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Abstract

We consider two new formulations for classification problems in the spirit of support
vector machines based on robust optimization. Our formulations are designed to build in
protection to noise and control overfitting, but without being overly conservative. Our first
formulation allows the noise between different samples to be correlated. We show that the
standard norm-regularized support vector machine classifier is a solution to a special case of
our first formulation, thus providing an explicit link between regularization and robustness
in pattern classification. Our second formulation is based on a softer version of robust
optimization called comprehensive robustness. We show that this formulation is equivalent
to regularization by any arbitrary convex regularizer, thus extending our first equivalence
result. Moreover, we explain how the connection of comprehensive robustness to convex
risk-measures can be used to design risk-measure constrained classifiers with robustness
to the input distribution. Our formulations result in convex optimization problems that
can be easily solved. Finally, we provide some empirical results that show the promise of
comprehensive robust classifiers.
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1. Introduction

Support Vector Machines (SVMs for short), originated in Boser et al. (1992) and can be
traced back to as early as Vapnik and Lerner (1963) and Vapnik and Chervonenkis (1974).
They continue to be one of the most successful algorithms for classification. SVMs address
the classification problem by finding the hyperplane (in the feature space) that achieves
maximum sample margin when the training samples are separable. When the samples are
not separable, a penalty term that approximates the total training-error is added to the
minimizing objective (Bennett and Mangasrian, 1992; Cortes and Vapnik, 1995). It is well
known that minimizing the training error itself can lead to poor classification performance
for new unlabeled data; that is, such an approach may have poor generalization error because
of, essentially, overfitting (Vapnik and Chervonenkis, 1991). A variety of modifications
have been proposed to combat this problem, one of the most popular methods being that
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of minimizing a combination of the training-error and a regularization term. The latter
is typically chosen as a norm of the classifier. The resulting regularized classifier performs
better on new data. This phenomenon is often interpreted from a statistical learning theory
view: the regularization term restricts the complexity of the classifier, hence the deviation
of the testing error and the training error is controlled (see Smola et al., 1998; Evgeniou
et al., 2000; Bartlett and Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al.,
2005, and references therein).

In this paper we follow a different approach, first proposed by Bhattacharyya et al.
(2004b). We assume that the training data are generated by the true underlying distribu-
tion, but some non-iid (potentially adversarial) disturbance is then added to the samples
we observe. We harness new developments in robust optimization (see Ghaoui and Lebret,
1997; Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004, and references therein), so-
called comprehensive robust optimization (Ben-Tal et al., 2006b), and risk theory (Fóllmer
and Schied, 2002; Ben-Tal et al., 2006a), to derive new robust SVM classifiers. The use of ro-
bust optimization in classification is not new (e.g., Shivaswamy et al., 2006; Bhattacharyya
et al., 2004b; Lanckriet et al., 2002). Robust classification models studied in past work have
considered only box-type uncertainty sets, which allow the possibility that the data have
all been skewed in some non-neutral manner by a correlated disturbance. This has made
it difficult to obtain non-conservative generalization bounds. Moreover, there has not been
an explicit connection to the regularized classifier, although at a high-level it is known that
regularization and robust optimization are related (e.g., Ghaoui and Lebret, 1997). The
main contribution in this paper is the development of two new robust SVM classifiers that
mitigate conservatism, provide an explicit connection to regularization (and as a byproduct
PAC-style generalization error bounds), and provide the structure for efficiently computable
classifiers satisfying risk measure constraints. In particular, our contributions include the
following:

• Our first robust SVM formulation permits finer control of the adversarial disturbance,
restricting it to satisfy aggregate constraints across data points, therefore reducing the
possibility of highly correlated disturbance. This allows us to obtain bounds on the
generalization error of the robust classifiers, as we show that as a special case of
our robust formulation, we recover norm-based regularizers. In particular, we show
that the norm-regularized SVM classifier is equivalent to a robust SVM classifier. We
comment on this further below in this section.

• We next show that this new robust formulation is useful beyond complexity estimates
and the precise connection to regularization: we use it to obtain considerably less
conservative chance constraints, and we also use it to reprove consistency of SVM for
classification.

• The second of our robust SVM formulations uses comprehensive robustness to con-
struct “soft robust” classifiers whose performance is given different guarantees, based
on the level of disturbance affecting the training data. This is in contrast to robust
optimization, which provides the same guarantees uniformly inside the uncertainty
set, and no guarantees outside. We show that this richer class of robustness is exactly
equivalent to a much broader class of regularizers, including, e.g., KL divergence based
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SVM regularizers, thus extending the scope of the previous equivalence. Moreover,
we give favorable computational complexity results for these comprehensive robust
classifiers.

• We next show the connection to risk theory, at the same time extending past work
on chance constraints, and also opening the door for constructing classifiers with
different risk-based guarantees. Although the connection seems natural, to the best
of our knowledge this is the first attempt to view classification from a risk-hedging
perspective.

In the final section, we illustrate the performance of our new classifiers through simulation.
In particular we show that the comprehensive robust classifier, which can be viewed as
a generalization of the standard SVM and the robust SVM, provides superior empirical
results.

Robustness and Regularization

We comment here on our first result mentioned above, namely, the explicit equivalence of
robustification and regularization. We briefly explain how this observation is different from
previous work and why it is interesting. Indeed, certain equivalence relationships between
robustification and regularization have been established for problems outside the machine
learning field (Ghaoui and Lebret, 1997; Ben-Tal and Nemirovski, 1999), but their results
do not directly apply to the classification problem. Indeed, research work on classifier regu-
larization mainly discussed its effect on bounding the complexity of the function class (e.g.,
Smola et al., 1998; Evgeniou et al., 2000; Bartlett and Mendelson, 2002; Koltchinskii and
Panchenko, 2002; Bartlett et al., 2005). Meanwhile, research work on robust classification
has not attempted to relate robustness and regularization (e.g., Lanckriet et al., 2002; Bhat-
tacharyya et al., 2004a,b; Shivaswamy et al., 2006; Trafalis and Gilbert, 2007; Globerson
and Roweis, 2006), in part due to the robustness formulations used in those papers. (In
fact, they all considered robustified versions of regularized classifications.)

The connection of robustification and regularization in the SVM context is important
for the following reasons. First, it gives an alternative and potentially powerful explanation
for the generalization ability of the regularization term. In the classical literature, the
regularization term bounds the complexity of the class of classifiers. In our robust view of
regularization, we regard the testing samples as a perturbed copy of the training samples.
We then show that when the total perturbation is given or bounded, the regularization
term bounds the gap between the classification errors of the SVM on these two sets of
samples. In contrast to the PAC approach, this bound depends neither on how rich the
class of candidate classifiers is, nor on an assumption that all samples are picked in an
i.i.d. manner. In addition, this suggests novel approaches to designing good classification
algorithms, in particular, designing the regularization term. In the PAC structural-risk
minimization approach, regularization is chosen to minimize a bound on the generalization
error based on the training error and a complexity term. This complexity term typically
leads to overemphasizing the regularizer, and indeed this approach is known to often be
too pessimistic (Kearns et al., 1997). The robust approach offers another avenue. Since
both noise and robustness are physical processes, a close investigation of the application
and noise characteristics at hand, can provide insights into how to properly robustify, and
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therefore choose a regularization for the classifier. For example, it is widely known that
normalizing the samples so that the variance among all features are roughly the same often
leads to good generalization performance. From the robustness perspective, this simply
says that the noise is skewed (ellipsoidal) rather than spherical, and hence an appropriate
robustification must be designed to fit the skew of the physical noise process.

We also show that using the robust optimization viewpoint, we obtain some probabilistic
results outside of the PAC setup. In Section 2.2 and Section 3.4 we bound the probability
that a noisy training sample is correctly labeled. These bounds are different from the
PAC bounds in that they consider the behavior of the corrupted samples. This is helpful
when the training samples and the testing samples are drawn from different distributions,
or some adversary manipulates the samples to prevent them from being correctly labeled.
Finally, this connection of robustification and regularization also provides us with new proof
techniques as well (see Section 2.3 for example).

Structure of the Paper: This paper is organized as follows. In Section 2 we investigate
the correlated disturbance case, and show the equivalence between the robust classification
and the regularization process. We also develop the connection to chance constraints. In
Section 3 we investigate the comprehensive robust classification framework. We relate
comprehensive robust classification with convex risk theory in Section 4. The kernelized
version of comprehensive robust classification is given in Section 5. We provide numerical
simulation results comparing robust classification and comprehensive robust classification
in Section 6. Some concluding remarks are given in Section 7.

Notation: Capital letters are used to denote matrices, and boldface letters are used
to denote column vectors. For a given norm ‖ · ‖, we use ‖ · ‖∗ to denote its dual norm.
Similarly, for a function f(·) defined on a set H, f∗(·) denotes its conjugate function, i.e.,
f∗(y) = supx∈H{y>x − f(x)}. For a vector x and a positive semi-definite matrix C of
the same dimension, ‖x‖C denotes

√
x>Cx. We use δ to denote disturbance affecting the

samples. We use superscript r to denote the true value for an uncertain variable, so that
δr

i is the true (but unknown) noise of the ith sample. The set of non-negative scalars is
denoted by R+. The set of integers from 1 to n is denoted by [1 : n].

2. Robust Classification and Regularization

The main contributions of this section are: (i) we formulate and solve a new robust clas-
sification problem which, unlike previous formulations, is able to limit or constrain the
adversary to using a correlated disturbance; (ii) using this model, we show that the stan-
dard regularized classifier is a special case of our robust classification, thus explicitly relating
robustness and regularization. This provides an alternative explanation for the success of
regularization, and also suggests new physically-motivated ways to construct regularizers;
(iii) we formulate a chance-constrained classifier which can be approximated by the robust
formulation for correlated disturbance, and as a result is far less conservative than what
previous models could provide; (iv) finally, we show that the robustness perspective can
be useful in its own right, by using it to prove a consistency result for regularized SVM
classification.

4



Robustness, Risk & Regularization in SVMs

2.1 Robust Classification for Correlated Disturbance

We consider the standard 2-class classification setup, where we are given a finite number
of training samples {xi, yi}m

i=1 ⊆ Rn × {−1, +1}, and must find a linear classifier, specified
by the function hw,b(x) = sgn(〈w, x〉 + b). For the standard regularized classifier, the
parameters (w, b) are obtained by solving the following convex optimization problem:

min
w,b

: r(w, b) +
m∑

i=1

ξi

s.t. : ξi ≥
[
1− yi(〈w,xi〉+ b)]

ξi ≥ 0,

where r(w, b) is a regularization term. The standard robust optimization techniques ro-
bustify at a constraint-wise level, allowing the disturbances ~δ = (δ1, . . . , δm) to lie in some
uncertainty set N :

min
w,b

: r(w, b) +
m∑

i=1

ξi (1)

s.t. : ξi ≥
[
1− yi(〈w,xi − δi〉+ b)], ~δ ∈ N ,

ξi ≥ 0.

