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Motivation  
• Natural images captured by optical cameras 

•  350M photos are uploaded to Facebook every day on average 

• Computer graphics generated content 
• Massively multiplayer online gaming (23.4M subscribers worldwide) 
• Animated movies and synthetic still images 

• High Dynamic Range Images 
• Capturing HDR images in recent cellphones (e.g. iPhones) 
• Displaying HDR videos for home (e.g. Samsung) 
•  Streaming HDR content (e.g. Amazon Video, Netflix) 

• Image Quality Assessment very important 
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Source: Statista.com 
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Image Quality Assessment (IQA) Algorithms  
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[Dr. Alan C. Bovik, 
 EE381V Digital Video, 

  Spring 2015] 
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Thesis Statement and Contributions 

•  Image Quality Evaluation of  Synthetic Scenes 
1. Subjective Experiment 
2. Objective Quality Evaluation 

•  Image Quality Evaluation of  High Dynamic Range Scenes 
3. Evaluation of  Full-Reference Measures 
4. Crowdsourced Subjective Study 
5. Proposed No-reference Quality Measures 
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Thesis Statement 
Using scene statistics yields automatic visual quality assessment 

algorithms for synthetic images and high dynamic range images that 
have high correlation with human visual quality evaluation. 
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Image Quality Evaluation of  Synthetic Scenes 
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“I learned that realism can come in all shapes and sizes. The world is big enough for different values to coexist.” 
― Haruki Murakami, The Folklore of  Our Times 
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ESPL Synthetic Image Database[Kundu2015] 

•  25 reference images + 500 distorted images 
•  5 distortion categories, 4 levels of  each distortion 
•  Single Stimulus Continuous Quality Scale (0-100) with hidden reference 
•  52 observers: 12 among 64 subjects removed as outliers 
• Annotated images with differential mean opinion scores (DMOS) 
• Website: http://signal.ece.utexas.edu/~bevans/synthetic/ 

Reference (DMOS = 0) Distorted (DMOS = 74.68) 

Contribution #1 7 
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ESPL Database: Distortions 

Interpolation 
(DMOS = 63.23) 

Blur  
(DMOS = 50.89) 

Additive Noise 
(DMOS = 60.33) 

JPEG Compression 
(DMOS = 74.68) 

Fast Fading 
(DMOS = 60.26) 

Original 
(DMOS = 0) 

Contribution #1 8 

Considered less severe distortions compared to what appears in natural images  
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ESPL Objective IQA: Correlation between 
DMOS and IQA scores 

Feature Similarity Index  

Contribution #2 9 

Multi Scale Structural Similarity Index 

D
M

O
S 

•  IQA algorithms evaluated for correlation with human scores 
• Different correlation measures: 

•  Spearman Rank Order Correlation Coefficient (SROCC) 
•  Pearson Linear Correlation Coefficient (PLCC) 

• Non-linear regression on objective IQA scores with logistic function 

D
M

O
S 

Scatter plot of  two IQA algorithms vs. DMOS scores 
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ESPL Objective IQA: SROCC for Full-Reference IQAs 
Algorithms Inter-

polation 
Blur Additive 

Noise 
JPEG 

Blocking 
Fast 

Fading 
Overall 

GMSD 0.727 0.827 0.923 0.918 0.922 0.892 

SR-SIM 0.752 0.823 0.916 0.925  0.920  0.880 

FSIM 0.692 0.801  0.902 0.940 0.907  0.876 

MAD 0.788 0.813  0.909  0.933 0.927 0.863 

SSIM-D 0.688 0.772 0.915  0.914  0.904  0.796 

MS-SSIM 0.623 0.646 0.908 0.871  0.903  0.699 

PSNR 0.565 0.481 0.864  0.695  0.846  0.590 

SSIM 0.463 0.440 0.909 0.633 0.797 0.542 

Contribution #2 10 

•  GMSD: Gradient Magnitude Similarity Deviation [Xue2014] 
•  SR-SIM: Spectral Residual based Similarity Index [Zhang2012] 
•  FSIM: Feature Similarity Index [Zhang2011] 
•  MAD: Most Apparent Distortion Index [Larson2010]  
•  MS-SSIM: Multiscale-Structural Similarity Index [Wang2003] 
•  PSNR: Peak Signal-to-Noise Ratio [Wang2003] 
•  SSIM: Structural Similarity Index Metric [Wang2003] 
 

No-reference 
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ESPL Objective IQA: Some insights 
•  PSNR outperforms SSIM for all distortions 

•  Need to choose appropriate scale for SSIM  
•  Some users rated distorted image higher than reference 

• Challenging distortions 
•  Presence of  blur may not always correspond to a lower subjective score 
•  Interpolation caused near-threshold artifacts for low upsampling factors 

• Efficient pooling strategies across image subblocks play important role 

Reference (DMOS = 0) SSIM map 

Contribution #2 11 

22 among 52 subjects rated the blurred version higher than the original one 
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max(1,round(N/256)) 
N = Minimum image 
dimension 

Blurred (5x5 Gaussian kernel. σ = 1.25 pixels) 
(DMOS = 18.86) 



