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Abstract

This paper addresses the issues of charging, rate control and rout-
ing for a communication network carrying elastic traffic, such as an
ATM network offering an available bit rate service. A model is de-
scribed from which max–min fairness of rates emerges as a limiting
special case; more generally, the charges users are prepared to pay in-
fluence their allocated rates. In the preferred version of the model, a
user chooses the charge per unit time that the user will pay; thereafter
the user’s rate is determined by the network according to a propor-
tional fairness criterion applied to the rate per unit charge. A system
optimum is achieved when users’ choices of charges and the network’s
choice of allocated rates are in equilibrium.

1 Introduction

This paper describes a model designed to shed light on the issues of charg-
ing, rate control and routing. Its main purpose is to support ongoing work
on charging schemes for broadband multiservice networks, described in [3]
and [6]. A subsidiary aim is to investigate the relationship between various
fairness criteria and ‘smart market’ approaches to dynamic pricing [7],[9],[10].

The organization of the paper is as follows. Section 2 presents a system
model of charging, routing and flow control, where the system comprises
both users with utility functions and a network with capacity constraints.
Standard results from the theory of convex optimization show that the op-
timization of the system may be decomposed into subsidiary optimization
problems, one for each user and one for the network, by using price per unit
flow as a Lagrange multiplier that mediates between the subsidiary problems.

∗This is a (corrected) version of a paper that appeared in European Transactions on

Telecommunications , volume 8 (1997) pages 33-37.
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Low and Varaiya [7] and Murphy et al. [9] describe how such results may be
used as the basis for distributed pricing algorithms, and MacKie-Mason and
Varian [10] describe a ‘smart market’ based on a per-packet charge when the
network is congested.

In Section 3 we use a simple example to explore how various fairness cri-
teria are associated with particular choices of utility function. We note that
max–min fairness [1] emerges as a limiting special case, and describe a pro-
portional fairness criterion associated with the logarithmic utility function.

In the system decomposition of Section 2, price per unit flow is the me-
diating variable. This may cause a particular difficulty for elastic traffic. In
an implementation of an ATM available bit rate service, for example, users
would be subject to two sources of uncertainty about the service offered: both
the allocated rate and the price charged per unit flow would be allowed to
fluctuate at the network’s discretion. In Section 4 we describe an alternative
system decomposition where price per unit share is the mediating variable.
Under this decomposition the user chooses the charge per unit time that it
pays, and the network determines allocated rates by a proportional fairness
criterion, but applied to the rate per unit charge, rather than just the rate.
It is shown that a system optimum is achieved when users’ choices of charges
and the network’s choice of allocated rates are in equilibrium.

2 The model

Consider a network with a set J of resources, and let Cj be the finite capacity
of resource j, for j ∈ J . Let a route r be a non-empty subset of J , and write
R for the set of possible routes. Set Ajr = 1 if j ∈ r, so that resource j
lies on route r, and set Ajr = 0 otherwise. This defines a 0 − 1 matrix
A = (Ajr, j ∈ J, r ∈ R). Suppose that several routes through the network
may substitute for one another: formally, suppose that a source-sink s is a
subset of R and write S for the set of possible source-sinks. Set Hsr = 1 if
r ∈ s, so that route r serves the source-sink s, and set Hsr = 0 otherwise.
This defines a 0− 1 matrix H = (Hsr, s ∈ S, r ∈ R). For each r ∈ R let s(r)
identify a value s ∈ S such that Hsr = 1, and suppose this value is unique;
we view s(r) as the source-sink served by route r.

We associate a source-sink s with a user, and suppose that if a rate xs

is allocated to the source-sink s then this has utility Us(xs) to the user. We
assume that the utility Us(xs) is an increasing, strictly concave and contin-
uously differentiable function of xs over the range xs ≥ 0 (following Shenker
[12], we call traffic that leads to such a utility function elastic traffic). As-
sume further that utilities are additive, so that the aggregate utility of rates

2



x = (xs, s ∈ S) is
∑

s∈S Us(xs).
A flow pattern y = (yr, r ∈ R) supports the rates x = (xs, s ∈ S) if

Hy = x, so that the flows yr over routes r serving the source-sink s sum to
the rate xs. A flow pattern y = (yr, r ∈ R) is feasible if y ≥ 0 and Ay ≤ C,
where C = (Cj, j ∈ J), so that the flows over routes through resource j sum
to not more than the capacity Cj of resource j. Let U = (Us(·), s ∈ S) and
let U ′(x) = (U ′

s(xs), s ∈ S).
To find the system optimal rates and flows we need to consider the fol-

lowing optimization problem.

