
Optimization for Machine Learning

Editors:

Suvrit Sra suvrit@gmail.com

Max Planck Insitute for Biological Cybernetics
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Robust optimization is a paradigm that uses ideas from convexity and duality,
to immunize solutions of convex problems to bounded uncertainty in the
parameters of the problem. Machine learning is fundamentally about making
decisions under uncertainty, and optimization has long been a central tool;
thus at a high level there is no surprise that robust optimization should
have a role to play. Indeed, the first part of the story told in this chapter
is about specializing robust optimization to specific optimization problems in
machine learning. Yet, beyond this, there have been several surprising and
deep developments in the use of robust optimization and machine learning,
connecting consistency, generalization ability, and other properties (such as
sparsity and stability) to robust optimization.
In addition to surveying the direct applications of robust optimization to
machine learning, important in their own right, this chapter explores some
of these deeper connections, and points the way towards opportunities for
applications, and challenges for further research.
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1.1 Introduction

Learning, optimization, and decision-making from data must cope with un-
certainty introduced implicitly and explicitly. Uncertainty can be explicitly
introduced when the data collection process is noisy, or some data are cor-
rupted. It may be introduced when the model specification is wrong, as-
sumptions are missing, or factors overlooked. Uncertainty is also present in
pristine data, implicitly, insofar as a finite sample empirical distribution,
or function thereof, cannot exactly describe the true distribution in most
cases. In the optimization community, it has long been known that the ef-
fect of even small uncertainty can be devastating in terms of the quality or
feasibility of a solution. In machine learning, overfitting has long been rec-
ognized as a central challenge, and a plethora of techniques, many of them
regularization-based, have been developed to combat this problem. The the-
oretical justification for many of these techniques lies in controlling notions
of complexity, such as metric entropy or VC-dimension.

This chapter considers uncertainty in optimization, and overfitting, from a
unified perspective: robust optimization. In addition to introducing a novel
technique for designing algorithms that are immune to noise and do not
overfit data, robust optimization also provides a theoretical justification
for the success of these algorithms: algorithms have certain properties, like
consistency, good generalization, or sparsity, because they are robust.

Robust optimization (e.g., Soyster, 1973; El Ghaoui and Lebret, 1997; Ben-
Tal and Nemirovski, 2000; Bertsimas and Sim, 2004; Bertsimas et al., 2010;
Ben-Tal et al., 2009, and many others) is designed to deal with parameter
uncertainty in convex optimization problems. For example, one can imagine
a linear program, min : {c�x |Ax ≤ b}, where there is uncertainty in the
constraint matrix A, the objective function, c, or the right hand side vector,
b. Robust optimization develops immunity to a deterministic or set-based
notion of uncertainty. Thus, in the face of uncertainty in A, instead of solving
min : {c�x |Ax ≤ b} one solves min : {c�x |Ax ≤ b, ∀A ∈ U}, for some
suitably defined uncertainty set U. We give a brief introduction to robust
optimization in Section 1.2 below.

The remainder of this chapter is organized as follows. In Section 1.2 we
provide a brief review of robust optimization. In Section 1.3 we discuss di-
rect applications of robust optimization to constructing algorithms that are
resistant to data corruption. This is a direct application of not only the
methodology of robust optimization, but also the motivation behind the de-
velopment of robust optimization. The focus is developing on computation-
ally efficient algorithms, resistent to bounded but otherwise arbitrary (even
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adversarial) noise. In Sections 1.4 - 1.6, we show that robust optimization’s
impact in machine learning extends far outside the originally envisioned
scope as developed in the optimization literature. In Section ??, we show
that many existing machine learning algorithms that are based on regular-
ization, including support vector machines (SVMs), ridge-regression, and
Lasso, are special cases of robust optimization. Using this re-interpretation,
their success can be understood from a unified perspective. We also show
how the flexibility of robust optimization paves the way for the design of
new regularization-like algorithms. Moreover, we show that robustness can
be used directly to prove properties like regularity and sparsity. In Section
1.5, we show that robustness can be used to prove statistical consistency.
Then, in Section 1.6, we extend the results of Section 1.5, showing that an
algorithm’s generalization ability and its robustness are related in a funda-
mental way.

In summary, we show that robust optimization has deep connections
to machine learning. In particular it yields a unified paradigm that (a)
explains the success of many existing algorithms; (b) provides a prescriptive
algorithmic approach to creating new algorithms with desired properties;
and (c) allows us to prove general properties of an algorithm.

1.2 Background on Robust Optimization

In this section we provide a brief background on robust optimization, and
refer the reader to the survey (Bertsimas et al., 2010), the textbook (Ben-Tal
et al., 2009), and references to the original papers therein, for more details.

Optimization affected by parameter uncertainty has long been a focus of
the mathematical programming community. As has been demonstrated in
compelling fashion (Ben-Tal and Nemirovski, 2000), solutions to optimiza-
tion problems can exhibit remarkable sensitivity to perturbations in the
problem parameters, thus often rendering a computed solution highly in-
feasible, suboptimal, or both. This parallels developments in related fields,
particularly robust control (we refer to the textbooks Zhou et al., 1996;
Dullerud and Paganini, 2000, and the references therein).

Stochastic programming (e.g., Prékopa, 1995; Kall and Wallace, 1994),
assumes the uncertainty has a probabilistic description. In contrast, robust
optimization is built on the premise that the parameters vary arbitrarily in
some a priori known bounded set, called the uncertainty set. Suppose we
are optimizing a function f0(x), subject to the m constraints fi(x,ui) ≤ 0,
i = 1, . . . ,m, where ui denotes the parameters of function i. Then where
as the nominal optimization problem solves min{f0(x) : fi(x,ui) ≤ 0, i =
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1, . . . ,m}, assuming that the ui are known, robust optimization solves:

minx : f0(x) (1.1)

s.t. : fi(x,ui) ≤ 0, ∀ui ∈ Ui, i = 1, . . . ,m.

Computational Tractability. The tractability of robust optimization,
subject to standard and mild Slater-like regularity conditions, amounts to
separation for the convex set: X(U)

�
= {x : fi(x,ui) ≤ 0, ∀ui ∈ Ui, i =

1, . . . ,m}. If there is an efficient algorithm that asserts x ∈ X(U) or other-
wise provides a separating hyperplane, then problem (1.1)can be solved in
polynomial time. While the set X(U) is a convex set as long as each function
fi is convex in x, it is not in general true that there is an efficient separation
algorithm for the set X(U). However, in many cases of broad interest and
application, solving the robust problem can be done efficiently – the robus-
tified problem may be of complexity comparable to that of the nominal one.
We outline some of the main complexity results below.
An Example: Linear Programs with Polyhedral Uncertainty. When the un-
certainty set, U, is polyhedral, the separation problem is not only efficiently
solvable, it is in fact linear, thus the robust counterpart is equivalent to a
linear optimization problem. To illustrate this, consider the problem with
uncertainty in the constraint matrix:

minx : c�x

s.t. : max{ai:Diai≤di}[a
�
i x] ≤ bi, i = 1, . . . ,m.

The dual of the subproblem (recall that x is not a variable of optimization
in the inner max) becomes again a linear program:

[
maxai

: a�
i x

s.t. : Diai ≤ di

]
←→




minpi
: p�

i di

s.t. : p�
i Di = x

pi ≥ 0


 ,

and therefore the robust linear optimization now becomes:

minx,p1,...,pm
: c�x

s.t. : p�
i di ≤ bi, i = 1, . . . ,m

p�
i Di = x, i = 1, . . . ,m

pi ≥ 0, i = 1, . . . ,m.

Thus the size of such problems grows polynomially in the size of the nominal
problem and the dimensions of the uncertainty set.
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Some General Complexity Results. We now list a few of the complexity
results that are relevant in the sequel. We refer to Bertsimas et al. (2010);
Ben-Tal et al. (2009) and references therein for further details. The robust
counterpart for a linear program (LP) with polyhedral uncertainty is again
an LP. For an LP with ellipsoidal uncertainty, the counterpart is a second
order cone (SOCP). A convex quadratic program with ellipsoidal uncer-
tainty has a robust counterpart that is a semidefinite program (SDP). An
SDP with ellipsoidal uncertainty has an NP-hard robust counterpart.

