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Abstract—In multistage problems, decisions are implemented
sequentially, and thus may depend on past realizations of the
uncertainty. Examples of such problems abound in applications
of stochastic control and operations research; yet, where robust
optimization has made great progress in providing a tractable
formulation for a broad class of single-stage optimization prob-
lems with uncertainty, multistage problems present significant
tractability challenges. In this paper we consider an adaptability
model designed with discrete second stage variables in mind.
We propose a hierarchy of increasing adaptability that bridges
the gap between the static robust formulation, and the fully
adaptable formulation. We study the geometry, complexity, for-
mulations, algorithms, examples and computational results for
finite adaptability. In contrast to the model of affine adaptability
proposed in [2], our proposed framework can accommodate
discrete variables. In terms of performance for continuous linear
optimization, the two frameworks are complementary, in the
sense that we provide examples that the proposed framework
provides stronger solutions and vice versa. We prove a positive
tractability result in the regime where we expect finite adaptabil-
ity to perform well, and illustrate this claim with an application
to Air Traffic Control.

I. INTRODUCTION

Optimization under uncertainty has long been at the fron-
tier of both theoretical and computational research. Multi-
stage problems, closely related to stochastic control, model
decision-making over time, where the uncertainty is revealed
sequentially, and future stage decisions may depend on past
realizations of uncertainty.1

Stochastic optimization (see [10], [22], [24], [25], and
references therein) explicitly incorporates a probabilistic de-
scription of the uncertainty, often relaxing hard constraints by
penalizing infeasibility ([23]), or by using so-called chance
constraints ([21]). In the last decade, much work has been
done in the single-stage robust optimization framework. Here,
the decision-maker makes no probabilistic assumptions, but
rather seeks deterministic protection to some bounded level
of uncertainty. Recent work has considered the case of lin-
ear, semidefinite, and general conic optimization, as well as
discrete robust optimization; see, e.g., [3],[4],[8],[9], [18].
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1Problems from stochastic control differ primarily in the focus on feasibil-
ity. While we do not discuss here the applicability of techniques from dynamic
programming versus stochastic programming, we refer the reader to [5], [6]
for work in dynamic and approximate dynamic programming, and then [13],
[22], [25] and references therein for further discussion of this in the Stochastic
Optimization formulation of uncertainty).

The focus of this paper is on two-stage optimization models,
where the uncertainty follows the robust paradigm, i.e., it is
set-based and deterministic:

min : c�x + d�y(ω)
s.t. : A(ω)x + B(ω)y(ω) ≤ b, ∀ω ∈ Ω.

(I.1)

We investigate the class of piecewise constant adaptability
functions for y(ω). We are particularly interested in formula-
tions of adaptability that are able to address the case of discrete
second stage variables.

Remark 1: While our central motivation is the two-stage
optimization model (and extensions to multi-stage problems),
it is also interesting to consider the second stage problem as
a single stage problem:

min : d�y(ω)
s.t. : B(ω)y(ω) ≤ b, ∀ω ∈ Ω.

(I.2)

In this context, piecewise constant adaptability to the uncer-
tainty, ω, is equivalent to a formulation where the decision-
maker receives some advance partial information about the re-
alization of the uncertainty, namely, the uncertainty realization
will lie in some given region of a partition of the uncertainty
set Ω.

For deterministic uncertainty models, the landscape of so-
lution concepts has two extreme cases. On the one side, we
have the static robust formulation where the decision-maker
has no adaptability to, or information about, the realization of
the uncertainty. On the other extreme is the formulation with
complete adaptability, where the decision-maker has arbitrary
adaptability to the exact realization of the uncertainty and
then selects an optimal solution accordingly.2 This latter set-
up is overly optimistic for several reasons. Exact observations
of the uncertainty are rarely possible. Moreover, even if in
principle feasible, computing the optimal arbitrarily adaptable
second stage function is typically an intractable problem.
Furthermore, even implementing such complete adaptability
in practice may be too expensive, since effectively it requires
complete flexibility in the second stage, and hence in itself
may be undesirable3. This motivates us to consider the middle
ground.

Contributions and Paper Outline

In a departure from the static robust optimization paradigm,
we consider a set-up where the decision-maker (perhaps at

2In the context of a single-stage problem, this corresponds to having
complete knowledge of the exact realization of the uncertainty, as opposed to
some coarse model for the advance information. As we comment throughout
the paper, while we focus on the two-stage model, the interpretation of the
adaptability we introduce, in the one-stage model, is exactly one correspond-
ing to a finite amount of information revealed to the decision-maker.

3For an example from circuit design where such second stage limited
adaptability constraints are physcially motivated by design considerations, see
[28].



JOURNAL OF IEEE TRANSACTIONS ON AUT. CONTROL, VOL. X, NO. X, JANUARY 20XX 2

some cost) may be able to select some finite number, k, of
contingency plans for the second stage solution, (y 1, . . . , yk),
as opposed to a single robust solution, yR. The central topic of
this paper is to understand the structure, properties and value
of this finite adaptability.

Our goals in this paper are as follows:

(1) To provide a model of adaptability that addresses the
conservativeness of the static robust formulation in the
case of a two-stage optimization problem.

(2) To develop a hierarchy of adaptability that bridges the
gap between the static robust and completely adaptable
formulations, as the level, k, of adaptability increases.

(3) To structure this adaptability specifically to be able to
accommodate discrete second-stage variables.

(4) To investigate how to optimally structure the adaptability
(i.e., how to choose the contingency plans) for small k.
Furthermore, we want to understand the complexity of
solving the problem optimally.

(5) In addition to structural properties and theoretical char-
acterizations of the optimal adaptability structure, we
would like practical algorithms that perform well in
computational examples.

Point by point, we believe the above goals are important for
the following reasons. (1) While there exist proposals for
adaptability, to the best of our knowledge none are structured
specifically to address the fact that the static robust formulation
cannot model non-convexity in the uncertainty set, or non-
constraintwise uncertainty ([4]). (2) Also, as far as we know,
there exist no adaptability proposals that allow a variable
degree of adaptability, specifically with the ability to cover
the middle ground between the static robust and completely
adaptable formulations. (3) While there has been some effort
in Stochastic Optimization to address the case of discrete
second-stage variables (see, e.g., [19], and references therein)
there has been no work addressing the case of integer second-
stage variables within the framework of deterministic set-
based uncertainty. (4) The completely adaptable formulation
is known to be NP-hard to solve in general ([2]) as are
other adaptability proposals ([2], [29],[1]), as well as various
approaches to Stochastic Programming and chance constraints
([22]). It is important, then, to try to understand how much
is possible, and the complexity of achieving it. (4) Given
the inherent difficulty of these problems, efficient practical
algorithms are of high importance.

In Section II, we provide the basic setup of our adaptability
proposal, and we define the problem of selecting k contingency
plans. Because of its inherent discrete nature, this proposal can
accommodate discrete variables. To the best of our knowledge,
this is the first proposal for adaptability that can reasonably
deal with discrete variables. In Section III, we give a geometric
interpretation of the conservativeness of the static robust
formulation. We provide a geometric characterization of when
finite adaptability can improve the static robust solution by η,
for any (possibly large) chosen η ≥ 0. We obtain necessary
conditions that any finite adaptability scheme must satisfy in
order to improve the static robust solution by at least η. The
full collection of these conditions also constitutes a sufficient

condition for η improvement, when restricted to the second-
stage model (I.2).

In Section IV, we consider an exact formulation of the
k-adaptability problem as a bilinear optimization problem.
For the special case of right hand side uncertainty, we have
shown in [11] that the bilinear optimization becomes a dis-
crete optimization problem, and there we provide an integer
optimization formulation for the k = 2 contingency plan prob-
lem. In Section V, we consider the complexity of optimally
computing k-adaptability, and we show that structuring the
k = 2 adaptability optimally, is NP-hard in the minimum of the
dimension of the uncertainty, the dimension of the problem,
and the number of constraints affected. In particular, we show
that if the minimum of these three quantities is small, then
optimally structuring 2-adaptability is theoretically tractable.

In Section VI, we consider an example in detail, illustrating
several of the subtleties of the geometric characterizations of
Section III. Here, we also compare k-adaptability to the affine
adaptability proposal of [2]. Following that work, there has
been renewed interest in adaptability (e.g., [1],[14],[12],[29]).
Our work differs from continuous adaptability proposals in
several important ways. First, our model offers a natural hier-
archy of increasing adaptability. Second, the intrinsic discrete
aspect of the adaptability proposal makes this suitable for any
situation where it may not make sense to require information
about infinitesimal changes in the data. Indeed, only coarse
observations may be available. In addition, especially from a
control viewpoint, infinite (and thus infinitesimal) adjustability
as required by the affine adaptability framework, may not be
feasible, or even desirable. We provide an example where
affine adaptability is no better than the static robust solution,
while finite adaptability with 3 contingency plans significantly
improves the solution.

In Section VII, we provide a heuristic algorithm based on
the qualitative prescriptions of Section III. This algorithm
is also suitable for solving problems with discrete variables,
where if the original discrete static robust problem is compu-
tationally tractable, so is our algorithm. Section VIII provides
several computational examples, continuous and discrete, il-
lustrating the efficient algorithm of Section VII. We consider
a large collection of randomly generated scheduling problems
in an effort to obtain some appreciation in the generic case, for
the benefit of the first few levels of the adaptability hierarchy.
Then, we discuss an application to Air Traffic Control (this
application is further considered in [7]). This example serves
as an opportunity to discuss when we expect finite adaptability
to be appropriate for large scale applications.

II. DEFINITIONS

We consider linear optimization problems with deterministic
uncertainty in the coefficients, where the uncertainty set is
polyhedral. Uncertainty in the right hand side or in the
objective function can be modeled by uncertainty in the matrix
(see, e.g., [8]). In Section II-A, we define the static robust
formulation, the completely adaptable formulation, and our
finite adaptability formulation.
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A. Static Robustness, Complete and Finite Adaptability

The general two-stage problem we consider, and wish to
approximate, is the one with complete adaptability, that can
be formulated as:

CompAdapt(Ω)
�
= (II.3)

[
min : c�x + d�y(ω)
s.t. : A(ω)x + B(ω)y(ω) ≤ b, ∀ω ∈ Ω

]
= (II.4)

min
x

max
ω∈Ω

min
y

[
c�x + d�y

s.t. : A(ω)x + B(ω)y ≤ b

]
.