SYSTEM(U, H, A, C):

maximize
∑

s∈S

Us(xs) (1)

subject to Hy = x, Ay ≤ C (2)

over x, y ≥ 0. (3)

The objective function (1) is differentiable and strictly concave and the
feasible region (2),(3) is compact; hence a maximizing value of (x, y) exists
and can be found by Lagrangian methods. There is a unique optimum for the
rate vector x, since the objective function (1) is a strictly concave function of
x, but there may be many corresponding values of the flow rate y satisfying
the relations (2) and (3). Say that x solves SYSTEM(U, H, A, C) if there
exists y such that (x, y) solves the optimization problem (1)–(3).

Consider the Lagrangian form

L(x, y, z; λ, µ) =
∑

s∈S

Us(xs) − λT (x − Hy) + µT (C − Ay − z),

=
∑

s∈S

(

Us(xs) − λsxs

)

+
∑

r∈R

yr

(

λs(r) −
∑

j∈r

µj

)

−
∑

j∈J

µjzj +
∑

j∈J

µjCj

where λ = (λs, s ∈ S), µ = (µj, j ∈ J) are vectors of Lagrange multipliers
and (zj , j ∈ J) is a vector of slack variables. Then

∂L

∂xs

= U ′
s(xs) − λs

∂L

∂yr

= λs(r) −
∑

j∈r

µj

∂L

∂zj

= −µj .
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Hence, at a maximum of L over the orthant x, y, z ≥ 0, the following condi-
tions hold:

λs = U ′
s(xs) if xs > 0

≥ U ′
s(xs) if xs = 0 (4)

λs(r) =
∑

j∈r

µj if yr > 0

≤
∑

j∈r

µj if yr = 0 (5)

µj = 0 if zj > 0
≥ 0 if zj = 0 (6)

From the general theory of constrained convex optimization ([8], chapter 5;
[13], chapter 3) it follows that there exists a quadruple (λ, µ, x, y) which
satisfies

λ ≥ U ′(x), Hy = x,
(

λ − U ′(x)
)T

x = 0 (7)

µ ≥ 0, Ax ≤ C, µT (C − Ax) = 0 (8)

λTH ≤ µT A, y ≥ 0, (µT A − λTH)y = 0 (9)

and that, further, the vector x then solves SYSTEM(U, H, A, C).
The Lagrange multipliers λ, µ have several simple interpretations. For

example, if route r has positive flow on it, yr > 0, then necessarily
∑

j∈r µj ≤
∑

j∈r∗ µj for any other route r∗ which serves the same source-sink. We may
view µj as the implied cost of unit flow through link j. Alternatively µj is
the shadow price of additional capacity at link j.

If user s is charged a price λs per unit flow, and is allowed to freely vary
the flow xs, then the utility maximization problem for user s is as follows.

USERs(Us; λs)

maximize Us(xs) − λsxs (10)

over xs ≥ 0.

If the network receives a revenue λs per unit flow from user s, and is
allowed to freely vary the flows x, then the revenue optimization problem for
the network is as follows.
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NETWORK(H, A, C; λ)

maximize
∑

s

λsxs (11)

subject to Hy = x, Ay ≤ C (12)

over x, y ≥ 0. (13)

Say that x solves NETWORK(H, A, C; λ) if there exist y such that (x, y)
solves the optimization problem (11) – (13).

Theorem 1 There exists a price vector λ = (λs, s ∈ S) such that the vector
x = (xs, s ∈ S), formed from the unique solution xs to USERs(Us; λs) for
each s ∈ S, solves NETWORK(H, A, C; λ). The vector x then also solves
SYSTEM(U, H, A, C).

Proof . First note that USERs(Us; λs) has a unique solution xs, by the strict
concavity of Us, and that xs is determined by U ′

s(xs) ≤ λs, xs ≥ 0 and (λs −
U ′

s(xs))xs = 0. Next observe that the Lagrangian form for the optimization
problem (11)–(13) is

L(x, y, z; p, q) =
∑

s

λsxs − pT (x − Hy) + qT (C − Ay − z)

=
∑

s

xs(λs − ps) +
∑

r

yr(ps(r) −
∑

j∈r

qj)

−
∑

j∈J

qjzj +
∑

j∈J

qjCj .

