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Abstract

In this paper, a two-stage receiver structure for interference cancellation in multi-user spatially-

multiplexed multiple-antenna systems is presented. A space-time equalizer is used in the first stage

for joint coantenna/cochannel interference suppression and shortening of the effective channel for each

transmit stream of the desired user. The channel shortening, combined with independent detection,

helps reduce the complexity of the second stage Viterbi equalizer, which is used for separate intersymbol

interference equalization for each of the streams. Three objective functions are proposed for determining

the coefficients of the space-time equalizer using a direct training data-based approach, which does not

require estimation of the interferer’s channel. Simulation results show good symbol error performance

as compared to existing algorithms with asynchronous MIMO interferers.
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I. I NTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems promise high capacity, diversity,

and array gains [1]–[3]. MIMO communication, however, introduces new challenges in receiver

design in multi-user systems. For multi-user spatially multiplexed systems, the MIMO receiver

needs to suppress coantenna interference (CAI) from different transmit streams, inter-symbol

interference (ISI) arising from frequency-selective channels, and cochannel interference (CCI)

due to transmission by various users on the same frequency channel. Different spatial-temporal

algorithms have been suggested to mitigate interference in [4]–[12]. These range from the high-

complexity, optimal multi-user maximum likelihood sequence estimation (MLSE) [6] to the

simpler multi-user minimum mean squared error (MMSE) linear receiver, and include a number

of decision-feedback equalization (DFE) approaches with performance and complexity between

those of the MLSE and MMSE algorithms. Other low complexity detection algorithms are based

on prefiltering to shorten the effective channel memory (see, e.g., [13]–[19]). MIMO equalizers

for channel shortening in single-user scenarios have been investigated recently in [20] and [21].

In this paper, we propose a low-complexity two-stage receiver structure for interference

suppression in MU-MIMO systems in frequency-selective channels. The framework is suitable

for mitigating CAI/CCI, including interference fromasynchronoususers, and equalizing ISI. The

first stage uses a space-time filter for CAI/CCI cancellationand shortening of the equalized ef-

fective channels, without equalizing the ISI. The channel shortening, combined with independent

detection of the transmit streams, enables the use of reduced complexity Viterbi detectors in the

ensuing stage for ISI equalization of each transmit stream. Instead of using an estimate of the

channel to design the equalizer in the first stage, a direct training data-based approach is used

to jointly optimize the equalizer coefficients and the shortened effective channels, based on a

number of proposed objective functions.

The main contributions of our paper include a formulation that eliminates the need for the

interferers’ training data or channel knowledge and proposed algorithms that are robust to asyn-

chronicity of the cochannel interferers, which arises due to differences in the propagation delays

of different users. Many of the previously proposed low complexity approaches [8]–[12], [20],

[21] require the interferers’ channel information, which inhibits scalability of the MIMO system

with the number of transmit and/or receive antennas. In addition, they need to estimate the desired
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user’s channel for the equalizer design and this channel estimation may cause error propagation in

the design. The proposed framework is similar to that in [7], but extends the MU-SIMO work to

MU-MIMO scenarios and addresses the problem of asynchronicity of the interferers. Moreover,

the complexity of the proposed receiver is reduced due to channel shortening. Assuming that the

receiver is interested in the detection of one desired user, the complexity of the optimal MLSE

receiver is on the order ofMMt(P+1), whereM is the constellation size,Mt is the number

of transmit antennas of the desired user, andP + 1 is the channel impulse response length.

The complexity of the approach in [7] is linear inMt and is on the order ofMtM
L+1, where

L + 1 is the length of the effective channel response after the first-stage of equalization. Note

that the effective channel lengthL + 1 is longer than the original channel lengthP + 1 due

to equalization. In certain scenarios, as we shall see in Section VII,L + 1 may be larger than

Mt(P + 1), in which case, the complexity of the sub-optimal two-stage approach would exceed

that of the optimal MLSE receiver. The proposed receiver has an overall complexity on the order

of MtM
ν+1, whereν + 1 is the length of the shortened equalized channel. Note thatν + 1 is

necessarily less thanL+1, the original length of the equalized channel, and thus the complexity

of the proposed receiver is less than that of [7]. Also, by choosingν +1 carefully, we can ensure

that the complexity of our approach is always significantly less than that of the MLSE receiver.