Without loss of generality, we assume that only the matrices A
and B have an explicit dependence on the uncertain parameter,
ω We assume throughout this paper that the parameters of the
problem (that is, the matrices A and B) depend affinely on
the uncertain parameter ω.

On the other end of the spectrum from the completely
adaptable formulation, is the static robust formulation, where
the second stage variables have no dependence on ω:

Static(Ω)
�
=
[

min : c�x + d�y
s.t. : A(ω)x + B(ω)y ≤ b, ∀ω ∈ Ω

]
.

(II.5)
We assume throughout that (II.5) is feasible.

In the k-adaptability problem, the decision-maker chooses
k second-stage solutions, {y1, . . . , yk}, and then commits to
one of them only after seeing the realization of the uncertainty.
At least one of the k solutions must be feasible regardless of
the realization of the uncertainty. We define Adaptk(Ω) as:


min : c�x + max{d�y1, . . . , d
�yk}

s.t. :




A(ω)x + B(ω)y1 ≥ b
or

A(ω)x + B(ω)y2 ≥ b
or
...
or

A(ω)x + B(ω)yk ≥ b




∀ω ∈ Ω.




.

(II.6)
This is a disjunctive optimization problem with infinitely many
constraints. In Section IV, we formulate this as a (finite)
bilinear optimization problem.

If we think of the collection of k second stage vectors,
(y1, . . . , yk) as contingency plans, where each is implemented
depending on the realization of the uncertainty, then the
k-adaptability problem becomes a k-partition problem. The
decision-maker selects a partition of the uncertainty set Ω into
k (possibly non-disjoint) regions: Ω = Ω1 ∪ · · · ∪ Ωk. Thus
we can rewrite Adaptk(Ω) as

min
Ω=Ω1∪···∪Ωk



min : c�x + max{d�y1, . . . , d

�yk}
s.t. : A(ω)x + B(ω)y1 ≥ b, ∀ω ∈ Ω1

...
A(ω)x + B(ω)yk ≥ b, ∀ω ∈ Ωk


 .

(II.7)
The equivalence of formulations (II.6) and (II.7) is immediate.

Throughout this paper we refer equivalently to either k con-
tingency plans, or k-partitions, for the k-adaptability problem.

The inequalities Static(P) ≥ Adaptk(P) ≥ CompAdapt(P)
hold in general.

In the area of multi-stage optimization, there has been sig-
nificant effort to model the sequential nature of the uncertainty,
specifically modeling the fact that some variables may be cho-
sen with (partial) knowledge of the uncertainty. This is often
known as recourse ([13],[22]). In [2], the authors consider
a multi-stage problem with deterministic uncertainty, where
the variables in stage t are affine functions of the uncertainty
revealed up to time t. We henceforth refer to this model as
affine adaptability. The affine adaptability approximation to
(II.3) is

Affine(P)
�
=
[

min : c�x + d�y(ω)
s.t. : A(ω)x + B(ω)y(ω) ≥ b, ∀ω ∈ Ω

]
,

(II.8)
where y(ω) is an affine function of the uncertain parameter,
ω:

y(ω) = Qω + q.

The authors show that computing affine adaptability is in
general NP-hard, although in some cases it can be well-
approximated tractably.

Our finite adaptability proposal is not comparable to affine
adaptability: in some cases affine adaptability fails where finite
adaptability succeeds, and vice versa.

III. A GEOMETRIC PERSPECTIVE

It is convenient for some of our geometric results to
reparameterize the uncertainty set Ω in terms of the actual
matrices, (A(ω), B(ω)), rather than the space of the uncertain
parameter, Ω. Then we define:

P �
= {(A, B) = (A(ω), B(ω)) : ω ∈ Ω}.

Thus, for example, the static problem now becomes:

Static(P)
�
=
[

min : c�x + d�y
s.t. : Ax + By ≥ b, ∀(A, B) ∈ P

]
.

(III.9)
We assume throughout, that the uncertainty set P is a polytope,
that there are m uncertain constraints, and y ∈ R

n. We
consider both the case where P is given as a convex hull
of its extreme points, and where it is given as the intersection
of half-spaces. Some results are more convenient to present in
the case of the convex hull representation.

In this section, we provide a geometric view of the gap
between the completely adaptable and static robust formula-
tions, and also of the way in which finite adaptability bridges
this gap. The key intuition is that the static robust formulation
is inherently unable to model non-constraintwise uncertainty
and, as is explained below, effectively replaces any given
uncertainty set P , with a potentially much larger uncertainty
set.

We use this geometric interpretation to obtain necessary
conditions that any k-partition must satisfy in order to improve
the static robust solution value by at least η, for any chosen
value η.
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A. The Geometric Gap

Since we consider matrix uncertainty, the elements of P
are two m × n matrices, (A, B) = (aij , bij), 1 ≤ i ≤ m and
1 ≤ j ≤ n. Given any uncertainty region P , let π l(P) denote
the projection of P onto the components corresponding to the
lth constraint of (III.9), i.e., this is the projection onto the l th

row of the matrices:

πl(P) = {((al1, bl1), . . . , (aln, bln)) : (âij , b̂ij) ∈ P ,

(âlj , b̂lj) = (alj , blj), 1 ≤ j ≤ n}.
Then, we define:

(P)R
�
= conv(π1P) × conv(π2P) × · · · × conv(πmP).

(III.10)
The set (P)R is the smallest hypercube (in the above sense)
that contains the set P (see Figure 1).

Lemma 1: For P and (P)R defined as above, we have
(a) Static(P) = Static((P)R) as well as Static(P) =

CompAdapt((P)R).
(b) For P = P1 ∪ · · · ∪ Pk the optimal k-partition of the

uncertainty set, we have

Adaptk(P) = CompAdapt((P1)R ∪ · · · ∪ (Pk)R).

(c) There is a sequence of partitions {Pk1∪Pk2∪· · ·∪Pkk}
so that

(Pk1)R ∪ · · · ∪ (Pkk)R −→ P , k → ∞.

The first part of the lemma says that the static robust formu-
lation cannot model correlation across different constraints,
nor can it capture non-convexity in the uncertainty set. Fur-
thermore, it says that this is exactly the reason for the gap
between the static robust formulation, and the completely
adaptable formulation. The second part of the lemma explains
from a geometric perspective why, and how, the adaptive
solution improves the static robust cost. The third part gives
a geometric interpretation of how finite adaptability bridges
the gap between the static robust and completely adaptable
formulations.
PROOF. (a) To prove this part, we use a simple sandwiching
technique that we employ throughout this section. Consider
the formulation where not only y, but also x may depend on
the realization of the uncertainty. This is not implementable,
hence we call it the utopic solution, and we define Utopic(P)
as:[

min : c�x(ω) + d�y(ω)
s.t. : A(ω)x(ω) + B(ω)y(ω) ≤ b, ∀ω ∈ Ω.

]
,

and Utopick(Ω) as:

min
Ω=Ω1∪···∪Ωk



min: max{c�x1+d�y1, . . . , c

�xk+d�yk}
s.t.: A(ω)x1 + B(ω)y1 ≥ b, ∀ω ∈ Ω1

...
A(ω)xk + B(ω)yk ≥ b, ∀ω ∈ Ωk


 .

We always have: Utopic(P) ≤ CompAdapt(P), and
Utopick(P) ≤ Adaptk(P). By a simple duality argument
(see [4]) it follows that we have

Static(P) = Static((P)R) = Utopic((P)R).

But since Static(P) ≤ CompAdapt((P)R) ≤
Utopic((P)R), the result follows.
(b) Fix a partition P1 ∪ · · · ∪ Pk. Let
(x∗, y∗

1(A, B), . . . , y∗
k(A, B)) be an optimal completely

adaptable solution for the uncertainty set (P1)R × (P2)R.
Now fix x = x∗. Consider the problem of computing an
optimal y1 and y2, for this fixed x. Since x is fixed, the
problem decouples into two problems, with uncertainty sets
(P1)R and (P2)R, respectively. The optimal completely
adaptable solution for this single-stage problem is y ∗

1(·), and
y∗

2(·). But by part (a), we know that adaptability cannot
help. Therefore there exist vectors y1 and y2, that have no
dependence on (A, B), yet have the same performance. This
is what we wanted to show.
(c) It suffices to consider any sequence of partitions where
the maximum diameter of any region goes to zero as k → ∞.
As the diameter of any region goes to zero, the smallest
hypercube (in the sense of (III.10)) also shrinks to a point. �
Example: To illustrate this geometric concept, consider the
constraints {b11y1 ≤ 1, b22y2 ≤ 1}, where the uncertainty
set is P = {(b11, b22) : 0 ≤ b1, b2 ≤ 1, b1 + b2 ≤ 1} (and
b12 = b21 = 0). The set P can be identified with the simplex
in R

2. The set (P)R, then, is the unit square. The sets
P , (P)R, and various partitions, are illustrated in Figure 1. �
We would like to conclude from Lemma 1 that k-adaptability
bridges the gap between the static robust and completely
adaptable values, i.e., Adaptk(P) → CompAdapt(P) as
k increases. With an additional continuity assumption, the
proposition below asserts that this is in fact the case.
Continuity Assumption: For any ε > 0, for any (A, B) ∈ P ,
there exists δ > 0 and a point (x, y), feasible for (A, B)
and within ε of optimality, such that ∀ (A′, B′) ∈ P with
d((A, B), (A′, B′)) ≤ δ, (x, y) is also feasible for (A′, B′).

The Continuity Assumption is relatively mild. It asks that
if two matrices are infinitesimally close (here d(·, ·) is the
usual notion of distance) then there should be a point that is
almost optimal for both. Therefore, any problem that has an
almost-optimal solution in the strict interior of the feasibility
set, satisfies the Continuity Assumption. If the Continuity
Assumption does not hold, then note that any optimization
model requires exact (completely noiseless) observation of
(A, B) in order to approach optimality.