Probabilistic Interpretations and Results. The computational advan-
tage of robust optimization is largely due to the fact that the formulation
is deterministic, thus dealing with uncertainty sets rather than probabil-
ity distributions. While the paradigm makes sense when the disturbances
are not stochastic, or the distribution is not known, tractability advantages
have made robust optimization an appealing computational framework even
when the uncertainty is stochastic, and the distribution is fully or partially
known. A major success of robust optimization has been the ability to de-
rive a priori probability guarantees – e.g., probability of feasibility – that
the solution to a robust optimization will satisfy, under a variety of proba-
bilistic assumptions. Thus robust optimization is a tractable framework one
can use to build solutions with probabilistic guarantees such as minimum
probability of feasibility, or maximum probability of hinge-loss beyond some
threshold level, etc. This probabilistic interpretation of robust optimization
is used throughout this chapter.

1.3 Robust Optimization and Adversary Resistant Learning

In this section we overview some of the direct applications of robust opti-
mization to coping with uncertainty (adversarial or stochastic) in machine
learning problems. The main themes are (a) the formulations one obtains
when using different uncertainty sets, (b) the probabilistic interpretation and
results one can derive by using robust optimization. Using ellipsoidal uncer-
tainty, we show that the resulting robust problem is tractable. Moreover,
we show that this robust formulation has interesting probabilistic interpre-
tations. Then, using a polyhedral uncertainty set, we show that sometimes
it is possible to tractably model combinatorial uncertainty, such as missing
data.

Robust optimization-based learning algorithms have been proposed for
various learning tasks, e.g., learning and planning (Nilim and El Ghaoui,
2005), Fisher linear discriminant analysis (Kim et al., 2005), PCA (d’Aspremont



6 Robust Optimization in Machine Learning

et al., 2007), and many others. Instead of providing a comprehensive survey,
we use support vector machines (SVMs, e.g., Vapnik and Lerner, 1963;
Boser et al., 1992; Cortes and Vapnik, 1995) to illustrate the methodology
of robust optimization.

Standard SVMs consider the standard binary classification problem, where
we are given a finite number of training samples {xi, yi}mi=1 ⊆ R

n×{−1,+1},
and must find a linear classifier, specified by the function hw,b(x) =
sgn(〈w, x〉 + b), where 〈·, ·〉 denotes the standard inner product. The pa-
rameters (w, b) are obtained by solving the following convex optimization
problem:

min
w,b,ξ

: r(w, b) + C

m∑
i=1

ξi

s.t. : ξi ≥
[
1− yi(〈w,xi〉+ b)], i = 1, . . . ,m; (1.2)

ξi ≥ 0, i = 1, . . . ,m;

where r(w, b) is a regularization term, e.g., r(w, b) = 1
2‖w‖22. There are a

number of related formulations, some focusing on controlling VC-dimension,
promoting sparsity, or some other property; see the textbooks Schölkopf and
Smola (2002); Steinwart and Christmann (2008) and references therein.

There are three natural ways uncertainty affects the input data: corruption
in the location, xi, corruption in the label, yi, and corruption via altogether
missing data. We outline some applications of robust optimization to these
three settings.

Corrupted Location. Given observed points {xi}, the additive uncer-
tainty model assumes that xtrue

i = xi + ui. Robust optimization protects
against the uncertainty ui by minimizing the regularized training loss on all
possible locations of the ui in some uncertainty set, Ui.

In Trafalis and Gilbert (2007), the authors consider the ellipsoidal uncer-
tainty set given by:

Ui =
{
ui : u�

i Σiui ≤ 1
}
, i = 1, . . . ,m;

so that each constraint becomes: ξi ≥
[
1−yi(〈w,xi +ui〉+ b)], ∀ui ∈ Ui. By

duality, this is equivalent to yi(w�xi + b) ≥ 1 + ‖Σ1/2
i w‖2 − ξi, and hence
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their version of robust SVM reduces to

min
w,b,ξ

: r(w, b) + C
m∑

i=1

ξi

s.t. yi(w�xi + b) ≥ 1− ξi + ‖Σ1/2
i w‖2; , i = 1, . . . ,m; (1.3)

ξi ≥ 0; i = 1, . . . ,m.

In Trafalis and Gilbert (2007), r(w, b) = 1
2‖w‖2, while in Bhattacharyya

et al. (2004), the authors use the sparsity-inducing regularizer r(w, b) =
‖w‖1. In both settings, the robust problem is an instance of a second order
cone program (SOCP). Available solvers can solve SOCPs with hundreds of
thousands of variables and more.

If the uncertainty ui is stochastic, one can use this robust formulation
to find a classifier that satisfies constraints on the probability (w.r.t. the
distribution of ui) that each constraint is violated. In (Shivaswamy et al.,
2006), the authors consider two varieties of such chance constraints for
i = 1, . . . ,m:

(a) Prui∼N(0̃,Σi)

(
yi(w�(xi + ui) + b) ≥ 1− ξi

) ≥ 1− κi; (1.4)

(b) inf
ui∼(0̃,Σi)

Prui

(
yi(w�(xi + ui) + b) ≥ 1− ξi

) ≥ 1− κi;

Constraint (a) controls the probability of constraint violation, when the
uncertainty follows a known Gaussian distribution. Constraint (b) is more
conservative: it controls the worst-case probability of constraint violation,
over all centered distributions with variance Σi. The next theorem says that
the robust formulation with ellipsoidal uncertainty set as above, can be used
to control both of these quantities.

Theorem 1.1. For i = 1, . . . ,m, consider the robust constraint as given
above:

yi(w�xi + b) ≥ 1− ξi + γi‖Σ1/2w‖2.
If we take γi = Φ−1(κi), for Φ the Gaussian c.d.f., this constraint is
equivalent to constraint (a) of (1.4), while taking γi =

√
κi/(1− κi) yields

constraint (b).

Missing Data. In Globerson and Roweis (2006) the authors use robust
optimization with polyhedral uncertainty set to address the problem where
some of the features of the testing samples may be deleted (possibly in an
adversarial fashion). Using a dummy feature to remove the bias term b if
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necessary, we can rewrite the nominal problem as

min
w

:
1
2
‖w‖22 + C

m∑
i=1

[1− yiw�xi]+.

For a given choice of w, the value of the term [1−yiw�xi]+ in the objective,
under an adversarial deletion of K features becomes

max
αi

[1− yiw�(xi ◦ (1−αi))]+

s.t: αij ∈ {0, 1}; j = 1, . . . , n;
n∑

j=1

αij = K.

where ◦ denotes pointwise vector multiplication. While this optimization
problem is combinatorial, relaxing the integer constraint αij ∈ {0, 1} to be
0 ≤ αij ≤ 1, does not change the objective value. Thus taking the dual of
the maximization, and substituting into the original problem, one obtains
the classifier that is maximally resistant to up to K missing features:

min
w,vi,zi,ti,ξ

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. yiw�xi − ti ≥ 1− ξi; i = 1, . . . ,m;

ξi ≥ 0; i = 1, . . . ,m;

ti ≥ Kzi +
n∑

j=1

vij ; i = 1, . . . ,m;

vi ≥ 0; i = 1, . . . ,m;

zi + vij ≥ yixijwij ; i = 1, . . . ,m; j = 1, . . . n.

This is again an SOCP, and hence fairly large instances can be solved with
specialized software.
Corrupted Labels. When the labels are corrupted, the problem becomes
more difficult to address due to its combinatorial nature. However, this
too has been recently addressed using robust optimization (Caramanis and
Mannor, 2008). While there is still a combinatorial price to pay in the
complexity of the classifier class, robust optimization can be used to find
the optimal classifier; see Caramanis and Mannor (2008) for the details.
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1.4 Robust Optimization and Regularization

In this section and the subsequent two, we demonstrate that robustness can
provide a unified explanation for many desirable properties of a learning
algorithm, from regularity and sparsity, to consistency and generalization.
A main message of this chapter is that many regularized problems exhibit a
“hidden robustness” — they are in fact equivalent to a robust optimization
problem — which can then be used to directly prove properties like consis-
tency and sparsity, and also to design new algorithms. The main problems
that highlight this equivalence are regularized support vector machines, �2-
regularized regression, and �1-regularized regression, also known as Lasso.