At this point, it is worth noting that the proposed algorithms are for uncoded single carrier

systems and that a significant amount of parallel work has been done for coded multicarrier

systems (see, e.g., [22], [23]). Our methods are compared with an algorithm proposed in [22]

with asynchronous interferers. Through simulation results, we show that our methods have a

lower symbol error rate when the difference in propagation delay is large.

The paper is organized as follows. The data and channel models are developed in Section II.

They are extended to include the proposed receiver in Section III. The problem is formulated

in Section IV and solutions are presented in Section V. This is followed by comparison of the

algorithms in terms of computational complexity in Section VI and symbol error performance

in Section VII. The key results are summarized and the paper is concluded in Section VIII.

II. MIMO S YSTEM MODEL

In this section, a discrete-time complex baseband model is developed for a MIMO multiple

access channel with one desired user andI interferers. Assume that the receiver hasMr receive

DRAFT



RESUBMITTED TO THE IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, NOVEMBER 2005 4

antennas, the desired user hasMt transmit antennas, and theith interferer hasMt,i transmit

antennas. The channel between each transmit antenna of the desired user and each receive

antenna includes the pulse-shaping filter, the propagation channel, and matched receive filter,

and is assumed to be slow fading and frequency-selective withP + 1 taps (or amemoryof

P samples). Further, the channel is assumed to be quasi-static, i.e. constant over one frame

of symbols, but varying between different frames. The system model is first developed for the

desired user and then extended to include theI interferers.

With spatial multiplexing [3], letxmt(k) be the data symbol transmitted from themtth antenna

(of the desired user) at thekth instant,hmr,mt(p) denote thepth tap of the channel between the

mtth transmit antenna and themrth receive antenna, andnmr(k) be the additive white Gaussian

noise (AWGN) at themrth receive antenna. Assuming perfect synchronization and sampling,

the sample of the received signal at themrth receive antenna at time instantk is1

rmr(k) =
Mt∑

mt=1

P∑
p=0

hmr,mt(p)xmt(k − p) + nmr(k). (1)

The symbol duration and the symbol power (or energy), i.eE [xmt(k)x∗mt
(k)] are assumed to be

unity for simplicity. The noise is uncorrelated with the input symbols and independently and

identically distributed (i.i.d.) asCN (0, σ2
n).

To derive a training based equalization algorithm, a stacked vector notation is developed to

account for an equalizer memory ofG. Let x(k) = [xT
1 (k) xT

2 (k) · · · xT
Mt

(k)]T be thekth

instant transmit vector withxmt(k) = [xmt(k) xmt(k − 1) · · · xmt(k − P −G)]T being formed

by stacking theP +G previously transmitted data symbols from themtth transmit antenna below

xmt(k) for mt = 1, . . . , Mt. Let the samples received at themrth antenna over a block ofG+1

symbol periods be stacked together to formrmr(k) = [rmr(k) rmr(k − 1) · · · rmr(k −G)]T .

Further, to enable simultaneous processing of a frame ofS symbols over a quasi-static channel,

S − 1 additional snapshots of the input vectorx(k) are included to form the input matrix,

X = [x(k) x(k + 1) · · · x(k + S − 1)]. The corresponding output matrix can be expressed as

R = [r(k) r(k + 1) · · · r(k + S − 1)], wherer(k) is formed by stacking the receive vectors for

1In this paper,(·)T denotes the transpose of a vector or matrix,(·)H denotes the conjugate transpose of a vector or matrix,

‖(·)‖2 is the vector 2-norm of a vector,E [·] is the expectation operator,CN (0, a) is the complex Gaussian distribution with

i.i.d. real and imaginary parts, each distributed according to the normal distribution with zero mean and variancea/2.
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the Mr receive antennas to obtainr(k) = [rT
1 (k) rT

2 (k) · · · rT
Mr

(k)]T . The noise matrixN is

constructed in the same way asR. The channel matrixH is a block Toeplitz matrix, given by

H =




H1 0 · · · 0 H2 0 · · · 0 · · · HMt 0 · · · 0

0 H1 0 · · · 0 H2 0 · · · 0 · · · HMt 0 · · ·
...

. ..
...

0 · · · 0 H1 0 · · · 0 H2 0 · · · 0 · · · HMt




where0 is a column vector of zeros of lengthMr, and formt = 1, . . . ,Mt, the matrixHmt =

[h1,mt h2,mt · · · hMr,mt ]
T , with hmr,mt being given by[hmr,mt(0) hmr,mt(1) · · · hmr,mt(P )]T .