Hence any quadruple (λ, µ, x, y), which satifies conditions (7), (8) and (9),
identifies Lagrange multipliers p = λ, q = µ, which establish that (x, y) solves
NETWORK(H, A, C; λ), as well as SYSTEM(U, H, A, C).

Conversely, for any solution x to NETWORK(H, A, C; λ) there exist La-
grange multipliers p, q, where if xs > 0 then ps = λs and if xs = 0 then
ps ≥ λs. Thus if xs solves USERs(Us; λs) then it will also solve USERs(Us; ps),
and so we may construct a quadruple satisfying conditions (7), (8) and (9)
by replacing λ and µ by p and q respectively. This establishes that x solves
SYSTEM(U, H, A, C), and hence the final part of the theorem.

3 An example: fairness criteria

Suppose that each source-sink s is served by a single route r, and abbreviate
notation by writing s = r, rather than s = {r}; thus H = I, the identity
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matrix. Suppose also that Us(xs) = ms log xs. (Formally, we define Us(·) over
the range [0,∞), with Us(0) = −∞ and U ′

s(0) = ∞.) Then at the optimum
xs is necessarily positive, and conditions (7) and (9) become simply

λs =
ms

xs

, λs =
∑

j∈s

µj.

Thus the optimal rate xs is

xs =
ms

∑

j∈s µj

(14)

where (xs, s ∈ S), (µj, j ∈ S) solve

µ ≥ 0, Ax ≤ C, µT (C − Ax) = 0 (15)

and relation (14).
Next we investigate the relationship between the solution to relations

(14), (15) and concepts of fairness. The most common fairness criterion is
that of max–min fairness: a vector of rates x = (xs, s ∈ S) is max–min fair if
it is feasible (that is x ≥ 0 and Ax ≤ C), and if for each s ∈ S, xs cannot be
increased (while maintaining feasibility) without decreasing xs∗ for some s∗

for which xs∗ ≤ xs [1]. (The compactness and convexity of the feasible region
for x imply that such a vector exists, and is unique.) The max–min fairness
criterion gives an absolute priority to the smaller flows, in the sense that if
xs∗ < xs then no increase in xs, no matter how large, can compensate for
any decrease in xs∗ , no matter how small. An alternative fairness criterion,
which favours smaller flows less emphatically, is proportional fairness, defined
as follows. A vector of rates x = (xs, s ∈ S) is proportionally fair if it is
feasible (that is x ≥ 0 and Ax ≤ C) and if for any other feasible vector x∗,
the aggregate of proportional changes is zero or negative1:

∑

s∈S

x∗
s − xs

xs

≤ 0.

Say that resource j is a bottleneck if the solution x to relations (14),
(15) has (Ax)j = Cj. If ms = 1 for s ∈ S, and if each flow xs passes
through a single bottleneck, then the solution x is necessarily max–min fair.
This conclusion does not, however, apply when flows pass through multiple

1The printed version of the paper erroneously had strict inequality in this rela-
tion. I’m grateful to Martin Biddiscombe, Nortel, Harlow, for the correction - see
http://www.ucl.ac.uk/∼uceemdb/phd.html
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bottlenecks. To investigate this situation further, consider a small feasible
perturbation (xs, s ∈ S) → (xs + δxs, s ∈ S). This increases the objective
function (1) provided

∑

s∈S

U ′
s(xs). δxs > 0,

which condition becomes, with Us(xs) = log xs, the condition

∑

s∈S

δxs

xs

> 0.

From the convexity of the feasible region for x and the strict concavity of the
logarithm function, it follows that, when ms = 1 for s ∈ S, the solution x to
relations (14), (15) is the unique vector of rates that is proportionally fair.

We note that the definition of proportional fairness directly extends to
the case where each source-sink s may be served by multiple routes: the
definition of feasibility simply becomes that there exists y ≥ 0 such that x =
Hy and Ay ≤ C. Once again the solution x to SYSTEM(U, H, A, C) with
Us(xs) = log xs, s ∈ S, is the unique vector of rates that is proportionally
fair.

