
Finding Dense Subgraphs via Low-Rank Bilinear Optimization

Dimitris S. Papailiopoulos DIMITRIS@UTEXAS.EDU
Ioannis Mitliagkas IOANNIS@UTEXAS.EDU
Alexandros G. Dimakis DIMAKIS@AUSTIN.UTEXAS.EDU
Constantine Caramanis CONSTANTINE@UTEXAS.EDU

The University of Texas at Austin

Abstract
Given a graph, the Densest k-Subgraph (DkS)
problem asks for the subgraph on k vertices that
contains the largest number of edges. In this
work, we develop a new algorithm for DkS that
searches a low-dimensional space for provably
dense subgraphs. Our algorithm comes with
novel performance bounds that depend on the
graph spectrum. Our graph-dependent bounds
are surprisingly tight for real-world graphs where
we find subgraphs with density provably within
70% of the optimum. These guarantees are sig-
nificantly tighter than the best available worst
case a priori bounds.

Our algorithm runs in nearly linear time, un-
der spectral assumptions satisfied by most graphs
found in applications. Moreover, it is highly
scalable and parallelizable. We demonstrate this
by implementing it in MapReduce and execut-
ing numerous experiments on massive real-world
graphs that have up to billions of edges. We em-
pirically show that our algorithm can find sub-
graphs of significantly higher density compared
to the previous state of the art.

1. Introduction
Given a graph G on n vertices with m edges and a parame-
ter k, we are interested in finding an induced subgraph on k
vertices with the largest average degree, also known as the
maximum density. This is the Densest k-Subgraph (DkS) –
a fundamental problem in combinatorial optimization with
applications in numerous fields including social sciences,
communication networks, and biology (see e.g. (Hu et al.,
2005; Gibson et al., 2005; Dourisboure et al., 2007; Saha
et al., 2010; Miller et al., 2010; Bahmani et al., 2012)).

DkS is a notoriously hard problem. It is NP-hard by reduc-

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

tion to MAXCLIQUE. Moreover, Khot showed in (Khot,
2004) that, under widely believed complexity-theoretic as-
sumptions, DkS cannot be approximated within an arbi-
trary constant factor.1 The best known approximation ratio
was n1/3+✏ (for some small ✏) due to (Feige et al., 2001).
Recently, (Bhaskara et al., 2010) introduced an algorithm
with approximation ratio n1/4+✏, that runs in time nO(1/✏).
Such results, where the approximation factor scales as a
polynomial in the number of vertices, are too pessimistic
for real-world applications. This resistance to better ap-
proximations, despite the long history of the problem, sug-
gests that DkS is probably very hard in the worst case.

Our Contributions. In this work we move beyond the
worst case framework. We present a novel DkS algorithm
that has two key features: i) it comes with approximation
guarantees that are surprisingly tight on real-world graphs
and ii) it is fully parallelizable and can scale up to graphs
with billions of edges.

Our algorithm combines spectral and combinatorial tech-
niques; it relies on examining candidate subgraphs ob-
tained from vectors lying in a low-dimensional subspace
of the adjacency matrix of the graph. This is accomplished
through a framework called the Spannogram, which we de-
fine below.

Our approximation guarantees are graph-dependent: they
are related to the spectrum of the adjacency matrix of the
graph. Let opt denote the average degree (i.e., the density)
of the densest k-subgraph, where 0 opt k � 1. Our
algorithm takes as input the graph, the subgraph size k, and
an accuracy parameter d 2 {1, . . . , n}. The output is a
subgraph on k vertices with density optd, for which we
obtain the following approximation result:
Theorem 1. For any unweighted graph, our algorithm out-
puts in time O

⇣
nd+2·logn

�

⌘
a k-subgraph that has density

optd � 0.5 · (1� �) · opt� 2 · |�d+1

|,

with probability 1� 1

n , where �i is the ith largest, in mag-

1approximation ratio ⇢ means that there exists an algorithm
that produces in polynomial time a number A, such that 1 opt

A

⇢, where opt is the optimal density.

Finding Dense Subgraphs via Low-Rank Bilinear Optimization

nitude, eigenvalue of the adjacency matrix of the graph.
If the graph is bipartite, or if the largest d eigenvalues
of the graph are positive, then our algorithm runs in time
O
�
nd+1

+ Td

�
, and outputs a k-subgraph with density

optd � opt� 2 · |�d+1

|,

where Td is the time to compute the d leading eigenvectors
of the adjacency matrix of the graph.

Our bounds come close to 2+✏ and 1+✏ factor approxima-
tions, when �d+1

is significantly smaller than the density of
the densest k-subgraph. In the following theorem, we give
such an example. However, we would like to note that in
the worst case our bounds might not yield something mean-
ingful.
Theorem 2. If the densest-k-subgraph contains a constant
fraction of all the edges, and k = ⇥(

p
E), then we can

approximate DkS within a factor of 2+ ✏, in time nO(1/✏2).
If additionally the graph is bipartite, we can approximate
DkS within a factor of 1 + ✏.

The above result is similar to the 1 + ✏ approximation ratio
of (Arora et al., 1995) for dense graphs, where the densest-
k-subgraph contains a constant fraction of the ⌦(n2

) edges,
where k = ⌦(n). The innovation here is that our ratio also
applies to sparse graphs with sublinear number of edges.

Computable upper bounds. In addition to these theoret-
ical guarantees, our analysis allows us to obtain a graph-
dependent upper bound for the optimal subgraph density.
This is shown in Fig. 3 in our experimental section, where
for many graphs our algorithm is provably within 70% from
the upper bound of opt. These are far stronger guarantees
than the best available a priori bounds. This illustrates the
potential power of graph-dependent guarantees that, how-
ever, require the execution of an algorithm.

Nearly-linear time approximation. Our algorithm has a
worst-case running time of O

⇣
nd+2·logn

�

⌘
. Under some

mild spectral assumptions, a randomized version of our al-
gorithm runs in nearly-linear time.
Theorem 3. Let the d largest eigenvalues of the graph be
positive, and let the d-th,(d + 1)-st largest have constant

ratio:
��� �d
�d+1

��� � C. Then, we can modify our algorithm
to output, with probability 1 � �, a k-subgraph with den-
sity (1� ✏)

2 · optd, in time O
�
m · log n+

n
✏d

· log
�

1

✏·�
��

,
where m is the number of edges.

We found that the above spectral condition holds for all
d 5, in many real-world graphs that we tested.

Scalability. We develop two key scalability features that
allow us to scale up efficiently on massive graphs.

Vertex sparsification: We introduce a pre-processing step
that eliminates vertices that are unlikely to be part of

the densest k-subgraph. The elimination is based on the
vertices’ weighted leverage scores (Mahoney & Drineas,
2009; Boutsidis et al., 2009) and admits a provable bound
on the introduced error. We empirically found that even
with a negligible additional error, the elimination dramati-
cally reduced problem sizes in all tested datasets.

MapReduce implementation: We show that our algorithm
is fully-parallelizable and tailor it for the MapReduce
framework. We use our MapReduce implementation to
run experiments on Elastic MapReduce (EMR) on Ama-
zon. In our large-scale experiments, we were able to scale
out to thousands of mappers and reducers in parallel over
800 cores, and find large dense subgraphs in graphs with
billions of edges.

1.1. Related work
DkS algorithms: One of the few positive results for DkS is
a 1+ ✏ approximation for dense graphs where m = ⌦(n2

),
and in the linear subgraph setting k = ⌦(n) (Arora et al.,
1995). For some values of m = o(n2

) a 2 + ✏ approx-
imation was established by (Suzuki & Tokuyama, 2005).
Moreover, for any k = ⌦(n) a constant factor approx-
imation is possible via a greedy approach by (Asahiro
et al., 2000), or via semidefinite relaxations by (Srivastav
& Wolf, 1998) and (Feige & Langberg, 2001). Recently,
(Alon et al., 2013) established new approximation results
for graphs with small “✏-rank,” using an approximate solver
for low-rank perturbed versions of the adjacency matrix.

There is a vast literature on algorithms for detect-
ing communities and well-connected subgraphs:
greedy schemes (Ravi et al., 1994), optimization ap-
proaches (Jethava et al., 2012; d’Aspremont et al., 2010;
Ames, 2011), and the truncated power method (Yuan
& Zhang, 2011). We compare with various of these
algorithms in our evaluation section.

The Spannogram framework: We present an exact solver
for bilinear optimization problems on matrices of constant
rank, under {0, 1} and sparsity constraints on the variables.
Our theory is a generalization of the Spannogram frame-
work, originally introduced in the foundational work of
(Karystinos & Liavas, 2010) and further developed in (As-
teris et al., 2014; Papailiopoulos et al., 2013), that obtains
exact solvers for low-rank quadratic optimization problems
with combinatorial constraints, such as sparse PCA.

MapReduce algorithms for graphs: The design of MapRe-
duce algorithms for massive graphs is an active research
area as Hadoop becomes one of the standards for storing
large data sets. The related work by Bahmani et al. (Bah-
mani et al., 2012) designs a novel MapReduce algorithm
for the densest subgraph problem. This densest subgraph
problem requires finding a subgraph of highest normal-
ized density without enforcing a specific subgraph size k.

Finding Dense Subgraphs via Low-Rank Bilinear Optimization

Surprisingly, without a subgraph size restriction, the dens-
est subgraph becomes polynomially solvable and therefore
fundamentally different from what we consider in this pa-
per.

2. Proposed Algorithm
The density of a subgraph indexed by a vertex set S ✓
{1, . . . , n} is equal to the average degree of the vertices
within S:

den(S) = 1T
SA1S
|S|

where A is the adjacency matrix (Ai,j = 1 if (i, j) is an
edge, else Ai,j = 0) and the indicator vector 1S has 1s
in the entries indexed by S and 0 otherwise. Observe that
1T
SA1S =

P
i,j2S Ai,j is twice the number of edges in the

subgraph with vertices in S .

For a fixed subgraph size |S| = k, we can express DkS as
a quadratic optimization:

DkS : opt = (

1/k) · max

|S|=k
1T
SA1S

where |S| = k denotes that the optimization variable is a
k-vertex subset of {1, . . . , n}.

The bilinear relaxation of DkS. We approximate DkS via
approximating its bipartite version. This problem can be
expressed as a bilinear maximization:

DBkS : opt

B
= (

1/k) · max

|X |=k
max

|Y|=k
1T
XA1Y .

As we see in the following lemma, the two problems are
fundamentally related: a good solution for the bipartite ver-
sion of the problem maps to a “half as good” solution for
DkS. The proof is given in the Supplemental Material.

Lemma 1. A ⇢-approximation algorithm for DBkS implies
a 2⇢-approximation algorithm for DkS.