1.4.1 Support Vector Machines

We consider regularized SVMs, and show that they are algebraically equiva-
lent to a robust optimization problem. We use this equivalence to provide a
probabilistic interpretation of SVMs, which allows us to propose new prob-
abilistic SVM-type formulations. This section is based on Xu et al. (2009).

At a high-level it is known that regularization and robust optimization
are related; see, e.g., (El Ghaoui and Lebret, 1997; Anthony and Bartlett,
1999), and Section 1.3. Yet, the precise connection between robustness
and regularized SVMs only first appeared in Xu et al. (2009). One of the
mottos of robust optimization is to harness the consequences of probability
theory, without paying the computational cost of having to use its axioms.
Consider the additive uncertainty model from the previous section: xi + ui.
If the uncertainties ui are stochastic, various limit results (LLN, CLT,
etc.) promise that even independent variables will exhibit strong aggregate
coupling behavior. For instance, the set {(u1, . . . ,um) :

∑m
i=1 ‖ui‖ ≤ c} will

have increasing probability as m grows. This motivates designing uncertainty
sets with this kind of coupling across uncertainty parameters. We leave it to
the reader to check that the constraint-wise robustness formulations of the
previous section cannot be made to capture such coupling constraints across
the disturbances {ui}.

We rewrite SVM without slack variables, as an unconstrained optimiza-
tion. The natural robust formulation now becomes:

min
w,b

max
�u∈U
{r(w, b) +

m∑
i=1

max
[
1− yi(〈w,xi − ui〉+ b), 0

]}, (1.5)

where �u denotes the collection of uncertainty vectors, {ui}. Describing
our coupled uncertainty set requires a few definitions. The first definition



10 Robust Optimization in Machine Learning

below characterizes the effect of different uncertainty sets, and captures
the coupling that they exhibit. As an immediate consequence we obtain
an equivalent robust optimization formulation for regularized SVMs.

Definition 1.2. A set U0 ⊆ R
n is called an Atomic Uncertainty Set if

(I) 0 ∈ U0;

(II) For any w0 ∈ R
n : sup

u∈U0

[w�
0 u] = sup

u′∈U0

[−w�
0 u′] < +∞.

Definition 1.3. Let U0 be an atomic uncertainty set. A set U ⊆ R
n×m is

called a Sublinear Aggregated Uncertainty Set of U0, if

U− ⊆ U ⊆ U+,

where: U− �
m⋃

t=1

U−
t ; U−

t � {(u1, . . . ,um)|ut ∈ U0; ui�=t = 0}.

U+ � {(α1u1, . . . , αmum)|
m∑

i=1

αi = 1; αi ≥ 0, ui ∈ U0, i = 1, . . . ,m}.

Sublinear aggregated uncertainty models the case where the disturbances
on each sample are treated identically, but their aggregate behavior across
multiple samples is controlled. Some interesting examples include

(1) U = {(u1, . . . ,um)|
m∑

i=1

‖ui‖ ≤ c};

(2) U = {(u1, . . . ,um)|∃t ∈ [1 : m]; ‖ut‖ ≤ c; ui = 0,∀i �= t}; and

(3) U = {(u1, . . . ,um)|
m∑

i=1

√
c‖ui‖ ≤ c}.

All these examples share the same atomic uncertainty set U0 =
{
u
∣∣ ‖u‖ ≤

c
}
. Figure 1.1 provides an illustration of a sublinear aggregated uncertainty

set for n = 1 and m = 2, i.e., the training set consists of two univariate
samples.

Theorem 1.4. Assume {xi, yi}mi=1 are non-separable, r(·, ·) : R
n+1 → R

is an arbitrary function, U is a sublinear aggregated uncertainty set with
corresponding atomic uncertainty set U0. Then the min-max problem

min
w,b

sup
(u1,...,um)∈U

{
r(w, b) +

m∑
i=1

max
[
1− yi(〈w,xi − ui〉+ b), 0

]}
(1.6)
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a. U− b. U+ c. U d. Box uncertainty

Figure 1.1: Illustration of a sublinear aggregated uncertainty set U, and
the contrast with the box uncertainty set.

is equivalent to the following optimization problem on w, b, ξ:

min
w,b,ξ

: r(w, b) + sup
u∈U0

(w�u) +
m∑

i=1

ξi,

s.t. : ξi ≥ 1− [yi(〈w, xi〉+ b)], i = 1, . . . ,m;

ξi ≥ 0, i = 1, . . . ,m.

(1.7)

The minimization of Problem (1.7) is attainable when r(·, ·) is lower semi-
continuous.

Proof. We give only the proof idea. The details can be found in Xu et al.
(2009). Define

v(w, b) � sup
u∈U0

(w�u) +
m∑

i=1

max
[
1− yi(〈w,xi〉+ b), 0

]
.

In the first step, we show

v(ŵ, b̂) ≤ sup
(u1,...,um)∈U−

m∑
i=1

max
[
1− yi(〈ŵ,xi − ui〉+ b̂), 0

]
. (1.8)

This follows because the samples are non-separable. In the second step, we
prove the reverse inequality:

sup
(u1,...,um)∈U+

m∑
i=1

max
[
1− yi(〈ŵ,xi − ui〉+ b̂), 0

] ≤ v(ŵ, b̂). (1.9)

This holds regardless of separability. Combining the two, adding the regu-
larizer, and then infimizing both sides concludes the proof.

An immediate corollary is that a special case of our robust formulation is
equivalent to the norm-regularized SVM setup:
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Corollary 1.5. Let T �
{

(u1, . . . um)|∑m
i=1 ‖ui‖∗ ≤ c

}
, where ‖ · ‖∗

stands for the dual norm of ‖ · ‖. If the training samples {xi, yi}mi=1 are
non-separable, then the following two optimization problems on (w, b) are
equivalent.

min
w,b

: max
(u1,...,um)∈T

m∑
i=1

max
[
1− yi

(〈w, xi − ui〉+ b
)
, 0
]
, (1.10)

min
w,b

: c‖w‖ +
m∑

i=1

max
[
1− yi

(〈w, xi〉+ b
)
, 0
]
. (1.11)

Proof. Let U0 be the dual-norm ball {u|‖u‖∗ ≤ c} and r(w, b) ≡ 0. Then
sup‖u‖∗≤c(w�u) = c‖w‖. The corollary follows from Theorem 1.4. Notice
that the equivalence holds for any w and b.

This corollary explains the common belief that regularized classifiers
tend to be more robust. Specifically, it explains the observation that when
the disturbance is noise-like and neutral rather than adversarial, a norm-
regularized classifier (without explicit robustness) has a performance often
superior to a box-type robust classifier (see Trafalis and Gilbert, 2007). One
take-away message is that while robust optimization is in its formulation
adversarial, it can be quite flexible, and can be designed to yield solutions,
such as the regularized solution above, that are appropriate for a non-
adversarial setting.

One interesting research direction is to use this equivalence to find good
regularizers without the need for cross validation. This could be done by
mapping a measure of the variation in the training data to an appropriate
uncertainty set, and then using the above equivalence to map back to a
regularizer.

1.4.1.1 Kernelization

The previous results can be easily generalized to the kernelized setting. The
kernelized SVM formulation considers a linear classifier in the feature space
H, a Hilbert space containing the range of some feature mapping Φ(·). The
standard formulation is as follows,

min
w,b,ξ

: r(w, b) +
m∑

i=1

ξi

s.t. : ξi ≥
[
1− yi(〈w,Φ(xi)〉+ b)], i = 1, . . . ,m;

ξi ≥ 0, i = 1, . . . ,m;
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where we use the representer theorem (see Schölkopf and Smola (2002)).
The definitions of an atomic uncertainty set and a sublinear aggregated

uncertainty set in the feature space are identical to Definitions 1.2 and 1.3,
with R

n replaced by H. The following theorem is a feature-space counterpart
of Theorem 1.4, and the proof follows from a similar argument.