Thus, the system equation with one user can be written as

R = HX + N. (2)

The channel and transmit streams of theI interferers can be stacked similarly using the

preceding steps to createH(i) andX(i) respectively, fori = 1, . . . , I. The interfering signals are

added to the desired user’s signal at the receiver to give the complete input-output relation,

Y = HX +
I∑

i=1

H(i)X(i) + N. (3)

III. SPACE-TIME EQUALIZATION FRAMEWORK

In this section, the system model in Section II is extended to enable the design of the two-stage

receiver structure shown in Fig. 1. The receiver is used for independent detection of the desired

user’s transmit streams, wherein each transmit stream is detected independently of other streams

by treating them as interference. In the first stage, a space-time equalizer,W, performs CAI/CCI

cancellationand shortens the effective channels for the different spatially multiplexed transmit

streams. In the second stage, a single channel Viterbi equalizer is used for the detection of each

transmit stream independently of other streams by utilizing the shortened effective channel and

equalized output for the specific transmit stream. The space-time equalizer is designed directly

using a training-based approach as opposed to conventional methods that estimate the channel

first.

Let X in (3) be the input matrix corresponding to the training sequences transmitted on the

Mt transmit antennas of the desired source. LetY in (3) be the associated output of this training

data obtained at the receive antenna array. The length of the training sequence is chosen so as
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to ensure thatXmtX
H
mt

has full rank, whereXmt = [xmt(k) xmt(k + 1) · · · xmt(k + S − 1)]

is the sub-matrix corresponding to thevth transmit stream. This is the common persistence of

excitation assumption. A necessary condition is thatS ≥ (P +G+1). This is apparent from the

dimensions ofX andY (see Table I for a summary of the dimensions of the important matrices

in this paper). The reason for requiringXvX
H
v to be full rank will become clear in Section V.

The receiver is assumed to be ignorant of the training on theI cochannel interferers’ channels.

The channel output is equalized with a space-time equalizer ofG + 1 taps, denoted byW =

[w1 w2 · · · wMt ]. Eachwu, u = 1, . . . , Mt, is a column vector of sizeMr(G + 1). The system

equation after equalization can be written as

WHY = Z̃HX +
I∑

i=1

WHH(i)X(i) + WHN (4)

whereZ̃ is the effective channel matrix for the desired source after equalization. Let the column

vector z̃v,u represent the effective channel vector for the sequence transmitted from thevth

antenna whenwu is used to equalize theuth transmit sequence. If theuth transmit sequence

is being detected (by equalizing withwu), the effective channel,̃zu,u, is of interest. The other

channels,̃zv,u for v 6= u, represent the effective channels for the co-antenna interferers, and we

refer to them as thecross-channels.

To allow for channel shortening for reducing the complexity of the Viterbi equalizer,(z̃u,u)
H

is forced to[01×δ zH
u,u 01×(P+G−ν−δ)], wherezu,u is the shortened channel of lengthν+1, for the

uth transmit stream andδ is a parameter in the range0 ≤ δ ≤ P +G−ν that represents the delay

of the shortened channel. Note that if the channelH is known at the receiver, one would only

have to designW and the shortened effective channels would fall out from the convolution of

the equalizer with the channel, i.e., fromWHH. In our case, a joint optimization is performed to

obtain bothW and Z̃ by minimizing certain objective functions subject to different constraints

as shown in the following section.

IV. PROBLEM FORMULATION

As the detection strategy used in this paper is independent detection, the optimization problem

can be formulated separately for each transmit stream, with constraints placed onwu and z̃u,u,

instead of joint constraints onW and Z̃. The basis for the formulation of the cost functions
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presented is minimization of the energy in the cross-channels and maximization of the energy

in the desired effective channel.

A. Optimization Problem I (SAINR-z)

The first optimization problem is to maximize a signal-to-interference-plus-noise ratio (SINR)-

like quantity and can be written as

max
wu,z̃u,u

‖z̃H
u,uXu‖2

2

‖wH
u Y − z̃H

u,uXu‖2
2

, subject to||z̃u,u||22 = 1. (5)