2.1. DkS through low rank approximations

At the core of our approximation lies a constant rank
solver: we show that DBkS can be solved in polynomial
time on constant rank matrices. We solve constant rank
instances of DBkS instead of DkS due to an important im-
plication: DkS is NP-hard even for rank-1 matrices with 1

negative eigenvalue, as we show in the Supplemental Ma-
terial.

The exact steps of our algorithm are given in the pseudo-
code tables referred to as Algorithms 1-3.2 The output of
our algorithm is a k-subgraph Zd that has density optd that

2In the pseudocode of Algorithm 2, topk(v), denotes the in-
dices of the k largest signed elements of v.

comes with provable guarantees. We present our theoreti-
cal guarantees in the next subsection.

Our main algorithmic innovation, the constant rank solver
for DBkS (Algorithms 2-3), is called many times: in lines
5, 8, and 15 of our general DkS approximation, shown as
Algorithm 1. We describe its steps subsequently.

Algorithm 1 low-rank approximations for DkS

1: [Vd,⇤d] = EVD(A, d)
2: if G is bipartite then
3: B = bi-adjacency of G
4: [Vd,⌃d,Ud] = SVD(B, d)
5: {Xd,Yd} = argmax|X|+|Y|=k 1

T
XVd⌃dU

T
d 1Y .

6: Zd = Xd [Yd

7: else if The first d eigenvalues of A are positive then
8: {Xd,Xd} = argmax|X|=|Y|=k 1

T
XVd⇤dV

T
d 1Y .

9: Zd = Xd

10: else
11: for i = 1 :

logn
� do

12: draw n fair coins and assign them to vertices
13: L = vertices with heads; R = {1, . . . , n}� L
14: Bi

d = [Vd⇤dV
T
d]L,R

15: {X i,Yi} = argmax|X|+|Y|=k 1
T
XBi

d1Y .
16: end for
17: {X i,Yi} = argmax

1in 1T
X iB

i
d1Yi

18: Zd = Xd [Yd

19: end if
20: Output: Zd

Constant rank solver for DBkS. In the following we
present an exact solver for DBkS on constant rank approxi-
mations of A. Our DkS algorithm makes a number of calls
to the DBkS low-rank solver on slightly different (some
times rectangular) matrices. The details of the general low-
rank solver are in the Supplemental Material.

Step 1: Obtain Ad =

Pd
i=1

�ivivT
i , a rank-d approxima-

tion of A. Here, �i is the i-th largest in magnitude eigen-
value and vi the corresponding eigenvector.

Step 2: Use Ad to obtain O(nd
) candidate subgraphs. For

any matrix A we can solve DBkS by exhaustively checking
all

�
n
k

�
2 pairs (X ,Y) of k-subsets of vertices. Surprisingly,

if we want to find the X ,Y pairs that maximize 1T
XAd1Y ,

i.e., the bilinear problem on the rank-d matrix Ad, then we
show that only O(nd

) candidate pairs need to be examined.

Step 3: Check all k-set pairs {X ,Y} obtained by Step 2,
and output the one with the largest density on the low-rank
weighted adjacency Ad.

In the next section, we derive the constant rank-solver us-
ing two key facts. First, for each fixed vertex set Y , we
show that it is easy to find the optimal set X that maximizes
1T
XAd1Y for that Y . Since this turns out to be easy, then

the challenge is to find the number of different vertex sets
Y that we need to check. Do we need to exhaustively check
all

�
n
k

�
k-sets Y? We show that this question is equivalent

Finding Dense Subgraphs via Low-Rank Bilinear Optimization

to searching the span of the first d eigenvectors of A, and
collecting in a set Sd the top-k coordinates of all vectors
in that d-dimensional space. By modifying the Spanno-
gram theory of (Karystinos & Liavas, 2010; Asteris et al.,
2014), we show how this set has size O(nd

) and can be
constructed in time O(nd+1

). This will imply that DBkS

can be solved in time O(nd+1

) on Ad.

Computational Complexity. The worst-case time com-
plexity of the constant-rank DBkS solver on Ad is O(Td+

nd+1

), where Td is the time to compute the first d eigenvec-
tors of A. Under conditions satisfied by many real world
graphs, we show that we can modify our algorithm and ob-
tain a randomized one that succeeds with probability � and
is ✏ far from the optimal rank-d solver, while its complex-
ity reduces to nearly linear in the number of edges m of the
graph G: O

�
m · log n+

n
✏d

· log
�

1

✏·�
��

.

Algorithm 2 lowrankDBkS(k, d, A)
1: [Vd,⇤d] = EVD(A, d)
2: Sd = Spannogram(k,Vd)

3: {Xd,Yd} = argmax|X|=k maxY2Sd 1T
XVd⇤dV

T
d 1Y

4: Output: {Xd,Yd}
1: Spannogram(k, Vd)

2: Sd = {topk(v) : v 2 span(v
1

, . . . ,vd)}
3: Output: Sd.

2.2. Approximation Guarantees

We approximate DBkS by finding a solution to the constant
rank problem

max

|X |=k
max

|Y|=k
1T
XAd1Y .

We output a pair of vertex sets, Xd,Yd, which we refer to
as the rank-d optimal solution, that has density

opt

B
d = (

1/k) · 1T
Xd

A1Yd .

Our approximation guarantees measure how far opt

B
d is

from opt

B, the optimal density for DBkS. Our bounds
capture a simple core idea: the loss in our approximation
comes due to solving the problem on Ad instead of solving
it on the full rank matrix A. This loss is quantified in the
next lemma. The detailed proofs of the following results
are in the supplemental material.
Lemma 2. For any matrix A: opt

B
d � opt

B � 2 · |�d+1

|,
where �i is the ith largest eigenvalue of A.

Using an appropriate pre-processing step and then running
Algorithm 2 as a subroutine on a sub-sampled and low-rank
version of A, we output a k-subgraph Zd that has density
optd. By essentially combining Lemmata 1 and 2 we obtain
the following bounds.

Theorem 1. Algorithm 1 outputs in time O
⇣

nd+2·logn
�

⌘
a

k-subgraph that has density

optd = den(Zd) � 0.5 · (1� �) · opt� 2 · |�d+1

|,

with probability 1� 1

n , where �i is the ith largest, in mag-
nitude, eigenvalue of the adjacency matrix of the graph.
If the graph is bipartite, or if the largest d eigenvalues of
the graph are positive, then our algorithm runs in time
O
�
nd+1

+ Td

�
, and outputs a k-subgraph with density

optd � opt � 2 · |�d+1

|, where Td is the time to com-
pute the d leading eigenvectors of the adjacency matrix of
the graph.

Using bounds on eigenvalues of graphs, Theorem 1 trans-
lates to the following approximation guarantees.

Theorem 2. If the densest-k-subgraph contains a constant
fraction of all the edges, and k = ⇥(

p
E), then we can

approximate DkS within a factor of 2+ ✏, in time nO(1/✏2).
If additionally the graph is bipartite, then we can approxi-
mate DkS within a factor of 1 + ✏.

Remark 1. The above results are similar to the 1+ ✏ ratio
of (Arora et al., 1995), which holds for graphs where the
densest-k-subgraph contains ⌦(n2

) edges.

Graph dependent bounds. For any given graph, after
running our constant rank solver on Ad, we can compute
an upper bound to the optimal density opt via bounds on
opt

B, since it is easy to see that optB � opt. Our graph-
dependent bound is the minimum of three upper bounds on
the unknown optimal density:

Lemma 3. The optimal density of DkS can be bounded as

opt min

�
(

1/k) · 1T
Xd

Ad1Yd + |�d+1

|, k � 1, �
1

.

In our experimental section, we plot the above upper
bounds, and show that for most tested graphs our algorithm
performs provably within 70% from the upper bound on the
optimal density. These are far stronger guarantees than the
best available a priori bounds.

3. The Spannogram Framework
In this section, we describe how our constant rank
solver operates by examining candidate vectors in a low-
dimensional span of A.

Here, we work on a rank-d matrix Ad = v
1

uT
1

+ . . . +
vduT

d where ui = �ivi, and we wish to solve:

max

|X |=|Y|=k
1T
X
�
v
1

uT
1

+ . . .+ vdu
T
d

�
1Y . (1)

Observe that we can rewrite (1) in the following way

max

|X|=|Y|=k
1T
X

v
1

· (uT
1

1Y)| {z }
c1

+ . . .+ vd · (uT
d 1Y)| {z }
cd

�

= max

|Y|=k

✓
max

|X|=k
1T
XvY

◆
, (2)

Finding Dense Subgraphs via Low-Rank Bilinear Optimization

where vY = v
1

· c
1

+ . . . + vd · cd is an n-dimensional
vector generated by the d-dimensional subspace spanned
by v

1

, . . . ,vd.

We will now make a key observation: for every fixed vector
vY in (2), the index set X that maximizes 1T

XvY can be eas-
ily computed. It is not hard to see that for any fixed vector
vY , the k-subset X that maximizes 1T

XvY =

P
i2X [vY]i

corresponds the set of k largest signed coordinates of vY .
That is, the locally optimal k-set is topk(vY).

We now wish to find all possible locally optimal sets X . If
we could possibly check all vectors vY , then we could find
all locally optimal index sets topk(vY).

Let us denote as Sd the set of all k-subsets X that are the
optimal solutions of the inner maximization of (2) for any
vector v in the span of v

1

, . . . ,vd

Sd = {topk([v1

· c
1

+ . . .+ vd · cd]) : c1, . . . , cd 2 R}.

Clearly, this set contains all possible locally optimal X sets
of the form topk(vY). Therefore, we can rewrite DBkS on
Ad as

max

|Y|=k
max

X2Sd

1T
XAd1Y . (3)

The above problem can now be solved in the following
way: for every set X 2 Sd find the locally optimal set Y
that maximizes 1T

XAd1Y , that is, this will be topk(Ad1X).
Then, we simply need to test all such X ,Y pairs on Ad and
keep the optimizer.

Due to the above, the problem of solving DBkS on Ad

is equivalent to constructing the set of k-supports Sd, and
then finding the optimal solution in that set. How large can
Sd be and can we construct it in polynomial time? Ini-
tially one could expect that the set Sd could have size as
big as

�
n
k

�
. Instead, we show that the set Sd will be tremen-

dously smaller, as in (Karystinos & Liavas, 2010) and (As-
teris et al., 2014).
Lemma 4. The set Sd has size at most O(nd

) and can be
built in time O(nd+1

) using Algorithm 2.

3.1. Constructing the set Sd

We build up to the general rank-d algorithm by explaining
special cases that are easier to understand.

Rank-1 case. We start with the d = 1 case, where we
have S

1

= {topk(c1 · v1

) : c
1

2 R}. It is not hard to see
that there are only two supports to include in S

1

: topk(v1

)

and topk(�v
1

). These two sets can be constructed in time
in time O(n), via a partial sorting and selection algorithm
(Cormen et al., 2001). Hence, S

1

has size 2 and can be
constructed in time O(n).