ESPL Objective IQA: Synthetic Scene Statistics 

• Natural Scene statistics 
•  Natural pristine images have statistics that occur irrespective of  content 
•  Statistics of  images with distortions deviate from NSS 

• Mean Subtracted Contrast Normalized (MSCN) pixels [Ruderman1993] 
•  Models divisive normalization in human visual systems 
•  Let           be the pixel located at        th spatial location 
•  MSCN,  

•  Mean  

•  Standard deviation  
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I(i, j) (i, j)
Î (i, j) = I(i, j)−µ(i, j)

σ (i, j)+1

µ(i, j) = wk.l I(i+ k, j + l)
l=−L

L

∑
k=−K

K

∑

σ (i, j) = wk.l I(i+ k, j + l)−µ(i, j)[ ]2
l=−L

L

∑
k=−K

K

∑

Contribution #2 
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Wk,l: Gaussian 
Weighting Factor 

7x7 window size 
for local statistics 



ESPL Objective IQA: SROCC for No-reference IQAs 
Contribution #2 13 

Algorithms Interpolatio
n 

Blur Additive 
Noise 

JPEG 
Blocking 

Fast 
Fading 

Correla
tion 

G-IQA-1(L) 0.605 0.612 0.858 0.908 0.774 0.813 

CORNIA 0.808 0.775 0.793 0.898 0.706 0.810 

C-DIIVINE 0.702 0.730 0.847 0.841 0.738 0.798 

BRISQUE 0.631 0.720 0.840 0.898 0.717 0.789 

DESIQUE 0.595 0.590 0.886 0.934 0.714 0.773 

•  G-IQA-1(L): Gradient Image Quality Assessment-1 (Luminance) [Kundu2016] 
•  CORNIA: Codebook Rep for No-Ref  Image Assessment (CORNIA) [Ye2012] 
•  C-DIIVINE: Complex Distortion Identification-based Image Verity and INtegrity Evaluation 

[Zhang2014] 
•  BRISQUE: Blind/Referenceless Image Spatial Quality Evaluator [Mittal2012] 
•  DESIQUE: DErivative Statistics-based Quality Evalulator [Zhang2013] 

Full-reference 
Introduction |     Synthetic Image Quality|     HDR Image Quality| Conclusions 



Full-reference Image Quality Evaluation of  HDR 
Images 
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“It is a part of  probability that many improbabilities will happen.” 
― Aristotle 
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HDR creation pipeline 
15 

Estimate 
radiance map by 
merging pixels 
from different 

exposures 

Tonemap floating 
point irradiance map to 

SDR 

Merge SDR exposure stack 
directly to get fused image 

Post-processing 

Registered 
exposure stack 

Multi-Exposure Fusion 
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Post-processing 

Tonemapping 



HDR Tone-mapping operators [Larson, 1997] 
16 

World luminance values for a window office 
in candelas per meter squared 

Uniformly spaced 
quantization of  

luminances 
overexposes the 
view through the 

window 

Luminances mapped 
to preserve visibility 
of  both indoor & 
outdoor features 

using non-linear tone 
mapping 

Contribution #3 
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HDR IQA:  Applications 
Image quality assessment for HDR scenes for designing better 
• Tone-mapping operators for standard dynamic range (SDR) displays 
• Multi-exposure fusion algorithms 
• Compression for HDR images (e.g., JPEG-XR) 
• HDR rendering for computer graphics 

Contribution #3 17 
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HDR rendering Multi-exposure fusion 



Full-Reference IQA for Tonemapping  
•  Previous FR-IQA algorithms for tone mapping distortions 

•  Tone Mapped Quality Index (TMQI): inspired by SSIM [Yeganeh2013] 

•  Feature Similarity Index for Tone Mapped Images (FSITM): based on phase 
congruency [Nafchi2014] 

•  Image saliency by pooling IQA scores in each subblock 
•  Attention based on Information Maximization based TMQI[Nasrinpour2015] 
•  Itti and Koch’s method generalized for HDR applications [Petit2010] 

•  Simpler weighting measures needed for faster execution speed 

•  Finding better Natural Scene Statistics models to quantify 
“naturalness” 

• Designing algorithms for other types of  HDR distortions 
•  Compression of  HDR images 

Contribution #3 18 
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Spatial domain statistics for tonemapping  

MSCN coefficient distribution and σ-field distribution for different tone-mapping operators 

Contribution #3 19 
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HDR IQA: MSCN based Scene Statistics 
• Multiscale TMQI yield structural fidelity score (S) 
•  Proposed combination of  structural fidelity and naturalness scores: 

•  β: Scale parameter of  GGD fit of  MSCN coefficients 
• ϕ: Standard deviation of  the σ-field 
•             are the sensitivity parameters 
•  a indicates relative weighting of  the terms 

Q = aSγ + 1
2
(1− a)βδ1 +

1
2
(1− a)φδ2

γ,δ1,δ2

Contribution #3 20 
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HDR IQA: Local pooling techniques 
• Average pooling gives same importance to every pixel. 
• Two non-uniform pooling strategies: 