Theorem 1.6. Assume {Φ(xi), yi}mi=1 are not linearly separable, r(·) :
H × R → R is an arbitrary function, U ⊆ Hm is a sublinear aggregated
uncertainty set with corresponding atomic uncertainty set U0 ⊆ H. Then
the following min-max problem

min
w,b

sup
(u1,...,um)∈U

{
r(w, b) +

m∑
i=1

max
[
1− yi(〈w,Φ(xi)− ui〉+ b), 0

]}

is equivalent to

min
w,b,ξ

: r(w, b) + sup
u∈U0

(〈w, u〉) +
m∑

i=1

ξi,

s.t. : ξi ≥ 1− yi

(〈w, Φ(xi)〉+ b
)
, i = 1, . . . ,m; (1.12)

ξi ≥ 0, i = 1, . . . ,m.

The minimization of Problem (1.12) is attainable when r(·, ·) is lower semi-
continuous.

For some widely used feature mappings (e.g., RKHS of a Gaussian kernel),
{Φ(xi), yi}mi=1 are always separable. In this case, the equivalence reduces to
a bound.

The next corollary is the feature-space counterpart of Corollary 1.5, where
‖ · ‖H stands for the RKHS norm, i.e., for z ∈ H, ‖z‖H =

√〈z, z〉.
Corollary 1.7. Let TH �

{
(u1, . . . um)|∑m

i=1 ‖ui‖H ≤ c
}
. If {Φ(xi), yi}mi=1

are non-separable, then the following two optimization problems on (w, b) are
equivalent

min
w,b

: max
(u1,...,um)∈TH

m∑
i=1

max
[
1− yi

(〈w, Φ(xi)− ui〉+ b
)
, 0
]
,

min
w,b

: c‖w‖H +
m∑

i=1

max
[
1− yi

(〈w, Φ(xi)〉+ b
)
, 0
]
. (1.13)

Equation (1.13) is a variant form of the standard SVM that has a squared
RKHS norm regularization term, and by convexity arguments the two for-
mulations are equivalent up to a change of tradeoff parameter c. Therefore,
Corollary 1.7 essentially means that the standard kernelized SVM is im-
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plicitly a robust classifier (without regularization) with disturbance in the
feature-space, and the sum of the magnitude of the disturbance is bounded.

Disturbance in the feature-space is less intuitive than disturbance in the
sample space, and the next lemma relates these two different notions.

Lemma 1.8. Suppose there exists X ⊆ R
n, ρ > 0, and a continuous non-

decreasing function f : R
+ → R

+ satisfying f(0) = 0, such that

k(x,x) + k(x′,x′)− 2k(x,x′) ≤ f(‖x− x′‖22), ∀x,x′ ∈ X, ‖x − x′‖2 ≤ ρ.

Then,

‖Φ(x̂ + u)− Φ(x̂)‖H ≤
√

f(‖u‖22), ∀‖u‖2 ≤ ρ, x̂, x̂ + δ ∈ X.

Lemma 1.8 essentially says that under certain conditions, robustness in
the feature space is a stronger requirement than robustness in the sample
space. Therefore, a classifier that achieves robustness in the feature space
also achieves robustness in the sample space. Notice that the condition of
Lemma 1.8 is rather weak. In particular, it holds for any continuous k(·, ·)
and bounded domain X.

1.4.1.2 Probabilistic Interpretations

As discussed and demonstrated above, robust optimization can often be used
for probabilistic analysis. In this section, we show that robust optimization
and the equivalence theorem can be used to construct a classifier with
probabilistic margin protection, i.e., a classifier with probabilistic constraints
on the chance of violation beyond a given threshold. Second, we show that
in the Bayesian setup, if one has a prior only on the total magnitude of the
disturbance vector, robust optimization can be used to tune the regularizer.

Probabilistic Protection. We can use Problem (1.6) to obtain an
upper bound for a chance-constrained classifier. Suppose the disturbance
is stochastic with known distribution. We denote the disturbance vector by
(ur

1, . . . u
r
m) to emphasize that it is now a random variable. The chance-

constrained classifier minimizes the hinge loss that occurs with probability
above some given confidence level η ∈ [0, 1]. The classifier is given by the
optimization problem:

min
w,b,l

: l (1.14)

s.t. : P

{ m∑
i=1

max
[
1− yi(〈w, xi − ur

i 〉+ b), 0
] ≤ l

}
≥ 1− η.
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The constraint controls the η-quantile of the average (or equivalently the
sum of) empirical error. In Shivaswamy et al. (2006), Lanckriet et al. (2003)
and Bhattacharyya et al. (2004), the authors explore a different direction,
and starting from the constraint formulation of SVM as in (1.2), they
impose probabilistic constraints on each random variable individually. This
formulation requires all constraints to be satisfied with high probability
simultaneously. Thus, instead of controlling the η-quantile of the average
loss, they control the η-quantile of the hinge-loss for each sample. For
the same reason that box uncertainty in the robust setting may be too
conservative, this constraint-wise formulation may also be too conservative.

Problem (1.14) is generally intractable. However, we can approximate it
as follows. Let

ĉ � inf {α |P(
m∑

i=1

‖ui‖∗ ≤ α) ≥ 1− η}.

Notice that ĉ is easily simulated given µ. Then for any (w, b), with proba-
bility no less than 1− η, the following holds,

m∑
i=1

max
[
1− yi(〈w, xi − ur

i 〉+ b), 0
]

≤ maxP
i ‖ui‖∗≤ĉ

m∑
i=1

max
[
1− yi(〈w, xi − ui〉+ b), 0

]
.

Thus (1.14) is upper bounded by (1.11) with c = ĉ. This gives an additional
probabilistic robustness property of the standard regularized classifier. We
observe that we can follow a similar approach using the constraint-wise
robust setup, i.e., the box uncertainty set. The interested reader can check
that this would lead to considerably more pessimistic approximations of the
chance constraint.

A Bayesian Regularizer. Next, we show how the above can be used in a
Bayesian setup, to obtain an appropriate regularization coefficient. Suppose
the total disturbance cr �

∑m
i=1 ‖ur

i ‖∗ is a random variable, and follows a
prior distribution ρ(·). This can model for example the case that the training
sample set is a mixture of several data sets where the disturbance magnitude
of each set is known. Such a setup leads to the following classifier which
minimizes the Bayesian (robust) error:

min
w,b

:
∫ {

maxP ‖δi‖∗≤c

m∑
i=1

max
[
1− yi

(〈w, xi − ui〉+ b
)
, 0
]}

dρ(c). (1.15)
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By Corollary 1.5, the Bayesian classifier (1.15) is equivalent to

min
w,b

:
∫ {

c‖w‖+
m∑

i=1

max
[
1− yi

(〈w, xi〉+ b
)
, 0
]}

dρ(c),

which can be further simplified as

min
w,b

: c‖w‖+
m∑

i=1

max
[
1− yi

(〈w, xi〉+ b
)
, 0
]
,

where c �
∫

c dρ(c). This provides a justifiable parameter tuning method
different from cross validation: simply using the expected value of cr.

1.4.2 Tikhonov regularized �2 regression

We now move from classification and SVMs, to regression, and show that
�2-regularized regression, like SVM, is equivalent to a robust optimization
problem. This equivalence is then used to define new regularization-like
algorithms, and also to prove properties of the regularized solution.

Given input output pairs xi, yi forming the rows of X and the elements of
vector y, respectively, the goal is to find a predictor β that minimizes the
squared loss ‖y−Xβ‖22. As is well-known, this problem is often notoriously
ill-conditioned, and may not have a unique solution. The classical, and much-
explored remedy has been, as in the SVM case, regularization. Regularizing
with an �2-norm, known in statistics as ridge regression (Hoerl, 1962), and
in analysis as Tikhonov regularization (Tikhonov and Arsenin, 1977), solves
the problem1

min
β

: ‖y −Xβ‖2 + λ‖β‖2. (1.16)

The main result of this section states that Tikhonov regularized regression
is the solution to a robust optimization, where X is subject to matrix-
disturbance U with a bounded Frobenius norm.