Rank-2 case. This is the first non-trivial d which exhibits
the details of the Spannogram algorithm.

Let an auxiliary angle � 2 � = [0, ⇡) and let

c = [

c1
c2] =

h
sin�
cos�

i
.3

Then, we re-express c
1

· v
1

+ c
2

· v
2

in terms of � as

v(�) = sin� · v
1

+ cos� · v
2

. (4)

This means that we can rewrite the set S
2

as:

S
2

= {topk(±(v(�)),� 2 [0,⇡)}.

Observe that each element of v(�) is a continuous spec-
tral curve in �: [v(�)]i = [v

1

]i sin(�) + [v
2

]i cos(�).

Consequently, the top/bottom-k supports of v(�) (i.e.,
topk(±v(�))) are themselves a function of �. How can
we find all possible supports?

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

φ

[v(φ)]1
[v(φ)]2
[v(φ)]3
[v(φ)]4
[v(φ)]5

Figure 1. A rank d = 2 spannogram for n = 5 and two random
vectors v

1

,v
2

. Observe that every two curves intersect in exactly
one point. These intersection points define intervals in which a
top-k set is invariant.

The Spannogram. In Fig. 1, we draw an example plot
of five curves [v(�)]i, i = 1, . . . , 5, which we call a
spannogram. From the spannogram in Fig. 1, we can
see that the continuity of these sinusoidal curves implies
a “local invariance” property of the top/bottom k supports
topk(±v(�)), in a small neighborhood around a fixed �.
So, when does a top/bottom-k support change? The index
sets topk(±v(�)) change if and only if two curves cross,
i.e., when the ordering of two elements [v(�)]i,[v(�)]j
changes.

Finding all supports: There are n curves and each pair in-
tersects at exactly one point in the � domain4. Therefore,
there are exactly

�
n
2

�
intersection points. These

�
n
2

�
inter-

section points define
�
n
2

�
+ 1 intervals. Within an interval

the top/bottom k supports topk(±v(�)) remain the same.
Hence, it is now clear that |S

2

| 2

�
n
2

�
= O(n2

).

A way to find all supports in S
2

is to compute the v(�i,j)

vectors on the intersection points of two curves i, j, and
3Observe that when we scan �, the vectors c,�c express all

possible unit norm vectors on the circle.
4Here we assume that the curves are in general position. This

can be always accomplished by infinitesimally perturbing the
curves as in (Papailiopoulos et al., 2013).

Finding Dense Subgraphs via Low-Rank Bilinear Optimization

then the supports in the two adjacent intervals of such in-
tersection point. The v(�i,j) vector on an intersection point
of two curves i and j can be easily computed by first solv-
ing a set of linear equations [v(�i,j)]i = [v(�i,j)]j)
(ei � ej)T [v1

v
2

]ci,j = 0
2⇥1

for the unknown vector
ci,j , where ei is the i-th column of the n ⇥ n identity ma-
trix, i.e., ci,j = nullspace((ei � ej)T [v1

v
2

]). Then, we
compute v(�i,j) = [v

1

v
2

]ci,j . Further details on break-
ing ties in topk(v(�i,j)) can be found in the supplemental
material.

Computational cost: We have
�
n
2

�
intersection points,

where we calculate the top/bottom k supports for each
v(�i,j). The top/bottom k elements of every v(�i,j) can
be computed in time O(n) using a partial sorting and se-
lection algorithm (Cormen et al., 2001). Since we perform
this routine a total of O(

�
n
2

�
) times, the total complexity of

our rank-2 algorithm is O(n3

).
General Rank-d case. The algorithm generalizes to arbi-
trary dimension d, as we show in the supplemental mate-
rial; its pseudo-code is given as Algorithm 3.
Remark 2. Observe that the computation of each loop un-
der line 2 of Algorithm 3 can be computed in parallel. This
will allow us to parallelize the Spannogram.

Algorithm 3 Spannogram(k,Vd)
1: Sd = ;
2: for all (i

1

, . . . , id) 2 {1, . . . , n}d and s 2 {�1, 1} do

3: c = s · nullspace

0

@

2

4
[(Vd]i1,:�[Vd]i2,:

...
[Vd]i1,:�[Vd]id,:

3

5

1

A

4: v = VT
d c

5: S = topk(v)
6: T = S � {i

1

, . . . , id}
7: for all

�
d

k�|T |
�

subsets J of (i
1

, . . . , id) do
8: Sd = Sd

S
(T [J)

9: end for
10: end for
11: Output: Sd.

3.2. An approximate Sd in nearly-linear time

In our exact solver, we solve DBkS on Ad in time
O(nd+1

). Surprisingly, when Ad has only positive eigen-
values, then we can tightly approximate DBkS on Ad in
nearly linear time.
Theorem 3. Let the d largest eigenvalues of the graph be
positive, and let the d-th,(d + 1)-st largest have constant

ratio:
��� �d
�d+1

��� � C. Then, we can output, with probability

1 � �, a k-subgraph with density (1� ✏)
2 · optd, in time

O
�
m · log n+

n
✏d

· log
�

1

✏·�
��

.
The main idea is that instead of checking all O(nd

) possi-
ble k sets in Sd, we can approximately solve the problem
by randomly sampling M = O

�
✏�d · log

�
1

✏·�
��

vectors
in the span of v

1

, . . . ,vd. Our proof is based on the fact
that we can “approximate” the surface of the d-dimensional

sphere with M randomly sampled vectors from the span of
v
1

, . . . ,vd. This allows us to identify, probability 1 � �,
near-optimal candidates in Sd. The modified algorithm is
very simple and is given below; its analysis can be found in
the supplemental material.

Algorithm 4 Spannogram approx(k, Vd,⇤d)

1: for i = 1 : O
�
✏�d · log

�
1

✏·�
��

do
2: v = (⇤1/2

d ·Vd)
T · randn(d, 1)

3: Sd = Sd [topk(v) [topk(�v)
4: end for
5: Output: Sd.

4. Scaling up
In this section, we present the two key scalability features
that allow us to scale up to graphs with billions of edges.

4.1. Vertex Sparsification
We introduce a very simple and efficient pre-processing
step for discarding vertices that are unlikely to appear in
a top k set in Sd. This step runs after we compute Ad and
uses the leverage score, `i =

Pd
j=1

[Vd]
2

i,j |�j |, of the i-th
vertex to decide whether we will discard it or not. We show
in the supplemental material, that by appropriately setting a
threshold, we can guarantee a provable bound on the error
introduced. In our experimental results, the above elimina-
tion is able to reduce n to approximately n̂ ⇡ 10 · k for
a provably small additive error, even for data sets where
n = 10

8.

4.2. MapReduce Implementation
A MapReduce implementation allows scaling out to a large
number of compute nodes that can work in parallel. The
reader can refer to (Meng & Mahoney, 2013; Bahmani
et al., 2012)) for a comprehensive treatment of the MapRe-
duce paradigm. In short, the Hadoop/MapReduce infras-
tructure stores the input graph as a distributed file spread
across multiple machines; it provides a tuple streaming ab-
straction, where each map and reduce function receives
and emits tuples as (key, value) pairs. The role of the keys
is to ensure information aggregation: all the tuples with the
same key are processed by the same reducer.

For the spectral decomposition step of our scheme we
design a simple implementation of the power method in
MapReduce. The details are beyond the scope of this work;
high-performance implementations are already available in
the literature, e.g. (Lin & Schatz, 2010). We instead focus
on the novel implementation of the Spannogram.

Our MapReduce implementation of the rank-2 Spanno-
gram is outlined in Algorithm 4. The Mapper is responsible
for the duplication and dissemination of the eigenvectors,
V

2

,U
2

= V
2

⇤
2

, to all reducers. Line 3 emits the j-th
row of V

2

and U
2

once for every node i. Since i is used as
the key, this ensures that every reducer receives V

2

,U
2

in

Finding Dense Subgraphs via Low-Rank Bilinear Optimization

their entirety.

From the breakdown of the Spannogram in Section 3, it is
understood that, for the rank-2 case, it suffices to solve a
simple system of equations for every pair of nodes. The
Reducer for node i receives the full eigenvectors V

2

,U
2

and is responsible for solving the problem for every pair
(i, j), where j > i. Then, Line 6 emits the best candidate
computed at Reducer i. A trivial final step, not outlined
here, collects all n2 candidate sets and keeps the best one
as the final solution.

The basic outline in Algorithm 4 comes with heavy com-
munication needs and was chosen here for ease of exposi-
tion. The more efficient version that we implement, does
not replicate V

2

,U
2

n times. Instead, the number of re-
ducers – say R = n↵ – is fine-tuned to the capabilities of
the cluster. The mappers emit V

2

,U
2

R times, once for
every reducer. Then, reducer r is responsible for solving
for node pairs (i, j), where i ⌘ r (mod R) and j > i. De-
pending on the performance bottleneck, different choices
for ↵ are more appropriate. We divide the construction of
the O(n2

) candidate sets in S
2

to O(n↵
) reducers and each

of them computes O(n2�↵
) candidate subgraphs. The to-

tal communication cost for this parallelization scheme is
O(n1+↵

): n↵ reducers need to have access to the entire
V

2

,U
2

that has 2 · 2 · n entries. Moreover, the total com-
putation cost for each reducer is O(n3�↵

).

Algorithm 5 SpannogramMR(V
2

,U
2

)
1: Map({[V

2

]j,:, [U2

]j,:, j}):
2: for i = 1 : n do
3: emit: hi, {[V

2

]j,1, [V2

]j,2, [U2

]j,1, [U2

]j,2, j}i
4: end for
1: Reducei(hi, {[V2

]j,1, [V2

]j,2, [U2

]j,1, [U2

]j,2, j}i , 8j):
2: for each j � i+ 1 do
3: c = nullspace([V]i,: � [V]j,:)

4: [denj , {Xj ,Yj}] = max

|Y|=k,X2topk(±V2c)
1XV

2

UT
2

1Y

5: end for
6: emit:

⌦
i, {Xi,Yi} = maxj 1XjV2

UT
2

1Yj

↵

5. Experimental Evaluation
We experimentally evaluate the performance of our al-
gorithm and compare it to the truncated power method
(TPower) of (Yuan & Zhang, 2011), a greedy algorithm by
(Feige et al., 2001) (GFeige) and another greedy algorithm
by (Ravi et al., 1994) (GRavi). We performed experiments
on synthetic dense subgraphs and also massive real graphs
from multiple sources. In all experiments we compare the
density of the subgraph obtained by the Spannogram to the
density of the output subgraphs given by the other algo-
rithms.