•  σ-map  
•  Local entropy 

• σ-map gives measure of  edge magnitude and high contrast regions 
•  Local entropy indicates local randomness 

Tone mapped image Structural fidelity map Structural fidelity with pooling 

Contribution #3 21 
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HDR IQA:  TMQI Database Results [Yeganeh2013] 
•  15 source HDR images 
• Each HDR image mapped to SDR using 8 tone-mapping operators. 
•  Subjects ranked these 8 SDR images for every source image 
 

  

Contribution #3 22 

FR-IQA Algorithms SROCC PLCC Time(s) 

TMQI-NSS-Sigma (Proposed) 0.8810 0.9439 0.3212 

TMQI-NSS-Entropy (Proposed) 0.8810 0.9438 1.2759 

TMQI-Itti (Proposed) 0.8810 0.9346 0.8010 

FSITM-TMQI[Nafchi2014] 0.8571 0.9230 0.9428 

STMQI[Nasrinpour2015] 0.8503 0.9382 1.538 

TMQI-II[Ma2015] 0.8333 0.8790 0.2002 

Feature Similarity Index for Tone-Mapped Images(FSITM)
[Nafchi2014] 

0.8333 0.8948 0.4741 

Tone Mapped Image Quality Index (TMQI)[Yeganeh2013] 0.8095 0.9082 0.5206 

Correlation measures are computed between predicted ranks of  tone-mapped images and 
ground-truth rankings for each source image. Result shows median of  correlations computed. 
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Crowdsourced Study of   
High Dynamic Range Images 

23 

“The desert has its holiness of  silence, the crowd its holiness of  conversation.” 
― Walter Elliot 
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HDR-IQA: ESPL-LIVE Image Database 
•  1,811 HDR images obtained from 605 source scenes 
•  Size: 960x540 for landscape and 540x304 for portrait orientation 
•  Single Stimulus Continuous Quality Scale (0-100) 
•  327,720 raw quality scores from 5,462 subjects 
•  Images annotated with mean opinion scores (MOS) 

24 
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Sample images 

Contribution #4 



HDR-IQA: Subjective Testing Methodology  

25 

•  12 subjects evaluated 27 images in laboratory setting 
•  5 ‘Gold Standard’ images 

• Amazon Mechanical Turk used for crowdsourcing 
•  Training images: 11 
•  Test images: 49 
•  ‘Gold Standard’ images: 5 (Viewed by every subject) 
•  Randomly repeated images : 5 

• At the end subjects answered questions on demographics, display 
parameters, and familiarity with HDR imaging 

Contribution #4 
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Source: Amazon.com 



HDR-IQA: Processing of  the raw scores 
•  Subject rejection strategies: 

•  Only subjects with AMT confidence values greater than 0.75 participated 
•  If  scores assigned to multiple copies of  the same image differed by more 

than 25.5 for three images, scores from that user was rejected 
•  388 subjects among 5,462 removed as outliers 

•  Processing of  remaining scores: 
•  On an average, every image evaluated by 110 subjects 
•  Mean Opinion Scores: Mean of  Z-score for every image 
•  Spans 16.941 - 68.502. 
•  Raw MOS scores span 5.623 – 84.661 

•  Consistency with laboratory setting: 
•  Median PLCC between individual scores and MOS values for ‘Gold  

Standard’ images in laboratory setting was 0.9466 
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Contribution #4 

Details 



No-reference Image Quality Assessment Algorithm 
for High Dynamic Range images 
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“An algorithm must be seen to be believed.” 
― Donald Knuth 
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HDR IQA: MSCN and local σ-map distributions 
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(a) MOS = 40.47 (b) MOS = 49.23 (c) MOS = 52.80 

Contribution #5 

Î (i, j) = I(i, j)−µ(i, j)
σ (i, j)+1

σ (i, j) = wk.l I(i+ k, j + l)−µ(i, j)[ ]2
l=−L

L

∑
k=−K

K

∑

J(i, j) = log[ Î (i, j)+K ]
∇xJ(i, j) = J(i, j +1)− J(i, j)



HDR IQA:  Distribution of  gradient domain features 
29 
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Contribution #5 
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HDR IQA: SROCC  between each feature and MOS 
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Domain Feature Description SROCC 

Spatial 
[f1 − f2] 

Shape and Scale parameters of  AGGD fitted to MSCN coefficients 0.238 

Spatial 
 [f3 − f16] 

Shape and Scale parameters of  AGGD fitted to log- 
derivative of  the seven types of  neighbors 

0.439 

Spatial 
[f17 − f18] 

Mean and standard deviation based features extracted from the σ-
field 

0.369 

Gradient 
[f19 − f20] 

Shape and Scale parameters of  the AGGD fitted to the MSCN 
coefficients of  gradient magnitude field 

0.250 

Gradient 
[f21 − f34] 

Shape and Scale parameters of  AGGD fitted to log- 
derivative of  seven types of  neighbors of  gradient magnitude field 

0.386 

Gradient 
[f35 − f36] 

Mean and standard deviation based features extracted from the σ-
field of  gradient magnitude field 

0.388 

Gradient 
[f37 − f40] 