It is well-known (e.g., Ben-Tal et al., 2003) that due to the constraint-wise uncertainty
formulation, the uncertainty set is effectively rectangular; that is, if Ni denotes the projec-
tion of N onto the δi component, then replacing N by the potentially larger product set
Nbox = N1×· · ·×Nm yields an equivalent formulation. Effectively, this allows simultaneous
worst-case disturbances across many constraints, and this is exactly what leads to overly
conservative formulations. The goal of this paper is to obtain a robust formulation where
the disturbances {δi} may be meaningfully taken to be correlated, so that the problem is
no longer equivalent to the box case. In order to side-step this problem, we robustify an
equivalent SVM formulation:

min
w,b

{
r(w, b) +

m∑

i=1

max
[
1− yi(〈w,xi〉+ b), 0

]
}

,

and we thus obtain:

min
w,b

max
~δ∈N

{
r(w, b) +

m∑

i=1

max
[
1− yi(〈w,xi − δi〉+ b), 0

]
}

. (2)

Note that the problem (1) above is equivalent to:

min
w,b

max
~δ∈Nbox

{
r(w, b) +

m∑

i=1

max
[
1− yi(〈wxi − δi〉+ b), 0

]
}

. (3)

We define explicitly the correlated disturbance (or uncertainty) set to be investigated.
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Definition 1 1. A set N0 ⊆ Rn is called an Atomic Uncertainty Set if

(I) 0 ∈ N0;

(II) sup
δ∈N0

[
w>δ

]
= sup

δ′∈N0

[−w>δ′
]

< ∞, ∀w ∈ Rn.

2. Let N0 be an atomic uncertainty set. A set N ⊆ Rn×m is called a Concave Correlated
Uncertainty Set of N0, if

(I) {(δ1, · · · , δm)|δt ∈ N0; δi 6=t = 0} ⊆ N , ∀ t;

(II) N ⊆ {(α1δ1, · · · , αmδm)|
m∑

i=1

αi = 1; αi ≥ 0, δi ∈ N0, ∀ i}.

3. Conversely, given a set N we define the corresponding atomic uncertainty set: For
N ⊆ Rn×m an uncertainty set, its atomic uncertainty set N0 ⊆ Rn is the smallest set
such that

N ⊆ {(α1δ1, · · · , αmδm)|
m∑

i=1

αi = 1; αi ≥ 0, δi ∈ N0, ∀ i},

i.e., it is contained in the largest Concave Correlated Uncertainty set of N0. The
significance of this final definition becomes apparent in the theorem below.

The concave correlated uncertainty definition models the case where the disturbances on
each sample are treated identically, but their aggregate behavior across multiple samples is
controlled. Some interesting examples include

(1) {(δ1, · · · , δm)|
m∑

i=1

‖δi‖ ≤ c};

(2) {(δ1, · · · , δm)|∃t ∈ [1 : m]; ‖δt‖ ≤ c, δi6=t = 0};

(3) {(δ1, · · · , δm)|
m∑

i=1

√
c‖δi‖ ≤ c}.

Theorem 2 Assume {xi, yi}m
i=1 are non-separable, r(·) : Rn+1 → R is an arbitrary func-

tion, N is a concave correlated uncertainty set with corresponding atomic uncertainty set
N0. Then the following min-max problem

inf
w,b

sup
(δ1,··· ,δm)∈N

{
r(w, b) +

m∑

i=1

max
[
1− yi(〈w,xi − δi〉+ b), 0

]
}

(4)

is equivalent to

min : r(w, b) + sup
δ∈N0

(w>δ) +
m∑

i=1

ξi,

s.t. : ξi ≥ 1− [yi(〈w, xi〉+ b)], i = 1, · · · , m;
ξi ≥ 0, i = 1, · · · ,m.

(5)

Furthermore, the minimization of Problem (5) is attainable when r(·, ·) is lower semi-
continuous.
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Proof We first make the following definitions:

N− ,
m⋃

t=1

N−
t ; where: N−

t , {(δ1, · · · , δm)|δt ∈ N0; δi6=t = 0}.

N+ , {(α1δ1, · · · , αmδm)|
m∑

i=1

αi = 1; αi ≥ 0, δi ∈ N0, i = 1, · · · ,m};

v(w, b) , sup
δ∈N0

(w>δ) +
m∑

i=1

max
[
1− yi(〈w,xi〉+ b), 0

]
.

Recall that N− ⊆ N ⊆ N+ by definition. Hence, fixing any (ŵ, b̂) ∈ Rn+1, the following
inequalities hold:

sup
(δ1,··· ,δm)∈N−

m∑

i=1

max
[
1− yi(〈ŵ,xi − δi〉+ b̂), 0

]

≤ sup
(δ1,··· ,δm)∈N

m∑

i=1

max
[
1− yi(〈ŵ,xi − δi〉+ b̂), 0

]

≤ sup
(δ1,··· ,δm)∈N+

m∑

i=1

max
[
1− yi(〈ŵ,xi − δi〉+ b̂), 0

]
.

To prove the theorem, we first show that v(ŵ, b̂) is no larger than the leftmost expression
and then show v(ŵ, b̂) is no smaller than the rightmost expression.
Step 1: First we prove

v(ŵ, b̂) ≤ sup
(δ1,··· ,δm)∈N−

m∑

i=1

max
[
1− yi(〈ŵ,xi − δi〉+ b̂), 0

]
. (6)

Since the samples {xi, yi}m
i=1 are not separable, there exists t ∈ [1 : m] such that

yt(〈ŵ,xt〉+ b̂) < 0. (7)

Hence,

sup
(δ1,··· ,δm)∈N−

t

m∑

i=1

max
[
1− yi(〈ŵ,xi − δi〉+ b̂), 0

]

=
∑

i6=t

max
[
1− yi(〈ŵ,xi〉+ b̂), 0

]
+ sup

δt∈N0

max
[
1− yt(〈ŵ,xt − δt〉+ b̂), 0

]

=
∑

i6=t

max
[
1− yi(〈ŵ,xi〉+ b̂), 0

]
+ max

[
1− yt(〈ŵ,xt〉+ b̂) + sup

δt∈N0

(ytŵ>δt), 0
]

=
∑

i6=t

max
[
1− yi(〈ŵ,xi〉+ b̂), 0

]
+ max

[
1− yt(〈ŵ,xt〉+ b̂), 0

]
+ sup

δt∈N0

(ytŵ>δt)

= sup
δ∈N0

(ŵ>δ) +
m∑

i=1

max
[
1− yi(〈ŵ,xi〉+ b̂), 0

]

= v(ŵ, b̂).
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The third equality holds because of Inequality (7) and supδt∈N0
(ytŵ>δt) being non-negative

(recall 0 ∈ N0). Since N−
t ⊆ N−, Inequality (6) follows.

Step 2: Next we prove

sup
(δ1,··· ,δm)∈N+

m∑

i=1

max
[
1− yi(〈ŵ,xi − δi〉+ b̂), 0

] ≤ v(ŵ, b̂). (8)

Notice that by the definition of N+ we have

sup
(δ1,··· ,δm)∈N+

m∑

i=1

max
[
1− yi(〈ŵ,xi − δi〉+ b̂), 0

]

= supPm
i=1 αi=1; αi≥0; δ̂i∈N0

m∑

i=1

max
[
1− yi(〈ŵ,xi − αiδ̂i〉+ b̂), 0

]

= supPm
i=1 αi=1; αi≥0;

m∑

i=1

max
[

sup
δ̂i∈N0

(
1− yi(〈ŵ,xi − αiδ̂i〉+ b̂)

)
, 0

]
.

(9)

Now, for any i ∈ [1 : m], the following holds,

max
[

sup
δ̂i∈N0

(
1− yi(〈ŵ, xi − αiδ̂i〉+ b̂)

)
, 0

]

= max
[
1− yi(〈ŵ,xi〉+ b̂) + αi sup

δ̂i∈N0

(ŵ>δ̂i), 0
]

≤max
[
1− yi(〈ŵ,xi〉+ b̂), 0

]
+ αi sup

δ̂i∈N0

(ŵ>δ̂i).

Therefore, Equation (9) is upper bounded by

m∑

i=1

max
[
1− yi(〈ŵ,xi〉+ b̂), 0

]
+ supPm

i=1 αi=1; αi≥0;

m∑

i=1

αi sup
δ̂i∈N0

(ŵ>δ̂i)

= sup
δ∈N0

(ŵ>δ) +
m∑

i=1

max
[
1− yi(〈ŵ,xi〉+ b̂), 0

]

= v(ŵ, b̂),

hence Inequality (8) holds.
Combining the two steps and adding r(w, b) on both side leads to: ∀(w, b) ∈ Rn+1,

sup
(δ1,··· ,δm)∈N̂

m∑

i=1

max
[
1− yi(〈w,xi − δi〉+ b), 0

]
+ r(w, b) = v(w, b) + r(w,b).

Taking the infimum on both sides establishes the equivalence of Problem (4) and Prob-
lem (5). Observe that supδ∈N0

w>δ is a supremum over a class of affine functions, and
hence is lower semi-continuous. Therefore v(·, ·) is also lower semi-continuous. Thus the
minimum can be achieved for Problem (5), and Problem (4) by equivalence, when r(·) is
lower semi-continuous.
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This theorem reveals the main difference in conservatism between the constraint-wise un-
certainty in (1) and our formulation in (2). Consider both formulations with the same
uncertainty set, N = {(δ1, · · · , δm)|∑m

i=1 ‖δi‖ ≤ c}. The corresponding atomic set of N is
N0 = {‖δ‖ ≤ c}, but the atomic set for Nbox is mN0 since Nbox = N0 × · · · × N0 includes
disturbances with a magnitude as large as mc. Therefore the latter (recall (3)) is equiva-
lent to a regularization coefficient of the form mλ, that is linked to the number of training
samples, and will therefore be overly conservative.

An immediate corollary is that a special case of our robust formulation is exactly equiv-
alent to the norm-regularized SVM setup:

Corollary 3 Let Tk ,
{

(δ1, · · · δm)|∑m
i=1 ‖δi‖ ≤ c; #{i|δi = 0} ≥ m− k

}
, 1 for k ∈ [1 :

m] and c > 0. If the training sample {xi, yi}m
i=1 are non-separable, then the following two

optimization problems on (w, b) are equivalent

min : max
(δ1,··· ,δm)∈Tk

m∑

i=1

max
[
1− yi

(〈w, xi − δi〉+ b
)
, 0

]
, (10)

min : c‖w‖∗ +
m∑

i=1

max
[
1− yi

(〈w, xi〉+ b
)
, 0

]
. (11)

Proof Let N0 be the norm-ball and r(w, b) ≡ 0. Then sup‖δ‖≤c(w>δ) = c‖w‖∗. The
corollary follows from Theorem 2.