Our experiments illustrate three key points: (1) for all
tested graphs, our method outperforms – some times signif-
icantly – all other algorithms compared; (2) our method is

104 106 108 10100

200

400

600

800

1000
G

(

n, 1
2 , k = 3

√
n
)

S
u
b
g
ra

p
h
d
en

si
ty

|E |

G-Feige
G-Ravi
TPower
Spannogram

(a) Densities of the recovered
subgraph v.s. the expected
number of edges.

0 100 200 300 400 500 600

240

400

800

Total time in minutes

N
u
m
b
er

o
f
co

re
s

Running times on 2.5 Billion Edges

Power method
Spannogram

(b) Running times of the
Spannogram and power itera-
tion for two top eigenvectors.

Figure 2. Planted clique experiments for random graphs.

highly scalable, allowing us to solve far larger problem in-
stances; (3) our data-dependent upper bound in many cases
provide a certificate of near-optimality, far more accurate
and useful, than what a priori bounds are able to do.

Planted clique. We first consider the so-called (and now
much studied) Planted Clique problem: we seek to find a
clique of size k that has been planted in a graph where all
other edges are drawn independently with probability 1/2.
We scale our randomized experiments from n = 100 up to
10

5. In all cases we set the size of the clique to k = 3 ·
p
n

– close to what is believed to be the critical computabil-
ity threshold. In all our experiments, GRavi, TPower, and
the Spannogram successfully recovered the hidden clique.
However, as can be seen in Fig. 2, the Spannogram algo-
rithm is the only one able to scale up to n = 10

5– a mas-
sive dense graph with about 2.5 billion edges. The reason is
that this graph does not fit in the main memory of one ma-
chine and caused all centralized algorithms to crash after
several hours. Our MapReduce implementation scales out
smoothly, since it splits the problem over multiple smaller
problems solved in parallel.

Specifically, we used Amazon Wireless Services’ Elastic
MapReduce framework (aws). We implemented our map
and reduce functions in Python and used the MRJob class
(mrj). For our biggest experiments we used a 100-machine
strong cluster, consisting of m1.xlarge AWS instances (a
total of 800 cores).

The running times of our experiments over MapReduce are
shown in Fig. 2(b). The main bottleneck is the computation
of the first two eigenvectors which is performed by repeat-
ing the power iteration for few (typically 4) iterations. This
step is not the emphasis of this work and has not been op-
timized. The Spannogram algorithm is significantly faster
and the benefits of parallelization are clear since it is CPU
intensive.

In principle, the other algorithms could be also imple-
mented over MapReduce, but that requires non-trivial dis-

Finding Dense Subgraphs via Low-Rank Bilinear Optimization

Figure 3. Subgraph density vs. subgraph size (k). We compare our DkS Spannogram algorithm with the algorithms from (Feige et al.,
2001) (GFeige), (Ravi et al., 1994) (GRavi), and (Yuan & Zhang, 2011) (tPM). Across all subgraph sizes k, we obtain higher subgraph
densities using Spannograms of rank d = 2 or 5. We also obtain a provable data-dependent upper bound (solid black line) on the
objective. This proves that for these data sets, our algorithm is typically within 80% from optimality, for all sizes up to k = 250, and
indeed for small subgraph sizes we find a clique which is clearly optimal. Further experiments on multiple other data sets are shown in
the supplemental material.

tributed algorithm design. As is well-known, e.g., (Meng
& Mahoney, 2013), implementing iterative machine learn-
ing algorithms over MapReduce can be a significant task
and schemes which perform worse in standard metrics can
be highly preferable for this parallel framework. Care-
ful MapReduce algorithmic design is needed especially for
dense graphs like the one in the hidden clique problem.

Real Datasets. Next, we demonstrate our method’s per-
formance in real datasets and also illustrate the power of
our data-dependent bounds. We run experiments on large
graphs from different applications and our findings are pre-
sented in Fig. 3. The figure compares the density achieved
by the Spannogram algorithm for rank 1, 2 and 5 to the
performance of GFeige, GRavi and TPower. The figure
shows that the rank-2 and rank-5 versions of our algorithm,
improve – sometimes significantly – over the other tech-
niques. Our novel data-dependent upper-bound shows that
our results on these data sets are provably near-optimal.

The experiments are performed for two community graphs
(com-LiveJournal and com-DBLP), a web graph (web-
NotreDame), and a subset of the Facebook graph. A larger
set of experiments is included in the supplemental material.

Note that the largest graph in Figure 3 contains no more
than 35 million edges; these cases fit in the main memory
of a single machine and the running times are presented
in the supplemental material, all performed on a standard
Macbook Pro laptop using Matlab. In summary, rank-2
took less than one second for all these graphs while prior
work methods took approximately the same time, up to a
few seconds. Rank-1 was significantly faster than all other
methods in all tested graphs and took fractions of a sec-
ond. Rank-5 took up to 1000 seconds for the largest graph
(LiveJournal).

We conclude that our algorithm is an efficient option for
finding dense subgraphs. Different rank choices give a
tradeoff between accuracy and performance while the par-
allel nature allows scalability when needed. Further, our
theoretical upper-bound can be useful for practitioners in-
vestigating dense structures in large graphs.

6. Acknowledgments
The authors would like to acknowledge support from NSF
grants CCF 1344364, CCF 1344179, DARPA XDATA, and
research gifts by Google, Docomo and Microsoft.

Finding Dense Subgraphs via Low-Rank Bilinear Optimization

References
Amazon Web Services, Elastic Map Reduce. URL http://

aws.amazon.com/elasticmapreduce/.

MRJob. URL http://pythonhosted.org/mrjob/.

Alon, Noga, Lee, Troy, Shraibman, Adi, and Vempala, Santosh.
The approximate rank of a matrix and its algorithmic applica-
tions: approximate rank. In Proceedings of the 45th annual
ACM symposium on Symposium on theory of computing, pp.
675–684. ACM, 2013.

Ames, Brendan PW. Convex relaxation for the planted clique,
biclique, and clustering problems. PhD thesis, University of
Waterloo, 2011.

Arora, Sanjeev, Karger, David, and Karpinski, Marek. Polyno-
mial time approximation schemes for dense instances of np-
hard problems. In STOC, 1995.

Asahiro, Yuichi, Iwama, Kazuo, Tamaki, Hisao, and Tokuyama,
Takeshi. Greedily finding a dense subgraph. Journal of Algo-
rithms, 34(2):203–221, 2000.

Asteris, Megasthenis, Papailiopoulos, Dimitris S, and Karystinos,
George N. The sparse principal component of a constant-rank
matrix. IEEE Trans. IT, 60(4):228–2290, 2014.

Bahmani, Bahman, Kumar, Ravi, and Vassilvitskii, Sergei. Dens-
est subgraph in streaming and mapreduce. Proceedings of the
VLDB Endowment, 5(5):454–465, 2012.

Bhaskara, Aditya, Charikar, Moses, Chlamtac, Eden, Feige, Uriel,
and Vijayaraghavan, Aravindan. Detecting high log-densities:
an O(n1/4

) approximation for densest k-subgraph. In STOC,
2010.

Boutsidis, Christos, Mahoney, Michael W, and Drineas, Petros.
An improved approximation algorithm for the column subset
selection problem. In Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 968–977.
Society for Industrial and Applied Mathematics, 2009.

Cormen, Thomas H, Leiserson, Charles E, Rivest, Ronald L, and
Stein, Clifford. Introduction to algorithms. MIT press, 2001.

d’Aspremont, Alexandre et al. Weak recovery conditions using
graph partitioning bounds. 2010.

Dourisboure, Yon, Geraci, Filippo, and Pellegrini, Marco. Ex-
traction and classification of dense communities in the web. In
WWW, 2007.

Feige, Uriel and Langberg, Michael. Approximation algorithms
for maximization problems arising in graph partitioning. Jour-
nal of Algorithms, 41(2):174–211, 2001.

Feige, Uriel, Peleg, David, and Kortsarz, Guy. The dense k-
subgraph problem. Algorithmica, 29(3):410–421, 2001.

Gibson, David, Kumar, Ravi, and Tomkins, Andrew. Discovering
large dense subgraphs in massive graphs. In PVLDB, 2005.

Hu, Haiyan, Yan, Xifeng, Huang, Yu, Han, Jiawei, and Zhou,
Xianghong Jasmine. Mining coherent dense subgraphs across
massive biological networks for functional discovery. Bioin-
formatics, 21(suppl 1):i213–i221, 2005.

Jethava, Vinay, Martinsson, Anders, Bhattacharyya, Chiranjib,
and Dubhashi, Devdatt. The lovasz theta function, svms and
finding large dense subgraphs. In NIPS, 2012.

Karystinos, George N and Liavas, Athanasios P. Efficient com-
putation of the binary vector that maximizes a rank-deficient
quadratic form. IEEE Trans. IT, 56(7):3581–3593, 2010.

Khot, Subhash. Ruling out ptas for graph min-bisection, densest
subgraph and bipartite clique. In FOCS, 2004.

Lin, Jimmy and Schatz, Michael. Design patterns for efficient
graph algorithms in mapreduce. In Proceedings of the Eighth
Workshop on Mining and Learning with Graphs, pp. 78–85.
ACM, 2010.

Mahoney, Michael W and Drineas, Petros. Cur matrix decompo-
sitions for improved data analysis. Proceedings of the National
Academy of Sciences, 106(3):697–702, 2009.

Meng, Xiangrui and Mahoney, Michael. Robust regression on
mapreduce. In Proceedings of The 30th International Confer-
ence on Machine Learning, pp. 888–896, 2013.

Miller, B, Bliss, N, and Wolfe, P. Subgraph detection using eigen-
vector l1 norms. In NIPS, 2010.

Papailiopoulos, Dimitris, Dimakis, Alexandros, and Ko-
rokythakis, Stavros. Sparse pca through low-rank approxima-
tions. In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pp. 747–755, 2013.

Ravi, Sekharipuram S, Rosenkrantz, Daniel J, and Tayi, Giri K.
Heuristic and special case algorithms for dispersion problems.
Operations Research, 42(2):299–310, 1994.

Saha, Barna, Hoch, Allison, Khuller, Samir, Raschid, Louiqa, and
Zhang, Xiao-Ning. Dense subgraphs with restrictions and ap-
plications to gene annotation graphs. In Research in Computa-
tional Molecular Biology, pp. 456–472. Springer, 2010.

Srivastav, Anand and Wolf, Katja. Finding dense subgraphs with
semidefinite programming. Springer, 1998.

Suzuki, Akiko and Tokuyama, Takeshi. Dense subgraph problems
with output-density conditions. In Algorithms and Computa-
tion, pp. 266–276. Springer, 2005.

