Probabilistic Motion Estimation for Rolling Shutter Video Rectification from Visual and Inertial Measurements

Chao Jia Brian L. Evans ECE Department, UT Austin 3/7/2012

Rotation estimation using IMUs

- Pure rotational model
- Related work
 - [Karpenko 2011] direct integral of gyro readings
 - [Hanning 2011] EKF-based: gyro as control inputs; accel. as measurements (assuming gravitational acceleration is the only source)
- Ours
 - More accurate: make use of visual measurements
 - Relative pose estimate

Camera model and Gyro readings

• Gyro has higher sampling frequency

Each frame corresponds to a group of gyro readings

EKF-based Estimation

Foundation of the method

 $\mathbf{u}' \sim \mathbf{K} \mathbf{R}(t(\mathbf{u}',i)) \mathbf{R}^T(t(\mathbf{u},j)) \mathbf{K}^{-1} \mathbf{u}$

n=k+1

EKF-based Estimation

• State vector: two groups of angular velocity

 $\mathbf{x}(i) = [\omega(i,1), \dots, \omega(i,N_i), \omega(i+1,1), \dots, \omega(i+1,N_{i+1})]^T$

• Probabilistic model

Dynamic Motion Model

• "Group cloning"

$$\mathbf{x}(i) = \begin{bmatrix} \mathbf{x}_{i,1} \\ \mathbf{x}_{i,2} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{i-1,2} \\ \mathbf{y}_i \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{w}_i \end{bmatrix}$$

• Linear model

$$A_{i} = \frac{\partial f}{\partial \mathbf{x}}\Big|_{\mathbf{x}_{i-1}} = \begin{bmatrix} \mathbf{0} & I \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, W_{i} = \frac{\partial f}{\partial \mathbf{w}}\Big|_{\mathbf{w}_{i}} = \begin{bmatrix} \mathbf{0} \\ I \end{bmatrix}$$

Measurement Model

 Use only feature points in frame i as the measurements; their matching points in frame (i-1) are used as known parameters

$$\mathbf{u}_{i,j} = p\left(K\Delta RK^{-1} \begin{bmatrix} \mathbf{u}_{i-1,j} + \mathbf{v}_{i,j,1} \\ 1 \end{bmatrix} \right) + \mathbf{v}_{i,j,2}$$

$$\mathbf{z}_{i} = \begin{bmatrix} \mathbf{u}_{i,1} \\ \mathbf{u}_{i,2} \\ \vdots \\ \mathbf{u}_{i,M} \end{bmatrix} = \begin{bmatrix} h_{1}(\mathbf{x}_{i}, \mathbf{u}_{i-1,1}, \mathbf{v}_{i,1}) \\ h_{2}(\mathbf{x}_{i}, \mathbf{u}_{i-1,2}, \mathbf{v}_{i,2}) \\ \vdots \\ h_{M}(\mathbf{x}_{i}, \mathbf{u}_{i-1,M}, \mathbf{v}_{i,M}) \end{bmatrix}$$

Avg re-projection error / point

Accuracy evaluation

• Simple zero-converging test

Rolling Shutter Effect Rectification

Numerical Comparison

- No ground truth \rightarrow self-checking method
- Vanishing point

AVERAGE EUCLIDEAN DISTANCE FROM THE LINES TO THE VANISHING POINT (IN PIXEL)

Rectification method	Video #1	Video #2
No rectification (original)	3.500	2.800
Orientation estimated by [3]	1.820	2.150
Orientation estimated by [4]	1.628	1.387
Orientation estimated by	1.180	0.800
proposed method		

Future work

- User study for quality assessment
- Optimal causal low-pass filter (stability vs. viewable size)
- Fast forward warping method
- Ready for application
- Better motion model (fast linear motion; large scene depth)
- Simultaneous Deblurring