Proposition 1: If the Continuity Assumption holds, then
for any sequence of partitions of the uncertainty set, {P =
((Pk1)R ∪ · · · ∪ (Pkk)R)}∞k=1, with the diameter of the largest
set going to zero, the value of the adaptable solution ap-
proaches the completely adaptable value. In particular,

lim
k→∞

Adaptk(P) = CompAdapt(P).

PROOF. Using Lemma 1 parts (b) and (c), the proposition
says that as long as the Continuity Assumption holds, then

[(Pk1)R ∪ · · · ∪ (Pkk)R → P ] =⇒
[CompAdapt((Pk1)R ∪ · · · ∪ (Pkk)R) → CompAdapt(P)].

Indeed, given any ε > 0, for every (A, B) ∈ P , consider the
δ((A, B))-neighborhood around (A, B) as given by the Con-
tinuity Assumption. These neighborhoods form an open cover
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(a) (b) (c) (d)

Fig. 1. This figure illustrates the definition in (III.10), and Lemma 1. Let P = {(b11, b12, b21, b22) : 0 ≤ b11, b22 ≤ 1, b11 + b22 ≤ 1, b12 = b21 = 0}.
We identify P with a subset of the plane. The unshaded triangle in Figure (a) illustrates the set P = {(b11, b22) : 0 ≤ b11, b22 ≤ 1, b11 + b22 ≤ 1}. The
set (P)R is the entire square, and the shaded part is the difference, (P)R \ P . Figures (b),(c), and (d) show three successively finer partitions, illustrating
how (Pk1)R ∪ · · · ∪ (Pkk)R −→ P .

of P . Since P is compact, we can select a finite subcover. Let
the partition P = P1 ∪ · · · ∪ Pk be (the closure of) such a
subcover. Then, by the Continuity Assumption, Static(P i) ≤
CompAdapt(Pi) + ε. By definition, CompAdapt(Pi) ≤
maxj CompAdapt(Pj) = CompAdapt(P). We have shown
that there exists a single sequence of partitions for which the
corresponding adaptable solution value approaches the value
of complete adaptability. This implies that Adaptk(P) →
CompAdapt(P). Then recalling that the value of a linear
optimization problem is continuous in the parameters, the
proof is complete, as any sequence of partitions with diameter
going to zero, eventually is a refinement of (a perturbation of)
any given finite partition. We give an example in Section VI
that shows that the Continuity Assumption cannot be removed.
�

B. Necessary Conditions for η-Improvement

In Section III-A, we use duality to show that the static robust
problem and the k-adaptability problem are each equivalent
to a completely adaptable problem with a larger uncertainty
set. This uncertainty set is smaller in the case of the k-
adaptability problem, than in the static robust problem. In
this section, we characterize how much smaller this effective
uncertainty set must be, in order to achieve a given level of
improvement from the static robust value. We show that the
points of the larger uncertainty set that must be eliminated
to obtain a given improvement level, each correspond to
necessary conditions that a partition must satisfy in order to
guarantee improvement. Furthermore, we show that for the
problem where the first-stage decision x is fixed, and we are
only considering conditions for finding an improved second-
stage solution, i.e., the problem introduced in I.2, collectively
these necessary conditions turn out to be sufficient.

Thus in this section we use the geometric characterization
of the previous section to essentially characterize the set of
partitions that achieve a particular level of improvement over
the static robust solution.

Lemma 1 says that Static(P) = CompAdapt((P)R).
Therefore, there must exist some (Â, B̂) ∈ (P)R for which
the nominal problem min : {c�x + d�y : Âx + B̂y ≥ b}
has value equal to the static robust optimal value of (III.9).
Let M denote all such matrix pairs. In fact, we show that
for any η > 0, there exists a set Mη ⊆ (P)R such that if

c�x + d�y < Static(P) − η, then (x, y) does not satisfy
Ax + By ≥ b, for any (A, B) ∈ Mη. We show below that
the sets M and Mη are the images under a computable map,
of a polytope associated with the dual of the static robust
problem. In Proposition 2 we show that these sets are related
to whether a given partition can achieve η-improvement over
the static robust value. In Proposition 3 we then show that
each point of these sets maps to a necessary condition which
any η-improving partition must satisfy.

Proposition 2: (a) The sets M and Mη are the images
under a computable map, of a polytope associated with the
dual of the static robust problem.
(b) Adaptability with k contingency plans corresponding to
the partition P = P1 ∪ · · · ∪ Pk improves the cost by more
than η only if

((P1)R ∪ · · · ∪ (Pk)R) ∩ M̄η = ∅.
Here, M̄η denotes the closure of the set Mη.
(c) There is some k < ∞ for which k optimally chosen
contingency plans can improve the cost by at least η only
if P ∩ M̄η = ∅.
(d) In the case of the second-stage setup (I.2), the necessary
conditions given in parts (b) and (c) above are also sufficient.
For the proof, we first describe a polytope associated to the
dual of the robust problem, and we give the map that yields
the sets M and Mη, proving (a). Then we prove parts (b),
(c) and (d) of the proposition using the results of Lemma 2
below.

We consider the case where the uncertainty is given as
the convex hull of a given set of extreme points: P =
conv{(A1, B1), . . . , (AK , BK)}. The robust optimization
problem has the particularly convenient form,

min : c�x + d�y

s.t. : Aix + Biy ≥ b, 1 ≤ i ≤ K.
(III.11)

For any η > 0, we consider the infeasible problem

min : 0
s.t. : Aix + Biy ≥ b, 1 ≤ i ≤ K

c�x + d�y ≤ Static(P) − η.

(III.12)

The dual of (III.12) is feasible, and hence unbounded. Let
Cη(P) be the closure of the set of directions of dual unbound-
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edness of (III.12):

Cη = Cη(P)
�
=

(p1, . . . , pK) :

(p1 + · · · + pK)�b ≥ Static(P) − η

p�
1 A1 + · · · + p�

KAK = c

p�
1 B1 + · · · + p�

KBK = d
p1, . . . , pK ≥ 0


 .

Note the dependence on the uncertainty set P . We suppress
this when the uncertainty set is clear from the context.
C0 = C0(P) is the set of dual optimal solutions to (III.11). For
(p1, . . . , pK) ∈ Cη, let pij denote the jth component of pi. Let
(Ai)j denote the jth row of the matrix Ai, and similarly for
(Bi)j . Construct matrices (Ã, B̃) whose jth rows are given
by

(Ã)j =




0, if
∑

i pij = 0.
p1j(A1)j + · · · + pKj(AK)j∑

i pij
, otherwise.

(B̃)j =




0, if
∑

i pij = 0.
p1j(B1)j + · · · + pKj(BK)j∑

i pij
, otherwise.

(III.13)
Therefore, each nonzero row of (Ã, B̃) is a convex combina-
tion of the corresponding rows of the (A i, Bi) matrices. Let
(Â, B̂) be any matrix pair in (P)R that coincides with (Ã, B̃)
on all its non-zero rows.

Lemma 2: For (Â, B̂) defined as above,[
min : c�x + d�y

s.t. : Âx + B̂y ≥ b

]
≥ Static(P) − η. (III.14)

If η = 0, and if (x, y)R is an optimal solution for the
static robust problem (III.11), then (x, y)R is also an optimal
solution for the nominal problem with the matrix pair (Â, B̂).
PROOF. The proof follows by duality. We first consider the
case η = 0. The dual to the nominal problem min : {c�x +
d�y : Âx + B̂y ≥ b} is given by max : {q�b : q�Â =
c, q�B̂ = d, q ≥ 0}. We construct a solution q to this dual,
and show that its objective value is equal to c�xR + d�yR,
thus implying q is optimal. For (p1, . . . , pK) ∈ C0, define

the vector q by qj
�
= p1j + p2j + · · · + pKj . The vector q

is nonnegative, and in addition, for any 1 ≤ r ≤ n, we also
have:

(q�Â)r =
m∑

j=1

qjÂjr

=
m∑

j=1

(∑
i

pij

)(
1∑
i pij

∑
i

pij(Ai)jr

)

=
m∑

j=1

K∑
i=1

pij(Ai)jr

=
(
p1A

1 + · · · + pKAK
)

r
= cr.

Similarly, (q�B̂)r = dr, and

q�b = (p1 + · · · + pK)�b = c�xR + d�yR.

Therefore, q as constructed is an optimal (and feasible)
solution to the dual of (III.14), with objective value the same as
the dual to the original robust problem (III.11). Since (x R, yR)
is certainly feasible for problem (III.14), it must then also be
optimal. A similar argument holds for η > 0. �
We can now prove Proposition 2.
PROOF. (a) The collection of such (Â, B̂) obtained as images
of points in C0 and Cη respectively, under the map given in
(III.13) make up the sets M and Mη. Lemma 2 shows that
these sets indeed have the required properties.
(b) The value of the k-adaptable solution corresponding to the
partition P1 ∪ · · · ∪ Pk is lower-bounded by:

max
1≤d≤k

{Static(Pd)}. (III.15)

For the optimal partition choice, this corresponds to
Utopick(P), and this may be strictly better than Adaptk(P).

By Lemma 1, Static(Pd) = Static((Pd)R). If
((P1)R ∪ · · · ∪ (Pk)R) ∩ M̄η �= ∅, then we can find
some (Â, B̂) ∈ (Pd)R ∩ M̄η, for some 1 ≤ d ≤ k,
and also we can find matrix pairs (Â, B̂)l ∈ Mη with
(Â, B̂)l → (Â, B̂). By Lemma 2, the nominal problem with
matrices (Â, B̂)l must have value at least Static(P) − η, for
every l. The optimal value of a linear optimization problem
is continuous in its parameters. Therefore, the value of the
nominal problem with matrices (Â, B̂) must also be at least
Static(P)− η. The value of Static(Pd) can be no more than
the value of the nominal problem with matrices (Â, B̂), and
hence Static(Pd) ≥ Static(P) − η, which means that the
improvement cannot be greater than η.