Yuan, Xiao-Tong and Zhang, Tong. Truncated power method for
sparse eigenvalue problems. arXiv preprint arXiv:1112.2679,
2011.

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://pythonhosted.org/mrjob/

Supplemental Material for:
Finding Dense Subgraphs via Low-Rank Bilinear Optimization

1. Proof of Lemma 4: Building the set Sd for arbitrary d-dimensional subspaces
In our general case, we solve DBkS on

Ad = VdU
T
d =

d
X

i=1

viu
T
i

where
Vd = [v

1

. . . vd] and Ud = [�
1

· v
1

. . . �d · vd] .

Solving the problem on Ad is equivalent to answering the following combinatorial question:

“how many different top-k supports are there in a d-dimensional subspace: topk(c1 · v1 + . . .+ cd · vd)?”

Here we define d� 1 auxiliary angles �
1

, . . . ,�d�1

2 � = [0, ⇡) and we rewrite the coefficients c
1

, . . . , cd as

c =

2

6

4

c
1

...
cd

3

7

5

=

2

6

6

6

6

6

4

sin�
1

cos�
1

sin�
2

...
cos�

1

cos�
2

. . . sin�d�1

cos�
1

cos�
2

. . . cos�d�1

3

7

7

7

7

7

5

.

Clearly we can express every vector in the span of Vd as a linear combination c
1

· v
1

+ . . .+ cd · vd in terms of �:

v(�
1

, . . . ,�d�1

) = (sin�
1

) · v
1

+ (cos�
1

sin�
2

) · v
2

+ . . .+ (cos�
1

cos�
2

. . . cos�d�1

) · vd. (1)

For notation simplicity let us define a vector that contains all d� 1 auxiliary phase variables

' = [�
1

, . . . ,�d�1

].

We can use the above derivations to rewrite the set Sd that contains all top k coordinates in the span of Vd as:

Sd = {topk(c1 · v1

+ . . .+ cd · vd) : c1, . . . , cd 2 R}
= {topk ± (v(')) : ' 2 �

d�1}
= {topk ± ((sin�

1

) · v
1

+ (cos�
1

sin�
2

) · v
2

+ . . .+ (cos�
1

cos�
2

. . . cos�d�1

) · vd),' 2 �

d�1}

Observe again that each element of v(') is a continuous spectral curve in the d� 1 auxiliary variables:

[v(')]i = (sin�
1

) · [v
1

]i + (cos�
1

sin�
2

) · [v
2

]i + . . .+ (cos�
1

cos�
2

. . . cos�d�1

) · [vd]i.

Consequently, the top/bottom-k supports of v(') (i.e., topk(±v('))) are themselves a function of the d� 1 variables in '.
How can we find all possible supports?

Remark 1. In our general problem we wish to find all top and bottom k coordinates that appear in a d-dimensional

subspace. In the following discussion, for simplicity we handle the top k coordinates problem. Finding the bottom k
trivially follows, by just checking the smallest k coordinates of each vector c

1

· v
1

+ . . .+ cd · vd that we construct using

our algorithm.

Title Suppressed Due to Excessive Size

1.1. Ranking regions for a single coordinate [v(')]i

We now show that for each single coordinate [v(')]i, we can partition �

d�1 in regions, wherein the ith coordinate [v(')]i
retains the same ranking relative to the other n� 1 coordinates in the vector v(').

Let us first consider for simplicity [v(')]
1

. We aim to find all values of ' where [v(')]
1

is in one of the the k largest
coordinates of v('). We observe that this region can be characterized by using n boundary tests:

[v(')]
1

? [v(')]
2

[v(')]
1

? [v(')]
3

...
[v(')]

1

? [v(')]n

Each of the above boundary tests defines a bounding curve that partitions the �

d�1 domain. We refer to this bounding
curve as B

1,j(') : �
d�1 7! �

d�2. A B
1,j(') curve partitions � and defines two regions of ' angles:

R
1>j = {' 2 �

d�1

: [v(')]
1

> [v(')]j} and R
1j = {' 2 �

d�1

: [v(')]
1

 [v(')]j} (2)

such that R
1>j [R

1j = �

d�1.

Observe that these n� 1 curves B
1,1('), . . . ,B1,n(') partition � in disjoint cells, C1

1

, . . . , C1

T , such that

T
[

i=1

C1

i = �

d�1.

Within each cell C1

i , the first coordinate [v(')]
1

retains a fixed ranking relative to the rest of the elements in v('), e.g., for
a specific cell it might be the largest element, and in another cell it might be the 10th smallest, etc. This happens because
for all values of ' in a single cell, the respective ordering [v(')]

1

? [v(')]
2

, . . . , [v(')]
1

? [v(')]n remains the same.

If we have access to a single point, say '
0

, that belongs to a specific cell, say C1

j , then we can calculate [v('
0

)] and find the
ranking of the first coordinate [v(')]

1

, that remains invariant for all ' 2 C1

j . Hence, if we visit all these cells, then we can
find all possible rankings that the first coordinate [v(')]

1

takes in the d-dimensional span of v
1

, . . . ,vd. In the following
subsections, we show that the number of these cells is bounded by T 2

d
�

n�1

d�1

�

.

Observe that each bounding curve B
1,i(') has a one-to-one correspondence to an equation [v(')]

1

= [v(')]j , which is
linear in c:

[v(')]
1

= [v(')]j) eT
1

Vdc� eTi Vdc = 0) (e
1

� ej)
TVdc = 0. (3)

Due to their linear characterization with respect to c, it is easy to see that each (d� 1)-tuple of bounding curves intersects
on a single point in �

d�1:1

[v(')]1 = [v(')]i1
[v(')]1 = [v(')]i2

...
[v(')]1 = [v(')]id�1

)

(e1 � ei1)
TVdc = 0

(e1 � ei2)
TVdc = 0

...
(e1 � eid�1)

TVdc = 0

)

2

6664

(e1 � ei1)
T

(e1 � ei2)
T

...
(e1 � eid�1)

T

3

7775
Vdc = 0(d�1)⇥1.

Let us denote the solution of the above linear inverse problem as c
1,i1,...,id�1 . We refer to c

1,i1,...,id�1 as an intersection
vector. For each intersection vector c

1,i1,...,id�1 , we can compute its polar expression and solve for the angles ' that
generate it. These d � 1 input angles correspond exactly to the intersection point of d � 1 curves specified by the above
d�1 equations. We denote these d�1 angles that generate c

1,i1,...,id�1 , as '
1,i1,...,id�1 which we refer to as the intersection

point of the d� 1 curves B
1,i1('), . . . ,B1,id�1(').

Since, the '
1,i1,...,id�1 intersection points are defined for every d � 1 curves, the total number of intersection points is

�

n�1

d�1

�

. In the following subsections, we show how we can visit all cells by just examining these intersection points.

We proceed to show that if we visit the adjacent cells of the intersection points defined for all coordinates, then we can find
all top-k supports in the span of Vd.

1as a matter of fact, due to the sign ambiguity of the solution, this corresponds to two intersection points. However, the following
discussion omits this technical detail for simplicity.

Title Suppressed Due to Excessive Size

1.2. Visiting all cells = finding all top k supports

Our goal is to find all top-k supports that can appear in the span of Vd. To do so, it is sufficient to visit the cells where
[v(')]

1

is the k-th largest coordinate, then the cells where [v(')]
2

is the k-largest, and so on. Within such cells, one
coordinate (say [v(')]i) remains always the k-th largest, while the identities of the bottom n � k coordinates remain the
same. This means that in such a cell, we have that

[v(')]i � [v(')]j1 , . . . , [v(')]i � [v(')]jn�k

for all ' in that cell and some scecific n� k other coordinates indexed by j
1

, . . . , jn�k. Hence, although the sorting of the
top k�1 elements might change in that cell (i.e., the first might become the second largest, and vice versa), the coordinates
that participate in the top k � 1 support will be the same, while at the same time the k-th largest will be [v(')]i.

Hence, for each coordinate [v(')]i, we need to visit the cells wherein it is the k-th largest. We do this by examining all cells
wherein [v(')]i retains a fixed ranking. Visiting all these cells (T for each coordinate), is possible by visiting all n ·

�

n�1

d�1

�

intersection points of Bi,j(') curves as defined earlier. Since we know that each cell is adjacent to at least 1 intersection
point, then at each of these points we visit all adjacent cells. For each cell that we visit, we compute the support of the
largest k coordinates of a vector v('

0

) with a '
0

that lies in that cell. We include this top k index set in Sd and carry the
same procedure for all cells. Since we visit all coordinates and all their adjacent cells, this means that we visit all cells Ci

j .
This means that this procedure will construct all possible supports in

Sd = {topk(c1 · v1

+ . . .+ cd · vd) : c1, . . . , cd 2 R}

1.3. Constructing the set Sd

To visit all possible cells Ci
j , we now have to check the intersection points, which are obtained by solving the system of

d� 1 equations

[v(')]i1 = [v(')]i2 = . . . = [v(')]id
,[v(')]i1 = [v(')]i2 , . . . , [v(')]i1 = [v(')]id . (4)

We can rewrite the above as
2

6

4

eTi1 � eTi2
...

eTi1 � eTid

3

7

5

Vdc = 0
(d�1)⇥1

(5)

where the solution is the nullspace of the matrix, which has dimension 1.

To explore all possible candidate vectors, we need to visit all cells. To do so, we compute all possible
�

n
d

�

solution
intersection vectors ci1,...,id . On each intersection vector we need to compute the locally optimal support set

topk (Vdci1,...,id) .

Then observe that the coordinates i
1

, . . . , id of Vdci1,...,id have the same value, since they all satisfy equation (5). Let
us assume that t of them appear in the set topk (Vdci1,...,id). The, finding the top k supports of all neighboring cell is
equivalent to checking all different supports that can be generated by taking all

�

d
t

�

possible t-subsets of the i
1

, . . . , id
coordinates with respect to Vdci1,...,id , while keeping the rest of the elements in Vdci1,...,id in their original ranking, as
computed in topk (Vdci1,...,id) . This, induces at most O(

�

d
d/2

�

) local sortings, i.e., top k supports. All these sortings will
eventually be the elements of the Sd set. The number of all candidate support sets will now be O(

�

d
d/2

��

n�1

d

�

) = O(nd
)

and the total computation complexity is O
�

nd+1

�

, since for each point we compute the top-k support in linear time O(n).

For completeness the algorithm of the spannogram framework that generates Sd is given below.

1.4. Resolution of singularities

In our proofs, we assumed that the curves in v(�) are in general position. This is needed so that no more than d� 1 curves
intersect at a single point. This assumption is equivalent to requiring that every d ⇥ d submatrix of Vd is full rank. This
“general position” requirement can be handled by introducing infinitesimal perturbations in Vd. The details of the analysis
of this method can be found in (Papailiopoulos et al., 2013).