The constraint on||z̃u,u||22 is to prevent a zero vector solution. Recall thatXu is the sub-matrix

associated with theuth transmit stream. As each̃zu,u has the shortened channelzu,u embedded

in it, with δ zeros preceding it,̃zH
u,uXu is equivalent tozH

u,uX
(δ)
u where,X(δ)

u = [X
(δ)
u (k) X

(δ)
u (k+

1) · · · X
(δ)
u (k + S − 1)] is a sub-matrix corresponding to theδ + 1, . . . , δ + ν + 1 rows of the

training matrix of theuth transmit sequence. The optimization can thus be rewritten as

max
wu,zu,u

‖zH
u,uX

(δ)
u ‖2

2

‖wH
u Y − zH

u,uX
(δ)
u ‖2

2

, subject to||zu,u||22 = 1. (6)

One can observe that the denominator absorbs the CAI, CCI, residual interference due to

shortening and AWGN in the difference term between the equalized output and the shortened

channel output. This enables joint CAI/CCI cancellation and channel shortening. Note that

zH
u,uX

(δ)
u is basically theuth transmit stream after equalization, and hence, the numerator is the

desired signal after equalization. Henceforth, this SINR-like quantity will be called the signal-

to-all-interference-plus-noise ratio (SAINR) as the denominator term includes various sources of

interference besides noise.

The objective function maximized by the authors in [7] was the post-equalization SINR, subject

to a similar constraint on the effective channel. As mentioned in Section I, they specifically

considered SIMO systems. The overall complexity of their Viterbi equalizer was on the order of

MtM
L+1, whereL + 1 is the equalized channel length, while that of the Viterbi equalizer with

channel shortening is on the order ofMtM
ν+1.

B. Optimization Problem II (SAINR-w)

The other variablewu in the optimization problem can also be constrained to prevent a

degenerate solution. For this case, the cost function is modified slightly and the optimization
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problem is stated as

max
wu,zu,u

‖wH
u Y‖2

2

‖wH
u Y − zH

u,uX
(δ)
u ‖2

2

, subject to||wu||22 = 1. (7)

The constraint on||wu||22 is sufficient for avoiding a trivial zero vector solution forwu. The

cost function is similar to that in (6), with the difference being in the numerator. With perfect

cancellation,wH
u Y ≈ zH

u,uX
(δ)
u . Hence the numerator of the objective function in (7) corresponds

to the desired signal after equalization and the cost function is again the post equalization SAINR.

C. Optimization Problem III (LS-z)

In the final optimization problem, we minimize only the all-interference term in the denom-

inator of (6), instead of maximizing the SAINR. The problem is now a least-squares problem

with a quadratic constraint and we can expect a reduction in computational complexity if we

use one of the many gradient descent algorithms available for solving such constrained least-

squares problems, e.g. recursive least squares (RLS) [24]. This is the motivation for the following

formulation

min
wu,zu,u

‖wH
u Y − zH

u,uX
(δ)
u ‖2

2, subject to||zu,u||22 = 1, (8)

where the all-interference-plus-noise term is minimized subject to a constraint on the norm of the

effective channel. This optimization problem is demonstrated to be practically equivalent to that

in (6) for long enough training sequences in Section VII-A. This suggests that this formulation

enables the use of low-complexity algorithms for achieving the same system performance as

obtained by solving (6).

V. SOLUTIONS

All the three optimization problems have similar forms and the technique of separation of

variables is used to solve them. This is stated in Proposition 1. We drop the indexu from wu,

zu,u andX
(δ)
u for ease of reading.
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Proposition 1 (Separation of variables).[25] Define

F(w, z) =
‖wHY‖2

2

‖wHY − zHX(δ)‖2
2

, (9)

f(w) = z = arg max
z
F(w, z), (10)

M(w) = max
z
F(w, z) =

‖wHY‖2
2

‖wHY − f(w)HX(δ)‖2
2

. (11)

1) If ŵ = arg maxwM(w), and ẑ = f(ŵ), then(ŵ, ẑ) is the global maximizer forF(w, z),

andF(ŵ, ẑ) = M(ŵ).

2) If (ŵ, ẑ) = arg maxw,zF(w, z), thenŵ is the global maximizer forM(w), andF(ŵ, ẑ) =

M(ŵ).

It follows from Proposition 1 that if we define

F(w, z) = ‖wHY − zHX(δ)‖2
2, (12)

f(z) = w = arg min
w
F(w, z), (13)

M(z) = min
w
F(w, z) = ‖f(z)HY − zHX(δ)‖2

2. (14)

then,

1) If ẑ = arg minzM(z), and ŵ = f(ẑ), then (ŵ, ẑ) is the global minimizer forF(w, z),

andF(ŵ, ẑ) = M(ẑ).

