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Abstract

In this paper, a two-stage receiver structure for interference cancellation in multi-user spatially-
multiplexed multiple-antenna systems is presented. A space-time equalizer is used in the first stage
for joint coantenna/cochannel interference suppression and shortening of the effective channel for each
transmit stream of the desired user. The channel shortening, combined with independent detection,
helps reduce the complexity of the second stage Viterbi equalizer, which is used for separate intersymbol
interference equalization for each of the streams. Three objective functions are proposed for determining
the coefficients of the space-time equalizer using a direct training data-based approach, which does not
require estimation of the interferer's channel. Simulation results show good symbol error performance
as compared to existing algorithms with asynchronous MIMO interferers.
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. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems promise high capacity, diversity,
and array gains [1]-[3]. MIMO communication, however, introduces new challenges in receiver
design in multi-user systems. For multi-user spatially multiplexed systems, the MIMO receiver
needs to suppress coantenna interference (CAl) from different transmit streams, inter-symbol
interference (ISI) arising from frequency-selective channels, and cochannel interference (CClI)
due to transmission by various users on the same frequency channel. Different spatial-temporal
algorithms have been suggested to mitigate interference in [4]-[12]. These range from the high-
complexity, optimal multi-user maximum likelihood sequence estimation (MLSE) [6] to the
simpler multi-user minimum mean squared error (MMSE) linear receiver, and include a number
of decision-feedback equalization (DFE) approaches with performance and complexity between
those of the MLSE and MMSE algorithms. Other low complexity detection algorithms are based
on prefiltering to shorten the effective channel memory (see, e.g., [13]-[19]). MIMO equalizers
for channel shortening in single-user scenarios have been investigated recently in [20] and [21].

In this paper, we propose a low-complexity two-stage receiver structure for interference
suppression in MU-MIMO systems in frequency-selective channels. The framework is suitable
for mitigating CAI/CCI, including interference fromsynchronousisers, and equalizing ISI. The
first stage uses a space-time filter for CAI/CCI cancellatiod shortening of the equalized ef-
fective channels, without equalizing the ISI. The channel shortening, combined with independent
detection of the transmit streams, enables the use of reduced complexity Viterbi detectors in the
ensuing stage for ISI equalization of each transmit stream. Instead of using an estimate of the
channel to design the equalizer in the first stage, a direct training data-based approach is used
to jointly optimize the equalizer coefficients and the shortened effective channels, based on a
number of proposed objective functions.

The main contributions of our paper include a formulation that eliminates the need for the
interferers’ training data or channel knowledge and proposed algorithms that are robust to asyn-
chronicity of the cochannel interferers, which arises due to differences in the propagation delays
of different users. Many of the previously proposed low complexity approaches [8]—-[12], [20],
[21] require the interferers’ channel information, which inhibits scalability of the MIMO system

with the number of transmit and/or receive antennas. In addition, they need to estimate the desired
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user’s channel for the equalizer design and this channel estimation may cause error propagation in
the design. The proposed framework is similar to that in [7], but extends the MU-SIMO work to
MU-MIMO scenarios and addresses the problem of asynchronicity of the interferers. Moreover,
the complexity of the proposed receiver is reduced due to channel shortening. Assuming that the
receiver is interested in the detection of one desired user, the complexity of the optimal MLSE
receiver is on the order oM M:(P+1) \where M is the constellation size)/, is the number

of transmit antennas of the desired user, dhd- 1 is the channel impulse response length.
The complexity of the approach in [7] is linear i, and is on the order of/, M X+, where

L + 1 is the length of the effective channel response after the first-stage of equalization. Note
that the effective channel length + 1 is longer than the original channel length+ 1 due

to equalization. In certain scenarios, as we shall see in Section/\VH,l may be larger than
M,(P + 1), in which case, the complexity of the sub-optimal two-stage approach would exceed
that of the optimal MLSE receiver. The proposed receiver has an overall complexity on the order
of M,M"*!, wherev + 1 is the length of the shortened equalized channel. Noteuthatl is
necessarily less thah+ 1, the original length of the equalized channel, and thus the complexity

of the proposed receiver is less than that of [7]. Also, by choosirg carefully, we can ensure

that the complexity of our approach is always significantly less than that of the MLSE receiver.