This corollary explains the widely known fact that the regularized classifier tends to be more
robust. Specifically, it explains the observation that when the disturbance is noise-like and
neutral rather than adversarial, a norm-regularized classifier (without any robustness re-
quirement) has a performance often superior to the constraint-wise robust classifier (see
Trafalis and Gilbert, 2007, and Section 6 of this paper). On the other hand, this observa-
tion also suggests that the appropriate way to regularize should come from a disturbance-
robustness perspective. The above equivalence implies that standard regularization essen-
tially assumes that the disturbance is spherical; if this is not true, robustness may yield a
better regularization-like algorithm. To find a more effective regularization term, a closer
investigation of the data variation is desirable, e.g., by examining the variation of the data
and solving the corresponding robust classification problem. For example, one way to reg-
ularize is by splitting the given training samples into two subsets with equal number of
elements, and treating one as a disturbed copy of the other. By analyzing the direction of
the disturbance and the magnitude of the total variation, one can choose the proper norm
to use, and a suitable tradeoff parameter.

2.2 Probabilistic Interpretation

Although Problem (4) is formulated without any probabilistic assumptions, it can be used
to approximate an upper bound for a chance-constrained classifier. Suppose the disturbance

1. Tk is the uncertainty set capturing the setting where no more than k samples can be disturbed, while
the magnitude of the total disturbance is bounded.

9
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(δr
1, · · · δr

m) follows a joint probability measure µ. Then the chance-constrained classifier is
given by the following minimization problem on (w, b, l) given a confidence level η ∈ [0, 1],

min : l

s.t. : µ
{∑m

i=1 max
[
1− yi(〈w, xi − δr

i 〉+ b), 0
] ≤ l

}
≥ 1− η.

(12)

The formulations in Shivaswamy et al. (2006); Lanckriet et al. (2002); Bhattacharyya et al.
(2004a) assume uncorrelated noise and require all constraints to be satisfied with high
probability simultaneously. They find a vector [ξ1, · · · , ξm]> such that each ξi bounds the
hinge-loss for sample xr

i with high probability. In contrast, our formulation above bounds
the average (or equivalently the sum of) empirical error. When controlling this average
quantity is of more interest, the uncorrelated-noise formulation will be overly conservative.

Problem (12) is generally non-tractable. However, we can approximate it as follows. Let

c∗ , inf{α|µ(
∑

i

‖δi‖ ≤ α) ≥ 1− η}. 2

Then for any (w, b), with probability no less than 1− η, the following holds,
m∑

i=1

max
[
1− yi(〈w, xi − δr

i 〉+ b), 0
]

≤ maxP
i ‖δi‖≤c∗

m∑

i=1

[
1− yi(〈w, xi − δi〉+ b), 0

]
.

Thus (12) is upper bounded by (11) with c = c∗. This gives an additional probabilistic
robustness property of the standard regularized classifier. Notice that following a similar
approach but with the constraint-wise robust setup, i.e., the box uncertainty set, would
lead to considerably more pessimistic approximations of the chance constraint.

2.3 Consistency of Regularization

In this subsection, we work out a simple example to illustrate how the robustness perspective
might help in a statistical learning setup, by establishing the consistency of the linear
classifier.

The following theorem is a well-known result in statistical machine learning (Steinwart,
2005). Here we reprove it using our robust classifier setup, by bounding the total variation
between the set of test samples and the set of training samples.

Theorem 4 Let P be the underlying generating probability with bounded support X ×
{−1, +1}, where X ⊆ Rn. Then for c > 0 there exists {γs} → 0 independent of (w, b)
such that

EP(1y 6=sgn(〈w,x〉+b)) ≤ γN + c‖w‖2 +
1
N

N∑

i=1

max
[
1− yi(〈w, xi〉+ b), 0

]
,

holds almost surely as N → +∞.

2. Given µ, c∗ is easily simulated, and for specific probability measures (e.g., independent Gaussian distur-
bance), it can be computed analytically.

10
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Proof For c > 0, a testing sample (x′, y′) and a training sample (x, y) are called a sample
pair if y = y′ and ‖x − x′‖2 ≤ c. We say a set of training samples and a set of testing
samples form l pairings if there exist l sample pairs with no data reused. Given n training
samples and n testing samples, we use Mn to denote the largest number of pairings. To
prove this theorem, we need to establish the following lemma.

Lemma 5 Given c > 0, Mn/n → 1 almost surely as n → +∞.

Proof We make a partition of X × {−1, +1} =
⋃T

i=1Xi such that Xi either has the form
[α1, α1 +c/

√
n)× [α2, α2 +c/

√
n) · · ·× [αn, αn +c/

√
n)×{+1} or [α1, α1 +c/

√
n)× [α2, α2 +

c/
√

n) · · · × [αn, αn + c/
√

n) × {−1}. That is, each partition is the cartesian product of a
rectangular cell in X and a singleton in {−1, +1}. Notice that if a training sample and a
testing sample fall into Xi, they can form a pairing.

Let Ptr
n and Pte

n be the empirical distribution of training samples and testing samples,
respectively. Now we calculate the number of unpaired samples n−Mn. This can be upper
bounded by

T∑

i=1

|#(training samples in Xi)−#(testing samples in Xi)| = n

T∑

i=1

|
∫

IXidP
tr
n −

∫
IXidP

te
n |.

Furthermore, letting F be the set of indicator functions IXi , then F is a P -Donsker class,
and hence a Glivenko-Cantelli class almost surely. We thus have

sup
f∈F

|
∫

fdPtr
n −

∫
fdPte

n | → 0,

almost surely when n → +∞. This leads to

T∑

i=1

|
∫

IXidP
tr
n −

∫
IXidP

te
n | → 0.

Therefore (n−Mn)/n → 0 almost surely.

Now we proceed to prove the theorem. Given n training samples and n testing samples
with Mn sample pairs, we notice that for these paired samples, the total testing error is
upper bounded by

max
(δ1,··· ,δn)∈TN

n∑

i=1

max
[
1− yi

(〈w, xi − δi〉+ b
)
, 0

]

=cn‖w‖2 +
n∑

i=1

max
[
1− yi(〈w, xi〉+ b), 0].

Hence the classification error of the total n testing samples can be upper bounded by

(n−Mn) + cn‖w‖2 +
n∑

i=1

max
[
1− yi(〈w, xi〉+ b), 0].

11
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Therefore, the average testing error is upper bounded by

1−Mn/n + c‖w‖2 +
1
n

n∑

i=1

max
[
1− yi(〈w, xi〉+ b), 0].

Notice that Mn/n → 1 almost surely.

3. Comprehensive Robust Classification

Robust optimization provides a solution with but one guarantee: feasibility and worst-case
performance control for any realization of the uncertainty within the bounded uncertainty
set. If the uncertainty realization turns out favorable (e.g., close to mean behavior), no
improved performance is guaranteed, while if the realization occurs outside the assumed
uncertainty set, all bets are off: the error is not controlled. This characteristic makes
it difficult to address noise with fat tails: if we take a small uncertainty set, we have no
protection guarantees for potentially high probability events; on the other hand, if we seek to
protect ourselves over large uncertainty sets, the robust setting may yield overly pessimistic
solutions. In this section we address exactly this problem, by designing a new classifier
with performance guarantees indexed to the level of noise. We use the softer notion of
“comprehensive robustness,” recently explored in the robust optimization literature (Ben-
Tal et al., 2006b).

This allows us to construct classifiers with improved empirical performance. In addi-
tion, we show that this new notion of robustness yields a broader range of regularization
schemes than robust optimization, including squared-norm, and Kullback-Leibler regular-
ization. Moreover, extending the chance constraint results of the previous section, we are
able to provide probability bounds for all magnitudes of constraint violations.

The key idea to comprehensive robustness is to discount lower-probability noise realiza-
tions, by reducing the loss incurred. If we denote the hinge loss of a sample under a certain
noise realization as ξi(δi) , max

[
1 − yi(〈w, xi − δi〉 + b), 0

]
, the robust classifier (2) can

be rewritten as:

min
w,b

max
(δ1,··· ,δm)∈N

{
r(w, b) +

m∑

i=1

ξi(δi)
}
.

Instead, we formulate the comprehensive robust classifier by introducing a discounted loss
function depending not only on the nominal hinge loss, but also on the noise realization
itself. Let hi(·, ·) : R × Rn → R satisfy 0 ≤ hi(α, β) ≤ hi(α,0) = α. We use h to denote
our discounted loss function: it discounts the loss depending on the realized data, yet is
always nonnegative, and provides no discount for samples with zero disturbance. Thus, the
comprehensive robust classifier is given by:

min
w,b

sup
(δ1,··· ,δm)∈N

{
r(w, b) +

m∑

i=1

hi

(
ξi(δi), δi

)}
. (13)

We primarily investigate additive discounts of the form hi(α, β) , max(0, α − fi(β)),
taking a brief detour in Section 3.5 to consider multiplicative discounts. Additive structure

12
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provides a rich class of discount functions, while remaining tractable. Moreover, additive
structure provides the link to risk theory and convex risk measures, which we consider in
Section 4.

We formulate the comprehensive robust classification with additive discount function in
Section 3.1 and establish an equivalence relationship between comprehensive robust classi-
fication and a broad class of regularization schemes in Section 3.2. In particular, we show
that the standard norm-regularized SVM has a comprehensive robust representation, and
so do many regularized SVMs with non-norm regularizers.

In Section 3.3 we investigate the tractability of comprehensive robust classification.
In Section 3.4 we discuss a special class of discounts, namely norm discounts, and derive
probability bounds for such discounts. Finally, in Section 3.5 we briefly investigate the
tractability of multiplicative discount functions with the form hi(α, β) , c(β)max(0, α).

3.1 Problem Formulation

We consider box uncertainty sets throughout, to facilitate some of the analysis and allow
focus on the effect of the discount function.3 Substituting hi(α, β) , max(0, α−fi(β)) into
Equation (13) and extending fi(·) to take the value +∞ for δi 6∈ Ni, we have the formulation
of the comprehensive robust classifier:

Comprehensive Robust Classifier:

min : r(w, b) +
m∑

i=1

ξi,

s.t. : yi(〈w, xi − δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Rn, i = 1, · · · ,m

ξi ≥ 0; i = 1, · · · ,m.

