   In the human auditory system, the 

components at -261.74 and 261.74 Hz will be “masked” (i.e. not audible) by the stronger nearby 

components at -261.45 and 261.45 Hz, respectively. [2] To prevent masked frequencies from being 

kept, we have changed 

fourierSeriesCoeffsAbs(k) = 0; 

in the above code to 

fourierSeriesCoeffsAbs(kmin:kmax) = 0; 

to zero out all frequencies from the peak frequency minus 7.5 Hz to the peak frequency plus 7.5 Hz. 

The frequency masking range is chosen arbitrarily to match the bandwidth of a C4 note. 

 

i.  Give the code to compute kmin and kmax.  In finding kmin and kmax, please note that the frequency 

resolution for the Fast Fourier Transform is 𝑓𝑠/𝑁. 

% Needs fourierSeriesCoeffs vector computed in Section 2.3 above 

N = length(fourierSeriesCoeffs); 
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fourierSeriesCoeffsAbs = abs(fourierSeriesCoeffs); 

 

% Nkeep must be even to have an equal number of negative and positive freq.  

Nkeep = 10; 

frequenciesKept = zeros(Nkeep, 1); 

 

% Frequency masking +/- 7.5 Hz around a center frequency 

freqOffset = 7.5; 

indexOffset = round(freqOffset*N/fs); 

 

% Find the Nkeep strongest positive and negative frequency components 

synthSoundCoeffs = zeros(N, 1); 

for n = 1:Nkeep 

    [ai, i] = max(fourierSeriesCoeffsAbs); 

    synthSoundCoeffs(i) = fourierSeriesCoeffs(i); 

 

    % Frequency masking +/- 7.5 Hz around a center frequency 

    % Keep indexing in fourierSeriesCoeffsAbs in range of [1, N] 

    imin = max(i - indexOffset, 1); 

    imax = min(i + indexOffset, N); 

    fourierSeriesCoeffsAbs(imin:imax) = 0; 

 

    k = i - 1; 

    if ( k < N/2 ) 

       frequenciesKept(n) = fs*k/N; 

    else 

    frequenciesKept(n) = fs*((k/N) - 1); 

    end 

end 

 

% Convert Fourier series coefficients to time domain using inverse FFT 

synthSound = ifft(synthSoundCoeffs);     

soundsc(synthSound, fs); 

frequenciesKept 

 

ii.  Keep 2, 4, 6, and 8 of the largest peaks and describe what you hear. 

2 peaks – synthesized sound sounds like a single tone at the same volume 

4 peaks – when compared to using two peaks, synthesized sound sounds to be at higher frequency 

and with a little bit of vibrato 

6 peaks – when compared to using four peaks sounds, sound is similar 

8 peaks – when compared to using six peaks, synthesized sound sounds like beat frequencies  

 

iii. Give the peak frequencies of the peaks for each case of keeping 2, 4, 6, and 8 of largest peaks. 

2 peaks – frequencies   261.45 and   -261.45 Hz 

4 peaks – frequencies   522.90 and   -522.90 Hz plus above 

6 peaks – frequencies   784.35 and   -784.35 Hz plus above  

8 peaks – frequencies 1314.12 and -1314.12 Hz plus above 

 

5.0 Conclusion (8 points) 

The Fourier series is a powerful tool for analyzing the frequency content in one period of a periodic 
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signal in both continuous-time and discrete-time domains.  The Fourier series is also a powerful tool 

for synthesizing a signal from its Fourier series components.  In practice, the Fourier synthesis might 

be incomplete in the continuous-time domain because only a finite number of terms can be used; 

however, the Fourier series for a discrete-time signal is fully characterized by a finite number of terms.  

Fourier series can also be applied to a finite-time interval of a non-periodic signal by assuming the 

interval represents a fundamental period of a periodic signal.  When applying the Fourier series, the 

Fourier series coefficients would indicate the average magnitude and phase of each harmonic 

frequency during the finite-time interval.  The analysis would not be able to indicate when a frequency 

occurred.  To determine the time a frequency occurs, a spectrogram can be used to break the finite-

time interval into smaller, overlapping time intervals on which Fourier series analysis is performed. 
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Appendix A: Connections Between Continuous-Time and Discrete-Time Fourier Series 

 

Continuous-Time Fourier Series. A continuous-time periodic signal x(t) with period T0 sec is composed 

of a constant term plus frequency components at integer multiples (harmonic) of a fundamental 

frequency f0 where f0 = 1 / T0.  Fourier series analysis computes the constant term a0 plus the magnitude 

and phase of each frequency term ak where k is any integer: 

 

where  and    

 

An infinite number of coefficients could be needed to exactly represent x(t). 