At this point, it is worth noting that the proposed algorithms are for uncoded single carrier
systems and that a significant amount of parallel work has been done for coded multicarrier
systems (see, e.g., [22], [23]). Our methods are compared with an algorithm proposed in [22]
with asynchronous interferers. Through simulation results, we show that our methods have a
lower symbol error rate when the difference in propagation delay is large.

The paper is organized as follows. The data and channel models are developed in Section Il.
They are extended to include the proposed receiver in Section Ill. The problem is formulated
in Section IV and solutions are presented in Section V. This is followed by comparison of the
algorithms in terms of computational complexity in Section VI and symbol error performance

in Section VII. The key results are summarized and the paper is concluded in Section VIII.

[I. MIMO SYSTEM MODEL

In this section, a discrete-time complex baseband model is developed for a MIMO multiple

access channel with one desired user Amaterferers. Assume that the receiver hds receive
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antennas, the desired user has transmit antennas, and th#h interferer has)/,; transmit
antennas. The channel between each transmit antenna of the desired user and each receive
antenna includes the pulse-shaping filter, the propagation channel, and matched receive filter,
and is assumed to be slow fading and frequency-selective Rith1 taps (or amemoryof
P samples). Further, the channel is assumed to be quasi-static, i.e. constant over one frame
of symbols, but varying between different frames. The system model is first developed for the
desired user and then extended to include theterferers.

With spatial multiplexing [3], let,,, (k) be the data symbol transmitted from theth antenna
(of the desired user) at thigh instant,h,,. .., (p) denote thepth tap of the channel between the
m,th transmit antenna and the,th receive antenna, and,, (k) be the additive white Gaussian
noise (AWGN) at them,th receive antenna. Assuming perfect synchronization and sampling,
the sample of the received signal at theth receive antenna at time instanist

P (8) = 35 o (0 (b — )+ 1 (). 1)

mi=1 p=0
The symbol duration and the symbol power (or energy)£ie,, (k)z;,, (k)] are assumed to be
unity for simplicity. The noise is uncorrelated with the input symbols and independently and
identically distributed (i.i.d.) a€N (0, 02).

To derive a training based equalization algorithm, a stacked vector notation is developed to
account for an equalizer memory 6f. Let x(k) = [x] (k) x] (k) --- x},(k)]" be thekth
instant transmit vector witk,,,, (k) = [z, (k) T, (k — 1) -+ 2, (kK — P — G)]* being formed
by stacking the”+ G previously transmitted data symbols from thgth transmit antenna below
xm, (k) for m, = 1,..., M,. Let the samples received at theth antenna over a block @ + 1
symbol periods be stacked together to form (k) = [rm, (k) rp, (K —1) - 1 (k= G)]T.
Further, to enable simultaneous processing of a frame& $fmbols over a quasi-static channel,

S — 1 additional snapshots of the input vecte(k) are included to form the input matrix,
X = [x(k) x(k+1) --- x(k+ S — 1)]. The corresponding output matrix can be expressed as

R=I[r(k)r(k+1) --- r(k+ S —1)], wherer(k) is formed by stacking the receive vectors for

In this paper,(-)” denotes the transpose of a vector or matfix’’ denotes the conjugate transpose of a vector or matrix,
[I(-)]]2 is the vector 2-norm of a vecto£|-] is the expectation operataf V' (0, a) is the complex Gaussian distribution with

i.i.d. real and imaginary parts, each distributed according to the normal distribution with zero mean and vafiance

DRAFT



RESUBMITTED TO THE IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, NOVEMBER 2005 5

the M, receive antennas to obtairtk) = [r{ (k) r] (k) --- r}, (k)]". The noise matrixN is

constructed in the same way Rs The channel matriH is a block Toeplitz matrix, given by