This fi(·) (extended real) function controls the disturbance discount, and therefore must
satisfy

inf
β∈Rn

fi(β) = fi(0) = 0. (14)

Notice that if we set fi(·) to be the indicator function of a set, we recover the standard
robust classifier. Thus the comprehensive robust classifier is a natural generalization of the
robust classifier with more flexibility on setting fi(·).

The fi(·) function also has a physical interpretation as controlling the margin of the
resulting classifier under all noise. That is, when ξi = 0, the resulting classifier guarantees
a margin 1/‖w‖ for the observed sample xi (the same as the standard classifier), together
with a guaranteed margin (1− fi(δi))/‖w‖ when the sample is perturbed by δi.

3.2 Comprehensive Robustness and Regularization

In this section we show that any convex regularization term in the constraint is equivalent
to a comprehensive robust formulation, and vice versa. Moreover, the standard regularized
SVM is equivalent to a (non-regularized) comprehensive robust classifier where fi(δi) =
α‖δi‖.
3. Nevertheless, we expect that combining the analysis of Section 2 will yield interesting results.
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Given a function f(·), let f∗ denote its Legendre-Fenchel transform or conjugate func-
tion, given by f∗(s) = supx{〈s, y〉 − f(x)} (Rockafellar, 1970). Then we have the following,
that shows that if f is a disturbance discount that satisfies (14), then so does its conjugate,
and vice versa. We use this below to establish the equivalence between convex regularization
and comprehensive robustness.

Lemma 6 (i) If f(·) satisfies (14), then so does f∗(·).
(ii) If g(·) is closed and convex, and g∗(·) satisfies (14), then so does g(·).

Proof

(i) By definition we have f∗(y) ≥ y>0 − f(0), ∀y ∈ Rn. Hence infy∈Rn f∗(y) ≥ 0,
since f(0) = 0. Furthermore, f∗(0) = supx∈Rn(0>x − f(x)) = − infx∈Rn f(x) = 0
completes the proof of the first part.

(ii) For g(·) closed and convex, g(·) = (g(·)∗)∗ (Rockafellar, 1970; Boyd and Vandenberghe,
2004). The second part follows from the first part by setting f(·) = g∗(·).

Theorem 7 The Comprehensive Robust Classifier (14) is equivalent to the following convex
program:

min :r(w, b) +
m∑

i=1

ξi,

s.t. :yi(〈w, xi〉+ b)− f∗i (yiw) ≥ 1− ξi, i = 1, · · · ,m,

ξi ≥ 0, i = 1, · · · ,m.

(15)

Proof Simple algebra yields

yi(〈w, xi − δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Rn

⇐⇒ yi(〈w, xi〉+ b)− yiw>δi + fi(δi) ≥ 1− ξi, ∀δi ∈ Rn

⇐⇒ yi(〈w, xi〉+ b)− sup
δi∈Rn

[
yiw>δi − fi(δi)

] ≥ 1− ξi

⇐⇒ yi(〈w, xi〉+ b)− f∗i (yiw) ≥ 1− ξi.

Finally, note that the problem convexity follows immediately from the (generic) convexity
of the conjugate function.

From Lemma 6(i),
inf

w∈Rn
f∗i (yiw) = f∗i (0) = 0,

and therefore f∗i (·) “penalizes” yiw and is thus a regularization term. On the other hand, a
classifier that has a convex regularization term g(·) in each constraint is equivalent to a com-
prehensive robust classifier with disturbance discount f(·) = g∗(·) (Lemma 6(ii)). Therefore,
the comprehensive robust classifier is equivalent to the constraint-wise regularized classi-
fier with general convex regularization. This equivalence gives an alternative explanation
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for the generalization ability of regularization: intuitively, the set of testing data can be
regarded as a “disturbed” copy of the set of training samples where the penalty on large
(or low-probability) disturbance is discounted. Empirical results show that a classifier that
handles noise well has a good performance for testing samples.

As an example of this equivalence, set fi(δi) = α‖δi‖ for α > 0 and r(w, b) ≡ 0. Here,

f∗i (yiw) =
{

0 ‖w‖∗ ≤ α,
+∞ otherwise;

which is the indicator function of the dual-norm ball with radius α. Thus (15) is equivalent
to

min :
∑m

i=1 ξi,
s.t. : yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, · · · ,m,

‖w‖∗ ≤ α,
ξi ≥ 0, i = 1, · · · ,m.

(16)

We notice that Problem (16) is the standard regularized classifier. Hence, the comprehensive
robust classification framework is a general framework which includes both robust SVMs
and regularized SVMs as special cases. Hence, the results obtained for the comprehensive
robust classifier (e.g., the probabilistic bound in Section 3.4) can be easily applied to robust
SVMs and standard SVMs.

3.3 Tractability

We now give a sufficient condition on the discount for the comprehensive robust classification
problem (15) to be tractable.

Definition 8 A function f(·) : Rn → R is called Efficiently Conjugatable if there exists a
sub-routine such that for arbitrary h ∈ Rn and α ∈ R, in polynomial time it either reports

sup
x∈Rn

(
h>x− f(x)

) ≤ α,

or reports x0 such that
h>x0 − f(x0) > α.

Theorem 9 Suppose

1. fi(·) is efficiently conjugatable, ∀i ∈ [1 : m].

2. Both r(w, b) and ∂r(w, b) can be evaluated in polynomial time ∀(w, b) ∈ Rn+1, where
∂ stands for any sub-gradient.

Then, Problem (15) can be solved in polynomial time.

Proof Rewrite Problem (15) as

min : t

s.t. : r(w, b) +
m∑

i=1

ξi − t ≤ 0

f∗i (yiw)− yi(〈w, xi〉+ b)− ξi + 1 ≤ 0, i = 1, · · · ,m,

− ξi ≤ 0, i = 1, · · · ,m.

(17)
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This is a special case of minz∈U c>z for a convex U . It is known (Grótschel et al., 1988)
that for this problem to be efficiently solvable, it suffices to have a Separation Oracle for U ,
i.e., a subroutine which in polynomial time reports either z ∈ U , or a separating hyperplane
of z and U when z 6∈ U for any z.

We can construct a separation oracle for U as long as we can construct a separation
oracle for the feasible set of each individual constraint.

Constraint Type 1: r(w, b) +
∑m

i=1 ξi − t ≤ 0.
For any (w∗, ξ∗, t∗, b∗), since r(w∗, b∗) can be evaluated efficiently, we can report whether

this constraint holds or not in polynomial time. Furthermore, when the constraint is vi-
olated, any sub-gradient of the left-hand side evaluated at (w∗, ξ∗, t∗, b∗) is a separating
hyperplane. Finding such sub-gradient can also be done efficiently since ∂r(w∗, b) can be
evaluated efficiently.

Constraint Type 2: f∗i (yiw)− yi(〈w, xi〉+ b)− ξi + 1 ≤ 0.
For given (w∗, ξ∗, t∗, b∗), let α = yi(〈w∗, xi〉+ b∗) + ξ∗i − 1, and h = yiw∗. Since fi(·) is

efficiently conjugatable, in polynomial time we can either confirm

sup
c∈Rn

(
h>c− f(c)

) ≤ α,

which means the constraint holds, or report a c0 such that

h>c0 − f(c0) > α.

Substituting back α, h and rearranging the terms yields

(yic0 − yixi)>w∗ − yib
∗ − ξ∗i > f(c0)− 1.

Notice that, for any feasible (ŵ, ξ̂, t̂, b̂), the following holds:

f∗i (yiŵ)− yi(〈ŵ, xi〉+ b̂)− ξ̂i + 1 ≤ 0

=⇒ sup
c∈Rn

(
yiŵ>c− f(c)

)− yi(〈ŵ, xi〉+ b̂)− ξ̂i + 1 ≤ 0

=⇒ (
yiŵ>c0 − f(c0)

)− yi(〈ŵ, xi〉+ b̂)− ξ̂i + 1 ≤ 0

=⇒ (yic0 − yixi)>ŵ − yib̂− ξ̂i ≤ f(c0)− 1.

Hence (yic0 − yixi,−yi,−1) is a separation Oracle.
Constraint Type 3: −ξi ≤ 0.
The separation oracle for this constraint is trivial.
Combining all three steps, we conclude that a separation oracle exists for each individual

constraint, and hence we have a separation Oracle for U . Therefore, Problem (15) can be
solved in polynomial time.

This theorem guarantees polynomial time solvability, but much stronger complexity
requirements may be needed for large scale problems. While this is a topic of future research,
in the nest section we provide some discount function examples that are of practical interest.
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3.4 Norm Discount

In this section, we discuss a class of discount functions based on certain ellipsoidal norms
of the noise, i.e.,

fi(δi) = ti(‖δ‖V ),

for a nondecreasing ti : R+ → R+. Simple algebra yields f∗i (y) = t∗i (‖y‖V −1), where
t∗i (y) = supx≥0

[
xy − t(x)

]
, and thus conjugation is easy. This formulation has a nice

probabilistic interpretation:

Theorem 10 Suppose the random variable δr
i has mean 0 and variance Σ. Then the con-

straint
yi(〈w, xi − δi〉+ b) ≥ 1− ξi − ti(‖δi‖Σ−1), ∀δi ∈ Rn, (18)

is equivalent to

inf
δr

i∼(0,Σ)
Pr

(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≥ −s
) ≥ 1− 1(

t−1
i (s)

)2 + 1
, ∀s ≥ 0. (19)

Here, the infimum is taken over all random variables with mean zero and variance Σ, and
t−1
i (s) , sup{r|t(r) ≤ x}.
Proof Shivaswamy et al. (2006) studied the robust formulation and showed that for a fixed
γ0, the following three inequalities are equivalent:

◦ inf
δr

i∼(0,Σ)
Pr

(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≥ 0
) ≥ 1− 1

γ2
0 + 1

,

◦ yi(〈w, xi〉+ b)− 1 + ξi ≥ γ0‖w‖Σ,

◦ yi(〈w, xi − δi〉+ b)− 1 + ξi ≥ 0, ∀‖δi‖Σ−1 ≤ γ0.

Observe that equation (19) is equivalent to

inf
δr

i∼(0,Σ)
Pr

(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≥ −ti(γ)
) ≥ 1− 1

γ2 + 1
, ∀γ ≥ 0.

Hence, it is equivalent to:

yi(〈w, xi − δi〉+ b)− 1 + ξi ≥ −ti(γ), ∀‖δi‖Σ−1 ≤ γ, ∀γ ≥ 0.

Since ti(·) is nondecreasing, this is equivalent to (18).