Discrete-Time Fourier Series.  A discrete-time periodic signal x[n] with period N samples is composed 

of a constant term plus frequency components at integer multiples (harmonic) of a fundamental 

frequency of 2𝜋/𝑁 rad/sample which is equivalent to fs / N in Hz.  Fourier series analysis computes the 

constant term X[0] plus the magnitude and phase of each frequency term X[k] for k = 0, 1, …, N-1. 

     

 

 

A finite number of Fourier series coefficients would always be needed to exactly represent x[n]. 

Normalization.  The scaling of the Fourier series coefficients is different in continuous-time vs. 

discrete-time.  When using the discrete-time Fourier series to compute continuous-time Fourier series 

coefficients, we would have to divide the discrete-time Fourier series coefficient by N due the (1/N) 

term in the equation for x[n]. 

Fast Fourier Transform (FFT) is a fast algorithm to compute the N discrete-time Fourier series 

coefficients X[k] from the N samples of a discrete-time signal x[n].  As with the continuous-time 

Fourier series, the discrete-time Fourier series assumes that the N samples of x[n] represents the 

fundamental period of an infinitely long signal in the time domain.  Unlike the continuous-time 

Fourier series, the discrete-time Fourier series always has a finite number of terms, N.  One of the 

reasons for this is due to the Sampling Theorem, which says that the sampling rate fs > 2 fmax where fmax 

is the highest frequency of interest and hence fmax < ½ fs.  Sampling only captures continuous-time 

frequencies (-½ fs, ½ fs) whereas continuous-time signals have frequencies.  You can think of the 

discrete-time Fourier series as computing the Fourier series coefficients for frequency components 

from -½ fs to -½ fs, which is a finite number because fs > 0. 

The Fast Fourier Transform (FFT) is requires 2M log2 M real-valued multiplications and additions and 

4M words of memory instead of the 4 M2 and M2 + 4M, respectively, for the direct matrix-vector 

implementation of the discrete-time Fourier series.  The direct matrix-vector implementation to 

compute X[k] would create a complex-valued N x N matrix of the term exp(−𝑗 (2𝜋/𝑁) 𝑘𝑛) for k = 0, 

1, …, N-1 in one dimension and n = 0, 1, …, N-1 in the other, form a column vector of x[0], x[1], …, 

x[N-1], and multiply the matrix and vector to find the column vector of X[0], X[1], …, X[N-1]. 

 

  

where and 
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Appendix B: MATLAB Scripts 
 

 

% Section 3.2(a) 
% Read the contents of the audio file 

waveFilename = 'violin-C4.wav'; 

[instrumentSound, fs] = audioread(waveFilename); 

 

% Play back the recording with automatic scaling 

soundsc(instrumentSound, fs); 

  

% Plot the waveform in the time domain 

N = length(instrumentSound); 

Ts = 1/fs; 

Tmax = (N-1)*Ts; 

t = 0 : Ts : Tmax; 

figure; 

plot(t, instrumentSound); 

xlabel('Time [s]'); 

ylabel('Signal amplitude'); 

 

% Section 3.2(b) 
mean(instrumentSound) 

 

% Section 3.2(c) 
xlim( [1.5 1.6] ); 

 

fundPeriod = (1.599 - 1.50295) / 25 
fundFrequency = 1 / fundPeriod 

C4fundFrequency = 261.63 

fundFrequencyRelErr = (C4fundFrequency - fundFrequency) / C4fundFrequency 

 

% Section 3.3(a) 
% Plot the magnitude of the frequency content 

% using the discrete-time Fourier series 

fourierSeriesCoeffs = fft(instrumentSound); 

N = length(instrumentSound); 

freqResolution = fs / N; 

ff = (-fs/2) : freqResolution : (fs/2)-freqResolution; 

figure; 

plot(ff, abs(fftshift(fourierSeriesCoeffs))); 

xlabel('f'); 

 

% Section 3.3(b) 
N = length(instrumentSound); 

nonNegativeFrequency = 261.45; 

f0 = fs / N; 

fftIndex = round(nonNegativeFrequency / f0) + 1;   %%% Value is 914 

 

abs(fourierSeriesCoeffs(fftIndex)) 

angle(fourierSeriesCoeffs(fftIndex)) 