Theorem 1.9. The following robust optimization formulation

min
β

: max
U :‖U‖F≤λ

‖y − (X + U)β‖2,

is equivalent to Tikhonov-regularized regression (1.16).

Proof. For any perturbation U , we have ‖y−(X+U)β‖2 = ‖y−Xβ−Uβ‖2.

1. This problem is equivalent to one where we square the norm, up to a change in the
regularization coefficient, λ.
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By the triangle inequality and because ‖U‖F ≤ λ, we thus have ‖y − (X +
U)β‖2 ≤ ‖y − Xβ‖ + λ‖β‖2. On the other hand, for any given β, we can
choose a rank one U so that Uβ is aligned with (y−Xβ), and thus equality
is attained.

This connection was first explored in the seminal work of El Ghaoui and
Lebret (1997). There, they further show that the solution to the robust coun-
terpart is almost as easily determined as that to the nominal problem: one
need only perform a line search, in the case where the SVD of A is available.
Thus, the computational cost of the robust regression is comparable to the
original formulation.

As with SVMs, the “hidden robustness” has several consequences. By
changing the uncertainty set, robust optimization allows for a rich class of
regularization-like algorithms. Motivated by problems from robust control,
El Ghaoui and Lebret (1997) then consider perturbations that have struc-
ture, leading to structured robust least squares problems. They then analyze
tractability and approximations to these structured least squares.2 Finally,
they use the robustness equivalence to prove regularity properties of the so-
lution. We refer to El Ghaoui and Lebret (1997) for further details about
structured robustness, tractability, and regularity.

1.4.3 Lasso

In this section, we consider a similar problem: �1-regularized regression, also
known as Lasso (Tibshirani, 1996). Lasso has been explored extensively for
its remarkable sparsity properties (e.g., Tibshirani, 1996; Bickel et al., 2009;
Wainwright, 2009) most recently under the banner of compressed sensing
(e.g., Chen et al., 1999; Candès et al., 2006; Candès and Tao, 2006; Candès
and Tao, 2007; Candès and Tao, 2008; Donoho, 2006, for an incomplete list).
Following the theme of this section, we show that the solution to Lasso is the
solution to a robust optimization problem. As with Tikhonov regularization,
robustness provides a connection of the regularizer to a physical property,
namely, protection from noise. This allows a principled selection of the
regularizer. Moreover, by considering different uncertainty sets, we obtain
generalizations of Lasso. Next, we go on to show that robustness can itself
be used as an avenue for exploring different properties of the solution. In
particular, we show that robustness explains why the solution is sparse – that

2. Note that arbitrary uncertainty sets may lead to intractable problems. This is because
the inner maximization in the robust formulation is of a convex function, and hence is
nonconvex.
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is, Lasso is sparse because it is robust. The analysis as well as the specific
results obtained differ from standard sparsity results, providing different
geometric intuition. This section is based on results reported in Xu et al.
(2010a), where full proofs to all stated results can be found.

Lasso, or �1-regularized regression, has a similar form to ridge regression,
differing only in the regularizer: 3

min : ‖y −Xβ‖2 + λ‖β‖1.
For a general uncertainty set U, using the same notation as in the previous
section, the robust regression formulation becomes

min
β∈Rm

max
U∈U
‖y − (X + U)β‖2, (1.17)

In the previous section, the uncertainty set was U = {U : ‖U‖F ≤ λ}. We
consider a different uncertainty set here. Writing

U =



| | · · · |

u1 u2 · · · um

| | · · · |


 , where (u1, . . . ,um) ∈ U,

let the uncertainty set U have the form:

U �
{
(u1, · · · ,um)

∣∣∣‖ui‖2 ≤ ci, i = 1, · · · ,m
}

. (1.18)

This is a feature-wise uncoupled uncertainty set: the uncertainty in different
features need not satisfy any joint constraints. In contrast, the constraint
‖U‖F ≤ 1 used in the previous section is feature-wise coupled. We revisit
coupled uncertainty sets below.

Theorem 1.10. The robust regression problem (1.17) with uncertainty set
of the form (1.18) is equivalent to the following �1 regularized regression
problem:

min
β∈Rm

{
‖y −Xβ‖2 +

m∑
i=1

ci|βi|
}

. (1.19)

Proof. Fix β∗. We prove that maxU∈U‖y − (X + U)β∗‖2 = ‖y −Xβ∗‖2 +∑m
i=1 ci|β∗

i |.

3. Again we remark that with a change of regularization parameter, this is equivalent to
the more common form appearing with a square outside the norm.
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The inequality

max
U∈U
‖y − (X + U)β∗‖2 ≤ ‖y −Xβ∗‖2 +

m∑
i=1

|β∗
i |ci,

follows from the triangle inequality, as in our proof in the previous section.
The other inequality follows, if we take

u �
{

y−Xβ∗

‖y−Xβ∗‖2
if Xβ∗ �= y,

any vector with unit �2 norm otherwise;

and let

u∗
i �

{
−cisgn(β∗

i )u if x∗
i �= 0;

−ciu otherwise.

Taking ci = c and normalizing xi for all i, Problem (1.19) recovers the
well-known Lasso (Tibshirani, 1996; Efron et al., 2004).

1.4.3.1 General Uncertainty Sets

Using this equivalence, we generalize to Lasso-like regularization algorithms
in two ways: (a) to the case of arbitrary norm; and (b) to the case of coupled
uncertainty sets.

Theorem 1.11. For ‖ · ‖a an arbitrary norm in the Euclidean space, the
robust regression problem

min
β∈Rm

{
max
U∈Ua

‖y − (X + U)β‖a
}

;

where

Ua �
{
(u1, · · · ,um)

∣∣∣‖ui‖a ≤ ci, i = 1, · · · ,m
}

;

is equivalent to the following regularized regression problem

min
β∈Rm

{
‖y −Xβ‖a +

m∑
i=1

ci|βi|
}

.

We next consider feature-wise coupled uncertainty sets. This can be used
to incorporate additional information about potential noise in the problem,
when available, to limit the conservativeness of the worst-case formulation.
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Consider the following uncertainty set:

U′ �
{
(u1, · · · ,um)

∣∣ fj(‖u1‖a, · · · , ‖um‖a) ≤ 0; j = 1, · · · , k} ,

where each fj(·) is a convex function. The resulting robust formulation is
equivalent to a more general regularization-type problem, and moreover, it
is tractable.

Theorem 1.12. Let U′ be as above, and assume that the set

Z � {z ∈ R
m|fj(z) ≤ 0, j = 1, · · · , k; z ≥ 0},

has non-empty relative interior. Then the robust regression problem

min
β∈Rm

{
max
U∈U′

‖y − (X + U)β‖a
}

,

is equivalent to the following regularized regression problem

min
λ∈R

k
+,κ∈R

m
+ ,β∈Rm

{
‖y −Xβ‖a + v(λ,κ,β)

}
; (1.20)

where: v(λ,κ,β) � max
c∈Rm

[
(κ + |β|)�c−

k∑
j=1

λjfj(c)
]
,

and in particular, is efficiently solvable.

The next two corollaries are a direct application of Theorem 1.12.

Corollary 1.13. Suppose

U′ =
{
(δ1, · · · , δm)

∣∣∣∥∥‖δ1‖a, · · · , ‖δm‖a
∥∥

s
≤ l
}

,

for arbitrary norms ‖ · ‖a and ‖ · ‖s. Then the robust problem is equivalent
to the regularized regression problem

min
β∈Rm

{
‖y −Xβ‖a + l‖β‖∗s

}
;

where ‖ · ‖∗s is the dual norm of ‖ · ‖s.
This corollary interprets arbitrary norm-based regularizers from a robust

regression perspective. For example, taking both ‖ · ‖α and ‖ · ‖s to be the
Euclidean norm, then U′ is the set of matrices with bounded Frobenius norm,
and Corollary 1.13 recovers Theorem 1.9.