Mean, standard deviation, skewness, and kurtosis of  
gradient structure tensor coherence 

0.420 
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G-IQA-1:  [f1 − f36] G-IQA-2:  [f1 − f18, f37 f40] 

Contribution #5 

Features computed across 2 levels and in LAB color space 



ESPL-LIVE HDR objective IQA: No-reference SROCC 
31 

•  Computed on ratings obtained from 4,715 subjects 
•  80% training, 20% testing, 100 random train-test splits 
•  No content overlap to prevent artificial inflation of  correlations 
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Contribution #5 

Algorithms Tone Mapping Multi Exposure 
Fusion 

Post 
Processed 

Overall 

G-IQA-1 0.692 0.691 0.582 0.716 

G-IQA-2 0.720 0.698 0.484 0.709 

G-IQA-1 (L) 0.651 0.623 0.489 0.662 

G-IQA-2 (L) 0.661 0.631 0.419 0.656 

DESIQUE 0.503 0.550 0.476 0.565 

GM-LOG 0.521 0.521 0.527 0.562 

CurveletIQA 0.542 0.512 0.435 0.546 

DIIVINE 0.485 0.456 0.335 0.480 

BLIINDS-II 0.385 0.421 0.435 0.448 

BRISQUE 0.267 0.431 0.431 0.402 

More 



Conclusion 

•  Image Quality Evaluation of  Synthetic Scenes 
1. Designed ESPL Synthetic Image Database 
2. Compared performance of  state-of-the-art IQA algorithms for synthetic 
images 

•  Image Quality Evaluation of  High Dynamic Range Scenes 
3. Used scene statistics and visual saliency measures for full-reference 
evaluation of  HDR scenes 

4. Conducted a large scale subjective study for HDR images 
5. Proposed scene-statistics based NR-IQA algorithms for HDR images 

32 

Thesis Statement 
Using scene statistics yields automatic visual quality assessment 

algorithms for synthetic images and high dynamic range images that 
have high correlation with human visual quality evaluation. 
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IQA in Synthetic Scenes 
•  Frame rendering in video games 

•  Better real-time algorithms for photo-realistic images on powerful GPUs 
•  More realistic lighting calculations 

•  Cloud gaming (e.g. Nvidia Grid servers)  
•  Livestreaming game play (e.g. YouTube Gaming) 

39 Contribution #1 
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• 25 color images, 1920x1080 pixels in size 
• Frames from video games 

• Multiplayer role playing games (such as War of  Warcraft) 
•  First person shooter games (such as Counter Strike) 
• Motorcycle and car racing games  

• Frame from animated movies 
• The Lion King, Tinkerbell series, Avatar etc. 

ESPL Database: Source Images 

Contribution #1 40 
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ESPL Database: Source Content Parameters 

•   Spatial information (SI) indicates edge energy. 

•         and     : gray-scale images filtered with horizontal and vertical 
Sobel kernels respectively 

 
•  P: Number of  pixels in the filtered image 
•  L: Vertical resolution 
• Colorfulness (CF) indicates variety and intensity of  colors 

• Using opponent color spaces:                    and 

sr = sv
2 + sh

2

svsh

SI = L /1080 sr
2 / P∑

CF = σ rg
2 +σ by

2 + 0.3 µrg
2 +µby

2

rg = R−G yb = 0.5(R+G)−B
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ESPL Database: Source Complexity [Winkler2012] 
•  Spatial Information: Indicates edge energy 
• Colorfulness:  Indicates the variety and intensity of  colors 

ESPL Database Cadik’s Database 

LIVE Database TID Database 
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ESPL Database: Processing of  raw scores 
• Raw scores were first converted to raw quality difference scores: 

•  rij: Score assigned to  j-th image by the i-th subject 
•  riref(j):  Score assigned by same subject to corresponding reference  

• Difference scores normalized for each subject and averaged 

dij = riref ( j ) − rij

Histogram of  DMOS scores Scatter plot of  DMOS scores 
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ESPL Database: Distortion Parameters 
•  Interpolation 

•  Images downsampled by factors ranging from 3 to 6 
•  Upsampled back using nearest neighbor interpolation 

• Blur 
•  RGB color channels filtered with circularly symmetric 2D Gaussian kernel  
•  Standard deviation ranging from 1.25 to 3.5 pixels 
•  Same kernel employed for each color channels 

• Additive Noise: 
•  Same noise variance used for all color channels 
•  Noise standard deviation ranged from 0.071 to 0.316 pixels 
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ESPL Database: Distortion Parameters (cont’d) 

•   JPEG compression 
•  MATLAB  imwrite function was used 
•  Bits per-pixel (bpp) ranged from 0.0445 to 0.1843.  
•  Higher bpp images were not considered to better simulate playing a cloud 

video game under restricted bandwidth conditions. 

•   Simulated Fast Fading Channel 
•  Original images  compressed into JPEG2000 bitstreams 
•  Wireless error resilience features enabled and 64 x 64 tiles  
•  Transmitted over a simulated Rayleigh-fading channel 
•  Signal-to-noise ratio (SNR) was varied at the receiver from 14 to 17 dB  
•  SNRs greater than 17 dB did not introduce perceptible distortions due to 

the error resilience feature of  the JPEG2000 codec. 
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ESPL Database: Methodology 
•  Single Stimulus Continuous Quality Scale (SSCQS) method 
• Each subject evaluated each image 
• Three sessions, of  one hour each, separated by at least 24 hours. 