2) If (ŵ, ẑ) = arg minw,zF(w, z), then ẑ is the global minimizer forM(z), andF(ŵ, ẑ) =

M(ẑ).

Note that the variablesw andz are not independent of each other. However, the above results

enable us to solve our joint optimization problems by solving for one variable first, conditioned

on the other. This is followed by substituting the solution back into the cost function and solving

for the other variable. The approach is similar to that followed in [7].

A. Solution for Optimization Problem I (SAINR-z)

We first need to findf(z) = w = arg maxw F(w, z). This is the same as solving forf(z) =

arg minw ‖wHY − zHX(δ)‖2
2. Differentiating this modified cost function w.r.t.w and setting the

result to zero, we obtain

wH = zHX(δ)YH(YYH)−1. (15)
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Substituting in the optimization problem in (6), we have

zopt = arg max
z

‖zHX(δ)‖2
2

‖zHX(δ)YH(YYH)−1Y − zHX(δ)‖2
2

, subject to||z||22 = 1, (16)

= arg max
z

zHX(δ)X(δ)Hz

zHX(δ)PYX(δ)Hz
, subject to||z||22 = 1 (17)

where PY = I − YH(YYH)−1Y is a projection matrix. This is a generalized eigenvalue

problem and the solution,zopt, is given by the generalized eigenvector corresponding to the

largest generalized eigenvalue2 of X(δ)X(δ)H andX(δ)PYX(δ)H . The optimum equalizer,wopt,

can be obtained by substitutingzopt in (15).

The optimum value of theδ parameter of the shortened channel needs to be found as well.

This is done by evaluating (6) for all possible values ofδ and choosing theδ that results in the

maximum value. Note that the optimalδ can be found using faster techniques [15], [26]. The

same algorithm is repeated for all transmit sequences. Each transmit sequence is detected by a

single-channel Viterbi equalizer in the second stage of the receiver, which uses the shortened

effective channelz and equalized outputw for each transmit stream to suppress the ISI.

B. Solution for Optimization Problem II (SAINR-w)

Using the same steps as in Section V-A, we have

zH = wHYX(δ)H(X(δ)X(δ)H)−1, (18)

and,

wopt = arg max
w

wHYYHw

wHYPXYHw
, subject to||w||22 = 1 (19)

wherePX = I − X(δ)H(X(δ)X(δ)H)−1X(δ) is a projection matrix. The solution,wopt, is given

by the generalized eigenvector corresponding to the largest generalized eigenvalue ofYYH and

YPXYH . The optimum effective channel,zopt, is obtained by substitutingwopt in (18). As

before, this algorithm along withδ-optimization is repeated for all transmit streams and the

detection is completed by single-channel Viterbi equalizers in the following stage.

2A low-complexity division-free algorithm for finding the generalized eigenvector corresponding to the largest eigenvalue has

been developed in [26], [27].
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C. Solution for Optimization Problem III (LS-z)

As mentioned before, (8) is a constrained least-squares optimization problem. We solve for

f(z) = arg minw F(w, z) = arg minw ‖wHY − zHX(δ)‖2
2. Differentiating w.r.t.w and setting

the result to zero, we obtain the same expression as in (15)

wH = zHX(δ)YH(YYH)−1. (20)

Now (8) can be rewritten as

zopt = arg min
z

zHX(δ)PYX(δ)Hz, subject to||z||22 = 1 (21)

where PY = I − YH(YYH)−1Y is a projection matrix. The solution,zopt, is given by the

eigenvector corresponding to the smallest eigenvalue ofX(δ)PYX(δ)H . After theδ-optimization,

the Viterbi equalizer in the ensuing stage uses the shortened effective channel and the equalized

transmit stream for the detection of each transmit stream.

VI. COMPUTATIONAL COMPLEXITY

The complexity of the proposed algorithms can be calculated on the basis of the major

computational tasks in each algorithm. These tasks include:

1) Finding zopt or wopt as the (generalized) eigenvector corresponding to the largest or

smallest (generalized) eigenvalue of symmetric matrices, and calculating the corresponding

wopt or zopt from (15) or (18). Sub-tasks in these calculations are finding(YYH)−1 or

(X(δ)X(δ)H)−1 for PY or PX depending on the algorithm, and matrix multiplications3,

2) Detection using the Viterbi detector.