Title Suppressed Due to Excessive Size

Algorithm 1 Spannogram Algorithm for Sd.
1: Sd = ;
2: for all (i1, . . . , id) 2 {1, . . . , n}d and s 2 {�1, 1} do

3: c = s · nullspace

0

@

2

4
[(Vd]i1,:�[Vd]i2,:

...
[Vd]i1,:�[Vd]id,:

3

5

1

A

4: v = VT
d c

5: S = topk(v)
6: T = S � {i1, . . . , id}
7: for all

�
d

k�|T |
�

subsets J of (i1, . . . , id) do
8: Sd = Sd

S
(T [J)

9: end for
10: end for
11: Output: Sd.

2. Proof of Lemma 1: Going from DkS to DBkS and back
In this subsection we show how a ⇢-approximation algorithm for DBkS for arbitrary matrices, implies a 2⇢-approximation
for DkS. Our proof goes through a randomized sampling argument.

Algorithm 2 randombipartite(G)
1: L = ;, R = ;
2: draw n fair coins, and assign each of them to the n vertice of the graph.
3: L = the set of vertices that corresponds to heads
4: R = {1, . . . , n}\L
5: G

B

= G
6: delete all edges in G

B

(L) and G
B

(R)

7: Output: G
B

2.1. Proof of Lemma 1: Randomized Reduction

Let us denote by G(S) the subgraph in G induced by a vertex set S . Let the adjacency matrix of the bipartite graph created
by randombipartite(G) be G

B

A
B

=

0n1⇥n2 B
BT 0n2⇥n1

�

,

where n
1

+ n
2

= n. In the following, we refer to B as the bi-adjacency matrix of the bipartite graph G
B

. Moreover, we
denote as L and R the two disjoint vertex sets of a bipartite graph.

Before we proceed let us state a simple property on the quadratic form of bipartite graphs.

Proposition 1. Let A
B

=

h

0n1⇥n2 B

BT 0n2⇥n1

i

be the adjacency matrix of a bipartite graph. Then, for any subset of vertices

S , we have that S = Sl [Sr, with Sl = S \ L and Sr = S \R. Moreover,

1T
SAB

1S = 2 · 1T
Sl
B1Sr .

Proof. It is easy to see that Sl and Sr are the vertex subsets of S that correspond to either the left or right nodes of the
bipartite graph. Since the two sets are disjoint, we have

1S = 1Sl + 1Sr .

Then, the quadratic forms on A
B

can be equivalently rewritten as bilinear forms on B:

1T
SAB

1S = (1Sl + 1Sr)
T
h

0n1⇥n2 B

BT 0n2⇥n1

i

(1Sl + 1Sr) = 1SrB
T1Sl + 1SlB1Sr = 2 · 1T

Sl
B1Sr .

Title Suppressed Due to Excessive Size

Due to the above, we consider the following bilinear optimization problem

{X
B

,Y
B

} = arg max

|X |=k1

|Y|=k2

k1+k2=k

1T
XB1Y , (6)

where the constraint k
1

+ k
2

= k forces the left and right vertices to induce a k-subgraph. Due to Proposition 1, the
two vertex sets are disjoint, i.e., X

B

\ Y
B

= ;, since the columns and rows of B index two disjoint vertex sets L and R,
respectively.

Let S
B

= X
B

[Y
B

be the k vertices in the union of X
B

and Y
B

. Then, we will relate the density of S
B

on the original graph
G to the bipartite we obtain from randombipartite(G).

Proposition 2. The density of S
B

, the densest k-subgraph of G
B

, on the original graph G, is at least

den(S
B

) =

1T
S
B

A1S
B

k
�

1T
S
B

A
B

1S
B

k
= 2 ·

1T
X

B

B1Y
B

k
.

Proof. The result follows immediately by the nonnegativity of the entries in A, and the fact that A
B

contains a subset of
the entries of A. The last equality follows from Proposition 1.

We will now show that den(S
B

) is at least opt/2, in expectation. We will use this fact to show that, if we solve DBkS on
logn
� graphs independently created using randombipartite(G), and by keeping the best solution among them, then the

extracted k-subgraph has with high probability density opt/(2 + �).

Proposition 3. Let G
B

be the output of randombipartite(G). Then, there exists in G
B

, a k-subgraph that contains

k·opt
2

edges, in expectation.

Proof. First observe that we can represent the edges of G
B

as random variables Xi,j . If (i, j) is not an edge in G, then Xi,j

will be 0 with probability 1. If however (i, j) is an edge in G, then Xi,j is 1, i.e., appears in G
B

, with the same probability
that one of its vertices lands in L, while the second is in R. It is easy to find that this probability is Pr{Xi,j = 1} = 1/2.
Hence,

Xi,j =

⇢

0, if (i, j) not an edge in G,
Z, if (i, j)is an edge in G, (7)

where Z is a Bernoulli(1/2) random variable.

Now let S⇤ denote the vertex set of the densest k-subgraph on the original graph G, that has density den(S⇤) = opt.
Observe that for that subgraph we have

1T
S⇤A1S⇤ =

X

i,j2S⇤

Ai,j = k · opt.

Let A
B

denote the adjacency matrix of the bipartite graph G
B

. Then, we have that the expected quadratic form on the new
adjacency 1T

S⇤
A

B

1S⇤ is:

E
�

1T
S⇤AB

1S⇤

= E

8

<

:

X

i,j2S⇤

Xi,j

9

=

;

= E

8

>

>

<

>

>

:

X

i,j2S⇤
(i,j)2G

Z

9

>

>

=

>

>

;

=

1

2

·
X

i,j2S⇤

Ai,j =
k · opt

2

.

We will now show that if we run randombipartite(G) a total number of 3 log n · log log n times, then with high
probability, at least one G

B

will contain a k-subgraph with density at least 0.5 · opt. This will imply that the densest k
subgraph of G

B

will have density at least 0.5 · opt.

Title Suppressed Due to Excessive Size

Algorithm 3 DkS 2 approx(G, �)
1: for i = 1 :

logn
� do

2: G
B

i
= randombipartite(G)

3: Bi
= biadjacency of G

B

i

4: {X i,Yi} = argmax|X |=k1,|Y|=k2,k1+k2=k 1
T
XBi1Y

5: end for
6: {X

B

,Y
B

} = argmaxi 1T
X i[YiA1X i[Yi

7: Output: S
B

= X
B

[Y
B

Proposition 4. Then, with probability at least 1� 1

n , we have

1T
S
B

A1S
B

� 1� �

2

· opt.

Proof. In this proof we will use the reverse Markov Inequality which states that for any random variable X , such that
X m, then, for any a E{X}, we have

Pr{X a} m� E{X}
m� a

.

Let S⇤ denote the densest k-subgraph for G. Here, our random variable will be the the quadratic form

X = 1T
S⇤A

i
B

1S⇤ .

Due to Proposition 3, we have that E{X} = 0.5 · k · opt. Hence, set m = k · opt and ↵ =

k·opt
2

� � · k·opt
2

to obtain:

Pr

⇢

X k · opt
2

� � · k · opt
2

�

 k · opt� k · opt/2
k · opt� k·opt

2

+ � · k·opt
2

=

1

1 + �

Now, observe that if we want to have with probability 1� 1

n at least one graph GBi where

1T
S⇤A

i
B

1S⇤ >
1� �

2

· k · opt,

we need to draw l graphs, such that
✓

1

1 + �

◆l

 1

n

which yields l = logn
log(1+�) . Since � 2 (0, 1), we have that a number of

log n

�

draws suffices (assuming the base-2 logarithm), so that

max

i
1T
X i[YiAi

B

1X i[Yi � max

i
1T
S⇤A

i
B

1S⇤ � 1� �

2

1T
S⇤A1S⇤ .

Proposition 4 establishes Lemma 2. What we show in our approximation results is that we can compute a solution with
density at least

1� �

2

· opt� 2|�d+1

|,

where �d+1

is the d+ 1 absolutely largest eigenvalue of the adjacency matrix A.

Title Suppressed Due to Excessive Size

3. Proof of Theorem 1
3.1. Low-rank DBkS on bipartite graphs and rectangular matrices

The first important technical proposition that we show, is that we can solve DBkS for any constant rank rectangular matrix
B of dimensions n

1

⇥ n
2

.

Proposition 5. Let B be any matrix of size n
1

⇥ n
2

and let

Bd =

d
X

i=1

�iviu
T
i

be its singular value decomposition, where vi and ui is the left and right singular vectors corresponding to the ith largest

singular value �i(B). Then, we can solve the following problem

{Xd,Yd} = arg max

|X |=k1,|Y|=k2

1T
XBd1Y .

in time O(min{n
1

, n
2

}d+1

).

Proof. For simplicity we assume that the left singular vectors are scaled by their singular values, hence

Bd = v
1

uT
1

+ . . .+ vdu
T
d .

Let us without loss of generality assume that n
1

 n
2

.

We wish to solve:

max

|X |=k1,|Y|=k2

1T
X
�

v
1

uT
1

+ . . .+ vdu
T
d

�

1Y . (8)

Observe that we can rewrite (8) in the following way

max

|X|=k1,|Y|=k2

1T
X

v1 · (uT

1 1Y)| {z }
c1

+ . . .+ vd · (uT
d 1Y)| {z }
cd

�
= max

|Y|=k2

✓
max

|X|=k1

1T
XvY

◆
,

where vY = v
1

· c
1

+ . . . + vd · cd is an n
1

-dimensional vector generated by the d-dimensional subspace spanned by
v
1

, . . . ,vd.

We will now make a key observation: for every fixed vector vY , the index set X that maximizes 1T
XvY can be easily

computed. It is not hard to see that for any fixed vector vY , the k
1

-subset X that maximizes

1T
XvY =

X

i2X
[vY]i

corresponds to either the set of k
1

largest or k
1

smallest signed coordinates of vY . That is, the locally optimal sets are
either topk1

(vY) or topk1
(�vY).

We now wish to find all possible locally optimal sets X . If we could possibly check all vectors vY , then we could find all
locally optimal index sets topk1

(±vY).

Let us denote as Sd the set of all k
1

-sized sets X that are the optimal solutions of the inner maximization of in the above,
for any vector v in the span of v

1

, . . . ,vd

Sd = {topk1
(±[v

1

· c
1

+ . . .+ vd · cd]) : c1, . . . , cd 2 R}.

Clearly, this set contains all possible locally optimal X sets of the form topk1
(vY). Therefore, we can rewrite DBkS on

Bd as
max

|Y|=k2

max

X2Sd

1T
XBd1Y . (9)

Title Suppressed Due to Excessive Size

The above problem can now be solved in the following way: for every set X 2 Sd find the locally optimal set Y that
maximizes 1T

XBd1Y . Again, this will either be topk2
(�Bd1X) or topk2

(Bd1X). Then, we simply need to test all such
X ,Y pairs on Bd and keep the optimizer.