•  Each session divided into two sub-sessions of  25 minutes 
•  Separated by a break of  five minutes. 

•  64 subjects 
•  Age range : 18 – 30 years 
•  Mostly without prior experience in participation of  subjective tests 

• Verbal confirmation of  20/20 (corrected) vision was obtained 
• Viewed roughly 175 test images during each session  

•  Randomly ordered using a random number generator 

• Testing sessions were preceded by training session of  10 images  
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ESPL Database : Methodology (cont’d) 
• User interface programmed on MATLAB using Psychology Toolbox 
• NVIDIA Quadro NVS 285  
• Dell 24 inches U2412M display 
•  16:10 aspect ratio 
• Normal office illumination  

•  540 lux measured with HS1010 digital light meter 

• Each image displayed for 12 seconds 
• Viewing distance: 2-2.25 times display height 
•  Scores between 0-100 was entered 
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ESPL Database: Processing of  raw scores 
• Raw scores were first converted to raw quality difference scores: 

•  rijk: Score assigned to  j-th image by the i-th subject in k-th session 
•  riref(j)k:  Score assigned by same subject to corresponding reference  

• DMOS score is zero for reference images 
• DMOS scores converted to Z-scores per session 

dijk = riref ( j )k − rijk
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µik =
1
Nik

dijk
j=1

Nik

∑

σ ik =
1

Nik −1
(dijk −µik )

2

j=1

Nik

∑

zijk =
dijk −µik

σ ik

zij
' =
100(zij +3)

6

DMOSj =
1
M

zij
'

i=1

M

∑

Nik: Number of  videos seen by i-th subject in k-th session 
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ESPL Database: Outlier rejection 
• Done as per ITU-R BT 500.11 recommendation 
• Compute kurtosis of  scores per subject to check Gaussianity 
•  If  kurtosis falls between the values of  2 and 4 (Gaussian) 

•  Subject rejected if  more than 5% of  his scores falls outside ±2σ from mean. 

•  For non Gaussian distributions 
•  Subject rejected if  more than 5% of  his scores falls outside ±4.47σ from mean. 

•  12 out of  64 subjects rejected 
• Testing degree of  consensus among subjects: 

•  Subjects divided into two groups randomly 
•  DMOS scores for all the image calculated individually from each group 
•  Pearson’s linear correlation coefficient was 0.9813 between the groups 
•  Shows a high level of  consensus among the subjects 
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ESPL Database: Calculating correlations 
50 

•  Let Qj be the quality predicted by the IQA algorithm for the j-th image. 
•  Four parameter monotonic logistic function fit IQA predictions to quality 

scores: 

•  Spearman’s Rank-order correlation coefficient: 
 
•  where di  is the difference between the i-th image’s ranks is subjective and 

objective evaluations. 
•  Kendall’s correlation coefficient: 
 
•   Nc and Nd are the number of  concordant (of  consistent rank order) and 

discordant (of  inconsistent rank order) pairs in the data set respectively. 
 

Qj
' = β2 +

β1 −β2

1+ exp[−
Qj −β3
| β4 |

]

SRCC =1−
6 di

2

i=1

N

∑
N(N 2 −1)

KCC = Nc − Nd

0.5N(N −1)
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ESPL IQA: Scatter plot of  DMOS vs IQA scores 

MSSIM PSNR 
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ESPL Objective IQA: Blur 
 
• Blurred images led to a lower degree of  correlation with human scores 
•  Lower degree of  blur considered than natural images 
•  Some motion blur lead to aesthetically pleasing images [McGuire2012] 

•  Presence of  blur may not always correspond to a lower subjective score 
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Reference (DMOS = 0) Blurred (5x5 Gaussian kernel. σ = 1.25 pixels) 
(DMOS = 18.86) 

22 among 52 subjects rated the blurred version higher than the original one 
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ESPL Objective IQA: Interpolation 
•  Lowest degree of  correlation with human scores among all distortions 
•  Most Apparent Distortion measure achieves highest correlation 
•  It advocates multiple strategies for determining overall image quality 

•   Based on whether the distortions are near-threshold or supra-threshold 

•  Low downsampling factors result in near-threshold artifacts 
•  Almost imperceptible at normal viewing distances 

•  Higher downsampling factors result in supra-threshold artifacts 
 
 

Reference (DMOS = 0) Interpolated (DMOS = 56.40) 
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ESPL Objective IQA: Role of  Pooling 
•   Efficient pooling strategies play an important role 
• Visual Saliency Index, Spectral Residual based Similarity Measure 

•  Use visual fixations based pooling strategies 

• Gradient Magnitude Similarity Index 
•  Use standard deviation of  gradient map 

• Using visual fixations in synthetic scenes is promising direction 

Reference Spectral Residual Saliency 
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ESPL Objective IQA: MSCN Images 