The order of computational complexity for these two parts can be approximated using [28]

(Chapters 3 and 8), and turns out to be the same for all three proposed algorithms. Task 1

requiresO((ν + 1)3) + O(M3
r (G + 1)3) + O(Mr(G + 1)S) computations, and Task 2 requires

O(M ν+1) computations. Recall thatM denotes the size of the symbol constellation. As stated

earlier, the complexity of the LS-z method can be reduced by using certain gradient descent

algorithms, e.g., constrained RLS, for solving constrained least squares optimization problems.

3Note that there are more efficient ways to perform these calculations which do not require explicit computation of matrix

inverses.
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VII. S IMULATIONS AND DISCUSSIONS

In this section, various simulation results are presented for demonstrating the performance of

the proposed algorithms in terms of symbol error rate (SER) and SAINR. With the exclusion

of Section VII-C, a single-user2× 2 MIMO system with QPSK modulation is considered. For

the purpose of simulations, the channel is assumed to be 3 taps long (i.e.P = 2). Further, the

different taps of the channel are assumed to have a constant power delay profile and are i.i.d. with

distributionCN (0, 1). A quasi-static channel model is considered, where the channel is assumed

to be constant over a frame of symbols of length 100. The simulation results are obtained by

averaging the communications performance over a 10000 channel realizations. LabVIEW 7.0

modules for reproducing these simulation results can be downloaded from the LabVIEW MIMO

toolkit available at [29]. In the simulations,ν + 1 < Mt(L + 1).

A. Probability of Symbol Error

We first look at the probability of symbol error performance of the three methods in the absence

of cochannel users. For all simulations in this section, the equalizer memoryG is chosen to be4.

The effective channel, which would be 7 taps long without any channel shortening, is shortened

to a length4 channel (i.e.ν + 1 = 4). The number of transmit antennas,Mt, is 2.

Note that the shortened channel length is greater than the actual channel length of 3. At this

point it is helpful to remember that we use a linear equalizer before the Viterbi equalizer to obtain

a good trade-off of performance and complexity between the MLSE and MMSE receivers as

in [7]. The effect of the first-stage equalizer is to lengthen the effective channel for the Viterbi

equalizer due to convolution. The channel shortening constraint is imposed to shorten the length

of this effective channel. The complexity of the optimal MLSE algorithm with these simulation

parameters is on the order ofMMt(P+1) = 46, the complexity of the two-stage approach in [7]

without channel shortening is on the order ofMtM
L+1 = 2 × 47, and that of the proposed

approach with channel shortening is on the order ofMtM
ν+1 = 2×44. In this scenario, without

channel shortening, the approach in [7] turns out to be more complex than the optimal MLSE.

As can be seen from Fig. 2, all three proposed methods yield similar symbol error performance.

The SAINR-w method has the smallest SER among the three methods, followed by the LS-z

method. One can observe that the LS-z and the SAINR-z curves are nearly overlapping. Thus,

these two methods are, for all practical purposes, equivalent.
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We next compare our methods with the MaxPwr method proposed in [22]. The authors use

the channel information of the desired user and that of the asynchronous cochannel interferer

for interference suppression in SIMO-OFDM channels using channel shortening ideas. For the

purpose of comparison with our algorithms, we use their method in our uncoded single carrier

MIMO scenario. A2 × 2 MIMO system can be viewed as two SIMO channels with the same

receiver. To compare the MaxPwr method with our training-based methods, we simulate the

MaxPwr method with perfect channel knowledge and with channel estimation (using least-

squared error - LSE estimation). From Fig. 2, it is clear that the MaxPwr method has a lower SER

at smaller values of input SNR than our methods. The proposed methods, however, have steeper

SER curves and their performance is better at input SNRs greater than 12 dB. The matched

filter bound for the same scenario is plotted here for reference due to the long simulation time

requirements of the optimum MLSE detector.

B. Variation of Parameters

We now look at the variation in performance of the SAINR-w method with changes in system

parameters like the number of equalizer taps and the shortened channel length. The performance

metric chosen for the simulations in this section is the SAINR. The shortened channel length

is first set to 3 and the number of equalizer taps is varied from1 to 7. The SAINR increases

steadily with the number of equalizer taps as can be seen from Fig. 3. But, as the equalizer

length,G+1, is increased beyond5 taps, the increase is negligible. This is because the residual

interference due to shortening increases and affects the SAINR.