[ H, 0 - 0H,0 --- 0 --- Hy, 0 --- 0
0OH,0---0H,0 ---0 --- Hy, 0 ---

t

0 ---0H;0---0H0 ---0 --- Hy,

where0 is a column vector of zeros of lengt¥y,, and form; =1, ..., M,, the matrixH,,, =
[y, hoy, - hagom,]”, with by, .., being given by[h, m,(0) R, (1) < Ry, (P)]T

Thus, the system equation with one user can be written as
R=HX+N. 2

The channel and transmit streams of thanterferers can be stacked similarly using the
preceding steps to creak&® andX(® respectively, fori = 1, ..., I. The interfering signals are
added to the desired user’s signal at the receiver to give the complete input-output relation,

I
Y =HX +)» HOXO 4N, (3)

=1
[ll. SPACE-TIME EQUALIZATION FRAMEWORK

In this section, the system model in Section Il is extended to enable the design of the two-stage
receiver structure shown in Fig. 1. The receiver is used for independent detection of the desired
user’s transmit streams, wherein each transmit stream is detected independently of other streams
by treating them as interference. In the first stage, a space-time equ&izeerforms CAI/CCI
cancellationand shortens the effective channels for the different spatially multiplexed transmit
streams. In the second stage, a single channel Viterbi equalizer is used for the detection of each
transmit stream independently of other streams by utilizing the shortened effective channel and
equalized output for the specific transmit stream. The space-time equalizer is designed directly
using a training-based approach as opposed to conventional methods that estimate the channel
first.

Let X in (3) be the input matrix corresponding to the training sequences transmitted on the
M, transmit antennas of the desired source.Yah (3) be the associated output of this training

data obtained at the receive antenna array. The length of the training sequence is chosen so as
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to ensure thakX,,, X has full rank, whereX,,, = [xn, (k) X, (kK +1) - X, (k+ S —1)]
is the sub-matrix corresponding to théh transmit stream. This is the common persistence of
excitation assumption. A necessary condition is that (P + G + 1). This is apparent from the
dimensions ofX andY (see Table | for a summary of the dimensions of the important matrices
in this paper). The reason for requiriy, X’ to be full rank will become clear in Section V.
The receiver is assumed to be ignorant of the training on/tbechannel interferers’ channels.

The channel output is equalized with a space-time equalizét 6fl taps, denoted bV =
[wy wy -+ wy]. Eachw,, u=1,..., M,, is a column vector of sizé/,.(G + 1). The system
equation after equalization can be written as

WY = Z7X + ZI: WHIHOX®  WHN (4)
i=1

whereZ is the effective channel matrix for the desired source after equalization. Let the column
vector z,,, represent the effective channel vector for the sequence transmitted fromththe
antenna whenw, is used to equalize theth transmit sequence. If theth transmit sequence
is being detected (by equalizing with,), the effective channek,, ,,, is of interest. The other
channelsgz, , for v # u, represent the effective channels for the co-antenna interferers, and we
refer to them as theross-channels

To allow for channel shortening for reducing the complexity of the Viterbi equalizer,)”
is forced to[0; «s zﬁ{u 01x(P+c-v—s)|, Wherez,, is the shortened channel of length-1, for the
uth transmit stream andlis a parameter in the ran@e< 6 < P+ G —v that represents the delay
of the shortened channel. Note that if the charideis known at the receiver, one would only
have to desigrww and the shortened effective channels would fall out from the convolution of
the equalizer with the channel, i.e., frod’H. In our case, a joint optimization is performed to
obtain bothW and Z by minimizing certain objective functions subject to different constraints

as shown in the following section.

IV. PROBLEM FORMULATION

As the detection strategy used in this paper is independent detection, the optimization problem
can be formulated separately for each transmit stream, with constraints plased amdz, ,,,

instead of joint constraints okV and Z. The basis for the formulation of the cost functions
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presented is minimization of the energy in the cross-channels and maximization of the energy

in the desired effective channel.