(c) If M̄η ∩ P �= ∅, then the point of intersection will
always belong to some element of any partition, and hence
no partition can satisfy the condition of part (b).
(d) We can prove the converse for both (b) and (c) for the
case of second stage adaptability. Note that in this case,
there is no distinction between what we call the utopic,
and the adaptable formulation. Now, for the converse for
(b), if the partition does not improve the value by more
than η, then there must exist some 1 ≤ d ≤ k such that
Static(Pd) ≥ Static(P) − η. This implies that Cη(Pd) is
non-empty. Any point of Cη(Pd) then maps via (III.13) to
some B̂ ∈ Mη ∩ (Pd)R, and the intersection is non-empty,
as required.

For the converse for (c), if the intersection is empty, then
since both P and M̄η are closed, and P is compact, the
minimum distance

inf
B∈P,B̂∈M̄η

d(B, B̂),

is attained, and therefore is strictly positive. Then by Lemma
1 part (c), there must exist some partition of P that satisfies
the empty intersection property of condition (b) above. �

We now use the characterization of Proposition 2 to ob-
tain necessary conditions that any η-improving partition must
satisfy. To this end, let αj denote the convex-combination
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coefficients used to construct the j th row of (Ã, B̃) above
for all non-zero rows, so that

αj =
1∑
i pij

(p1j , p2j, . . . , pKj) .

Using these coefficients, we define matrices Q1, . . . , Qm ∈ P
by

Qj =
K∑

i=1

(αj)i(A, B)i.

Consider now any partition of the uncertainty set, P = P1 ∪
· · · ∪ Pk. If for some 1 ≤ d ≤ k, we have {Q1, . . . , Qm} ⊂
Pd, then (Â, B̂) ∈ (Pd)R. Therefore, (Pd)R ∩ Mη �= ∅,
and thus by Proposition 2, the proposed partition cannot
improve the static robust cost by more than η. Therefore, the
set of matrices {Q1, . . . , Qm} of P constitutes a necessary
condition that any η-improving partition of P must satisfy: a
partition of P can improve the solution more than η only if it
splits the set {Q1, . . . , Qm}. Indeed, something more general
is true.

Proposition 3: (a) Consider any element (Ã, B̃) obtained
from a point of Cη, according to (III.13). Let us assume that
the first r rows of the matrix pair (Ã, B̃) are nonzero. Let
Qi = π−1

i ((Ã, B̃)i) denote the set of matrices in P whose
ith row equals the ith row of (Ã, B̃), 1 ≤ i ≤ r. Then a
partition P = P1 ∪ · · · ∪ Pk can achieve an improvement of
more than η only if for any region Pd, 1 ≤ d ≤ k, there exists
some 1 ≤ i ≤ r, such that

Pd ∩ Qi = ∅.
(b) Collectively, these necessary conditions are also sufficient,
for the second-stage problem (I.2).
PROOF. (a) Suppose that there exists a region Pd of the
partition, for which no such index i exists, and we have
Pd ∩ Qi �= ∅ for 1 ≤ i ≤ r. Then we can find matrices
Q1, . . . , Qr, such that Qi ∈ Pd∩Qi. By definition, the ith row
of matrix Qi coincides with the ith row of (Ã, B̃). Therefore,
(Â, B̂) ∈ (Pd)R. Now the proof of necessity follows from
Proposition 2.
(b) Suppose that a partition P = P1 ∪ · · · ∪ Pk satisfies the
full list of necessary conditions corresponding to all elements
of M̄η, yet the corresponding value of Adaptk(P) does
not achieve the guaranteed improvement, i.e., Adaptk(P) =
Static(P) − η′ ≥ Static(P) − η, for some η′ ≤ η.
Then, by the structure of the finite adaptability problem
there must be one region of the partition, say Pd, such that
Adaptk(P) = Static(Pd). Note that this is only always
true for the case of single-stage adaptability – in the two-
stage case, the equality is only for Utopick, which may be
strictly less than Adaptk, and thus this converse need not
hold in general. Then Cη(Pd) is non-empty. Given any point
of Cη(Pd), we can then construct B̂ and the corresponding
unsatisfied necessary condition {Q1, . . . ,Qr}. Expressing the
extreme points of Pd as a convex combination of extreme
points of P , this unsatisfied necessary condition corresponds
to a point in Cη(P), a contradiction. �

Therefore, we can map any point of Cη to a necessary
condition that any partition improving the solution of the

static robust problem by at least η, must satisfy. In Section
V, we show that computing the optimal partition into two
(equivalently, computing the best two contingency plans) is
NP-hard. In Section VII, we provide an efficient, but possibly
sub-optimal algorithm for the 2k-partition problem. However,
this algorithm does not offer any theoretical guarantee that
more progress cannot be made with another choice of partition.
Nevertheless, a small list of necessary conditions may provide
a short certificate that there does not exist a partition with
k ≤ k′, that achieves η-improvement. In Section VI, we
provide a simple example of this phenomenon. In this example,
a finite (and small) set of necessary conditions reveals the
limits, and structure of 2,3,4,5-adaptability.

IV. EXACT FORMULATIONS

In this section we give an exact and finite formulation
of the optimal 2-adaptability problem. We show that the
infinite-constraint disjunctive optimization problem (II.6) can
be formulated as a bilinear problem.

Thus far we have considered a geometric point of view. Here
we follow an algebraic development. In (II.6) we formulated
the k-adaptability problem as an infinite-constraint disjunctive
program:

min : c�x + max{d�y1, . . . , d
�yk}

s.t. : [Ax + By1 ≥ b or · · · or Ax + Byk ≥ b]
∀(A, B) ∈ P .

(IV.16)
We reformulate this problem as a (finite) bilinear optimization
problem. In general, bilinear problems are hard to solve but
much work has been done algorithmically (see [15],[26],[27]
and references therein) toward their solution. For notational
convenience, we consider the case k = 2, but the extension
to the general case is straightforward. Also, for this section
as well, we focus on the case where the uncertainty set
P is given as a convex hull of its extreme points: P =
conv{(A1, B1), . . . , (AK , BK)}.

Proposition 4: The optimal 2-adaptability value, and the
optimal two contingency plans, are given by the solution to
the following bilinear optimization:

min : c�x + max{d�y1, d
�y2}

s.t. : µij

[
(Alx + Bly1)i − bi

]
+

(1 − µij)
[
(Alx + Bly2)j − bj

]
≥ 0,

∀ 1 ≤ i, j ≤ m, ∀1 ≤ l ≤ K
0 ≤ µij ≤ 1, ∀ 1 ≤ i, j ≤ m.

(IV.17)

Recall that m is the number of rows of A and B.
We can interpret the variables µij essentially as a
mixing of the constraints. For any {µij}, the triple
(x, y1, y2) = (xR, yR, yR) is feasible. Indeed, fixing
µij = 1 for all (i, j) leaves y2 unrestricted, and the resulting
constraints on y1 recover the original static robust problem.
Thus, the problem is to find the optimal mixing weights.

PROOF. We show that a triple (x, y1, y2) is a feasible
solution to problem (IV.16) if and only if there exist weights
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µij ∈ [0, 1], 1 ≤ i, j ≤ m, such that

µij

[
(Alx + Bly1)i − bi

]
+

(1 − µij)
[
(Alx + Bly2)j − bj

]
≥ 0,

∀ 1 ≤ i, j ≤ m, ∀1 ≤ l ≤ K.

Suppose that the triple (x, y1, y2) is not a feasible solution to
problem (IV.16). Then there exists 1 ≤ i, j ≤ m and matrix
pair (A, B) ∈ P such that (Ax + By1)i − bi < 0, and
(Ax + By2)j − bj < 0. Since (A, B) ∈ P , we must have
(A, B) =

∑K
l=1 λl(Al, Bl), for a convex combination given

by λ. For any µij ∈ [0, 1] we have:

µij

[∑
l

λl(Alx + Bly1)i − bi

]
+

(1 − µij)

[∑
l

λl(Alx + Bly2)j − bj

]
< 0

⇒
∑

l

λl

[
µij

{
(Alx + Bly1)i − bi

}
+

(1 − µij)
{
(Alx + Bly2)j − bj

}]
< 0.

This follows since
∑

l λl = 1. But then there must be some
index l∗ for which the corresponding term in the sum is
negative, i.e.,

µij

{
(Al∗x + Bl∗y1)i − bi

}
+

(1 − µij)
{

(Al∗x + Bl∗y2)j − bj

}
< 0.

For the converse, let (x, y1, y2) be a feasible solution to
problem (IV.16). We show there exist weights µ ij ∈ [0, 1]
satisfying the required inequalities. By assumption, for any
(A, B) ∈ P , either [Ax + By1 ≥ b], or [Ax + By2 ≥ b].
In particular, for any 1 ≤ i, j ≤ m, the value of the following
optimization over P is finite and non-positive (recall that
x, y1, y2 are fixed).

max : ε
s.t. : (Ax + By1)i + ε ≤ bi

(Ax + By2)j + ε ≤ bj

(A, B) ∈ P .

Writing P = {∑l λl(Al, Bl) :
∑

l λl = 1, λl ≥ 0}, and
taking the dual using dual variables µ, ν for the two inequality
constraints, and w for the normalization constraint in λ, we
have:

min : µbi + νbj − w

s.t. : µ(Alx + Bly1)i + ν(Alx + Bly2)j − w ≥ 0,
∀ 1 ≤ l ≤ K

µ + ν = 1
µ, ν ≥ 0.

By strong duality, this problem is feasible, and its optimal
value is non-positive. In particular, the following system is
feasible:


µbi + νbj ≤ w

µ(Alx + Bly1)i + ν(Alx + Bly2)j ≥ w
µ + ν = 1
µ, ν ≥ 0




and therefore there exists µ ∈ [0, 1], and w such that

µbi+(1 − µ)bj ≤ w ≤ µ(Alx+Bly1)i+ν(Alx+Bly2)j ,

∀ 1 ≤ l ≤ K.

Grouping the terms on one side of the inequality, we have that
there exists a weight µ ∈ [0, 1] such that

µ
[
(Alx+Bly1)i−bi

]
+(1−µ)

[
(Alx+Bly2)j−bj

]
≥ 0,

∀ 1 ≤ l ≤ K.