The next corollary considers general polytope uncertainty sets, where the
column-wise norm vector of the realizable uncertainty belongs to a polytope.
To illustrate the flexibility and potential use of such an uncertainty set:
taking ‖ · ‖a to be the �1 norm and the polytope to be the standard simplex,
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the resulting uncertainty set consists of matrices with bounded ‖ · ‖2,1-
norm. This is the �1-norm of the �2-norm of the columns, and has numerous
applications, including, e.g., outlier removal (Xu et al., 2010c).

Corollary 1.14. Suppose

U′ =
{

(u1, · · · ,um)
∣∣∣Tc ≤ s; where: cj = ‖uj‖a

}
,

for a given matrix T , vector s, and arbitrary norm ‖ · ‖a. Then the robust
regression is equivalent to the following regularized regression problem with
variables β and λ:

min
β,λ

: ‖y −Xβ‖a + s�λ

s.t. β ≤ T�λ;

−β ≤ T�λ;

λ ≥ 0.

1.4.3.2 Sparsity

In this section, we investigate the sparsity properties of robust regression,
and show in particular, that Lasso is sparse because it is robust. This new
connection between robustness and sparsity suggests that robustifying with
respect to a feature-wise independent uncertainty set might be a plausible
way to achieve sparsity for other problems.

We show that if there is any perturbation in the uncertainty set that makes
some feature irrelevant, i.e., not contributing to the regression error, then
the optimal robust solution puts no weight there. Thus if the features in an
index set I ⊂ {1, . . . , n} can be perturbed to be made irrelevant, then the
solution will be supported on the complement, Ic.

To state the main theorem of this section, we introduce some notation.
Given an index subset I ⊆ {1, . . . , n}, and a matrix U , let U I denote the
restriction of U to feature set I, i.e., U I equals U on each feature indexed
by i ∈ I, and is zero elsewhere. Similarly, given a feature-wise uncoupled
uncertainty set U, let UI be the restriction of U to the feature set I, i.e.,
UI � {U I |U ∈ U}. Any element U ∈ U can be written as U I + U Ic

(here
Ic � {1, . . . , n} \ I) with U I ∈ UI and U Ic ∈ UIc

.

Theorem 1.15. The robust regression problem

min
β∈Rm

{
max
∆A∈U

‖y − (X + U)β‖2
}

, (1.21)

has a solution supported on an index set I if there exists some perturbation
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Ũ ∈ UIc

, such that the robust regression problem

min
β∈Rm

{
max
U∈UI

‖y − (X + Ũ + U)β‖2
}

, (1.22)

has a solution supported on the set I.

Theorem 1.15 is a special case of the following theorem with cj = 0 for all
j �∈ I.
Theorem 1.15’: Let β∗ be an optimal solution of the robust regression
problem:

min
β∈Rm

{
max
U∈U
‖y − (X + U)β‖2

}
, (1.23)

and let I ⊆ {1, · · · ,m} be such that β∗
j = 0 ∀ j �∈ I. Let

Ũ �
{
(u1, · · · ,um)

∣∣∣‖ui‖2 ≤ ci, i ∈ I; ‖uj‖2 ≤ cj + lj , j �∈ I
}

.

Then, β∗ is an optimal solution of

min
β∈Rm

{
max
U∈Ũ
‖y − (X̃ + U)β‖2

}
, (1.24)

for any X̃ that satisfies ‖x̃j − xj‖ ≤ lj for j �∈ I, and x̃i = xi for i ∈ I.
In fact, we can replace the �2 norm loss by any loss function f(·) which

satisfies the condition that if βj = 0, X and X ′ only differ in the jth column,
then f(y,X,β) = f(y,X ′,β). This theorem thus suggests a methodology
for constructing sparse algorithms by solving a robust optimization with
respect to column-wise uncoupled uncertainty sets.

When we consider �2 loss, we can translate the condition of a feature being
“irrelevant” to a geometric condition: orthogonality. We now use the result
of Theorem 1.15 to show that robust regression has a sparse solution as long
as an incoherence-type property is satisfied. This result is more in line with
the traditional sparsity results, but we note that the geometric reasoning
is different, now based on robustness. Specifically: we show that a feature
receives zero weight, if it is “nearly” (i.e., within an allowable perturbation)
orthogonal to the signal, and all relevant features.

Theorem 1.16. Let ci = c for all i and consider �2 loss. Suppose that there
exists I ⊂ {1, · · · ,m} such that for all v ∈ span

({xi, i ∈ I}⋃{y}), ‖v‖ = 1,
we have v�xj ≤ c, ∀j �∈ I. Then there exists an optimal solution β∗ that
satisfies β∗

j = 0, ∀j �∈ I.

The proof proceeds as the previous theorem would suggest: the columns
in Ic can be perturbed to be made irrelevant, and thus the optimal solution
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will not be supported there; see Xu et al. (2010a) for details..

1.5 Robustness and Consistency

In this section we explore a fundamental connection between learning and
robustness, by using robustness properties to re-prove the consistency of ker-
nelized SVM, and then of Lasso. The key difference from the proofs here and
those seen elsewhere (e.g., Steinwart, 2005; Steinwart and Christmann, 2008;
Wainwright, 2009), is that we replace the metric entropy, VC-dimension,
and stability conditions typically used, with a robustness condition. Thus
we conclude that SVM and Lasso are consistent because they are robust.

1.5.1 Consistency of SVM

Let X ⊆ R
n be bounded, and suppose the training samples (xi, yi)∞i=1

are generated according to an unknown i.i.d. distribution P supported on
X× {−1, +1}. The next theorem shows that our robust classifier and thus
regularized SVM, asymptotically minimizes an upper-bound of the expected
classification error and hinge loss, as the number of samples increases.

Theorem 1.17. Let K � maxx∈X‖x‖2. Then there exists a random se-
quence {γm,c} such that:

1. The following bounds on the Bayes loss and the hinge loss hold uniformly
for all (w, b):

E(x,y)∼P(1y �=sgn(〈w, x〉+b)) ≤ γm,c + c‖w‖2 +
1
m

m∑
i=1

max
[
1− yi(〈w, xi〉+ b), 0

]
;

E(x,y)∼P

(
max(1− y(〈w, x〉+ b), 0)

) ≤
γm,c(1 + K‖w‖2 + |b|) + c‖w‖2 +

1
m

m∑
i=1

max
[
1− yi(〈w, xi〉+ b), 0

]
.

2. For every c > 0, limm→∞ γm,c = 0 almost surely, and the convergence is
uniform in P;

Proof. We outline the basic idea of the proof here, and refer to Xu et al.
(2009) for the technical details. We consider the testing sample set as a
perturbed copy of the training sample set, and measure the magnitude
of the perturbation. For testing samples that have “small” perturbations,
Corollary 1.5 guarantees that c‖w‖2 + 1

m

∑m
i=1 max

[
1 − yi(〈w, xi〉 + b), 0

]
upper-bounds their total loss. Therefore, we only need to show that the
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fraction of testing samples having “large” perturbations diminishes to prove
the theorem. We show this using a balls and bins argument. Partitioning
X × {−1,+1}, we match testing and training samples that fall in the
same partition. We then use the Bretagnolle-Huber-Carol inequality for
multinomial distributions to conclude that the fraction of unmatched points
diminishes to zero.

Based on Theorem 1.17, it can be further shown that the expected
classification error of the solutions of SVM converges to the Bayes risk,
i.e., SVM is consistent.

1.5.2 Consistency of Lasso

In this section, we reprove the asymptotic consistency of Lasso using ro-
bustness. The basic idea of the consistency proof is as follows. We show
that the robust optimization formulation can be seen to have the maximum
expected error w.r.t. a class of probability measures. This class includes a
kernel density estimator, and using this, we show that Lasso is consistent.