The logarithmic utility function is thus intimately associated with the
concept of proportional fairness. Is there a utility function that plays a similar
role for the concept of max–min fairness? To explore this question further, let
us suppose that any feasible flow satisfies xs < 1. (This assumption loses no
generality, since we can clearly rescale capacity units so that

∑

j∈J Cj < 1.)
Next, let Us(xs) = U(α)(xs) for s ∈ S, where

U(α)(x) = −(− log x)α 0 < x < 1, α ≥ 1.

The case α = 1 is just the logarithmic utility function associated with a
proportionally fair allocation of rates. If 0 < xs∗ < xs < 1,

U ′
(α)(xs∗)

U ′
(α)(xs)

=
xs

xs∗

(

log xs∗

log xs

)α−1

→ ∞ as α → ∞.

Thus the collection of utility functions U = U(α) provides a priority to
smaller flows which increases as α increases and becomes absolute as α →
∞. The max–min fair allocation of rates is the limit of the solution to
SYSTEM(U(α), H, A, C) as α → ∞.
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4 An alternative decomposition

The decomposition described by Theorem 1 uses a vector λ giving prices per
unit flow. In this Section we describe an alternative decomposition expressed
in terms of prices per unit share.

If user s is charged an amount ms per unit time, and receives in return a
flow xs proportional to ms, then the utility maximization problem for user s
is as follows.

USERs[Us; λs]

maximize Us

(

ms

λs

)

− ms (16)

over ms ≥ 0. (17)

Let m = (ms, s ∈ S), and define the following optimization problem.

NETWORK[H, A, C; m]

maximize
∑

s

ms log xs (18)

subject to Hy = x Ay ≤ C (19)

over x, y ≥ 0. (20)

Say that x solves NETWORK[H, A, C; m] if there exists y such that (x, y)
solve the optimization problem (18)–(20).

Theorem 2 There exist vectors λ = (λs, s ∈ S), m = (ms, s ∈ S) and
x = (xs, s ∈ S) such that

(i) ms solves USERs[Us; λs], for s ∈ S;

(ii) x solves NETWORK[H, A, C; m];

(iii) ms = λsxs for s ∈ S.

The vector x then also solves SYSTEM(U, H, A, C).

Proof . The derivative of the objective function (16) is

∂

∂ms

{

Us

(

ms

λs

)

− ms

}

=
1

λs

U ′
s

(

ms

λs

)

− 1.
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Thus the conditions

U ′
s

(

ms

λs

)

= λs if ms > 0

≤ λs if ms = 0 (21)

identify a solution ms to USERs[Us; λs].
The Lagrangian for the optimization problem (18)–(20) is

L(x, y, z; p, q) =
∑

s

ms log xs − pT (x − Hy) + qT (C − Ay − z)

=
∑

s

(ms log xs − psxs) +
∑

r

yr(ps(r) −
∑

j∈r

qj)

−
∑

j∈J

qjzj +
∑

j∈J

qjCj.

Then

∂L

∂xs

=
ms

xs

− ps

∂L

∂yr

= ps(r) −
∑

j∈r

qj

∂L

∂zj

= −qj .

Hence, at a maximum of L over the orthant x, y, z ≥ 0, the following condi-
tions hold:

ms

xs

= ps (22)

ps(r) =
∑

j∈r

qj if yr > 0

≤
∑

j∈r

qj if yr = 0 (23)

qj = 0 if zj > 0
≥ 0 if zj = 0. (24)

But the quadruple (λ, µ, x, y) which satisfies conditions (7), (8) and (9) identi-
fies a solution to (22), (23) and (24), with p = λ, q = µ, and ms = λsxs, s ∈ S.
Moreover, this solution satisfies the feasibility constraints (12) and (13), and
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the relation (21). This establishes the existence of the claimed vectors λ, m
and x.

Conversely, for any solution x to NETWORK[H, A, C; m] there exist La-
grange multipliers p, q, where if xs > 0 then ms = xsps, and if xs = 0
then ms = 0. Thus if ms = λsxs and ms solves USERs[Us; λs] then ms

will also solve USERs[Us; ps] 2, and so we may construct a quadruple satis-
fying conditions (7), (8) and (9) by replacing λ and µ by p and q respec-
tively. Hence conditions (i), (ii) and (iii) of the Theorem imply that x solves
SYSTEM(U, H, A, C).