�

V. COMPLEXITY

In this section, we consider the complexity of k-adaptability.
We show that even in the restricted case of right hand side
uncertainty, in fact even in the special case where P has the
form of a generalized simplex, computing the optimal partition
of P into two sets, P = P1 ∪ P2, is NP-hard. We then
go on to show that, despite this negative complexity result,
there are cases of interest where the tractability of finding the
optimal hyperplane partition is tractable. In particular, as we
claim via some compuational examples in Section VIII, finite
adaptability is particularly well-suited for when the dimension
of the uncertainty set is small; this is included in the classes of
problems for which computing the optimal finite adaptability
is tractable.

We show that if any of the three quantities: dimension of
the uncertainty, dimension of the problem, number of uncertain
constraints, is fixed, then computing the optimal 2-adaptability
is theoretically tractable.

Proposition 5: Obtaining the optimal split P = P1 ∪P2 is
in general NP-hard.
In particular, computing 2-adaptability is NP-hard. We obtain
our hardness result using a reduction from PARTITION, which
is NP-complete ([17],[20]). We show that if we can find the
optimal split of an uncertainty set, then we can solve any
PARTITION problem.
PROOF. The data for the PARTITION problem are the positive
numbers v1, . . . , vm. The problem is to minimize |∑i∈S vi −∑

j∈Sc vj | over subsets S. Given any such collection of
numbers, consider the polytope P = conv{e1v1, . . . , emvm},
where the ei form the standard basis for R

m. Thus, P is the
simplex in R

m, but with general intercepts vi. Consider the
static robust optimization problem:

min : x
s.t. : x ≥∑i yi

Iy ≥ b, ∀b ∈ P .
(V.18)

Suppose the optimal partition is P = P1 ∪ P2. Then, letting
e = (1, 1, . . . , 1), the 2-adaptable problem can be written as:

min : x
s.t. : x ≥ e�y1

x ≥ e�y2

Iy1 ≥ b1

Iy2 ≥ b2,

where b1, b2 are the component-wise minimum over P1 and
P2, respectively. Since P has the particularly easy form
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given above, it is straightforward to see that, without loss of
generality, we can write b1, and b2 as

b1 = (v1, v2, . . . , vk, λk+1, . . . , λm)
b2 = (µ1, µ2, . . . , µk, vk+1, . . . , vm),

where 0 ≤ λj ≤ vj for k + 1 ≤ j ≤ m. In this case, we must
have (see [11] for full details)

µ1 ≥ max
{

v1 −
(

v1

vk+1

)
λk+1, v1 −

(
v1

vk+2

)
λk+2, . . . ,

. . . , v1 −
(

v1

vm

)
λm

}
...

µk ≥ max
{

vk −
(

vk

vk+1

)
λk+1, vk −

(
vk

vk+2

)
λk+2, . . . ,

. . . , vk −
(

vk

vm

)
λm

}
.

Since we claim that the pair (b1, b2) corresponds to the
optimal partition of P , we can take the inequalities above to
be satisfied by equality, i.e., we take the µi to be as small as
possible. Therefore, once the {λj} are fixed, so are the {µi},
and the pair (b1, b2) is determined.

Now we compute the value of the free parameters
(λk+1, . . . , λm) that determine the pair (b1, b2). For the
specific form of the optimization problem we consider, given
a split P1 ∪P2 where P1 is covered by b1 and P2 by b2, the
optimization takes the simple form:


min : max

{(∑
i y

(1)
i

)
,
(∑

i y
(2)
i

)}
s.t. : y(1) ≥ b1

y(2) ≥ b2


 =

max

{(∑
i

(b1)i

)
,

(∑
i

(b2)i

)}
.

Therefore, if the partition is optimal, we must have
(
∑

i(b1)i) = (
∑

i(b2)i). Thus, we have

v1+· · ·+vk+λk+1+· · ·+λm = µ1+· · ·+µk+vk+1+· · ·+vm.
(V.19)

We have (m − k) parameters that are not specified. The
maximizations above that determine the µj give (m− k − 1)
equations. Then Eq. (V.19) gives the final equation to de-
termine our parameters uniquely. From the maximizations
defining {µj}, we have

vj −
(

vj

vk+i

)
λk+i = vj −

(
vj

vk+i′

)
λk+i′ ,

1 ≤ j ≤ k, 1 ≤ i, i′ ≤ m − k.

Solving in terms of λm, the above equations yield λk+i =(
vk+i

vm

)
λm, 1 ≤ i ≤ m − k − 1. Substituting this back into

Eq. (V.19), we obtain an equation in the single variable λm:

v1+· · ·+vk+λm

(
vk+1+· · ·+vm

vm

)
=(

v1−v1
λm

vm

)
+· · ·+

(
vk−vk

λm

vm

)
+(vk+1+· · ·+vm),

which gives:

λm

(
v1 + · · · + vm

vm

)
= (vk+1 + · · · + vm) =⇒

λk+i =
vi(vk+1 + · · · + vm)

v1 + · · · + vm
, 1 ≤ i ≤ m − k.

Using these values of {λk+i}, we find that the optimal value
of the optimization is given by

k∑
i=1

vi +
m∑

j=k+1

λj

=

(∑k
i=1 vi

)(∑m
j=1 vj

)
+
(∑m

j=k+1 vj

)(∑m
j=k+1 vj

)
∑m

i=1 vi

=

((∑k
i=1 vi

)
+
(∑m

j=k+1 vj

))2

−
(∑k

i=1 vi

)(∑m
j=k+1 vj

)
∑m

i=1 vi
.

The first term in the numerator, and also the denominator,
are invariant under choice of partition. Thus, if this is
indeed the optimal solution to the optimization (V.18), as
we assume, then the second term in the numerator must
be maximized. Thus, we see that minimizing (V.18) is
equivalent to maximizing the product

(∑
i∈S vi

) (∑
j∈Sc vj

)
over S ⊆ {1, . . . , m}. This is equivalent to the PARTITION

problem. �

Note that in this example, the dimension of the uncertainty,
the dimension of the problem, and the number of constraints
affected by the uncertainty are all equal. Next we show that
if any one of these three quantities is fixed, then computing
the optimal 2-adaptability is theoretically tractable.

Proposition 6: We consider the static robust problem

min : c�x + d�y
s.t. : Ax + By ≥ b, ∀(A, B) ∈ P

Fx + Gy ≥ f .

Let P = conv{(A1, B)1, . . . , (AB)N} be an uncertainty
set that allows for efficient solution of the robustified linear
optimization problem (note that N need not necessarily be
small). Let d = min{N, dim(P)} be the real dimension of
P , let n denote the number of optimization variables, and
let m be the number of rows of (A, B), i.e., the number of
uncertain constraints. Define κ = min{d, n, m}. Then, we can
compute the ε-optimal 2-adaptability generated by a hyper-
plane partition, in time O (poly(d, n, m, 1/ε)eκ). In particular,
if κ is constant, the hyperplane generated 2-adaptability can
be computed efficiently.
PROOF. There are three possibilities: κ is defined by d, n,
or m. In the case where d or n are fixed, then the result
follows immediately, since we can find the best partition, or
the best two solutions {y1, y2} by brute force discretization of
the uncertainty set, or the feasible set, respectively. The only
interesting case is when d and n are possibly large, but m is
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a constant. In this case, Proposition 4 says:

min : c�x + max{d�y1, d
�y2}

s.t. : µij [(Ax + By1)i − bi] +
(1 − µij) [(Ax + By2)j − bj] ≥ 0,
∀ 1 ≤ i, j ≤ m, ∀(A, B) ∈ P

0 ≤ µij ≤ 1, ∀ 1 ≤ i, j ≤ m.

For any fixed values of {µij}, the resulting problem is a
static robust problem with uncertainty set P , and hence by our
assumption, it can be solved efficiently. Now if m is small,
we discretize the possible set of {µij}, and search over this
set by brute force. This completes the proof. �

While in principle this result says that for κ small the
problem is tractable, in large scale applications we require
more than theoretical tractability. We describe one such ex-
ample in Section VIII-C. In Section VII, we seek to give
tractable algorithms that will be practically implementable in
applications.

VI. AN EXTENDED EXAMPLE

In this section we consider a detailed example. Through this
example, we aim to illustrate several points and aspects of the
theory developed in Section III above:

1) Propositions 2 and 3 tell us how to map Cη to Mη and
then to obtain necessary conditions for η-improvement.
Here we illustrate this process.

2) A small set of necessary conditions (obtained as in
Propositions 2 and 3) may reveal the limits of k-
adaptability for some k.

3) While in general not sufficient to guarantee η-
improvement, a small set of necessary conditions may
even suffice to reveal the optimal structure of k-
adaptability for some k.

4) Finite adaptability may improve the solution consider-
ably, even when affine adaptability fails, i.e., even when
affine adaptability is no better than the static robust
solution.

5) The Continuity Assumption may not be removed from
Proposition 1. Without it, (uncountably) infinite adapt-
ability may be required for even arbitrarily small im-
provement from the static robust solution.

6) The closure of the sets M and Mη in Proposition 2
cannot be relaxed.

We consider an example with one-dimensional uncertainty set.
Note that here there is no uncertainty in the A-matrix.

min : x
s.t. : x ≥ y1 + y2 + y3

By ≥

 1

1
1




∀ B ∈ conv{B1, B2} =

conv




 0 0 1

1 1 1
1
2

1
5 0


 ,


 1 1 1

0 0 1
1
5

1
2 0






y1, y2, y3 ≥ 0.
(VI.20)

The unique optimal solution is xR = 27/7, yR =
(10/7, 10/7, 1), so the corresponding value is Static(P) =
27/7. The completely adaptable value is CompAdapt(P) =
3. For notational convenience, can rewrite this problem more
compactly by minimizing y1 + y2 + y3 directly. Then the
optimal value for x will be that minimum value.

Then, the dual to the robust problem (VI.20) is

max : (p + q)�b

s.t. : p�B1 + q�B2 ≤ d
p, q ≥ 0.