Original Image 

MSCN Image Standard Deviation Image 
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ESPL Objective IQA : Modeling MSCN Pixels  
•  MSCN coefficients modeled by the following distributions: 

•  Generalized Gaussian (GGD) 
•  Symmetric Alpha Stable (SaS): For highly kurtotic empirical histograms 
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MSE J Chi Square 

GGD 0.00257 0.0772 0.00252 

SAS 0.00264 0.0948 0.00174 

Mean square error, J-Divergence, and Pearson’s Chi-squared values for distributions fitted to 
histograms of  MSCN coefficients, averaged over 221 pristine synthetic images [Kundu 2014] 

 Chi-Squared value at 99% confidence interval = 6.635 
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ESPL IQA: Modeling of  MSCN Gradients 
•  Distribution of  the gradient magnitude of  MSCN coefficients 

•  Modeled using Rayleigh, Weibull and Nakagami distributions  
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MSE J Chi Square 

Rayleigh 0.00891 4.730 0.769 

Weibill 0.0251 5.00432 0.663 

Nakagami 0.00916 5.304 0.892 

Mean square error, J-Divergence, and Pearson’s Chi-squared values for distributions fitted to 
histograms of  MSCN coefficients, averaged over 221 pristine synthetic images [Kundu 2014] 
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Generalized Gaussian Density 
• The GGD 
 
 includes the special cases 
   = 1 (laplacian density) 
   = 2 (gaussian density) 
   =    (uniform density) 

 
• Many authors have observed the GGD behavior of  BP image 

signals. 
•  Wavelet coefficients 
•  DCT coefficients 

•  Usually reported that b » 1 but varies (0.8 < b < 1.4). 
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pg (r)=
β

2σΓ β−1( )
exp r / σ( )

β

r∈ℜ, σ,β>0

[Ref: Dr. Alan C. Bovik, 
 EE381V Digital Video, 

  Spring 2015] 

Contribution #2 

β

β

β ∞

Introduction |     Synthetic Image Quality|     HDR Image Quality| Conclusions 

Back to FR Back to NR Back to FR-HDR 



Symmetric Alpha Stable 
59 

• A random variable X is called stable if  its characteristic function can be 
expressed as:  

 
•  sgn(t): sign of  t 

•    
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Steerable Filter 
• Create directional derivative of  gaussian in arbitary direction 

by a coordinate rotation by q: 

•  In particular: 
 
• A derivative-of-gaussian filter of  any orientation (derivative 

direction ) is exactly a linear combination of two orthogonal 
derivative-of-gaussian filters 
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( ) ( )
( )

( ) ( ) ( ) ( )

2 2

θ 4 2

2 2 2

x y1h ( ) = cos θ x sin θ y exp
2πσ 2σ

j cos θ U sin θ V exp 2 πσ U V

⎡ ⎤− +− ⎢ ⎥+⎡ ⎤⎣ ⎦ ⎢ ⎥
⎣ ⎦

⎡ ⎤⋅ + ⋅ −ℑ +⎡ ⎤⎣ ⎦ ⎣ ⎦

x

sr

( ) ( ) ( ) ( )θ 0 π 0 π θ
2 2

h ( ) = cos θ h ( ) sin θ h ( )  cos θ H ( ) sin θ H ( ) = H ( )ℑ+ +x x u u ux sr
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ESPL IQA: Steerable Pyramid comparison 

Histogram of scale parameter 

(b) Orientation = 60 degrees  

Histogram of  scale (a)(b) and shape parameters(c)(d) of  the steerable pyramid decomposition  
of  synthetic images (221 images) and natural images  

[Martin2001] (500 images from Berkeley Segmentation Dataset) 

Contribution #2 61 

(a) Orientation = 0 degree  
(c) Orientation = 0 degree  

(d) Orientation = 60 degrees  
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ESPL IQA: Comparison with Natural Scenes 

Histogram of scale parameter 

Histogram of  scale parameter  
(JS divergence = 1.5655) 

Histogram of  shape parameter  
(JS divergence = 1.0503) 

Skewness-kurtosis scatter plot 
of  MSCN coefficients of  synthetic images[Kundu2014] (221 images) and natural images  

[Martin2001] (500 images from Berkeley Segmentation Dataset) 
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Skewness 
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ESPL IQA:  Distorted Image Statistics in 
Different Domains 

• Different distortions affect scene statistics characteristically 
• Can be used for distortion classification and blind quality prediction  

MSCN Coefficients Steerable Pyramid Wavelet  
Coefficients 

Curvelet Coefficients 
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ESPL Objective IQA: Classification using NSS 
•  Singular value decomposition of  blind IQA features in 2-D 

BRISQUE features (MSCN) 
DIIVINE features (Wavelets) 

CurveletQA features (Curvelets) 
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ESPL IQA : Box plot of  No-reference SROCC 
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ESPL IQA: Performance-Time Complexity 
Tradeoff  (FR, RR-IQAs) 

•  FR-IQA: SR-SIM, GMSD show good performance-complexity 
tradeoff  
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ESPL IQA: Performance-Time Complexity 
Tradeoff  (NR-IQAs) 

•  Some NR-IQA metrics comparable with the best FR-IQA 
algorithms. 
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HDR IQA:  Multi Exposure Fusion 
68 

Back 

Y (i) = Wk (i)Xk (i)
k−1

K

∑

•  K : Number of  multi-exposure input images 
• Y : Fused Image 
• Xk(i) : Luminance (or coefficient amplitude in transform domain) 

at i-th pixel in k-th exposure image 
• Wk(i) : Weight at i-th pixel in k-th exposure image 

•  Spatially adaptive  
•  Varies according to perceptual importance of  different exposure levels. 