Note that if ms = 1 for s ∈ S then the solution to NETWORK[H, A, C; m]
is the proportionally fair allocation of rates. If ms, s ∈ S, are all integral
then the solution to NETWORK[H, A, C; m] may be constructed as follows.
For each s ∈ S replace the single user s by ms identical sub-users, calculate
the proportionally fair allocation over the resulting

∑

s∈S ms rates, and then
provide to user s the aggregate rate allocated to its ms associated sub-users.
Then the rates per unit charge are proportionally fair.

5 Concluding remarks

We have shown that if each user is able to choose a charge per unit time that
it is prepared to pay, and if the network determines allocated rates so that
the rates per unit charge are proportionally fair, then a system optimum is
achieved when users’ choices of charges and the network’s choice of allocated
rates are in equilibrium. We have not discussed convergence to equilibrium
and an interesting and challenging question concerns whether rate control
algorithms such as those described in [2], [3], and [4] may be adapted to
implement the proportional fairness criterion described in this paper.

A further challenging question concerns how the choice of parameter ms

might be implemented in an ATM network. One possibility would be to
use the Minimum Cell Rate of ATM standards [5] to buy a share of spare
capacity, as well as to provide a lower bound on the rate. In [6] some of the
consequential influences on user behaviour are discussed.

2This deduction is incorrect: it may fail when ms = xs = 0. A counterexample to the
Theorem is provided by the example ms = xs = 0, λs > U ′

s
(0), for all s: then statements

(i), (ii) and (iii) of the Theorem hold, but x does not solve SYSTEM(U, H, A, C). One way
to sidestep the difficulty is to assume that U ′

s
(xs) → ∞ as xs ↓ 0, a technical assumption

that turns out to have some other advantages in the dynamic context. But within the
current context a much more satisfactory resolution is appended as a revised Section 4.
I’m grateful to Ramesh Johari for pointing out the difficulty and developing its resolution.
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4 An alternative decomposition

The decomposition described by Theorem 1 uses a vector λ giving prices per
unit flow. In this Section we describe an alternative decomposition expressed
in terms of prices per unit share.

If user s is charged an amount ms per unit time, and receives in return a
flow xs proportional to ms, then the utility maximization problem for user s
is as follows.

USERs[Us; λs]

maximize Us

(

ms

λs

)

− ms (16)

over ms ≥ 0. (17)

Let m = (ms, s ∈ S), B(m) = {s ∈ S : ms > 0}, and define the following
optimization problem.

NETWORK [H, A, C; m]

maximize
∑

s∈B(m)

ms log xs (18)

subject to Hy = x, Ay ≤ C (19)

over x, y ≥ 0. (20)

Note that if ms = 1 for s ∈ S then the solution to NETWORK [H, A, C; m]
is the proportionally fair allocation of rates. If ms, s ∈ S, are all integral,
then the solution to NETWORK [H, A, C; m] may be constructed as follows.
For each s ∈ S replace the single user s by ms identical sub-users, calculate
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the proportionally fair allocation over the resulting
∑

s∈S ms rates, and then
provide to user s the aggregate rate allocated to its ms associated sub-users.
Then the rates per unit charge are proportionally fair.

Say that x solves NETWORK [H, A, C; m] if there exists y such that (x, y)
solve the optimization problem (18)-(20). The corresponding Lagrangian
form is

LNET (x, y, z; λ, µ) =
∑

s∈B(m)

ms log xs − λT (x − Hy) + µT (C − Ay − z)

=
∑

s∈B(m)

ms log xs −
∑

s∈S

λsxs +
∑

r∈R

yr

(

λs(r) −
∑

j∈r

µj

)

−
∑

j∈J

µjzj +
∑

j∈J

µjCj.

Applying the stationarity conditions, we conclude that at an optimum of
LNET over x, y, z ≥ 0:

∂LNET

∂xs

=
ms

xs

− λs = 0, if s ∈ B(m)

= −λs = 0, if xs > 0, s '∈ B(m)

≤ 0, if xs = 0, s '∈ B(m)

∂LNET

∂yr

= λs(r) −
∑

j∈r

µj = 0, if yr > 0

≤ 0, if yr = 0

∂LNET

∂zj

= −µj = 0, if zj > 0

≤ 0, if zj = 0.