A. Optimization Problem | (SAINR)

The first optimization problem is to maximize a signal-to-interference-plus-noise ratio (SINR)-
like quantity and can be written as
1z, X3

T subject td[z, .||? = 1. 5
W ey xSt el ©

The constraint on|z, ., ||3 is to prevent a zero vector solution. Recall tB} is the sub-matrix
associated with theth transmit stream. As eacdh, , has the shortened channgl,, embedded
in it, with ¢ zeros preceding i, X, is equivalent tas, X\ where, X\ = [X{ (k) X\ (k+
1) - Xff)(k + S —1)] is a sub-matrix corresponding to the+ 1,...,d + v + 1 rows of the
training matrix of theuth transmit sequence. The optimization can thus be rewritten as
|22, X813 : 2
max : OIS subject t0)|z,..||; = 1. (6)
wotn |[wiY — 2l X3

One can observe that the denominator absorbs the CAI, CCI, residual interference due to

shortening and AWGN in the difference term between the equalized output and the shortened
channel output. This enables joint CAI/CCI cancellation and channel shortening. Note that
zﬁqu‘s) is basically theuth transmit stream after equalization, and hence, the numerator is the
desired signal after equalization. Henceforth, this SINR-like quantity will be called the signal-
to-all-interference-plus-noise ratio (SAINR) as the denominator term includes various sources of
interference besides noise.

The objective function maximized by the authors in [7] was the post-equalization SINR, subject
to a similar constraint on the effective channel. As mentioned in Section I, they specifically
considered SIMO systems. The overall complexity of their Viterbi equalizer was on the order of
M,M**! whereL + 1 is the equalized channel length, while that of the Viterbi equalizer with

channel shortening is on the order bf, M/ !,

B. Optimization Problem Il (SAINR)

The other variablew, in the optimization problem can also be constrained to prevent a

degenerate solution. For this case, the cost function is modified slightly and the optimization
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problem is stated as

, subject ta|w,|]2 = 1. (7)

The constraint orj|w,||3 is sufficient for avoiding a trivial zero vector solution fev,. The
cost function is similar to that in (6), with the difference being in the numerator. With perfect
cancellationwY ~ z{;{uXﬁ”. Hence the numerator of the objective function in (7) corresponds

to the desired signal after equalization and the cost function is again the post equalization SAINR.

C. Optimization Problem 1l (LS)

In the final optimization problem, we minimize only the all-interference term in the denom-
inator of (6), instead of maximizing the SAINR. The problem is now a least-squares problem
with a quadratic constraint and we can expect a reduction in computational complexity if we
use one of the many gradient descent algorithms available for solving such constrained least-
squares problems, e.g. recursive least squares (RLS) [24]. This is the motivation for the following
formulation

min |[wZY —z% X2, subject to|z,..||? =1, (8)

where the all-interference-plus-noise term is minimized subject to a constraint on the norm of the
effective channel. This optimization problem is demonstrated to be practically equivalent to that
in (6) for long enough training sequences in Section VII-A. This suggests that this formulation

enables the use of low-complexity algorithms for achieving the same system performance as

obtained by solving (6).

V. SOLUTIONS

All the three optimization problems have similar forms and the technique of separation of
variables is used to solve them. This is stated in Proposition 1. We drop the anfilern w,,,

Z,, and Xq(f) for ease of reading.
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Proposition 1 (Separation of variables).[25] Define

_ WY 3
f(W7 Z) - ||WHY . ZHX((;)“%? (9)
f(w) =z = arg max F(w, z), (10)
_ _ IwY3
M(w) = mzax]:(w,z) = WY — Fw) X2 (11)

1) If w = argmax, M(w), andz = f(w), then(w,z) is the global maximizer fof(w, z),
and F(w,z) = M(w).
2) If (w,z) = arg max, , F(w, z), thenw is the global maximizer foM (w), and F(w,z) =

M(®).

It follows from Proposition 1 that if we define

F(w,z) = |w'Y - 2"XO|3, (12)
f(z) = w = arg min F(w, z), (13)
M(z) = min F(w,z) = || f(z)TY — 27X 2. (24)

then,
1) If z = argmin, M(z), andw = f(z), then(w,z) is the global minimizer forF(w,z),
and F(w,z) = M(z).
2) If (W,z) = argminy, , F(w, z), thenz is the global minimizer fotM(z), and F(w,z) =
M(z).
Note that the variablessr andz are not independent of each other. However, the above results
enable us to solve our joint optimization problems by solving for one variable first, conditioned
on the other. This is followed by substituting the solution back into the cost function and solving

for the other variable. The approach is similar to that followed in [7].