Theorem 10 shows that the comprehensive robust formulation bounds the probability
of all magnitudes of constraint violation. It is of interest to compare this bound with the
bound given by the robust formulation. Indeed,

yi(〈w, xi〉+ b)− 1 + ξi ≥ γ0‖w‖Σ

⇐⇒ yi(〈w, xi〉+ b)− 1 + ξi + s ≥ (
γ0 +

s

‖w‖Σ

)‖w‖Σ, ∀s ≥ 0

⇐⇒ inf
δr

i∼(0, Σ)
Pr

(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≥ −s
) ≥ 1− 1

(γ0 + s
‖w‖Σ )2 + 1

.

Hence the probability of large violation depends on ‖w‖Σ, and is impossible to bound
without knowing ‖w‖Σ a priori.
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Remark 11 Notice the derived bound for the robust formulation is tight, in the sense
that if

yi(〈w, xi〉+ b)− 1 + ξi < γ0‖w‖Σ,

then there exists a zero-mean random variable δr
i with variance Σ such that

Pr
(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≥ −s
)

< 1− 1
(γ0 + s

‖w‖Σ )2 + 1
.

This is because the multivariate Chebyshev inequality (Marshall and Olkin, 1960; Boyd and
Vandenberghe, 2004; Grótschel et al., 1988) states that

sup
z∼(z̄,σ)

Pr{a>z ≤ c} = (1 + d2)−1

where d2 = inf
z0|a>z0≤c

inf(z0 − z̄)>Σ−1(z0 − z̄).

Letting a = yiw, z = −δr
i and c = 1− ξi − s− yi(〈w, xi〉+ b), we have

sup
δr

i∼(0, Σ)
Pr

(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≤ −s
)

= (1 + d2
0)
−1

where: d0 =
yi(〈w, xi〉+ b)− 1 + ξi + s√

w>Σw
.

Hence,

yi(〈w, xi〉+ b)− 1 + ξi < γ0‖w‖Σ

=⇒ d0 < γ0 + s/‖w‖Σ

=⇒ sup
δr

i∼(0, Σ)
Pr

(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≤ −s
)

>
[
1 + (γ0 + s/‖w‖Σ)2

]−1
,

showing that the bound is tight.

With a similar argument, we can derive probability bounds under a Gaussian noise
assumption.

Theorem 12 If δr
i ∼ N (0,Σ), then the constraint

yi(〈w, xi − δi〉+ b) ≥ 1− ξi − ti(‖δi‖Σ−1), ∀δi ∈ Rn, (20)

is equivalent to

Pr
(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≥ −s
) ≥ Φ

(
t−1
i (s)

)
, ∀s ≥ 0. (21)

Here, Φ(·) is the cumulative distribution function of N (0, 1).

Proof For fixed k ≥ 1/2 and constant l, the following constraints are equivalent:

Pr(yiw>δr
i ≥ l) ≥ k

⇐⇒ l ≤ Φ−1(k)
(
w>Σw

)1/2

⇐⇒ l ≤ yw>δi, ∀‖δi‖Σ−1 ≤ Φ−1(k).
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Original Function Conjugate function
Affine Fun. ti(x) = ax + b t∗i (y) = Iα − b
Indicate Fun. ti(x) = Iα + b. t∗i (y) = ay − b

Power Fun. ti(x) = axn + b t∗i (y) = a
−1

n−1 (n
−1

n−1 − n
−n
n−1 )y

n
n−1 − b

Quadratic Fun. ti(x) = ax2 + b t∗i (y) = 1
4ay2 − b

Neg. Entropy ti(x) = ax log x + b t∗i (y) = aey/a−1 − b
Exponential Fun. ti(x) = aex + b t∗i (y) = y log(y/a)− y − b
Point-wise Min. ti(x) = minj=1,··· ,l tij(x) t∗i (x) = maxj=1,··· ,l t∗ij(y)
Non-convex Fun. ti(x) non-convex t∗i (y) =

(
conv(ti(x))

)∗(y)

Table 1: Some functions and their conjugates.

Notice that (21) is equivalent to

Pr
(
yi(〈w, xr

i 〉+ b)− 1 + ξi ≥ −ti(γ)
)
≥ Φ(γ), ∀γ ≥ 0,

and hence it is equivalent to: ∀γ ≥ 0,

yi(〈w, xi − δi〉+ b)− 1 + ξi ≥ −ti(γ), ∀‖δi‖Σ−1 ≤ Φ−1
(
Φ(γ)

)
= γ.

Since ti(·) is nondecreasing, this is equivalent to (20).

We list in Tables 1 and 2 some examples of ti(·) and their conjugate functions. Notice that
both ti(·) and t∗i (·) are defined on R+. Here, Iα : R+ → R+

⋃{+∞} is the indicator function
of set α, and conv(t(·)) , sup{f(·)|f(·) is convex, f(·) ≤ t(·)}, i.e., the convex supporting
function of t(·). Standard robustness uses an indicator function of a set. Table 2 shows
several different relaxations of this indicator function allowing the increase of f(·) to be more
smooth. Notice that, all conjugate functions can be written as t∗(x) = max1,2(s1(x), s2(x)),
where si = infλ∈Si qi(λ, x) for some quadratic/linear/indicator function qi and polytope Si.
Hence the constraint t∗i (x) ≤ α is equivalent to

q1(x,λ1) ≤ α;
λ1 ∈ S1;
q2(x,λ2) ≤ α;
λ2 ∈ S2.

Since a quadratic/linear/indicator function leads to a Second Order Cone constraint, the
resulting classifier is a SOCP. This means that the comprehensive robust classification with
the relaxations listed above has a comparable computational cost as the robust classification.

Figure 1 illustrates the discount function for the standard robust formulation, and Fig-
ure 2 illustrates the respective conjugate functions for the first four relaxations in Table
2.
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Original Function Conjugate function

ti(x) =
{

0 x ≤ c,
α(x− c) x > c.

t∗i (y) =
{

cy y ≤ α,
+∞ y > α.

= max(Iα, cy)

ti(x) =
{

αx x ≤ c,
+∞ x > c.

t∗i (y) =
{

0 y ≤ α,
c(y − α) y > α.

= max(0, c(y − α))

ti(x) =





0 x ≤ c1,
α(x− c1) c1 < x ≤ c2,
+∞ x > c2.

t∗i (y) =
{

c1y y ≤ α,
c2(y − α) + αc1 y > α.

= max(c1y, c2y + α(c1 − c2))

ti(x) =
{

0 x ≤ c,
α(x− c)2 x > c.

t∗i (y) = y2/4α + cy.

ti(x) =
{

αx2 x ≤ c,
+∞ x > c.

t∗i (y) =
{

y2/4α y ≤ 2αc,
cy − αc2 y > 2αc.

= infλ≥0

(
(y − λ)2/4α + cλ

)

ti(x) =





0 x ≤ c1,
α(x− c1)2 c1 < x ≤ c2,
+∞ x > c2.

t∗i (y) =
{

y2/4α + yc1 y ≤ 2α(c2 − c1),
c2y − α(c2 − c1)2 y > 2α(c2 − c1).

= max
(
c1y, infλ1,λ2≥0[

(y+λ1−λ2)2

4α + c1y + (c2 − c1)λ2]
)

Table 2: Piecewise-defined functions and their conjugates.

0 

infinity

0 

(r) (r’)

Figure 1: The robust discount function and its conjugate: note that the discount function
provides uniform protection inside the uncertainty set, and no protection outside.

3.5 Multiplicative Discount

In this section we consider a multiplicative structure for the disturbance discount, and
investigate its tractability. The multiplicative discount has the form:

min
w,b

max
(δ1,···δm)∈N

{
r(w, b) +

m∑

i=1

ci(δi)max
[
1− yi(〈w, xi − δi〉+ b), 0

]
}

where c(·) : Rn → R satisfies

0 ≤ ci(δ) ≤ ci(0) = 1; ∀δ ∈ Rn.
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0 
0 

infinity

(a) (a’)

0 

infinity

0 

(b) (b’)

0 

infinity

0

(c) (c’)

0  
0

(d) (d’)

Figure 2: Piecewise-defined Functions and their Conjugates: note the flexibility in control-
ling the discount given the realization of the disturbance.

By adding slack variables, we get the following optimization problem:

Comprehensive Robust Classifier (Multiplicative):
min : r(w, b) +

∑m
i=1 ξi,

s.t. : ξi ≥ ci(δ)
[
1− yi(〈w, xi − δi〉+ b)

]
, ∀δi ∈ Rn, i = 1, · · · ,m,

ξi ≥ 0, i = 1, · · · ,m.

(22)

Define

gi(δ) ,
{ 1

ci(δ) if c(δ) > 0,

+∞ otherwise.
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Problem (22) can be rewritten as:

min : r(w, b) +
∑m

i=1 ξi,
s.t. : gi(δi)ξi ≥

[
1− yi(〈w, xi − δi〉+ b)

]
, ∀δi ∈ Rn, i = 1, · · · , m,

ξi ≥ ε, i = 1, · · · ,m.

We perturb the constraint ξi ≥ 0 to ξi ≥ ε for small ε > 0 to avoid the case that both
ξi = 0 and gi(δi) = ∞ hold simultaneously. Under this modification, we have the following
tractability theorem:

Theorem 13 Suppose

1. gi(·) is efficiently conjugatable, ∀i ∈ [1 : m]

2. Both r(w, b), ∂r(w, b) can be evaluated in polynomial time ∀(w, b) ∈ Rn+1, where ∂
stands for any sub-gradient.

Then, Problem (22) can be solved in polynomial time.

Proof Rewrite Problem (22) as

min : t
s.t. : r(w, b) +

∑m
i=1 ξi − t ≤ 0

1− yi(〈w, xi〉+ b) + yiw>δi − ξigi(δi) ≤ 0, ∀δi ∈ Rn, i = 1, · · · ,m,
−ξi ≤ −ε, i = 1, · · · ,m.

Following a similar argument as in the proof of Theorem 9 we derive a separation oracle
for each constraint. Constraint Type 1 and Type 3 are exactly the same as in Theorem 9,
hence we only discuss Constraint Type 2, i.e.,

1− yi(〈w, xi〉+ b) + yiw>δi − ξigi(δi) ≤ 0, ∀δi.

Now suppose we are given a solution (w∗, ξ∗, t∗, b∗), with ξ∗i ≥ ε (otherwise we get a sepa-
ration oracle from Type 3). Letting h = yiw∗/ξ∗i and α = (1 − yi(〈w∗, xi〉 + b∗))/ξ∗i , the
constraint is equivalent to:

sup
δi∈Rn

{
h>δi − gi(δi)

} ≤ α.