Due to the above, the problem of solving DBkS on the rectangular matrix Bd is equivalent to constructing the set of k
1

-
supports Sd, and then finding the optimal solution in that set. How large can Sd be and can we construct it in polynomial
time? As we showed in the first section of the supplemental material this set has size O(

�

n1

d

�

) and can be constructed in
time O(nd+1

1

).

Observe that in the above we could have equivalently solved the problem by finding all the top k
2

sets in the span of
u
1

, . . . ,ud, say that they belong in set S 0
d. Then, we could solve the problem by finding for each k

2

sized set Y 2 S 0
d the

optimal k
1

sized set X . Both approaches are the same, and the one with the smallest dimension is selected to reduce the
computational complexity.

The algorithm that solves the problem for rectangular matrices is given below.

Algorithm 4 low-rank approximations for DBkS
1: lowrankDBkS(k

1

, k
2

, d, B)

2: [Vd,⌃d,Ud] = SVD(B, d)
3: Sd = Spannogram(k

1

,Vd)

4: {Xd,Yd} = argmax|Y|=k2
maxX2Sd 1T

XVd⌃dUT
d 1Y

5: Output: {Xd,Yd}

1: Spannogram(k
1

, Vd)

2: Sd = {topk(v) : v 2 span(v
1

, . . . ,vd)}
3: Output: Sd.

3.2. Bipartite graphs part of Theorem 1

In our following derivations, for both cases of a rectangular and square symmetric matrices, we consider the same notation
of the output solution and output density for simplicity:

{Xd,Yd} = arg max

|X |=k,|Y|=k
1T
XAd1Y and opt

B

d =

1T
Xd

A1Yd

k
,

{Xd,Yd} = arg max

k1,k2:k1+k2=k
max

|X |=k1,|Y|=k2

1T
XBd1Y and opt

B

d = 2

1T
Xd

B1Yd

k
.

Moreover, as a reminder the optimal solutions and densities for the problems of interest (DkS, DBkS on A, and DBkS on
B) are

S⇤ = arg max

|S|=k
1T
SA1S and opt =

1T
S⇤
A1S⇤

k
,

{X⇤,Y⇤} = arg max

|X |=k,|Y|=k
1T
XA1Y and opt

B

=

1T
X⇤

A1Y⇤

k
,

{X⇤,Y⇤} = arg max

k1,k2:k1+k2=k
max

|X |=k1,|Y|=k2

1T
XB1Y and opt

B

= 2

1T
X⇤

B1Y⇤

k
.

We continue with bounding the distance between the optimal solution for DBkS and rank-d optimal solution pair {Xd,Yd}.
We have the following result, which is essentially Lemma 2 of our main paper.
Proposition 6. For any matrix A, we have

opt

B

d � opt

B � 2 · |�d+1

|. (10)

Title Suppressed Due to Excessive Size

Moreover, for any rectangular matrix B, we have

opt

B

d � opt

B � 2 · �d+1

. (11)

Proof. Let X⇤,Y⇤ be the optimal solution of DBkS on A and let Xd,Yd be the optimal solution of DBkS on the rank-d
matrix Ad. Then, we have

opt

B

d =

1T
Xd

A1Yd

k
=

1T
Xd

(Ad +A�Ad)1Yd

k
=

1T
Xd

Ad1Yd

k
+

1T
Xd

(A�Ad)1Yd

k

�
1T
Xd

Ad1Yd

k
�

k1Xdk2 · k(A�Ad)1Ydk
2

k
�

1T
Xd

Ad1Yd

k
� |�d+1

|, (12)

where the first inequality comes due to Cauchy-Schwarz and the second due to the fact that the norm of the indicator vector
is k and the operator norm of A�Ad is equal to the d+ 1 largest eigenvalue of A.

Moreover, we have that

opt

B

=

1T
X⇤

A1Y⇤

k
=

1T
X⇤

(Ad +A�Ad)1Y⇤

k
=

1T
X⇤

Ad1Y⇤

k
+

1T
X⇤

(A�Ad)1Y⇤

k

1T
Xd

Ad1Yd

k
+

1T
X⇤

(A�Ad)1Y⇤

k

1T
Xd

Ad1Yd

k
+

k1X⇤k2 k(A�Ad)1Y⇤k
2

k

1T
Xd

Ad1Yd

k
+ |�d+1

| (13)

where the first inequality comes due to the fact that 1T
Xd

Ad1Yd � 1T
X⇤

Ad1Y⇤ and the second and third are similar to the
previous bound. We can now combine the above two bound to obtain:

opt

B

d � opt

B � 2 · |�d+1

|. (14)

In the exact same way, we can obtain the result for rectangular matrices.

The above proposition, combined with Proposition 1 give us the bipartite part of Theorem 1, where opt

B

= opt, that is

opt

B

d � opt

B � 2 · |�d+1

| = opt� 2 · |�d+1

|.

3.3. Graphs with their first d eigenvalues positive part of Theorem 1

To establish the part about graphs with the d largest eigenvalues being positive, we use the following result.
Proposition 7. If Ad is positive semidefinite, then

max

|X |=k

1T
XAd1X

k
= max

|X |=k
max

|Y|=k

1T
XAd1Y

k

Proof. This is easy to see by the fact that for any two sets X ,Y we have

max

|S|=k
1T
XAd1Y max

|X |=k,|Y|=k
1T
XAd1Y = max

|X |=k,|Y|=k
1T
XVd⇤

1/2
d ⇤1/2

d VT
d 1Y

 max

|X |=k,|Y|=k
max

n

k⇤1/2
d Vd1X k2, k⇤1/2

d Vd1Yk
o

 max

|X |=k,|Y|=k
max

�

1T
XAd1X , 1T

YAd1Y

 max

|S|=k
1T
SAd1S

where the second inequality comes due to the Cauchy-Schwarz inequality.

We can combine the above proposition with the first part of Proposition 6 to obtain that

optd = opt

B

d � opt� 2|�d+1

(A)|

when Ad is positive semidefinite.

Title Suppressed Due to Excessive Size

3.4. Arbitrary graphs part of Theorem 1

In the next proposition, we show how to translate a low-rank approximation of A after we used the random sampling of
randombipartite(G). We need this result to to establish the general result of Theorem 1, by connecting the previous
spectral bound, with the 2 loss in approximation between DBkS and DkS.

Proposition 8. Let A be the adjacency matrix of a graph. Moreover, let the matrices P
1

and P
2

be such that B = P
1

AP
2

is the bi-adjecency created by each loop of randombipartite(G), where P
1

is an n
1

⇥n matrix indexing the left vertices

of the graph, and P
2

is an n⇥ n
2

sampling matrix that indexes the right vertices of the sub-sampled graph. Then,

opt

B

d � opt

B � 2|�d+1

(A)|,

where opt

B is the maximum density on B = P
1

AP
2

.

Proof. Let without loss of generality assume that B will be the bipartite subgraph between the first n
1

and the remaining
n
2

= n� n
1

vertices, such that

A =

C B
BT D

�

(15)

Then there are two sampling matrices that pick the corresponding columns and rows

P
1

= [In1⇥n1 0n1⇥n2] and P
2

=

0n1⇥n2

In2⇥n2

�

Then, instead of working on the matrix that is the rank-d best fit for B, we work on

Bd = P
1

AdP2

.

Now, we use the bounding techniques of our previous derivations:

optd =

1T
Xd

B1Yd

k
=

1T
Xd

P
1

(Ad +A�Ad)P2

1Yd

k
=

1T
Xd

P
1

AdP2

1Yd

k
+

1T
Xd

P
1

(A�Ad)P2

1Yd

k

�
1T
Xd

P
1

AdP2

1Yd

k
�

k1Xdk2 · kP1

(A�Ad)P2

1Ydk
2

k
�

1T
Xd

P
1

AdP2

1Yd

k
� |�d+1

|, (16)

where the last step comes due to the fact that P
1

,P
2

their singular values are 1. We can use a similar bound to obtain

opt

B
1T
Xd

P
1

AdP2

1Yd

k
+ |�d+1

|,

where opt

B is the density of the densest k-subgraph on the graph with bi-adjacency matrix P
1

AP
2

. and combine the
above to establish the result.

We can now use our random sampling Proposition 4 and combine that with Propositions 8, and 6, to establish Theorem 1
for arbitrary graphs.

4. Proof of Theorem 2: graphs with highly dense k-subgraphs
We now establish the following a priori spectral bound that holds for any graph.

Lemma 1. For any unweighted graph G, we have that

|�d|
r

2 ·m
d

(17)

where m is the number of edges in G.

Title Suppressed Due to Excessive Size

Proof. Observe that

d · �2

d
d
X

i=1

�2

i
n
X

i=1

�2

i = kAk2F =

X

i,j

A2

i,j =

X

i,j

Ai,j = 2 ·m, .

where the second to last equality comes due to the fact that A2

i,j can only be 1 or 0.

We use this bound and Theorem 1, to obtain a the following result, which is a restatement of Theorem 2.

Proposition 9. If the densest-k-subgraph contains a constant fraction of all the edges, and k = ⇥(

p
E), then we can

approximate DkS within a factor of 2+ ✏, in time nO(1/✏2)
. If additionally the graph is bipartite, then we can approximate

DkS within a factor of 1 + ✏.

Proof. For any arbitrary graph, due to Theorem 1, we have

optd �
✓

1� �

2

◆

· opt� 2 · |�d+1

|.

Since, we assumed that the densest k-subgraph contains a constrant fraction of the edges, this means that k · opt = c
1

·m
for some constant c > 0. Moreover, we assumed that k = c

2

·
p
m, for some constant c

2

> 0. Hence,

c
2

·
p
m · opt = c

1

·m) opt =

c
1

c
2

·
p
m.

Using Lemma 1, we also get

|�d|
r

2m

d
=

r

2

d
· c2
c
1

· opt.

Combining the above gives us

optd �
✓

1� �

2

◆

· opt� 2|�d+1

| �

1� �

2

�
r

2

d
· c2
c
1

!

· opt

Hence, if we want
q

2

d · c2
c1

=

�
2

, we need to set d =

l

1

2

· c22
c21

· 1

�2

m

= O(

1

�2). Setting � =

✏
2

establishes the result. In a
similar way, we obtain the 1 + ✏ approximation for bipartite graphs, by using the second bound of Theorem 1.