We may express these conditions more compactly: (x, y) solve NETWORK [H, A, C; m]
if and only if there exist multipliers (λ, µ) such that:

Hy = x, Ay ≤ C, x, y ≥ 0 (21)

λT H ≤ µTA, λ, µ ≥ 0 (22)

µT (C − Ay) = 0, (µT A − λT H)y = 0, ms = λsxs, s ∈ S. (23)

The first row of conditions is primal feasibility; the second row is dual feasi-
bility; and the third row comprises complementary slackness.

We may use these conditions to construct the dual of NETWORK [H, A, C; m].
Given vectors λ and µ, the global maximum of LNET occurs when xs = ms/λs
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for s ∈ B(m). After elision of terms independent of λ and µ, the dual opti-
mization problem is as follows.

DUAL[H, A, C; m]

maximize
∑

s∈B(m)

ms log λs −
∑

j∈J

µjCj (24)

subject to λT H ≤ µT A (25)

over λ, µ ≥ 0. (26)

Say that λ solves DUAL[H, A, C; m] if there exists µ such that (λ, µ) solve
the optimization problem (24)-(26).

Theorem 2 There exist vectors m = (ms, s ∈ S), λ = (λs, s ∈ S), and
x = (xs, s ∈ S) such that

1. ms solves USERs[Us; λs], for s ∈ S;

2. λ solves DUAL[H, A, C; m], and λs > 0 for s ∈ S;

3. x solves NETWORK [H, A, C; m];

4. ms = λsxs for s ∈ S.

Further, given any such triple (m, λ, x), the vectors m and x are uniquely
determined, and x solves SYSTEM (U, H, A, C).

Proof. As λs > 0 for all s ∈ S, USERs[Us; λs] is well defined for all s ∈ S.
The derivative of the objective function (16) is

∂

∂ms

{

Us

(

ms

λs

)

− ms

}

=
1

λs

U ′
s

(

ms

λs

)

− 1.

Thus the conditions

U ′
s

(

ms

λs

)

= λs,if ms > 0

≤ λs,if ms = 0

identify a solution ms to USERs[Us; λs]. We may write these conditions more
compactly as

ms ≥ 0, λs ≥ U ′
s

(

ms

λs

)

,

(

λs − U ′
s

(

ms

λs

))

ms = 0. (27)
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By Lagrangian duality, (λ, µ) solve DUAL[H, A, C; m] if and only if there
exists a pair (x, y) such that (x, y, λ, µ) satisfy (21)-(23). But the quadruple
(x, y, λ, µ) which satisfies conditions (7)-(9) identifies a solution to (21)-(23),
by defining ms = λsxs, s ∈ S. Thus, x solves NETWORK [H, A, C; m], and
λ solves DUAL[H, A, C; m]. Finally, the conditions (7) together with the
definition of ms imply the conditions (27) are satisfied. This establishes the
existence of the claimed vectors, m, λ, and x.

Conversely, suppose we are given m, λ, and x satisfying conditions (i)-(iv)
of the theorem. Then, again by Lagrangian duality, we know there exists a
pair (x̂, ŷ) such that (x̂, ŷ, λ, µ) satisfy (21)-(23). We now claim that in fact,
x = x̂, by the following reasoning. Given s ∈ S, ms = λsxs by (iv); and
ms = λsx̂s by (23). But since λs > 0, it must be true that x̂s = xs for all
s ∈ S. Thus, the quadruple (x, ŷ, λ, µ) satisfies (21)-(23). But, by (i), ms

and λs satisfy (27) for all s ∈ S, so (x, ŷ, λ, µ) satisfies (7)-(9). We conclude x
solves SYSTEM (U, H, A, C), and therefore x is uniquely determined. Since
λs > 0 for all s ∈ S, m is uniquely determined as well. !

We have shown that if each user is able to choose a charge per unit time
that it is prepared to pay, and if the network determines allocated rates so
that the rates per unit charge are proportionally fair, then a system optimum
is achieved when users’ choices of charges and the network’s choice of allo-
cated rates and prices per unit share are in equilibrium. In economic terms,
equilibrium is achieved when demand (ms) equals supply, or price times
quantity (λsxs); and further, in this case, aggregate utility is maximized.
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