There are two extreme dual optimal solutions: p, q =
(0, 0, 10/7), (0, 1, 10/7), and p, q = (1, 0, 10/7), (0, 0, 10/7).
We illustrate point (1) above by mapping these two points to
the corresponding necessary conditions. Each of these maps to
a unique matrix B̃. Recall that, considering the ith component
of p, and the ith component of q, we obtain the ith row of
the matrix:

(pi, qi) �−→ (B̃)i
�
=

1
pi + qi

(pi · (B1)i + qi · (B2)i),

for all i such that pi + qi �= 0. For the first extreme dual
optimal solution, this condition is met for i = 2, 3, and thus
we have:

(p2, q2) �→ 1
0 + 1

(0 · (1, 1, 1) + 1 · (0, 0, 1)) = (0, 0, 1)

(p3, q3) �→ 1
10/7 + 10/7

[(10/7) · (1/2, 1/5, 0)

+(10/7) · (1/5, 1/2, 0)]

=
1
2
(1/2, 1/5, 0) +

1
2
(1/5, 1/2, 0)

= (7/20, 7/20, 0).

For the second extreme dual optimal solution, the nonzero
rows are i = 1, 3, and we get:

(p1, q1) �→ 1
1 + 0

(1 · (0, 0, 1) + 0 · (1, 1, 1)) = (0, 0, 1)

(p3, q3) �→ 1
20/7

[(10/7) · (1/2, 1/5, 0)

+(10/7) · (1/5, 1/2, 0)]
= (7/20, 7/20, 0).

Next, according to Proposition 3, we consider the set of
matrices in P that share one of the nonzero rows of B̃1,
and similarly for B̃2. These are specified by the convex
combination coefficients that form the non-zero rows. The two
convex combinations for the first dual solution are formed by
the coefficients α2 = (0, 1) and α3 = (1/2, 1/2). The second
dual solution has convex combination coefficients α1 = (1, 0)
and α3 = (1/2, 1/2). Therefore, any strictly improving parti-
tion must be such that no single region contains both matrices
{B2, 1

2B1 + 1
2B2}, nor the two matrices {B1, 1

2B1 + 1
2B2}.

Evidently, no such partition into 2 (convex) regions exists.
Therefore 2-adaptability cannot satisfy these two necessary
conditions, and thus (in this example) is no better than the
static robust solution of (VI.20). This illustrates point (2)
above: the necessary conditions corresponding to the two
extreme points of C0 are alone sufficient to prove that 2-
adaptability is no better than the static robust solution.
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Next we consider the more general case Cη and Mη. We
consider a few different values of η: η1 = (27/7)− 3.8, η2 =
(27/7)−3.2, and η3 = (27/7)−2.9. We generate the extreme
points (p, q) of Cη1 , and the points of Mη1 to which they
map. The polytope Cη1 has 12 extreme points4. These yield
four non-redundant necessary conditions:

N1 = {B2, 10
21B1 + 11

21B2};
N2 = {B1, 11

21B1 + 10
21B2};

N3 = { 1
50B1 + 49

50B2, 1
2B1 + 1

2B2};
N4 = { 49

50B1 + 1
50B2, 1

2B1 + 1
2B2}.

While there exists no partition into only two regions that
can simultaneously satisfy these four necessary conditions,
the three-region split [0, 1] = [0, 1/6] ∪ [1/6, 5/6] ∪ [5/6, 1]
does satisfy N1 − N4; we can check that none of the sets
Ni, 1 ≤ i ≤ 4, are contained within any single region of
the proposed partition. In fact, this partition decreases the
cost by 0.4672 ≥ η1. The polytope Cη2 has 12 vertices.
The non-redundant constraints generated by points of M η2

corresponding to the extreme points of Cη2 , are

N1 = {B1, 28
33B1 + 5

33B2};
N2 = {B2, 28

33B2 + 5
33B1}

N3 = { 77
100B1 + 23

100B2, 1
2B1 + 1

2B2};
N4 = { 23

100B1 + 77
100B2, 1

2B1 + 1
2B2}.

It is easy to check that these four necessary conditions are
not simultaneously satisfiable by any partition with only three
(convex) regions. Indeed, at least 5 are required. This is
another illustration of point (2) from above: a small set of
four necessary conditions suffices to prove that 3-adaptability
cannot improve the static robust solution by more than η 2 =
(27/7)− 3.2.

The smallest η at which the necessary conditions corre-
sponding to the extreme points of Cη provide a certificate that
at least 5 regions are required for any partition to achieve an
η-improvement or greater, is η̂ ≈ 27/7 − 3.2770 ≈ 0.5801.
This illustrates point (3) above: examining values of η ∈ [0, η̂],
the four necessary conditions implied by the extreme points
of Cη are sufficient to reveal that two-adaptability is no better
than the static robust solution, and in addition, they reveal the
limit of 3-adaptability. Furthermore, they reveal the optimal
3-partition to be: [0, 1] = [0, λ̂] ∪ [λ̂, 1 − λ̂] ∪ [1 − λ̂, 1], for
λ̂ ≈ 0.797.

Finally, let us consider η3 = (27/7) − 2.9. In this
case, we are asking for more improvement than even the
completely adaptable formulation could provide (recall
CompAdapt(P) = 3). In short, such improvement is not
possible within our framework of a deterministic adversary.
Proposition 2 tells us how the polytope Cη3 and the set Mη3

witness this impossibility. The polytope Cη3 has 31 vertices.
It is enough to consider one of these vertices in particular:
v = (9/10, 1/10, 9/5), (0, 0, 0). The corresponding necessary
condition is: N = {B1, B1, B1}. Evidently, no number of
partitions can ever satisfy this necessary condition. Indeed,

4These computations were done using the software CDD by Komei Fukuda
[16]. This is an implementation of the double description method. See also
http://www.cs.mcgill.ca/ fukuda/soft/cddman/node2.html for further details.

this is precisely what Proposition 2 says: if progress η is not
possible, it must be because M̄η ∩ P �= ∅.

Next we illustrate point (4), by showing that for the problem
(VI.20) above, the affine adaptability proposal of Ben-Tal et
al. ([2]) is no better than the static robust formulation, even
though 3-adaptability significantly improves the static robust
solution, and thus outperforms affine adaptability. In Figure 2
on the left, we have the actual optimal solutions for the com-
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Fig. 2. The figure on the left illustrates the optimal response policy for the
decision-maker. The optimal response function is far from linear. In the figure
to the right the lowest curve is the value of the nominal LP as a function of the
realization of the uncertainty. The next three lines, Z5, Z3, ZR, illustrate the
value of 5,3-adaptability, and the static robust value, respectively. The static
robust value coincides with the value of affine adaptability.

pletely adaptable problem. For every λ ∈ [0, 1], the decision-
maker has an optimal response, y(λ) = (y1(λ), y2(λ), y3(λ)).
The figure on the right illustrates the optimal completely
adaptable cost as a function of λ, as well as the optimal static
robust cost (the line at the top) and then the cost when the
decision-maker selects 3 and 5 contingency plans, respectively.
CompAdapt(P) is given by

CompAdapt(P) = max : y1(λ) + y2(λ) + y3(λ)
s.t. : λ ∈ [0, 1].

We can see from the figure that indeed this value is 3.
Next, consider the optimal affine adaptability. In (II.8) we

define affine adaptability for the two stage problem, however
we can easily apply this to single stage optimization by
allowing all the decision-variables to depend affinely on the
uncertainty. Here the uncertainty is one-dimensional, parame-
terized by λ ∈ [0, 1], so we let yaff(λ) denote the optimal
affine solution. The third component, y aff

3 (λ) must satisfy:
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yaff
3 (0), yaff

3 (1) ≥ 1. Therefore, by linearity, we must have
yaff
3 (λ) ≥ 1 for all λ ∈ [0, 1]. Furthermore, for λ = 1/2, we

must also have

1
2

(
1
2
yaff
1 (1/2)+

1
5
yaff
2 (1/2)

)
+

1
2

(
1
5
yaff
1 (1/2)+

1
2
yaff
2 (1/2)

)
≥ 1,

which implies, in particular, that yaff
1 (1/2) + yaff

2 (1/2) ≥ 20
7 .

The cost obtained by affine adaptability is

Affine(P) = max : yaff
1 (λ) + yaff

2 (λ) + yaff
3 (λ)

s.t. : λ ∈ [0, 1].

This is at least the value at λ = 1/2. But this is:
yaff
1 (1/2) + yaff

2 (1/2) + yaff
3 (1/2) ≥ 20/7 + 1 = 27/7,

which is the static robust value. Therefore, in this case, affine
adaptability is no better than the static robust value. On
the other hand, as illustrated in Figure 2, 3-adaptability is
sufficient to significantly improve the cost to the decision-
maker, and 5-adaptability is better still. Moreover, since this
problem satisfies the Continuity Assumption, by Proposition
1, Adaptk(P) → CompAdapt(P) as k increases, so we can
further improve the cost with more adaptability. Thus, we
illustrate point (4) from above. �

Next we illustrate points (5) and (6) above by presenting a
modification of the previous example. Consider:

min : y2

s.t. :


 a1 a2

b1 b2

0 1


( y1

y2

)
≥

 1

−1
0




∀
(

a1 a2

b1 b2

)
∈ conv

{(
1
2

1
5− 1

2 − 1
5

)
,

(
1
5

1
2− 1

5 − 1
2

)}
(VI.21)

The static robust solution to (VI.21) is yR = (10/7, 10/7),
and hence Static(P) = 10/7. On the other hand, for any
realization of the uncertain matrix,(

a1 a2

b1 b2

)
= λ

(
1
2

1
5− 1

2 − 1
5

)
+ (1 − λ)

(
1
5

1
2− 1

5 − 1
2

)
,

the solution (y1, y2) = (5− 3λ, 0) is feasible, and hence opti-
mal for the nominal problem. The optimal response function
in this case is affine. Here, CompAdapt(P) = 0, and the
gap is 10/7. Consider now any partition of the uncertainty
set (i.e., the interval [0, 1]) into finitely (or even countably
many) regions. At least one region of the partition must contain
more than one point of the interval, otherwise we would have
uncountably many regions. Let P̃ denote this region, with
λ1 < λ2 both elements of P̃. The static robust problem over
this set P̃ , is lower bounded by

min : y2

s.t. : X1(λ1)
(

y1

y2

)
≥
(

1
−1

)

X2(λ2)
(

y1

y2

)
≥
(

1
−1

)
y2 ≥ 0

where

X1(λ1) =
[
λ1

(
1
2

1
5− 1

2 − 1
5

)
+ (1 − λ1)

(
1
5

1
2− 1

5 − 1
2

)]
,

X2(λ2) =
[
λ2

(
1
2

1
5− 1

2 − 1
5

)
+ (1 − λ2)

(
1
5

1
2− 1

5 − 1
2

)]
.