 

[maxval, maxind] = max(abs(fourierSeriesCoeffs)); 

gainValue = abs(fourierSeriesCoeffs(maxind)) 

phaseValue = angle(fourierSeriesCoeffs(maxind)) 

freqValue = (maxind - 1)*fs/N 
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% Section 3.3(c) 
% Plot the spectrogram 

figure; 

blockSize = round(N/4); 

overlap = round(0.875 * blockSize); 

spectrogram(instrumentSound, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

powVal = spectrogram(instrumentSound, blockSize, overlap, blockSize, fs, 'yaxis'); 

[maxValue, maxIndex] = max(abs(powVal), [], 'all', 'linear'); 

[row, col] = ind2sub(size(powVal), maxIndex); 

maxPowVal = abs(powVal(row, col)); 

 

% Section 4.0(a) 

synthFourierSeriesCoeffs = zeros(N, 1); 

 

synthFourierSeriesCoeffs(914) = fourierSeriesCoeffs(914); 

synthFourierSeriesCoeffs(37588) = fourierSeriesCoeffs(37588); 

synthTwoPeaks = ifft(synthFourierSeriesCoeffs); 

soundsc(synthTwoPeaks, fs); 

pause(4); 

 

synthFourierSeriesCoeffs(1827) = fourierSeriesCoeffs(1827); 

synthFourierSeriesCoeffs(36675) = fourierSeriesCoeffs(36675); 

synthFourPeaks = ifft(synthFourierSeriesCoeffs); 

soundsc(synthFourPeaks, fs); 

pause(4); 

 

% Section 4.0(b) 
% Needs fourierSeriesCoeffs vector computed in Section 2.3 above 

N = length(fourierSeriesCoeffs); 

fourierSeriesCoeffsAbs = abs(fourierSeriesCoeffs); 

 

% Nkeep must be even to have an equal number of negative and positive freq.  

Nkeep = 10; 

frequenciesKept = zeros(Nkeep, 1); 

 

% Find the Nkeep strongest positive and negative frequency components 

synthSoundCoeffs = zeros(N, 1); 

for n = 1:Nkeep 

    [ai, i] = max(fourierSeriesCoeffsAbs); 

    synthSoundCoeffs(i) = fourierSeriesCoeffs(i); 

    fourierSeriesCoeffsAbs(i) = 0; 

 

    k = i - 1; 

    if ( k < N/2 ) 

       frequenciesKept(n) = fs*k/N; 

    else 

    frequenciesKept(n) = fs*((k/N) - 1); 

    end 

end 

 

% Convert Fourier series coefficients to time domain using inverse FFT 

synthSound = ifft(synthSoundCoeffs);     
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soundsc(synthSound, fs); 

frequenciesKept 

 

% Section 4.0(c) 
% Needs fourierSeriesCoeffs vector computed in Section 2.3 above 

N = length(fourierSeriesCoeffs); 

fourierSeriesCoeffsAbs = abs(fourierSeriesCoeffs); 

 

% Nkeep must be even to have an equal number of negative and positive freq.  

Nkeep = 10; 

frequenciesKept = zeros(Nkeep, 1); 

 

% Frequency masking +/- 7.5 Hz around a center frequency 

freqOffset = 7.5; 

indexOffset = round(freqOffset*N/fs); 

 

% Find the Nkeep strongest positive and negative frequency components 

synthSoundCoeffs = zeros(N, 1); 

for n = 1:Nkeep 

    [ai, i] = max(fourierSeriesCoeffsAbs); 

    synthSoundCoeffs(i) = fourierSeriesCoeffs(i); 

 

    % Frequency masking +/- 7.5 Hz around a center frequency 

    % Keep indexing in fourierSeriesCoeffsAbs in range of [1, N] 

    imin = max(i - indexOffset, 1); 

    imax = min(i + indexOffset, N); 

    fourierSeriesCoeffsAbs(imin:imax) = 0; 

 

    k = i - 1; 

    if ( k < N/2 ) 

       frequenciesKept(n) = fs*k/N; 

    else 

    frequenciesKept(n) = fs*((k/N) - 1); 

    end 

end 

 

% Convert Fourier series coefficients to time domain using inverse FFT 

synthSound = ifft(synthSoundCoeffs);     

soundsc(synthSound, fs); 

frequenciesKept 

 