1.5.2.1 Robust Optimization and Kernel Density Estimation

En route to proving consistency of Lasso based on robust optimization, we
discuss another result of independent interest. We link robust optimization
to worst case expected utility, i.e., the worst-case expectation over a set
of measures. For the proofs, and more along this direction, we refer to Xu
et al. (2010b,a). Throughout this section, we use P to represent the set of
all probability measures (on Borel σ-algebra) of R

m+1.
We first establish a general result on the equivalence between a robust

optimization formulation and a worst-case expected utility:

Proposition 1.18. Given a function f : R
m+1 → R and Borel sets

Z1, · · · ,Zn ⊆ R
m+1, let

Pn � {µ ∈ P|∀S ⊆ {1, · · · , n} : µ(
⋃
i∈S

Zi) ≥ |S|/n}.

The following holds:

1
n

n∑
i=1

sup
(xi,yi)∈Zi

f(xi, yi) = sup
µ∈Pn

∫
Rm+1

f(x, y)dµ(x, y).

This leads to the following corollary for Lasso, which states that for a
given solution β, the robust regression loss over the training data is equal
to the worst-case expected generalization error.



1.5 Robustness and Consistency 25

Corollary 1.19. Given y ∈ R
n, X ∈ R

n×m, the following equation holds
for any β ∈ R

m,

‖y−Xβ‖2+
√

ncn(‖β‖1+1) = sup
µ∈P̂(n)

√
n

∫
Rm+1

(y′−x′�β)2dµ(x′, y′). (1.25)

Where we let xij and uij be the (i, j)-entry of X and U , respectively, and

P̂(n) �
⋃

‖σ‖2≤√
ncn; ∀i:‖ui‖2≤√

ncn

Pn(X,U,y,σ);

Pn(X,U,y,σ) � {µ ∈ P|Zi = [yi − σi, yi + σi]×
m∏

j=1

[xij − uij , xij + uij];

∀S ⊆ {1, · · · , n} : µ(
⋃
i∈S

Zi) ≥ |S|/n}.

The proof of consistency relies on showing that this set P̂(n) of distribu-
tions contains a kernel density estimator. Recall the basic definition: The
kernel density estimator for a density h in R

d, originally proposed in Rosen-
blatt (1956) and Parzen (1962), is defined by

hn(x) = (ncd
n)−1

n∑
i=1

K

(
x− x̂i

cn

)
,

where {cn} is a sequence of positive numbers, x̂i are i.i.d. samples generated
according to h, and K is a Borel measurable function (kernel) satisfying
K ≥ 0,

∫
K = 1. See Devroye and Györfi (1985); Scott (1992) and references

therein for detailed discussions. A celebrated property of a kernel density
estimator is that it converges in L1 to h when cn ↓ 0 and ncd

n ↑ ∞ (Devroye
and Györfi, 1985).

1.5.2.2 Density Estimation and Consistency of Lasso

We now use robustness of Lasso to prove its consistency. Throughout, we
use cn to represent the robustness level c where there are n samples. We
take cn to zero as n grows.

Recall the standard generative model in statistical learning: let P be a
probability measure with bounded support that generates i.i.d. samples
(yi,xi), and has a density f∗(·). Denote the set of the first n samples by
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Sn. Define

β(cn,Sn) � arg min
β

{√√√√ 1
n

n∑
i=1

(yi − x�
i β)2 + cn‖β‖1

}

= arg min
β

{√n

n

√√√√ n∑
i=1

(yi − x�
i β)2 + cn‖β‖1

}
;

β(P) � arg min
β

{√∫
y,x

(y − x�β)2dP(y,x)
}
.

In words, β(cn,Sn) is the solution to Lasso with the tradeoff parameter
set to cn

√
n, and β(P) is the “true” optimal solution. We establish that

β(cn,Sn)→ β(P) using robustness.

Theorem 1.20. Let {cn} be such that cn ↓ 0 and limn→∞ n(cn)m+1 = ∞.
Suppose there exists a constant H such that ‖β(cn,Sn)‖2 ≤ H for all n.
Then,

lim
n→∞

√∫
y,x

(y − x�β(cn,Sn))2dP(y,x) =

√∫
y,x

(y − x�β(P))2dP(y,x),

almost surely.

We give an outline of the proof, and refer to Xu et al. (2010a) for the
details. In Section 1.4.3 we showed that Lasso is a special case of robust
optimization. Then in Section 1.5.2.1, we proved that robust optimization
is equivalent to a worst-case expectation. The proof follows by showing that
the sets Pn in the worst-case expectation equivalent to Lasso, contain a
kernel density estimator. Since these sets shrink, consistency follows.

The assumption that ‖x(cn,Sn)‖2 ≤ H can be removed. As in Theo-
rem 1.20, the proof technique rather than the result itself is of interest. We
refer the interested reader to Xu et al. (2010a).

1.6 Robustness and Generalization

We have already seen that regularized regression and regularized SVMs
are a special case of robust optimization, and hence exhibit robustness
to perturbed data. This robustness was used above to show that ridge
regression has a Lipschitz solution, that Lasso is sparse, and SVM and Lasso
are consistent. In this section, we show that robustness can be used to control
the estimation of the risk (i.e., generalization error) of learning algorithms.
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The results we describe are based on Xu and Mannor (2010b).
Several approaches have been proposed to bound the deviation of the risk

from its empirical measurement, among which methods based on uniform
convergence and stability are most widely used (e.g., Vapnik and Chervo-
nenkis, 1991; Evgeniou et al., 2000; Alon et al., 1997; Bartlett, 1998; Bartlett
and Mendelson, 2002; Bartlett et al., 2005; Bousquet and Elisseeff, 2002;
Poggio et al., 2004; Mukherjee et al., 2006, and many others). We provide a
new, robustness-driven approach to proving generalization bounds.

Whereas in the past sections, “robustness” was defined directly in terms
of robust optimization, we abstract this definition here. Because we consider
abstract algorithms in this section, we introduce some necessary notations,
different from previous sections. We use Z and H to denote the set from
which each sample is drawn, and the hypothesis set, respectively. Through-
out this section we use s ∈ Zm to denote the training sample set consisting
of m training samples (s1, · · · , sm). A learning algorithm A is thus a map-
ping from Zm to H. We use As to represent the hypothesis learned, given
training set s. For each hypothesis h ∈ H and point z ∈ Z, there is an
associated loss l(h, z), which is non-negative and upper-bounded uniformly
by a scalar M . In the special case of supervised learning, the sample space
can be decomposed as Z = Y× X, and the goal is to learn a mapping from
X to Y, i.e., to predict the y-component given x-component. We hence use
As(x) to represent the predicted y-component (label) of x ∈ X when A is
trained on s. We call X the input space and Y the output space. We use |x
and |y to denote the x-component and y-component of a point. For exam-
ple, si|x is the x-component of si. Finally, we use N(ε, T, ρ) to denote the
ε-covering number of a space T equipped with a metric ρ (see van der Vaart
and Wellner, 2000, for a precise definition.).

The following definition says that an algorithm is called robust, if we can
partition the sample set into finite subsets, such that if a new sample falls
into the same subset as a training sample, then the loss of the former is close
to the loss of the latter.

Definition 1.21. Algorithm A is (K, ε(s)) robust if Z can be partitioned
into K disjoint sets, denoted by {Ci}Ki=1, such that ∀s ∈ s,

s, z ∈ Ci, =⇒ |l(As, s)− l(As, z)| ≤ ε(s). (1.26)

1.6.1 Generalization Properties of Robust Algorithms

In this section we use the above definition to derive PAC bounds for robust
algorithms. Let the sample set s consist of m i.i.d. samples generated by an
unknown distribution µ. Let l̂(·) and lemp(·) denote the expected error and
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the training error, respectively, i.e.,

l̂(As) � Ez∼µl(As, z); lemp(As) � 1
m

∑
si∈s

l(As, si).

Theorem 1.22. If s consists of m i.i.d. samples, the loss function l(·, ·) is
upper bounded by M , and A is (K, ε(s))-robust, then for any δ > 0, with
probability at least 1− δ,

∣∣∣l̂(As)− lemp(As)
∣∣∣ ≤ ε(s) + M

√
2K ln 2 + 2 ln(1/δ)

m
.

Proof. The proof follows by partitioning the set and using inequalities for
multinomial random variables, á la the Bretagnolle-Huber-Carol inequality.