• Requires 
•  Camera calibration  
•  Motion compensation 
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HDR IQA: Tone Mapped Quality Index (TMQI) 
[Yeganeh, 2013] 

• Based on Structural Similarity (SSIM) Index 
• Does not penalize change in signal strength between HDR and 

SDR image patches 
• Only penalized cases when signal strength is significant in one 

image patch but not in the other 
•   Local standard deviation nonlinearly mapped so that: 

•  Significant signal strength mapped to 1 
•  Insignificant signal strength mapped to 0 

• CDF of  Gaussian distribution is used for non-linear mapping: 

•  Structural fidelity computation over multiple scales 

p(s) = 1
2πθs

exp − (x −τ s )
2

2θs
2

"

#
$

%

&
'

−∞

s

∫ dx
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HDR IQA: Naturalness Measure 
• TMQI combines structural similarity score (S) with naturalness 

(N) measure 

 
 
•  Pm: Gaussian fit to means of  natural images 

•   Pd: Beta fit to standard deviations of  natural images: 
            
            
•           are sensitivity parameters 

Q = aSγ + (1− a)N δ

N =
1
K
PmPd

γ,δ

Pm (m) =
1
2πσ m

exp −m−µm

2σ m
2

"

#
$

%

&
'
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HDR IQA: Itti and Koch’s Saliency 

71 Contribution #3 
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• Different scales: Implemented as Gaussian Pyramid 
• Center Surround mechanism:  

•  Implemented with DoG 

•  LPF repeated over multiple scales 
•  3 scales, 4 orientations used 
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HDR IQA: Local weighing using local entropy 
•  Local entropy filtering at every pixel leads to detecting high contrast 

regions 
• Gives a measure of  local randomness 
 

•            is the probability of  intensity    

H (I ) = − p(hi )log[p(hi )]
i
∑

p(h) h

Tone mapped image Structural fidelity map Structural fidelity with pooling 
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HDR IQA:  Results on HDR-JPEG database [Narwaria2013] 
•  10 source HDR images 
• Each source image has 14 degraded versions 
•  JPEG coding with 7 different bit rates. 
•  SSIM and MSE are two optimization criteria used 

73 

FR-IQA Algorithms SROCC PLCC Time(s) 

SHDR-TMQI (Proposed) 0.8510 0.8533 3.0003 

TMQI-NSS-Sigma (Proposed) 0.8485 0.8520 1.6470 

TMQI-NSS-Entropy (Proposed) 0.8454 0.8645 6.7424 

Tone Mapped Image Quality Index (TMQI)[Yeganeh2013] 0.7947 0.8057 3.4394 

FSITM-TMQI[Nafchi2014] 0.6300 0.6584 8.3486 

TMQI-II[Ma2015] 0.5096 0.5137 1.3424 

Feature Similarity Index for Tone-Mapped Images(FSITM) 
[Nafchi2014] 

0.4720 0.5167 5.2617 

STMQI[Nasrinpour2015] 0.3464 0.3244 11.9965 
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ESPL-LIVE HDR Database: Source Complexity 
•  Spatial Information: Indicates edge energy 
• Colorfulness:  Indicates the variety and intensity of  colors 
• Computed on medium exposure image in source exposure stack 

ESPL-LIVE HDR Database 

Contribution #4 74 

LIVE Challenge Database[Ghadiyaram2016] 
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HDR-IQA: Z-Scores Distributions 

75 
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Gradient Image Quality Assessment-1 

76 

Mean Subtraction and divisive 
normalization 

Local Standard Deviation 

Pairwise log-
derivative 
statistics 

Pointwise 
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Mean Subtraction and divisive 
normalization 
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Gradient Image Quality Assessment-2 
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Mean Subtraction and divisive 
normalization 

Local Standard Deviation 

Pairwise log-
derivative 
statistics 

Pointwise 
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Standard Deviation 

Skewness 

Kurtosis 

Mean 
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HDR IQA: Log Derivative Computation 

78 

•  Logarithm of  each MSCN coefficient is computed 
 
 
 
•  Seven types of  log-derivatives defined 
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D1:∇xJ(i, j) = J(i, j +1)− J(i, j)
D2 :∇yJ(i, j) = J(i+1, j)− J(i, j)
D3 :∇xyJ(i, j) = J(i+1, j +1)− J(i, j)
D4 :∇yxJ(i, j) = J(i+1, j −1)− J(i, j)
D5 :∇x∇y = J(i−1, j)+ J(i+1, j)− J(i, j −1)− J(i, j +1)
D6 :∇cx∇cyJ(i, j)1 = J(i, j)+ J(i+1, j +1)− J(i, j +1)− J(i+1, j)
D7 :∇cx∇cyJ(i, j)2 = J(i−1, j −1)+ J(i+1, j +1)− J(i−1, j +1)− J(i+1, j −1)