Since gi(·) is efficiently conjugatable, then in polynomial time we either conclude the con-
straint is satisfied, or find a δ∗ such that h>δ∗ − gi(δ∗) > α, which is equivalent to

1− yi(〈w∗, xi〉+ b∗) + yiw∗>δ∗ − ξ∗i gi(δ∗) > 0

⇐⇒ y(xi − δ∗)>w∗ + yib
∗ + gi(δ∗)ξi < 1.

(23)

Hence, (xi − δ∗, yi, gi(δ∗)) is a separation oracle.
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4. Comprehensive Robustness and Convex Risk Measures

We showed in Section 2.2 that the robust optimization classifier has an equivalent proba-
bilistic interpretation as a chance constrained classifier. Comprehensive robust classifiers
under the additive discount model also have a probabilistic parallel. In this section we es-
tablish the connection to risk-measure constrained classifiers. A risk measure is a mapping
from a random variable to the real numbers, that, at a high level, captures some valuation
of that random variable. Simple examples of risk measures include expectation, standard
deviation, and conditional value at risk (CVaR). Risk measure constraints represent a natu-
ral way to express risk aversion, corresponding to particular risk preferences. We show that
comprehensive robust classifiers correspond to the class of so-called convex risk measures.

Given a probability space (Ω,F ,P), let X denote the set of random variables on Ω.
A risk measure is a function ρ : X → R, and defines a preference relationship among
random variables: X1 is preferable over X2 if and only if ρ(X1) ≤ ρ(X2). Alternatively,
we can regard ρ(·) as the measurement of how risky a random variable is: X1 is a less
risky decision than X2 when ρ(X1) ≤ ρ(X2). A risk measure is called convex if it satisfies
the following three conditions: (i) Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y );
(ii) Monotonicity: X ≤ Y ⇒ ρ(X) ≤ ρ(Y ); and (iii) Translation Invariance: ρ(X + a) =
ρ(X) + a,∀a ∈ R. Convexity means diversifying reduces risk. Monotonicity says that if
one random loss is always less than another, it is more favorable. Translation invariance
says that if a fixed penalty a is going to be paid in addition to X, we are indifferent to
whether we will pay it before or after X is realized. A convex risk measure ρ(·) is called
normalized if it satisfies ρ(0) = 0 and ∀X ∈ X , ρ(X) ≥ EP(X), which essentially says that
the risk measure ρ(·) represents risk aversion. Many widely used criteria comparing random
variables are normalized convex risk measures, including expected value, Conditional Value
at Risk (CVaR), and the exponential loss function (Ben-Tal et al., 2006b; Bertsimas and
Brown, 2005).

Equipped with a normalized convex risk measure ρ(·), we can formulate a classification
problem as follows:

Risk-Measure Constrained Classifier

min : r(w, b) +
m∑

i=1

ξi,

s.t. : ρi(ξi) ≥ ρi(1− yi(〈w, xr
i 〉+ b)), i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · ,m.

(24)

Substituting ρi(0) = 0 and xr
i = xi−δr

i where xi = EP(xr
i ), the constraint can be rewritten

as
ξi ≥ 1− yi(〈w, xi〉+ b) + ρi(yiw>δr

i ). (25)

This formulation seeks a classifier whose total risk is minimized. When xr
i is precisely

known, this formulation reduces to the standard SVM.
The following theorem states that the risk-constrained classifier and the comprehensive

robust classifier are equivalent. The proof is postponed to the appendix.
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Theorem 14 (1) A Risk-Measure Constrained Classifier with normalized convex risk mea-
sures ρi(·) is equivalent to a Comprehensive Robust Classifier where

fi(δ) = inf{α0
i (Q)|EQ(δr

i ) = δ},
α0

i (Q) , sup
X′∈X

(
EQ(X ′)− ρi(X ′)

)
.

(2) A Comprehensive Robust Classifier with convex discount functions fi(·) is equivalent to
a Risk-Constrained Classifier where

ρi(X) = inf{m ∈ R|X −m ∈ Ai},
Ai , {X ∈ X |X(ω) ≤ fi

(
δr

i (ω)
)
, ∀ω ∈ Ω},

assuming that δr
i has support Rn.

Let P be the set of probability measures absolutely continuous w.r.t. P. It is known (Fóllmer
and Schied, 2002; Ben-Tal et al., 2006a) that any convex risk measure ρ(·) can be represented
as ρ(X) =

∑
Q∈P [EQ(X)−α(Q)] for some convex function α(·); conversely, given any such

convex function α, the resulting function ρ(·) is indeed a convex risk measure. Given α(·),
ρ(·) is called the corresponding risk measure. The function α(·) can be thought of as a
penalty function on probability distributions. This gives us a way to directly investigate
classifier robustness with respect to distributional deviation. As an example, suppose we
want to be robust over distributions that are nowhere more than a factor of two greater
than a nominal distribution, P. This can be exactly captured by the risk constraint using
risk measure ρ(·), where ρ corresponds to the convex function α given by letting α(·) satisfy
α(Q) = 0 for dQ/dP ≤ 2, and α(Q) = +∞ for all other Q.

A natural notion of distributional divergence is the Kullback-Leibler divergence. The
next result derives the corresponding risk measure when the reference noise, δr

i , is Gaussian.

Theorem 15 Suppose δr
i ∼ N (0, Σi) and let ρ(·) be the corresponding risk measure of

α(Q) =
{ ∫ dQ

dP log dQ
dP dP Q ¿ P,

+∞ otherwise.

Then the Risk-Measure Constrained Classifier is equivalent to

min : r(w, b) +
m∑

i=1

ξi,

s.t. : yi(〈w, xi〉+ b)−w>Σiw/2 ≥ 1− ξi, i = 1, · · · ,m,

ξi ≥ 0, i = 1, · · · ,m.

Proof We first show that for the KL divergence, its corresponding convex risk mea-
sure equals logEP[eX ] by applying the following theorem adapted from Fóllmer and Schied
(2002).

Theorem 16 Suppose a convex risk measure can be represented as

ρ(X) = inf{m ∈ R|EP[l(X −m)] ≤ x0},
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for an increasing convex function l : R → R and scalar x0. Then ρ(·) is the corresponding
risk measure of

α0(Q) = inf
λ>0

1
λ

(
x0 + EP

[
l∗(λ

dQ

dP
)
])

.

Note that logEP[eX ] = inf{m ∈ R|EP
[
eX−m

] ≤ 1}, and hence the risk measure logEP[eX ]
can be represented as in the theorem, with l(x) = ex, and x0 = 1. The conclusion of the
theorem tells us that logEP[eX ] is the corresponding risk measure of

α0(Q) = inf
λ>0

1
λ

(
1 + EP

[
λ

dQ

dP
log(λ

dQ

dP
)− λ

dQ

dP
])

=EP
[dQ

dP
log

dQ

dP
]
+ inf

λ>0

[ 1
λ

+ EP(
dQ

dP
)(log λ− 1)

]

=
{ ∫ dQ

dP log dQ
dP dP Q ¿ P,

+∞ otherwise,

where the last equation holds since EP(dQ/dP) = 1 and infλ>0(1/λ + log λ − 1) = 0.
Therefore ρ(X) = logEP[eX ] is indeed the corresponding risk measure to KL-divergence.
Now we evaluate logEP(eyiw

>δr
i ). Since δr

i ∼ N(0, Σi), yiw>δr
i ∼ N(0,w>Σiw), which

leads to

EP(eyiw
>δr

i ) =
∫ +∞

−∞

1√
2π

exp
[
− t2/2

√
w>Σiw

]
etdt

=
∫ +∞

−∞

1√
2π

exp
{
− (t−

√
w>Σiw)2

/
2
√

w>Σiw
}

ew>Σiw/2dt

= ew>Σiw/2

∫ +∞

−∞

1√
2π

exp
{
− (t−

√
w>Σiw)2

/
2
√

w>Σiw
}

dt = ew>Σiw/2.

Thus logEP(eyiw
>δr

i )=w>Σiw/2, proving the theorem.

Observe that here we get a regularizer (in each constraint) that is the square of an
ellipsoidal norm, and hence is different from the norm regularizer obtained from the robust
classification framework. In fact, recalling the result from Section 3.4, we notice that the new
regularizer is the result of a quadratic discount function, instead of the indicator discount
function used by robust classification.

For general δr
i and α(·), it is not always straightforward to find and optimize the explicit

form of the regularization term. Hence we sample, approximating P with its empirical
distribution Pn. This is equivalent to assuming δr

i has finite support {δ1
i , · · · , δt

i} with
probability {p1, · · · , pt}. We note that the distribution of the noise is often unknown,
where only some samples of the noise are given. Therefore, the finite-support approach is
often an appropriate method in practice.
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Theorem 17 For δr
i with finite support, the risk-measure constrained classifier is equivalent

to

min : r(w, b) +
m∑

i=1

ξi,

s.t. : yi(〈w, xi〉+ b)− α∗
(
yi∆>

i w + λi1
)

+ λi ≥ 1− ξi, i = 1, · · · ,m;
ξi ≥ 0, i = 1, · · · ,m;

where α∗(y) , supx≥0{y>x− α(x)} and ∆i , {δ1
i , · · · , δt

i}.

Proof It suffices to prove that Constraint (25) is equivalent to

yi(〈w, xi〉+ b)− α∗
(
yi∆>

i w + λi1
)

+ λi ≥ 1− ξi,

which is the same as showing that the conjugate function of

fi(δ) , inf{α(q)|
t∑

j=1

qjδ
j
i = δ}

evaluated at yiw equals
min

λ
{α∗(yi∆>

i w + λ1
)− λ}.

By definition, f∗(yiw) = supδ∈Rn

{
yiw>δ − f(δ)

}
, which equals

maximize on δ,q: yiw>δ − α(q)
subject to: ∆iq− δ = 0,

1>q = 1
q ≥ 0.

(26)

Notice that (26) equals

L(δ,q, c, λ) , max
δ; q≥0

min
c,λ

{
yiw>δ − α(q) + c>∆iq− c>δ + λ1>q− λ

}
.

Since Problem (26) is convex and all constraints are linear, Slater’s condition is satisfied and
the duality gap is zero. Hence, we can exchange the order of minimization and maximization:

L(δ,q, c, λ) = min
c,λ

max
δ,q≥0

{
yiw>δ − α(q) + c>∆iq− c>δ + λ1>q− λ

}

=min
c,λ

{
max

δ

(
yiw>δ − c>δ

)
+ max

q≥0

(
c>∆iq + λ1>q− α(q)

)− λ
}

=min
λ

{
max
q≥0

(
yiw>∆iq + λ1>q− α(q)

)− λ
}

=min
λ

α∗
(
yi∆>

i w + λ1
)− λ.