A. Solution for Optimization Problem | (SAIN&-

We first need to findf(z) = w = arg max,, 7 (w, z). This is the same as solving fgi(z) =
arg miny, [|[w?Y — z7X©) |2, Differentiating this modified cost function w.r& and setting the
result to zero, we obtain

wil = ZIXOYH(yYyH)-L, (15)
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Substituting in the optimization problem in (6), we have
|z" X |3

— i 2 _
Zopt = Arg max XY (YY) 1Y — 2 X0 subject tg|z||5; = 1, (16)
Hx ()X (6)H _
— arg max — 2 subject td|z|2 = 1 (17)

z zHXOPyX0)Hg’
where Py = I — YH(YY#)"'Y is a projection matrix. This is a generalized eigenvalue
problem and the solutiong,,, is given by the generalized eigenvector corresponding to the
largest generalized eigenvafuef XX ©@# and X(OPy X The optimum equalizemy,,;,
can be obtained by substituting,; in (15).

The optimum value of thé parameter of the shortened channel needs to be found as well.
This is done by evaluating (6) for all possible valuesiaind choosing thé that results in the
maximum value. Note that the optimélcan be found using faster techniques [15], [26]. The
same algorithm is repeated for all transmit sequences. Each transmit sequence is detected by a
single-channel Viterbi equalizer in the second stage of the receiver, which uses the shortened

effective channet and equalized output for each transmit stream to suppress the ISI.

B. Solution for Optimization Problem Il (SAINW}

Using the same steps as in Section V-A, we have
2" = wHyXOH(XOX O~ (18)

and,

wiAYYHw
Wort = BN WY P Y w'
X

wherePx = I — X@OH(XOXEOH)=1X() js a projection matrix. The solutiony,,;, is given

subject td|w||3 =1 (19)

by the generalized eigenvector corresponding to the largest generalized eigenvive aind
YPxY?. The optimum effective channet,,;, is obtained by substitutingv,,; in (18). As
before, this algorithm along witld-optimization is repeated for all transmit streams and the

detection is completed by single-channel Viterbi equalizers in the following stage.

%A low-complexity division-free algorithm for finding the generalized eigenvector corresponding to the largest eigenvalue has

been developed in [26], [27].
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C. Solution for Optimization Problem 1l (L%}

As mentioned before, (8) is a constrained least-squares optimization problem. We solve for
f(z) = argmin,, F(w,z) = argmin,, |w?Y — z?X?|2. Differentiating w.r.t.w and setting

the result to zero, we obtain the same expression as in (15)
wil = ZIXOYH(yYyH)-L, (20)
Now (8) can be rewritten as
Zopt = AIg mzin 2" XOPyXOHz  subject td|z||2 = 1 (21)

wherePy = I — Y#(YY¥#)~'Y is a projection matrix. The solutiors,,, is given by the
eigenvector corresponding to the smallest eigenvalu¥ &Py X After the §-optimization,
the Viterbi equalizer in the ensuing stage uses the shortened effective channel and the equalized

transmit stream for the detection of each transmit stream.

VI. COMPUTATIONAL COMPLEXITY

The complexity of the proposed algorithms can be calculated on the basis of the major
computational tasks in each algorithm. These tasks include:

1) Finding z,,; or w,, as the (generalized) eigenvector corresponding to the largest or

smallest (generalized) eigenvalue of symmetric matrices, and calculating the corresponding
Wopt OF Z,y from (15) or (18). Sub-tasks in these calculations are findiwdy )~ or
(XX =1 for Py or Px depending on the algorithm, and matrix multiplicati§ns

2) Detection using the Viterbi detector.

The order of computational complexity for these two parts can be approximated using [28]
(Chapters 3 and 8), and turns out to be the same for all three proposed algorithms. Task 1
requiresO((v + 1)?) + O(M3(G + 1)?) + O(M,(G + 1)S) computations, and Task 2 requires
O(M"*+1) computations. Recall that/ denotes the size of the symbol constellation. As stated
earlier, the complexity of the L%-method can be reduced by using certain gradient descent

algorithms, e.g., constrained RLS, for solving constrained least squares optimization problems.