As λ1 �= λ2, the point yR = (10/7, 10/7) is the only point
in the feasible region, and thus it must also be optimal; hence
the value is not improved from 10/7. Note, moreover, that
this example violates the Continuity Assumption: for any two
(even infinitesimally close) realizations of the uncertainty, the
only common feasible point is yR = (10/7, 10/7), which is
not within ε of optimality for any ε < 10/7. Thus, we illustrate
point (5), and show that the Continuity Assumption may not
be removed from Proposition 1. Recall that Proposition 2 says
that finite adaptability can strictly improve the solution if and
only if P ∩M̄ = ∅. Here, we can indeed check that P∩M =
∅. However, the set of dual optimal solutions to (VI.21) is
unbounded, and the set M is not closed. With some work, we
can check that, e.g.,

 1
2

1
5− 1

2 − 1
5

0 1


 ∈ M̄.

Thus, the conclusion of Proposition 2 holds, and in particular,
as we point out in (6) above, taking the closure of M η cannot
be relaxed. �

It turns out (see [11]) that with quartic polynomial adapt-
ability, or with piecewise affine adaptability, one can recover
the optimal solution.

VII. HEURISTIC ALGORITHMS

In large scale optimization problems such as the one dis-
cussed in Section VIII-C, we seek practically efficient and im-
plementable solutions. In this section, we propose a heuristic
tractable algorithm. We restrict ourselves to an infinite class
of partitions from which selecting the optimal partition can be
done efficiently.

The algorithm is motivated by the results of Section III.
There, the necessary conditions we derive say that good
partitions divide points of P which must be separated. We
try to do exactly that. The algorithm is based on the following
observation, whose proof is immediate.

Lemma 3: Consider the set of partitions P = P1∪P2 given
by a hyperplane division of P . If the orientation (i.e., the
normal vector) of the hyperplane is given, then selecting the
optimal partitioning hyperplane with this normal can be done
efficiently.
Algorithm 1: Let P = conv{(A, B)1, . . . , (A, B)K}.

1. For every pair (i, j), 1 ≤ i �= j ≤ K , let v ij = (A, B)j−
(A, B)i be the unique vector they define.

2. Consider the family of hyperplanes with normal v ij .
3. Solve the quasi-convex problem, and let H ij be the

hyperplane that defines the optimal hyperplane partition
of P within this family.

4. Select the optimal pair (i, j) and the corresponding opti-
mal hyperplane partition of P .
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This algorithm can be applied iteratively as a heuristic ap-
proach to computing 2d-adaptability. In Section VIII, we
implement this algorithm to compute 2,4-adaptability.

Section III-B provides an approach to strengthen the above
algorithm. The algorithm selects the optimal hyperplane
from the set of hyperplanes that have normal vector defined
by a pair of extreme points of P . By adding explicitly
more points that are in the interior of P , we enlarge the
space of hyperplanes over which the algorithm searches.
In Section III-B, we illustrate a procedure for obtaining
necessary conditions that any “good” partition must satisfy.
These conditions essentially contain requirements that certain
collections of points of P should not be contained within
any single region of the partition. By including (a partial set
of) the points corresponding to a list of necessary conditions,
we guarantee that the set of partitions considered include
partitions that meet the necessary conditions. In effect, this
gives a structured approach to increasing the size of the
family of partitions considered.

Algorithm 2: Let the uncertainty set be given by inequalities:
P = {(A, B) : α′

ivec((A, B)) ≤ 1, 1 ≤ i ≤ N}, where
vec(B) is vector consisting of the rows of B.

1. For every defining facet αi of P , let v be the unique
normal vector.

2. Consider the family of hyperplanes with normal v.
3. Solve the quasi-convex problem, and let H i be the

hyperplane that defines the optimal hyperplane partition
of P within this family.

4. Select the optimal index i and the corresponding optimal
hyperplane partition of P .

VIII. COMPUTATIONAL EXAMPLES

In this section, we report on the performance of the heuristic
algorithm of Section VII. In Section VIII-A, we consider a
minimum cost robust scheduling problem with integer con-
straints. These randomly generated examples are meant to
illustrate the applicability of k-adaptability, and some types
of problems that can be considered. In the final part of this
section, VIII-B, we explore a large collection of randomly
generated instances of the scheduling problem without integer
constraints. We consider different problem size, and types and
level of uncertainty, in an effort to obtain some appreciation
in the generic case, for the benefit of the first few levels of the
adaptability hierarchy, and for the behavior of the algorithm
of Section VII.

Finally, we discuss the problem of Air Traffic Control.
We discuss why finite adaptability may be an appropriate
framework for adaptability, both in terms of theoretical and
practical considerations. The full details of the model, and the
numerical computations are in [7].

A. Robust Scheduling: Integer Constraints

Suppose we have m products, and each product can be
completed partially or fully at one of n stations, and the
stations work on many products simultaneously so that no
product blocks another. Thus the decision variables, y j , are

for how long to operate station j. The matrix B = {b ij}
gives the rate of completion of product i at station j. Running
station j for one hour we incur a cost cj . To minimize the
cost subject to the constraint that the work on all products is
completed, we solve:

min : x
s.t. : x ≥∑n

j=1 cjyj∑n
j=1 bijyj ≥ 1, 1 ≤ i ≤ m

yj ≥ 0, 1 ≤ j ≤ n.

In the static robust version of the problem, the rate matrix B is
only known to lie in some set P . How much can we reduce our
cost if we can formulate 2 (in general k) schedules rather than
just one? Particularly in the case where we have to make binary
decisions about which stations to use, there may be some cost
in having k contingency plans prepared, as opposed to just
one. It is therefore natural to seek to understand the value of
k-adaptability, so the optimal trade-off may be selected.

In Section VIII-B, we generate a large ensemble of these
problems, varying the size and the generation procedure, and
we report average results. Here, we consider only one instance
from one of the families below, and impose binary constraints,
so that each station must be either on or off: y i ∈ {0, 1}.

The heuristic algorithms proposed in Section VII are
tractable because of the quasi-convexity of the search for the
optimal dividing hyperplane and by the limited set of normal
directions considered. Both these factors are independent of
the continuous or discrete nature of the underlying problem.
Indeed, all that is required for the algorithms is a method to
solve the static robust problem.

We consider an instance with 6 products and 6 stations,
where the uncertainty set is the convex hull of six randomly
generated rate matrices. Without the integer constraints, the
value of the static robust problem is 3.2697, and the com-
pletely adaptable value is bounded below by 2.8485. The value
of the 2-adaptability solution is 3.1610, and for 4-adaptability
the value is 3.0978. Thus, 2-adaptability covers 25.8% of the
gap, and 4-adaptability covers just over 40% of the gap. As
we see from the results of the next section, these numbers are
typical in our ensemble. When we add integer constraints, the
static robust cost is 5, i.e., 5 stations must be turned on. The
completely adaptable value is 4. The 2-adaptability solution
also improves the static robust cost, lowering it to 4. Thus, in
this case a single split of the uncertainty region reduces the
cost as much as the full completely adaptable formulation.

B. Robust Scheduling

We consider a large collection of randomly generated
instances of the scheduling problem above, without integer
constraints. First, we suppose that the extreme points of P
are generated uniformly at random, their elements drawn
iid from a uniform distribution. Next, we consider another
random instance generation procedure, where the extreme
points of P come from a specific degrading of some number
of products. That is, we may have nominal values {b ij},
but in actuality some collection (typically small) of the m
products may take longer to complete on each machine, than
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indicated by the nominal values. Here each extreme point
of P would be constructed from the nominal matrix B,
degraded at some small number of rows. We generate random
instances of this problem by generating a nominal matrix B,
and then degrading each row individually. This corresponds
to choosing robustness that protects against a single product
being problematic and requiring more time at the stations.

We are interested in several figures of merit. We consider
the gap between the static robust problem and complete adapt-
ability. As we have remarked above, we note that complete
adaptability is typically difficult to compute exactly ([2]).
Therefore for all the computations in this section, we compute
upper bounds on the gap between the static robust and the
completely adaptable values. Thus, we present lower bounds
on the benefit of adaptability and the performance of the
heuristic algorithm. We obtain upper bounds on the gap by
approximating the completely adaptable value by random
sampling. We sample 500 points independently and uniformly
at random from the uncertainty set. Since the truly worst
case may not be close to one of these sampled points, the
completely adaptable value may in fact be worse than reported,
thus making the gap smaller. Thus our random approximation
gives a conservative bound on the true gap. Next, we compute
the extent to which 2- and 4-adaptability, as computed by the
algorithm of Section VII, close this gap.

We summarize the computational examples by reporting the
size of the instances and some statistics of the simulations.
In each category, every number represents the average of
50 independently generated problem instances of size as
shown. These results are contained in Table I. There, we
give the average, minimum, and maximum gap between the
static robust and the completely adaptable values. We give
this as a fraction of the static robust value, that is, GAP
= (Static(P)−CompAdapt(P))/ Static(P). Then we report
the average percentage of this gap covered by 2-adaptability
and 4-adaptability, as computed by the heuristic algorithm.