The third equality holds because c = yiw is the necessary condition to make maxδ

(
yiw>δ−

c>δ
)

finite.
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Example. Let α(q) =
∑t

j=1 qj log(qj/pj), the KL divergence for discrete probability mea-
sures. By applying Theorem 17, Constraint (25) is equivalent to

yi(〈w, xi〉+ b)− log
( t∑

j=1

pj exp(yiw>δj
i )

) ≥ 1− ξi,

⇐⇒
t∑

j=1

pj exp
(
yiw>δj

i − yi(〈w, xi〉+ b) + 1− ξi

)
≤ 1.

This is a geometric program, which is a well-studied class of convex problems with special-
ized and efficient algorithms for their solution (Boyd and Vandenberghe, 2004).

5. Kernelized Comprehensive Robust Classifier

Much of the previous development can be extended to the kernel space. The main con-
tributions in this section are (i) a representer theorem in the case where we have discount
functions in the feature space; and (ii) a sufficient condition for approximation in the case
that we have discount functions in the original sample space.

We use k(·, ·) : Rn×Rn → R to represent the kernel function, and K to denote the Gram
matrix with respect to (x1, · · · ,xm). We assume that K is a non-zero matrix without loss
of generality.

We first investigate the case where the noise exists explicitly in the feature space. Let
φ(·) be the mapping from the sample space Rn to the feature space Φ. Let Φ̂ ⊆ Φ be the
subspace spanned by {φ(x1), · · · , φ(xm)}. For a vector z ∈ Φ, denote z= as its projection
on Φ̂, and z⊥ , z− z= as its residual. The following theorem states that we can focus on
w ∈ Φ̂ without loss of generality.

Theorem 18 If fi(·) is such that

fi(δ) ≥ fi(δ=), ∀δ ∈ Φ,

and w ∈ Φ satisfies

y(〈w, φ(xi)− δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Φ, (27)

then its projection w= also satisfies (27).

Proof Before proving this theorem, we first establish the following two lemmas.

Lemma 19 If w ∈ Φ satisfies

y(〈w, φ(xi)− δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Φ̂, (28)

then its projection w= also satisfies (28).

Proof Decompose w = w= +w⊥. By definition, w⊥ is orthogonal to Φ̂. Since δi ∈ Φ̂ and
φ(xi) ∈ Φ̂, we have

〈w⊥, φ(xi)− δi〉 = 0, ∀δi ∈ Φ̂,

which establishes the lemma.
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Lemma 20 If fi(·) is such that

fi(δ) ≥ fi(δ=), ∀δ ∈ Φ,

and w ∈ Φ̂ satisfies

y(〈w, φ(xi)− δ̂i〉+ b) ≥ 1− ξi − fi(δ̂i), ∀δ̂i ∈ Φ̂, (29)

then w satisfies

y(〈w, φ(xi)− δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Φ. (30)

Proof We prove this lemma by deriving a contradiction. Assume that there exists δ′ ∈ Φ
such that Inequality (30) does not hold, i. e.,

y(〈w, φ(xi)− δ′〉+ b) < 1− ξi − fi(δ′).

Decompose δ′ = δ′=+δ′⊥. Hence we have fi(δ′=) ≤ fi(δ′) by assumption, and 〈w, δ′⊥〉 = 0
since w ∈ Φ̂. This leads to

y(〈w, φ(xi)− δ′=〉+ b) = y(〈w, φ(xi)− δ′〉+ b)
< 1− ξi − fi(δ′) ≤ 1− ξi − fi(δ′=),

which contradicts (29) and hence we prove the lemma.

Now we proceed to prove Theorem 18. Since w satisfies (27), then it also satisfies

y(〈w, φ(xi)− δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Φ̂.

Thus by Lemma 19, w= satisfies

y(〈w=, φ(xi)− δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Φ̂.

By Lemma 20, this implies that w= satisfies

y(〈w=, φ(xi)− δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Φ,

which establishes the theorem.

The kernelized comprehensive robust classifier can be written as:

Kernelized Comprehensive Robust Classifier:

min : r
( m∑

j=1

αjφ(xj), b
)

+
m∑

i=1

ξi,

s.t. : yi(〈
m∑

j=1

αjφ(xj), φ(xi)−
m∑

j=1

cjφ(xj)〉+ b) ≥

1− ξi − fi

( m∑

j=1

cjφ(xj)
)
, ∀(c1, · · · , cm) ∈ Rm, i = 1, · · · ,m,

ξi ≥ 0, i = 1, · · · ,m,

(31)
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Define c , (c1, · · · , cm), gi(c) , fi(
∑m

i=1 ciφ(xi)), and r̃(α, b) , r
( ∑m

j=1 αjφ(xj), b
)
. Let

ei denote the ith basis vector. Then Problem (31) can be rewritten as

min : r̃(α, b) +
m∑

i=1

ξi,

s.t. : yi(e>i Kα + b)− yiα
>Kc ≥ 1− ξi − gi(c), ∀c ∈ Rm, i = 1, · · · ,m,

ξi ≥ 0, i = 1, · · · ,m,

where the constraint can be further simplified as

yi(e>i Kα + b)− g∗i (yiKα) ≥ 1− ξi, i = 1, · · · ,m.

Notice that generally g∗(·) depends on the exact formulation of the feature mapping φ(·).
However, for the following specific class of f(·), we can determine g∗(·) from K without
knowing φ(·).
Theorem 21 If there exists hi : R+ → R+ such that

fi(δ) = hi(
√
〈δ, δ〉), ∀δ ∈ Φ,

then
g∗i (yiKα) = h∗i (‖α‖K).

Proof By definition,

g∗i (yiKα) = sup
c∈Rm

{
yiα

>Kc− gi(c)
}

= sup
c∈Rm



yiα

>Kc− fi

( m∑

j=1

cjφ(xj)
)




= sup
c∈Rm



yiα

>Kc− hi




√√√√〈
m∑

j=1

cjφ(xj),
m∑

j=1

cjφ(xj)〉







= sup
c∈Rm

{
yiα

>Kc− hi(
√

c>Kc)
}

.

Notice the right-hand side can be written as

sup
c∈Rm

{
(yiK

1/2α)>(K1/2c)− hi(‖K1/2c‖2)
}

= sup
c∈Rm

{
‖yiK

1/2α‖2‖K1/2c‖2 − hi(‖K1/2c‖2)
}

= sup
s∈R+

{
s‖(K1/2α)‖2 − hi(s)

}
= h∗i (‖α‖K).

Here, the first equality holds since

(yiK
1/2α)>(K1/2c) ≤ ‖yiK

1/2α‖2‖K1/2c‖2

by Hölder’s inequality. And the equality can be reached by taking c equal to yiα multiplied
by a constant. The third equality holds because when K is non-zero, ‖K1/2c‖2 ranges over
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R+.

Notice that when hi is an increasing function, then fi(δ) ≥ fi(δ=) is automatically
satisfied ∀δ ∈ Φ.

The previous results hold for the case where we have explicit discount functions in the
feature space. However, in certain cases the discount functions naturally lie in the original
sample space. The next theorem gives a sufficient alternative in this case.

Theorem 22 Suppose hi : R+ → R+ satisfies

hi

(√
k(xi,xi) + k(xi − δ,xi − δ)− 2k(xi,xi − δ)

) ≤ fi(δ), ∀δ ∈ Rn. (32)

Then

yi

(〈w, φ(xi)− δφ〉+ b
) ≥ 1− ξi − hi(

√
〈δφ, δφ〉), ∀δφ ∈ Φ, (33)

implies
yi

(〈w, φ(xi − δ)〉+ b
) ≥ 1− ξi − fi(δ), ∀δ ∈ Rn. (34)

Proof Notice that (33) implies that

yi

(〈
w, φ(xi)−

[
φ(xi)− φ(xi − δ)

]〉
+ b

)

≥ 1− ξi − hi

(√〈
φ(xi)− φ(xi − δ), φ(xi)− φ(xi − δ)

〉)
,

∀δ ∈ Rn. The right-hand side is equal to

1− ξi − hi

(√
k(xi, xi) + k(xi − δ,xi − δ)− 2k(xi,xi − δ)

) ≥ 1− ξi − fi(δ).

Since this holds for all δ ∈ Rn, (34) holds for (w, b).

Notice the condition in Theorem 22 only involves the kernel function k(·, ·) and is inde-
pendent of the explicit feature mapping. Hence this theorem applies for abstract mappings,
and specifically mappings into infinite-dimension spaces.

Theorem 23 Equip the sample space with a metric d(·, ·), and suppose there exist k̂i :
R+ → R, and f̂i : R+ → R

⋃{+∞} such that,

k(x,x′) = k̂(d(x,x′)), ∀x,x′ ∈ Rn;

fi(δ) = f̂i(d(xi,xi − δi)), ∀δ ∈ Rn.
(35)

Then hi : R+ → R+
⋃{+∞} defined as

hi(x) = inf
y|∃z∈Rn:y=d(xi,z), k̂(y)=k̂(0)−x2/2

f̂i(y) (36)

satisfies Equation (32), and for any h′(·) that satisfies Equation (32), h′(x) ≤ h(x), ∀x ≥ 0
holds. Here, we take infy∈∅ f̂i(y) to be +∞.
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Proof Rewrite Inequality (32) as

hi

(√
k̂(d(xi,xi)) + k̂(d(xi − δ,xi − δ))− 2k(d(xi,xi − δ))

) ≤ f̂i(d(xi,xi − δ)), ∀δ ∈ Rn,

which is equivalent to

hi(x) ≤ f̂i(y); ∀x, y, z : x =
√

2k̂(0)− y; y = d(xi, z).

Observe that the function defined by (36) is the maximal function that satisfies this in-
equality, thus proving the theorem.

Remark 24 In most cases, f̂i is increasing and piecewise continuous, d(·, ·) satisfies that
for any y ≥ 0, there exists z ∈ Rn such that d(xi, z) = y. Equation (36) can be simplified
as

hi(x) =





+∞ {y|k̂(y) = k̂(0)− x2/2} is empty
f̂i

(
k̂−1

(
k̂(0)− x2/2

))
min{y|k̂(y) = k̂(0)− x2/2} exists

f̂i

(
k̂−1

(
k̂(0)− x2/2

)+
)

otherwise.

Here, k̂−1(x) , inf{y|k̂(y) = x}, and f̂i(c+) stands for the right limit at c of fi(·).
Consider the Gaussian Kernel k(x,x′) = exp(−‖x − x′‖2/2σ2) as an example. We have
d(x,x′) = ‖x− x′‖ and k̂(x) = exp(−x2/2σ2). Hence k̂−1(y) =

√
−2σ2 ln y yields

hi(x) =

{
f̂i

(√
−2σ2 ln(1− x2/2)

)
x ≤ √

2
+∞ otherwise.