Note that there are more efficient ways to perform these calculations which do not require explicit computation of matrix

inverses.
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VII. SIMULATIONS AND DISCUSSIONS

In this section, various simulation results are presented for demonstrating the performance of
the proposed algorithms in terms of symbol error rate (SER) and SAINR. With the exclusion
of Section VII-C, a single-uset x 2 MIMO system with QPSK modulation is considered. For
the purpose of simulations, the channel is assumed to be 3 taps lon§ &e). Further, the
different taps of the channel are assumed to have a constant power delay profile and are i.i.d. with
distributionCA/(0,1). A quasi-static channel model is considered, where the channel is assumed
to be constant over a frame of symbols of length 100. The simulation results are obtained by
averaging the communications performance over a 10000 channel realizations. LabVIEW 7.0
modules for reproducing these simulation results can be downloaded from the LabVIEW MIMO

toolkit available at [29]. In the simulations,+ 1 < M;(L + 1).

A. Probability of Symbol Error

We first look at the probability of symbol error performance of the three methods in the absence
of cochannel users. For all simulations in this section, the equalizer metsrghosen to be.

The effective channel, which would be 7 taps long without any channel shortening, is shortened
to a length4 channel (i.er + 1 = 4). The number of transmit antenna¥,, is 2.

Note that the shortened channel length is greater than the actual channel length of 3. At this
point it is helpful to remember that we use a linear equalizer before the Viterbi equalizer to obtain
a good trade-off of performance and complexity between the MLSE and MMSE receivers as
in [7]. The effect of the first-stage equalizer is to lengthen the effective channel for the Viterbi
equalizer due to convolution. The channel shortening constraint is imposed to shorten the length
of this effective channel. The complexity of the optimal MLSE algorithm with these simulation
parameters is on the order of M+«(P+1) = 46  the complexity of the two-stage approach in [7]
without channel shortening is on the order DML' = 2 x 47, and that of the proposed
approach with channel shortening is on the ordei®fl/**! = 2 x 4%, In this scenario, without
channel shortening, the approach in [7] turns out to be more complex than the optimal MLSE.

As can be seen from Fig. 2, all three proposed methods yield similar symbol error performance.
The SAINRw method has the smallest SER among the three methods, followed by the LS-
method. One can observe that the L&nd the SAINRz curves are nearly overlapping. Thus,

these two methods are, for all practical purposes, equivalent.
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We next compare our methods with the MaxPwr method proposed in [22]. The authors use
the channel information of the desired user and that of the asynchronous cochannel interferer
for interference suppression in SIMO-OFDM channels using channel shortening ideas. For the
purpose of comparison with our algorithms, we use their method in our uncoded single carrier
MIMO scenario. A2 x 2 MIMO system can be viewed as two SIMO channels with the same
receiver. To compare the MaxPwr method with our training-based methods, we simulate the
MaxPwr method with perfect channel knowledge and with channel estimation (using least-
squared error - LSE estimation). From Fig. 2, it is clear that the MaxPwr method has a lower SER
at smaller values of input SNR than our methods. The proposed methods, however, have steeper
SER curves and their performance is better at input SNRs greater than 12 dB. The matched
filter bound for the same scenario is plotted here for reference due to the long simulation time

requirements of the optimum MLSE detector.

B. Variation of Parameters

We now look at the variation in performance of the SAINRmethod with changes in system
parameters like the number of equalizer taps and the shortened channel length. The performance
metric chosen for the simulations in this section is the SAINR. The shortened channel length
is first set to 3 and the number of equalizer taps is varied fiotm 7. The SAINR increases
steadily with the number of equalizer taps as can be seen from Fig. 3. But, as the equalizer
length,G + 1, is increased beyon@l taps, the increase is negligible. This is because the residual
interference due to shortening increases and affects the SAINR.