Theorem 1.22 requires that we fix a K a priori. However, it is often worth-
while to consider adaptive K. For example, in the large-margin classification
case, typically the margin is known only after s is realized. That is, the value
of K depends on s. Because of this dependency, we need a generalization
bound that holds uniformly for all K.

Corollary 1.23. If s consists of m i.i.d. samples, and A is (K, εK(s)) robust
for all K ≥ 1, then for any δ > 0, with probability at least 1− δ,

∣∣∣l̂(As)− lemp(As)
∣∣∣ ≤ inf

K≥1


εK(s) + M

√
2K ln 2 + 2 ln K(K+1)

δ

m


 .

If ε(s) does not depend on s, we can sharpen the bound given in Corol-
lary 1.23.

Corollary 1.24. If s consists of m i.i.d. samples, and A is (K, εK) robust
for all K ≥ 1, then for any δ > 0, with probability at least 1− δ,

∣∣∣l̂(As)− lemp(As)
∣∣∣ ≤ inf

K≥1


εK + M

√
2K ln 2 + 2 ln 1

δ

m


 .

1.6.2 Examples of Robust Algorithms

In this section we provide some examples of robust algorithms. For the proofs
of the examples, we refer to Xu and Mannor (2010b) and Xu and Mannor
(2010a). Our first example is Majority Voting (MV) classification (e.g.,
Section 6.3 of Devroye et al., 1996) that partitions the input space X and
labels each partition set according to a majority vote of the training samples
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belonging to it.

Example 1.25 (Majority Voting). Let Y = {−1,+1}. Partition X to
C1, · · · ,CK , and use C(x) to denote the set to which x belongs. A new sample
xa ∈ X is labeled by

As(xa) �
{

1, if
∑

si∈C(xa) 1(si|y = 1) ≥∑si∈C(xa) 1(si|y = −1);

−1, otherwise.

If the loss function is the prediction error l(As, z) = 1z|y �=As(z|x), then MV
is (2K, 0) robust.

The MV algorithm has a natural partition of the sample space that
makes it robust. Another class of robust algorithms is those that have
approximately the same testing loss for testing samples that are close (in the
sense of geometric distance) to each other, since we can partition the sample
space with norm balls, as in the standard definition of covering numbers (van
der Vaart and Wellner, 2000). The next theorem states that an algorithm
is robust if two samples being close implies that they have similar testing
error. Thus, in particular, this means that robustness is weaker than uniform
stability (Bousquet and Elisseeff, 2002).

Theorem 1.26. Fix γ > 0 and metric ρ of Z. Suppose A satisfies

|l(As, z1)− l(As, z2)| ≤ ε(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,

and N(γ/2,Z, ρ) <∞. Then A is
(
N(γ/2,Z, ρ), ε(s)

)
-robust.

Theorem 1.26 leads to the next example: if the testing error given the
output of an algorithm is Lipschitz continuous, then the algorithm is robust.

Example 1.27 (Lipschitz continuous functions). If Z is compact w.r.t.
metric ρ, and l(As, ·) is Lipschitz continuous with Lipschitz constant c(s),
i.e.,

|l(As, z1)− l(As, z2)| ≤ c(s)ρ(z1, z2), ∀z1, z2 ∈ Z,

then A is
(
N(γ/2,Z, ρ), c(s)γ

)
-robust for all γ > 0.

Theorem 1.26 also implies that SVM, Lasso, feed-forward neural network
and PCA are robust, as stated in Example 1.28 to Example 1.31.

Example 1.28 (Support Vector Machines). Let X be compact. Consider the
standard SVM formulation (Cortes and Vapnik, 1995; Schölkopf and Smola,
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2002), as discussed in Sections 1.3 and 1.4.

min
w,d

c‖w‖2H +
m∑

i=1

ξi

s.t. 1− si|y[〈w, φ(si|x)〉+ d] ≤ ξi, i = 1, · · · ,m;

ξi ≥ 0, i = 1, · · · ,m.

Here φ(·) is a feature mapping, ‖ · ‖H is its RKHS kernel, and k(·, ·) is
the kernel function. Let l(·, ·) be the hinge-loss, i.e., l

(
(w, d), z

)
= [1 −

z|y(〈w,φ(z|x)〉 + d)]+, and define fH(γ) � maxa,b∈X,‖a−b‖2≤γ

(
k(a,a) +

k(b,b) − 2k(a,b)
)
. If k(·, ·) is continuous, then for any γ > 0, fH(γ) is

finite, and SVM is (2N(γ/2,X, ‖ · ‖2),
√

fH(γ)/c) robust.

Example 1.29 (Lasso). Let Z be compact and the loss function be l(As, z) =
|z|y − As(z|x)|. Lasso (Tibshirani, 1996), which is the following regression
formulation:

min
w

:
1
m

m∑
i=1

(si|y −w�si|x)2 + c‖w‖1,

is
(
N(γ/2,Z, ‖ · ‖∞), (Y (s)/c + 1)γ

)
-robust for all γ > 0, where Y (s) �

1
n

∑n
i=1 si|y2 .

Example 1.30 (Feed-forward Neural Networks). Let Z be compact and the
loss function be l(As, z) = |z|y−As(z|x)|. Consider the d-layer neural network
(trained on s), which is the following predicting rule given an input x ∈ X

x0 := z|x

∀v = 1, · · · , d− 1 : xv
i := σ(

Nv−1∑
j=1

wv−1
ij xv−1

j ); i = 1, · · · , Nv ;

As(x) := σ(
Nd−1∑
j=1

wd−1
j xd−1

j );

If there exists α and β such that the d-layer neural network satisfying
that |σ(a) − σ(b)| ≤ β|a − b|, and

∑Nv

j=1 |wv
ij | ≤ α for all v, i, then it is(

N(γ/2,Z, ‖ · ‖∞), αdβdγ
)
-robust, for all γ > 0.

We remark that in Example 1.30, the number of hidden units in each
layer has no effect on the robustness of the algorithm and consequently
the bound on the testing error. This indeed agrees with Bartlett (1998),
where the author showed (using a different approach based on fat-shattering
dimension) that for neural networks, the weight plays a more important role
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than the number of hidden units.
The next example considers an unsupervised learning algorithm, namely

the principal component analysis algorithm. We show that it is robust if the
sample space is bounded. This does not contradict the well known fact that
the principal component analysis is sensitive to outliers which are far away
from the origin.

Example 1.31 (Principal Component Analysis (PCA)). Let Z ⊂ R
m be

such that maxz∈Z ‖z‖2 ≤ B. If the loss function is l((w1, · · · , wd), z) =∑d
k=1(w

�
k z)2, then finding the first d principal components, which solves the

following optimization problem over d vectors w1, · · · , wd ∈ R
m,

max
w1,··· ,wk

m∑
i=1

d∑
k=1

(w�
k si)2

s.t. ‖wk‖2 = 1, k = 1, · · · , d;

w�
i wj = 0, i �= j.

is (N(γ/2,Z, ‖ · ‖2), 2dγB)-robust.

1.7 Conclusion

The purpose of this chapter has been to hint at the wealth of applications and
uses of robust optimization in machine learning. Broadly speaking, there are
two main methodological frameworks developed here: robust optimization
used as a way to make an optimization-based machine learning algorithm
robust to noise; and robust optimization as itself a fundamental tool for
analyzing properties of machine learning algorithms, and for constructing
algorithms with special properties. The properties we have discussed here
include sparsity, consistency and generalization. There are many directions
of interest future work can pursue. We highlight two that we consider of
particular interest and promise. The first is learning in the high dimensional
setting, where the dimensionality of the models (or parameter space) is of the
same order of magnitude as the number of training samples available. Hidden
structure, like sparsity or low-rank, have offered ways around the challenges
of this regime. Robustness and robust optimization may offer clues as to how
to develop new tools and new algorithms for this setting. A second direction
of interest is the design of uncertainty sets for robust optimization, from
data. Constructing uncertainty sets from data is a central problem in robust
optimization, that has not been adequately addressed, and machine learning
methodology may be able to provide a way forward.
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