Taking f̂i(x) = Ic, the corresponding hi(x) = I2−2 exp(−c2/2σ2). Taking f̂i(x) = cx2, the
corresponding hi(x) is

hi(x) =
{ −2cσ2 ln(1− x2/2) x ≤ √

2
+∞ otherwise.

6. Numerical Simulations

In this section, we use empirical experiments to gain further insight into the performance
of the comprehensive robust classifier. To this end, we compare the performance of three
classification algorithms: the standard SVM, the standard robust SVM with ellipsoidal
uncertainty set, and comprehensive robust SVM with ellipsoidal uncertainty set with linear
discount function from the center of the ellipse to its boundary (see below). The simulation
results show that a comprehensive robust classifier with the discount function appropriately
tuned has a performance superior to both the robust classifier and the standard SVM. The
empirical results show that this soft formulation of robustness builds in protection to noise,
without being overly conservative.

We use the non-kernelized version for both the robust classification and the comprehen-
sive robust classification. We use a linear discount function for the comprehensive robust
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classifier. That is, noise is bounded in the same ellipsoidal set as for the robust SVM,
{δ|‖δ‖Σ−1 ≤ 1}, and the discount function is

fi(δ) =
{

α‖δ‖Σ−1 ‖δ‖Σ−1 ≤ 1,
+∞ otherwise.

The parameter α controls the disturbance discount. As α tends to zero, there is no discount
inside the uncertainty set, and we recover the robust classifier. As α tends to +∞, the
discount increases until effectively the constraint is only imposed at the center of the ellipse,
hence recovering the standard SVM classifier.

We use SeduMi 1.1R3 (Sturm, 1999) to solve the resulting convex programs. We first
compare the performance of the three algorithms on the Wisconsin-Breast-Cancer data set
from the UCI repository (Asuncion and Newman). In each iteration, we randomly pick 50%
of the samples as training samples and the rest as testing samples. Each sample is corrupted
by i.i.d. noise, which is uniformly distributed in an ellipsoid {δ|‖δ‖Σ−1 ≤ 1}. Here, the
matrix Σ is diagonal. For the first 40% of features, Σii = 16, and for the remaining features,
Σii = 1. This ellipsoidal uncertainty set captures the setup where noise is skewed toward
part of the features. This is more common in practice than the case where the noise is equal
for all features. We repeat 30 such iterations to get the average empirical error of the three
different algorithms. Figure 3 shows that for appropriately chosen discount parameter α, the
comprehensive robust classifier outperforms both the robust and standard SVM classifiers.
As anticipated, when α is small, comprehensive robust classification has a testing error rate
comparable to robust classification. For large α, the classifier’s performance is similar to that
of the standard SVM. This figure essentially shows that protection against noise is beneficial
as long as it does not become overly conservative. Comprehensive robust classification is of
interest because it provides a more flexible approach to handle the noise.
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Figure 3: Simulation results for WBC Data.
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Figure 4: Simulation results for Ionosphere Data.
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Figure 5: Simulation results for Sonar Data.

We run similar simulations on Ionosphere and Sonar data sets from the UCI repository
Asuncion and Newman. To fit the variability of the data, we scale the uncertainty set: for
40% of the features, Σii equals 0.3 for Ionosphere and 0.01 for Sonar; for the remaining
features, Σii equals 0.0003 for Ionosphere and 0.00001 for Sonar. Figure 4 and Figure 5
show the respective simulation results. Similarly to the WBC data set, comprehensive
robust classification achieves its optimal performance for mid-range α, and is superior to
both the standard SVM and the robust SVM.
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7. Concluding Remarks

This work investigates the relationship between robust classification and its extensions,
and regularized SVM classification, and seeks to develop robust classifiers with controlled
conservatism. In particular, we show that the standard norm-regularized SVM classifier is
in fact the solution to a robust classification setup, and thus known results about regularized
classifiers extend to robust classifiers. To the best of our knowledge, this is the first explicit
such link between regularization and robustness in pattern classification. This link suggests
that norm-based regularization essentially builds in a robustness to sample noise whose
probability level sets are symmetric, and moreover have the structure of the unit ball with
respect to the dual of the regularizing norm. It would be interesting to understand the
performance gains possible when the noise does not have such characteristics, and the
robust setup is used in place of regularization with appropriately defined uncertainty set.

We further expand on this connection by showing that any arbitrary convex constraint
regularization is equivalent to the classifier obtained through a formulation using a softer
version of robustness known as comprehensive robustness. This allows the connection to
convex risk measures, from which we develop risk-constrained classifiers.

At a high level, our contribution is the introduction of a more geometric notion of hedging
and controlling complexity (robust and comprehensive robust classifiers integrally depend
on the uncertainty set and structure of the discount function) and the link to probabilistic
notions of hedging, including chance constraints and convex risk constraints. We believe
that in the realm of applications, particularly when distribution-free PAC-style bounds are
pessimistic, the design flexibility of such a framework will yield superior performance. A
central issue on the application front is to understand how to effectively use the additional
degrees of freedom and flexibility since now we are designing uncertainty sets and discount
functions, rather than simply choosing regularization parameters that multiply a norm.
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Appendix A.

In this appendix we prove Theorem 14. Before proving Theorem 14, we establish the
following two lemmas. Lemma 25 is adapted from Fóllmer and Schied (2002), and the
readers can find the proof there.

Lemma 25 Let X be the set of random variables for (Ω,F ,P), P be the set of probability
measures absolutely continuous with respect to P, and ρ : X → R be a convex risk measure
satisfying Xn ↓ X ⇒ ρ(Xn) → ρ(X), then there exists a convex function α : P → (−∞, +∞]
such that

ρ(X) = sup
Q∈P

(
EQ(X)− α(Q)

) ∀X ∈ X . (37)

Furthermore, α0(Q) , supX′∈X
(
EQ(X ′) − ρ(X ′)

)
satisfies (37), and it is minimal in the

sense that α0(Q) ≤ α(Q) for all Q ∈ P, if α(·) also satisfies (37).

We call α0(·) the minimal representation of a convex risk measure.

Lemma 26 For a normalized convex risk measure ρ(·), its minimal representation satisfies:

0 = α0(P) ≤ α0(Q), ∀Q ¿ P.

Proof First, since EQ(0) ≡ 0, we have

ρ(0) = 0 → inf
Q∈P

α0(Q) = 0. (38)

Next, by definition α0(P) = supX∈X
(
EP(X) − ρ(X)

)
, and EP(X) ≤ ρ(X) by assumption.

Hence taking the supremum leads to α0(P) ≤ 0. Combining this with Equation (38) estab-
lishes the lemma.

Now we proceed to prove Theorem 14.
Proof

1. By Lemma 26, fi(δi) ≥ 0 since α0(Q) ≥ 0, ∀Q ∈ P. In addition, EP(δi) = 0 and
α0(P) = 0 together imply fi(0) = 0. Hence fi(·) satisfies (14).

Inequality (25) can be rewritten as

ξi + yi(〈w, xi〉+ b)− 1 ≥ sup
Q∈P

(
EQ(yiw>δr

i )− α(Q)
)

⇐⇒ ξi + yi(〈w, xi〉+ b)− 1 ≥ sup
δi∈Rn

sup
Q∈P|EQ(δr

i )=δi

(
yiw>δi − α(Q)

)

⇐⇒ yi(〈w, xi − δi〉+ b) ≥ 1− ξi − inf{α(Q)|EQ(δr
i ) = δi}, ∀δi ∈ Rn,

⇐⇒ yi(〈w, xi − δi〉+ b) ≥ 1− ξi − fi(δi), ∀δi ∈ Rn,

which proves the first part.

35



Xu, Mannor and Caramanis

2. First we show ρi(·) is a convex risk measure. Notice fi(0) is finite, hence, ρi(X) > −∞.
Observe that ρi(·) satisfies Translation Invariance. To prove Monotonicity, suppose
X ≤ Y and Y −s ∈ Ai for some s ∈ R, then X−s ∈ Ai, hence inf{m|X−m ∈ Ai} ≤ s,
which implies ρi(X) ≤ ρi(Y ). To prove Convexity, suppose X−m and Y −n belong to
Ai for m,n ∈ R. Given λ ∈ [0, 1], we have λ(X(ω)−m)+(1−λ)(Y (ω)−n) ≤ fi

(
δr

i (ω)
)

and hence
(
λX +(1−λ)Y

)− (λm+(1−λ)n) ∈ Ai which implies ρi(λX +(1−λ)Y ) ≤
λm + (1− λ)n, hence the convexity holds. Therefore ρi(·) is a convex risk measure.

Inequality (25) can be rewritten as

inf{m ∈ R|yiw>δr
i −m ∈ Ai} ≤ ξi + yi(〈w, xi〉+ b)− 1

⇐⇒ yiw>δr
i − ξi − yi(〈w, xi〉+ b) + 1− ε ∈ Ai, ∀ε > 0

⇐⇒ yiw>δr
i (ω)− ξi − yi(〈w, xi〉+ b) + 1− ε ≤ fi(δr

i (ω)), ∀ω ∈ Ω, ∀ε > 0
⇐⇒ yiw>δi − ξi − yi(〈w, xi〉+ b) + 1− ε ≤ fi(δi), ∀δi ∈ Rn.

The last equivalence holds from the assumption that δr
i has support Rn.

For the first part of Theorem 14, the assumption that ρi(·) is normalized can be relaxed
to ρi(0) = 0 and inf{α0

i (Q)|EQ(δr
i ) = 0} = 0.
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A. Smola, B. Schólkopf, and K. Múllar. The connection between regularization operators
and support vector kernels. Neural Networks, 11:637–649, 1998.

I. Steinwart. Consistency of support vector machines and other regularized kernel classifiers.
IEEE Transactions on Info. Theory, 51(1):128–142, 2005.

J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software, 11–12:625–653, 1999. URL
citeseer.ist.psu.edu/sturm99using.html. Special issue on Interior Point Methods
(CD supplement with software).

T. Trafalis and R. Gilbert. Robust support vector machines for classficiation and compu-
tational issues. Optimization Methods and Software, 22(1):187–198, February 2007.

V. Vapnik and A. Chervonenkis. Theory of Pattern Recignition. Nauka, Moscow, 1974.

V. Vapnik and A. Chervonenkis. The necessary and sufficient conditions for consistency in
the empirical risk minimizatin method. Pattern Recognition and Image Analysis, 1(3):
260–284, 1991.

V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method. Automa-
tion and Remote Control, 24:744–780, 1963.

38