Î (i, j) = I(i, j)−µ(i, j)
σ (i, j)+1

J(i, j) = log[ Î (i, j)+K ]
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Gradient Structure Tensor Coherence 
79 
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•  Gx : Vertical component of  gradient 
•  Gy: Horizontal component of  gradient 

•  Computed by convolving with difference-of-Gaussians 
•  Gradient structure tensor is defined as: 

 
•  λ1 and λ2 are the two eigenvalues of  gradient structure tensor 
•  C: Gradient structure tensor coherence: 

 

•  Computed over 9x9 non-overlapping blocks  
•  Features are: mean, standard deviation, skewness and kurtosis of  C 

C = λ1 −λ2
λ1 +λ2

"

#
$

%

&
'

2

J =
f (Gx ) f (GxGy )

f (GxGy ) f (Gy )

!

"

#
#

$

%

&
&

f (V ) = w[i, j]V (i− k, j − k)2
l,k
∑
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No-reference IQAs on LIVE Database 

80 
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Algorithms JP2K JPEG GN Blur FF Overall 

GM-LOG 0.882 0.878 0.978 0.915 0.899 0.914 

G-IQA-1 0.905 0.883 0.983 0.917 0.836 0.906 

G-IQA-2 0.904 0.867 0.982 0.920 0.841 0.904 

BRISQUE 0.878 0.852 0.962 0.941 0.863 0.902 

BLIINDS-II 0.907 0.846 0.939 0.906 0.884 0.897 

DESIQUE 0.875 0.824 0.975 0.908 0.829 0.878 

CurveletQA 0.816 0.827 0.969 0.896 0.826 0.863 

DIIVINE 0.824 0.759 0.937 0.854 0.759 0.827 

MS-SSIM 0.963 0.979 0.977 0.954 0.939 0.954 

SSIM 0.939 0.947 0.964 0.905 0.939 0.913 

PSNR 0.865 0.883 0.941 0.752 0.874 0.864 

Italics indicate full-reference algorithms 



F-test on residuals between IQAs and DMOS  
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A B C D E F G H I 

A ---- ---- 1--1 1--1 1--1 1--1 1--1 1-11 ---1 

B ---- ---- 1--1 1--1 1--1 1--1 1--1 11-1 1--1 

C 0--0 0--0 ---- ---- ---- ---- ---- ---- 0--- 

D 0--0 0--0 ---- ---- ---- ---- ---- ---- 0--- 

E 0--0  0--0 ---- ---- ---- ---- ---- ---- ---- 

F 0--0  0--0 ---- ---- ---- ---- ---- ---- 0--- 

G 0--0  0--0 ---- ---- ---- ---- ---- ---- ---- 

H 0-00 00-0 ---- ---- ---- ---- ---- ---- 0--0 

I ---0 0--0 1--- 1--- ---- 1--- ---- 1--1 ---- 
A : G-IQA-1, B : G-IQA-2, C : DESIQUE, D : BRISQUE. E : GM-LOG 

F : C-DIIVINE, G : DIIVINE, H : BLIINDS-II, I : CurveletQA 

Introduction |     Synthetic Image Quality|     HDR Image Quality| Conclusions 

Contribution #5 

Back 



HDR-IQA: Box plot of  No-reference SROCC 

82 
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HDR IQA: Scatter plot of  MOS vs IQA scores 

G-IQA-1 
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G-IQA-2 
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HDR IQA:  Estimating irradiance map 
84 
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Zij = f (Eit j )
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Introduction |     Synthetic Image Quality|     HDR Image Quality| Conclusions 

f −1(Zij ) = Eit j

ln f −1(Zij ) = ln(Ei )+ ln(t j )

ln f −1(Zij ) = ln(Ei )+ ln(t j )



HDR IQA: Source Image Content 

85 Contribution #4 
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HDR IQA: Demographics and Display parameters 
86 

HDR familiarity HDR Device used HDR software familiarity 

Age of  subjects Display used Distance from display 
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HDR-IQA: Processing of  the raw scores 
(Cont’d) 

• Rating consistency: 
•  Inter subject consistency : PLCC between  MOS obtained by 

dividing the workers into two disjoint groups was 0.9677 
(randomized over 25 trials) 

•  Intra subject consistency: Median PLCC between individual 
scores and MOS values for ‘Gold  Standard’ images was 0.8697 

• Consistency with laboratory study: Median PLCC between 
individual scores and MOS values for ‘Gold  Standard’ images in 
laboratory setting was 0.9466 
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HDR-IQA: MOS vs. Number of  subjects 
88 Contribution #5 
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HDR-IQA: Parameter variations 
89 Contribution #5 
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Variation with age Variation with gender Variation with HDR awareness 
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HDR-IQA: Parameter variations (cont’d) 
90 Contribution #5 
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Variation with display Variation with distance from display 
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