In Fig. 4, G + 1 is fixed at 5 and the shortened channel length is varied from1 to 7, where

ν+1 = 1 corresponds to a single tap effective channel andν+1 = 7 corresponds to the effective

channel without shortening. We observe that as the effective channel is shortened, the SAINR

reduces. The degradation in SAINR is greater forν + 1 ≤ 2.

Thus an optimum balance needs to be struck between the improvement in receiver performance

due to increase in the number of equalizer taps (which adds to the receiver complexity) and the

degradation in performance due to excessive shortening of the effective channel length.
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C. CCI Suppression

The methods presented in this paper are flexible enough to perform CCI suppression with

asynchronous MIMO interferers without requiring their channel information. Their performance

is demonstrated in this section in the presence of one cochannel interferer. All channels are

modeled as Rayleigh fading channels of length2. The equalizer is chosen to have5 taps and

the desired user’s effective channels are shortened to length4 channels. For the simulations of

the MaxPwr method, an LSE estimate of the interferer’s channel is used.

In Fig. 5 and 6, the SAINR-w method is compared with the MaxPwr method in the presence of

one asynchronous cochannel interferer. In this simulation set up, each user has a single transmit

antenna and the common receiver has 2 receive antennas. The carrier to interference ratio (CIR),

which is the ratio of the transmit signal power of the desired user to that of the undesired

interferer, is chosen to be 3 dB. Fig. 5 plots the SER with the difference in propagation delay

between the two users. It can be seen that the SER performance of the SAINR-w method does

not change much with the propagation delay, while the MaxPwr method suffers in SER as the

delay increases. This is further illustrated in Fig. 6, where the difference in propagation delay

between the two users is chosen to be 30 taps. As evident, the symbol error rate achieved by

the SAINR-w method is significantly lower than that obtained by the MaxPwr method. These

simulations demonstrate the flexibility of our formulation to deal with asynchronous interferers.

It is important to note that our algorithms are resilient to asynchronicity of CCI due to the

fact that they do not require any information about the interferer’s channel. To ensure a fair

comparison with our algorithm, if the receiver is assumed to lack knowledge of the interferer’s

training data and thereby its channel, the MaxPwr method would fail to work.

VIII. C ONCLUSION

In this paper, a two-stage receiver structure for CAI/CCI cancellation and ISI equalization in

frequency-selective MU-MIMO channels was presented. The novelty of the receiver design lies in

combining CAI/CCI cancellation with channel shortening to help reduce the receiver complexity.

Unlike many previously proposed receivers, this receiver does not require the channel information

of cochannel interferers and this enables it to deal with asynchronous users. Simulation results

show good symbol error performance for single-user2×2 MIMO systems with all three methods

and reasonable cochannel rejection in a two-user scenario with asynchronous users. Performance
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can possibly be improved by considering the coloring of the noise due to the space-time equalizer,

and incorporating noise whitening constraints in the filter optimization [30]. This approach can

be extended to the multicarrier case (MIMO-OFDM) as proposed in [23].
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TABLE I

TABLE OF DIMENSIONS OF IMPORTANT MATRICES, WITH Mt TRANSMIT ANTENNAS, Mr RECEIVE ANTENNAS, P CHANNEL

MEMORY, G EQUALIZER MEMORY, AND S SYMBOLS IN A FRAME.

Matrix Name Dimensions

X Input matrix Mt(P + G + 1)× S

H Channel matrix Mr(G + 1)×Mt(P + G + 1)

Y Output matrix Mr(G + 1)× S

N Noise matrix Mr(G + 1)× S

W Equalizer matrix Mr(G + 1)×Mt

Z̃ Effective channel matrix Mt(P + G + 1)×Mt
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Fig. 1. Schematic for the two-stage receive structure

Fig. 2. Comparison of probability of symbol error performance of the three proposed methods with the MaxPwr method, with

and without channel estimation
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Fig. 3. Variation of SAINR for the SAINR-w method with change in the number of equalizer taps,G + 1.

Fig. 4. Variation of SAINR for the SAINR-w method with change in the length,ν + 1, of the shortened channel.
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Fig. 5. Comparison of probability of symbol error performance of the desired user with the SAINR-w and the MaxPwr methods

in the presence of one asynchronous cochannel interferer (with a carrier-to-interference ratio of 3 dB).

Fig. 6. Comparison of probability of symbol error performance of the desired user with the SAINR-w and the MaxPwr methods

in the presence of one asynchronous cochannel interferer (with a carrier-to-interference ratio of 3 dB and a propagation delay

of 30 samples).
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