In Fig. 4, G + 1 is fixed at 5 and the shortened channel length is varied fraim 7, where
v+1 = 1 corresponds to a single tap effective channelanrd = 7 corresponds to the effective
channel without shortening. We observe that as the effective channel is shortened, the SAINR
reduces. The degradation in SAINR is greaterifor 1 < 2.

Thus an optimum balance needs to be struck between the improvement in receiver performance
due to increase in the number of equalizer taps (which adds to the receiver complexity) and the

degradation in performance due to excessive shortening of the effective channel length.
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C. CCI Suppression

The methods presented in this paper are flexible enough to perform CCI suppression with
asynchronous MIMO interferers without requiring their channel information. Their performance
is demonstrated in this section in the presence of one cochannel interferer. All channels are
modeled as Rayleigh fading channels of lengthThe equalizer is chosen to hagetaps and
the desired user’s effective channels are shortened to lehgtfannels. For the simulations of
the MaxPwr method, an LSE estimate of the interferer's channel is used.

In Fig. 5 and 6, the SAINRv method is compared with the MaxPwr method in the presence of
one asynchronous cochannel interferer. In this simulation set up, each user has a single transmit
antenna and the common receiver has 2 receive antennas. The carrier to interference ratio (CIR),
which is the ratio of the transmit signal power of the desired user to that of the undesired
interferer, is chosen to be 3 dB. Fig. 5 plots the SER with the difference in propagation delay
between the two users. It can be seen that the SER performance of the SAIN&hod does
not change much with the propagation delay, while the MaxPwr method suffers in SER as the
delay increases. This is further illustrated in Fig. 6, where the difference in propagation delay
between the two users is chosen to be 30 taps. As evident, the symbol error rate achieved by
the SAINRw method is significantly lower than that obtained by the MaxPwr method. These
simulations demonstrate the flexibility of our formulation to deal with asynchronous interferers.

It is important to note that our algorithms are resilient to asynchronicity of CCI due to the
fact that they do not require any information about the interferer’'s channel. To ensure a fair
comparison with our algorithm, if the receiver is assumed to lack knowledge of the interferer’'s

training data and thereby its channel, the MaxPwr method would fail to work.

VIIl. CONCLUSION

In this paper, a two-stage receiver structure for CAI/CCI cancellation and ISI equalization in
frequency-selective MU-MIMO channels was presented. The novelty of the receiver design lies in
combining CAI/CCI cancellation with channel shortening to help reduce the receiver complexity.
Unlike many previously proposed receivers, this receiver does not require the channel information
of cochannel interferers and this enables it to deal with asynchronous users. Simulation results
show good symbol error performance for single-use2 MIMO systems with all three methods

and reasonable cochannel rejection in a two-user scenario with asynchronous users. Performance
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can possibly be improved by considering the coloring of the noise due to the space-time equalizer,
and incorporating noise whitening constraints in the filter optimization [30]. This approach can

be extended to the multicarrier case (MIMO-OFDM) as proposed in [23].
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TABLE |

TABLE OF DIMENSIONS OF IMPORTANT MATRICES WITH M; TRANSMIT ANTENNAS, M,. RECEIVE ANTENNAS, P CHANNEL

MEMORY, G EQUALIZER MEMORY, AND S SYMBOLS IN A FRAME.

Matrix Name Dimensions
X Input matrix M(P+G+1)x S
H Channel matrix M. (G+1)x My(P+G+1)
Y Output matrix M, (G+1)x S
N Noise matrix M, (G+1)x S
w Equalizer matrix M, (G+1) x M,
V/ Effective channel matrix M(P+G+1) x M,
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Fig. 1. Schematic for the two-stage receive structure
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Fig. 2. Comparison of probability of symbol error performance of the three proposed methods with the MaxPwr method, with
and without channel estimation
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Fig. 5. Comparison of probability of symbol error performance of the desired user with the S#lBiRd the MaxPwr methods
in the presence of one asynchronous cochannel interferer (with a carrier-to-interference ratio of 3 dB).
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Fig. 6. Comparison of probability of symbol error performance of the desired user with the S&IBiRd the MaxPwr methods
in the presence of one asynchronous cochannel interferer (with a carrier-to-interference ratio of 3 dB and a propagation delay
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