Matrix Size Size of P Avg Gap % 2-Adapt % 4-Adapt %

6 × 6 K = 3 10.10 63.22 70.70
6 × 6 K = 6 14.75 42.72 52.33
6 × 6 K = 8 18.45 39.15 47.42

10 × 10 K = 3 10.12 50.67 63.29
10 × 10 K = 5 14.22 38.58 49.36
10 × 10 K = 10 18.27 31.17 40.18
15 × 25 K = 3 8.06 39.27 54.53
15 × 25 K = 5 10.73 25.12 35.52
15 × 25 K = 7 13.15 18.21 26.84

TABLE I
THE MATRICES IN THESE INSTANCES WERE GENERATED INDEPENDENTLY.

THE FIRST GROUP OF TWO COLUMNS IDENTIFIES THE SIZE OF THE

PROBLEM, WHERE BY MATRIX SIZE WE MEAN THE “NUMBER OF
PRODUCTS BY NUMBER OF STATIONS,” AND BY SIZE OF P WE INDICATE

THE NUMBER OF EXTREME POINTS. WE NOTE THAT THE AVERAGE GAP

BETWEEN THE STATIC AND ADAPTABLE FORMULATIONS INCREASES WITH

THE SIZE OF THE UNCERTAINTY SET P . ALSO, THE BENEFIT OF
2,4-ADAPTABILITY DECREASES AS THE SIZE OF THE SET P INCREASES.

The table illustrates several properties of the gap, and of
adaptability. We have considered several examples where we
fix the number of products and the number of stations (i.e.,
we fix the size of the matrices) and then vary the size of

the uncertainty set, i.e., the number of extreme points. In all
such examples, we see that the average gap increases as the
level of the uncertainty grows. Indeed, this is as one would
expect. Furthermore, we see that the quality of 2,4-adaptability
decreases as the size of the uncertainty set grows. Again
this is as one would expect, as we are keeping the amount
of adaptability, and the problem dimension constant, while
increasing the number of extreme points of the uncertainty set.
For the 6×6 matrices, 4-adaptability covers, on average, over
70% of the gap. That is, with only 4 contingency plans, on
average we do over 70% as well as the best possible attainable
by any amount of adaptability. When we double the size of
P , the average performance of 2-adaptability drops from over
63% to just over 42%, while the performance of 4-adaptability
drops from over 70% to about 52%. A similar phenomenon
occurs in the other examples as well.

We also report the results of the computations for the case
where the uncertainty set P corresponds to the case where
at most one product is degraded. That is, we form P by
degrading each row of a matrix B individually. The results
from this random generation procedure are comparable to the
first procedure. The results are reported in Table II.

Matrix Size Size of P Avg Gap % 2-Adapt % 4-Adapt %

3 × 6 K = 3 9.08 70.61 78.36
6 × 6 K = 6 14.24 54.62 66.34
3 × 20 K = 3 10.61 28.67 45.16
5 × 20 K = 5 15.90 33.78 47.60
10 × 20 K = 10 21.17 22.35 31.50
3 × 25 K = 3 10.92 52.94 65.16
5 × 25 K = 5 15.81 32.83 45.90
3 × 50 K = 3 10.66 44.04 59.06

TABLE II
THE MATRICES IN THESE INSTANCES WERE GENERATED WITH

DEPENDENT MATRICES, AS EXPLAINED ABOVE. IN THIS EXAMPLE AGAIN
WE NOTE THE SAME TRENDS AS FOR THE FIRST EXAMPLE: THE GAP

BETWEEN THE STATIC AND THE ADAPTABLE INCREASES WITH THE SIZE

OF THE UNCERTAINTY SET, AND THE VALUE OF 2,4-ADAPTABILITY IS
BETTER FOR LOW-DIMENSIONAL UNCERTAINTY SETS THAN FOR

HIGH-DIMENSIONAL UNCERTAINTY.

C. An Example from Air Traffic Control

There are about 30,000 flights daily over the United States
National Air Space (NAS). These flights must be scheduled so
that they do not exceed the takeoff or landing capacity of any
airport, or when they are the capacity of any sector of the NAS
while they are in-flight. These capacities are uncertain, as they
are impacted by the weather. Currently, there is no centralized,
optimization-based approach implemented to obtain a schedule
that respects the capacity constraints while minimizing delays.
The primary challenges are (a) the large scale nature of the
problem, with over a million variables and constraints; (b) the
variables are inherently discrete; (c) the problem is naturally
multi-stage: scheduling decisions are made sequentially, and
the uncertainty is also revealed throughout the day, as we have
access to the current forecast at every point in time. Because
of the discrete variables, continuous adaptability cannot work.
Also, because of the large-scale nature of the problem, there
is very little leeway to increase the size of the problem.
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Finite Adaptability, is an appropriate framework to address
all three of the above challenges. We given a small example
(see [11] for more details and computations) to illustrate the
application of adaptability, showing finite adaptability can
significantly decrease the impact of a storm on flight delay
and cancellation.

Figure 3 depicts a major airport (e.g., JFK) that accepts
heavy traffic from airports to the West and the South. In this
figure, the weather forecast precits major disruption due to
an approaching storm; the timing of the impact, however, is
uncertain, and at question is which of the 50 (say) Northbound
and 50 Easthbound flights to hold on the ground, and which
in the air.
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Fig. 3. We have planes arriving at a single hub such as JFK in NYC. Dashed
lines express uncertainty in the weather.

The minimum flight time is 2 hours. Each plane may be
held either on the ground, in the air, or both, for a total delay
not exceeding 60 minutes. Therefore all 50 Northbound and
50 Eastbound planes land by the end of the three hour window
under consideration.

We discretize time into 10-minute intervals. We assume that
the impact of the storm lasts 30 minutes. The uncertainty is in
the timing of the storm, and the order in which it will affect
the capacity of the southward and westward approaches. There
is essentially a single continuous parameter here, controls the
timing of the storm, and whether the most severe capacity
impact hits the approach from the south before, after, or at
the same time as it hits the approach from the west. Because
we are discretizing time into 10 minute intervals, there are
four possible realizations of the weather-impacted capacities
in the second hour of our horizon. These four scenarios are
as follows. We give the capacity in terms of the number of
planes per 10-minute interval:

(1)
[

West: 15 15 15 5 5 5
South: 5 5 5 15 15 15

]

(2)
[

West: 15 15 5 5 5 15
South: 15 5 5 5 15 15

]

(3)
[

West: 15 5 5 5 15 15
South: 15 15 5 5 5 15

]

(4)
[

West: 5 5 5 15 15 15
South: 15 15 15 5 5 5

]

In the utopic set-up (not implementable) the decision-maker
can foresee the future (of the storm). Thus we get a bound

on performance. We also consider a nominal, no-robustness
scheme, where the decision-maker assumes the storm will
behave exactly according to the first scenario. We also consider
adaptabiliy formulations: 1-adaptable (static robust) solution,
then the 2- and 4-adaptable solution.

The cost is computed from the total amount of ground
holding and the total amount of air holding. Each 10-minute
interval that a single flight is delayed on the ground, con-
tributes 10 units to the cost. Each 10-minute interval of air-
delay contributes 20 units.

Delay Cost Ground Holding Air Holding

Utopic: 2,050 205 0
Static: 4,000 400 0

2-Adaptable: 3,300 170 80
4-Adaptable: 2,900 130 80

TABLE III
RESULTS FOR THE COST OF TOTAL DELAY, AS WELL AS THE TOTAL

GROUND-HOLDING TIME, AND AIR-HOLDING TIME, FOR THE UTOPIC,
ROBUST, 2-ADAPTABLE, AND 4-ADAPTABLE SCHEMES, FOR THE AIR

TRAFFIC CONTROL EXAMPLE. THE GROUND- AND AIR-HOLDING TIME IS

GIVEN AS THE NUMBER OF 10 MINUTE SEGMENTS INCURRED BY EACH
FLIGHT (SO IF A SINGLE FLIGHT IS DELAYED BY 40 MINUTES, IT

CONTRIBUTES 4 TO THIS COUNT).

In Table IV, we give the cost of the nominal solution,
depending on what the actual realization turns out to be.

Real’n 1 Real’n 2 Real’n 3 Real’n 4

Nominal Cost: 2,050 2,950 3,950 4,750

TABLE IV
RESULTS FOR THE COST OF TOTAL DELAY FOR EACH SCENARIO, WHEN

THE FIRST-STAGE SOLUTION IS CHOSEN WITHOUT ROBUSTNESS

CONSIDERATIONS, ASSUMING THAT THE FIRST REALIZATION IS IN FACT
THE TRUE REALIZATION.

IX. CONCLUSION

We have proposed a notion of finite adaptability. This
corresponds to choosing a finite number of contingency plans,
as opposed to a single static robust solution. We have shown
that this is equivalent to partitioning the uncertainty space,
and receiving ahead of time coarse information about the
realization of the uncertainty, corresponding to one of the
chosen partitions.

The structure of this adaptability is designed to reduce
the geometric gap between P and (P)R, which is exactly
the reason the static robust solution may be conservative. In
this paper, we have focused on exploiting non-constraintwise
uncertainty. We consider elsewhere the value of adaptability
in the face of non-convex uncertainty sets. This notion of
finite adaptability establishes a hierarchy of adaptability that
bridges the gap between the static robust formulation, and
the completely adaptable formulation. Thus, we introduce
the concept of the value of adaptability. We believe that the
finiteness of the proposal, as well as the hierarchy of increasing
adaptability, are central to the paper. The finiteness of the
adaptability is appropriate in many application areas where
infinite adjustability, and infinitesimal sensitivity, are either
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impossible due to the constraints of the problem, or undesir-
able because of the structure of the optimization, i.e., the cost.
In addition to this, the inherent finiteness, and hence discrete
nature of the proposal, makes it suitable to address adaptability
problems with discrete variables. We expect that this benefit
should extend to problems with non-convex constraints.

In problems where adaptability, or information is the scarce
resource, the hierarchy of finite adaptability provides an op-
portunity to trade off the benefits of increased adaptability,
versus its cost.

On the other hand, as we demonstrate, obtaining optimal
partitions of the uncertainty space can be hard. Thus, there is
a need for efficient algorithms. We have proposed a tractable
algorithm for adaptability. Numerical evidence indicates that
its behavior is good.
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