5. Proof of Lemma 3: Data Dependent Bounds
Proof. Let X⇤,Y⇤ be the optimal solution of DBkS on A and let Let Xd,Yd be the optimal solution of DBkS on the rank-d
matrix Ad. Then, for the first bound we have

opt

B

=

1T
X⇤

A1Y⇤

k
=

1T
X⇤

(Ad +A�Ad)1Y⇤

k
=

1T
X⇤

Ad1Y⇤

k
+

1T
X⇤

(A�Ad)1Y⇤

k

1T
Xd

Ad1Yd

k
+

1T
X⇤

(A�Ad)1Y⇤

k

1T
Xd

Ad1Yd

k
+

k1X⇤k2 k(A�Ad)1Y⇤k
2

k

1T
Xd

Ad1Yd

k
+ |�d+1

|. (18)

The upper bound k � 1 is trivial by the fact that for any X and Y we have

1T
XA1Y
k

 1T
X (11T � In)1Y

k
 k(k � 1)

k
= k � 1.

The last bound is simply due to the spectral bound on the bilinear form 1T
XA1Y

k k1X k2·kA1Yk2
k �

1

.

Title Suppressed Due to Excessive Size

6. Proof of Theorem 3: Nearly-linear Time Algorithm
When the matrix Ad has mixed signs of eigenvalues, then we have to go through the route of DBkS. However, when Ad

has only positive eigenvalues, then it is easy to show that solving the bilinear problem on Ad is equivalent to solving

max

|X |=k

1T
XAd1X

k
.

This is the DkS low-rank problem, that now can be solved by our algorithm. We show that when this spectral scenario
holds, we can speed up computations tremendously, by the use of a simple randomization.

Let us first remind the fact that DBkS and DkS are equivalent for positive semidefinite matrices. We will show here how
max|S|=k 1

T
SAd1S can be approximately in time nearly-linear in n, by only introducing a small relative approximation

error. Our approximation will use ✏-nets.
Definition 1. (✏-net) Let Sd = {c 2 Rd

: kck2 = 1} be the surface of the d-dimensional sphere. An ✏-net of Sd is a finite

set N d
✏ ⇢ Sd such that

8c 2 Sd 9 bc 2 N d
✏ : kc� bck

2

 ✏.

We now show that we can solve our optimization, via the use of ✏-nets, which we construct in the next subsection.
Proposition 10. Let N d

✏ be an ✏-net of Sd. Then,

(1� ✏)2 · max

|S|=k
1T
SAd1S max

c2Nd
✏

max

|S|=k

⇣
cT⇤1/2

d VT
d 1S

⌘2
 max

|S|=k
1T
SAd1S . (19)

Proof. Let c be a d⇥ 1 unit length vector, i.e., kck
2

= 1. Then, by the Cauchy-Schwartz inequality we have

(cT⇤1/2
d VT

d 1S)2 k⇤1/2
d VT

d 1Sk2
2

.

We can get equality in the previous bound for a unit norm c co-linear to ⇤1/2
d VT

d 1S . Therefore, we have

k⇤1/2
d VT

d 1Sk2
2

= max

kck2=1

(cT⇤1/2
d VT

d 1S)2. (20)

Hence,
max

|S|=k
1T
SAd1S = max

|S|=k
k⇤1/2

d VT
d 1Sk2

2

= max

|S|=k
max

kck2=1

(cT⇤1/2
d VT

d 1S)2. (21)

We can now obtain the upper bound of the proposition, since N d
✏ ✓ Sd. Now for the lower bound, let (1Sd , cd) denote the

optimal solution of the above maximization, such that

max

|S|=k
1T
SAd1S = (cdVd

T1Sd)
2.

Then, there exists a vector bc in the ✏-net N d
✏ , such that cd =

bc+ r, with krk ✏. Then,

r
max

|S|=k
1T
SAd1S = cd

TVT
d 1Sd = (

bc+ r)TVT
d 1Sd

(↵)

 bcTVT
d 1Sd + ✏ · kVT

d 1Sdk =

bcTVT
d 1Sd + ✏ ·

r
max

|S|=k
1T
SAd1S ,

where (↵) is due to the triangle inequality, then the Cauchy-Schwartz inequality, and then the fact that krk ✏. From the
above inequality we get

(1� ✏)2 max

|S|=k
1T
SAd1S

�

bcTVT
d 1Sd

�

2 max

c2Nd
✏

max

|S|=k

�

cTVT
d 1S

�

2

which concludes the proof.

The importance of the above proposition lies in the fact that for a fixed c we can easily solve the problem

max

|S|=k

�

cTVT
d 1S

�

2

.

Title Suppressed Due to Excessive Size

Observe that the above optimization is the same problem that we had to solve for a fixed Y in Section 3. This inner product
is maximized when S picks the largest, or smallest k elements of the n-dimensional vector cTVT

d . The complexity to do
that is linear O(n) (Cormen et al., 2001).

It is now obvious that the number of elements, and the complexity to construct N d
✏ is important. In the next subsection, we

show how to build such a net, using similar random coding arguments to (Wyner, 1967). Let N d
✏ be a set of vectors drawn

uniformly on the sphere (the cardinality is determined in the next subsection and will be O(

1

✏d
· log(1

✏·�)). Our algorithm
operates as follows: First we draw a set of |N d

✏ | random vectors, and then we find the corresponding optimal S , by solving

max

c2M✏

max

|S|=k

⇣

cT⇤1/2
d VT

d 1S
⌘

2

.

This can be done in time O(|N d
✏ | · n). Then, among all these solutions, with probability 1 � �, the best solution satisfies

the bound of the proposition. The randomized algorithm is given below for completeness.

Algorithm 5 Randomized Spannogram
1: Spannogram approx(k, Vd,⇤d)
2: Sd = ;
3: for i = 1 : |N d

✏ | do
4: v = (⇤1/2

d ·Vd)
T · randn(d, 1)

5: Sd = Sd [topk(v) [topk(�v)
6: end for
7: Output: argmaxS2Sd

�

�

�

⇤1/2
d VT

d 1S
�

�

�

.

Computing Ad in the first step of the algorithm, can also be done in nearly linear-time in the size of the input A. There
is extensive literature on approximating Ad by a rank-d matrix bAd such that kAd � bAdk2 �, in time proportional to
the nonzero entries of A times a logarithmic term, as long as |�d/�d+1

| is at least a constant (Rokhlin et al., 2009; Halko
et al., 2011; Gittens et al., 2013).

6.1. A simple ✏-net construction via random coding principles

We construct an ✏-net of the d-dimensional sphere by randomly and independently drawing a sufficient number of uniformly
distributed points. This construction is essentially studied by Wyner (Wyner, 1967) in the asymptotic d ! 1 regime, under
a different question: how many random spherical caps are needed to cover a sphere?

The idea behind our construction is simple, and uses to ingredients. First, by a lemma of (Vershynin, 2010) (p.8, Lemma
5.2) we know that there exist an ✏-net on the d-dimensional sphere of size at most

|N d
✏ |

✓

1 +

2

✏

◆d

.

Then, we use an elementary balls-and-bin arguments to find the number of vectors that we need to draw at random, so
that each point of the net N d

✏ , is ✏-close to at least one of the vectors that we drew. This set of random vectors will then
correspond to a 2 · ✏-net.

More formally, let
Cd

(c
0

, ✏) =
�

c 2 Sd : kc� c
0

k ✏

,

be a spherical cap of Sd centered at c
0

, that includes all vectors within distance ✏ from c
0

. Let us now define a set of m✏,d

spherical caps for each point c
0

of the set N d
✏ . Then, by the definition of an ✏-net, the caps centered at the vectors of N d

✏

cover the sphere:
[

c02Nd
✏

Cd
(c

0

, ✏) =
�

c 2 Sd : kc� c
0

k ✏

= Sd.

Title Suppressed Due to Excessive Size

Now, consider an arbitrary point bc
0

in some spherical cap Cd
(c

0

, ✏). By the triangle inequality, any other point c in
Cd

(c
0

, ✏), satisfies
kc� bc

0

k kc� c
0

k+ kc
0

� bc
0

k 2✏.

The above implies that if we construct a set that contains at least one point from each of the m✏,d caps centered on the
vectors of N d

✏ , then this set of points forms a 2✏-net. In the following, we do this by randomly drawing a sufficient number
of vectors on the sphere.

Let us draw random points uniformly distributed over Sd, by normalizing randomly generated Gaussian vectors distributed
according to N(0, Id). A random point falls in one particular cap with probability at least 1

m✏,d
. This is true, since m✏,d

spherical caps suffice to cover the surface of the sphere. The probability that some of the caps is empty after we throw m
vectors is

Pr

8

<

:

|Nd
✏ |

[

i=1

{cap i is empty after m vector draws}

9

=

;

 |N d
✏ | ·

✓

1� 1

|N d
✏ |

◆m

. (22)

If we wish the probability of this “bad event” to be �, then we get that the number of m vectors that we need to throw has
to satisfy

|N d
✏ | ·

✓

1� 1

|N d
✏ |

◆m

 �) log(|N d
✏ |) +m · log

✓

1� 1

|N d
✏ |

◆

 log(�)

)m � log(�)� log(|N d
✏ |)

log

⇣

1� 1

|Nd
✏ |
⌘

=

log(|N d
✏ |/�)

� log

⇣

1� 1

|Nd
✏ |
⌘ �

d log
�

1+2✏
�

�

1

|Nd
✏ |

)m �
✓

1 +

2

✏

◆d

·
✓

d · log
✓

1 +

2

✏

◆

+ log �

◆

Hence, we get the following lemma.
Lemma 2. Let us draw uniformly at random

✓

1 +

2

✏

◆d

·
✓

d · log
✓

1 +

2

✏

◆

+ log �

◆

= O

✓

1

✏d
log

✓

1

✏ · �

◆◆

vectors on the d-dimensional sphere. Then, with probability at least 1� �, this set is a 2 · ✏-net of the sphere.

7. Vertex Sparsification via Simple Leverage Score Sampling
Our algorithm comes together with a vertex elimination step: after we compute the low-rank approximation matrix Ad,
we discard rows and columns of Ad, i.e., vertices, depending on their weighted leverage scores. Leverage score sampling
has been extensively studied in the literature, for many different applications, where it can provably provide small error
bounds, while keeping a small number of features from the original matrix (Mahoney & Drineas, 2009; Boutsidis et al.,
2009).

As we see in the following, this pre-processing step comes with an error guarantee. We show that by throwing away
vertices with small leverage scores, can only introduce a provably small error.

Let us define as

`i =

�

�

�

�

h

Vd|⇤|1/2
i

i,:

�

�

�

�

=

v

u

u

t

d
X

j=1

[Vd]
2

i,j |�j |,

the weighted leverage score of a vertex i. Then, our elimination step is simple. Let ˆAd be a subset of Ad, where we have
eliminated all vertices with `i ⌘

3k`1
. Let PH be a diagonal matrix of 1s and 0s, with a 1 only in the (i, i) indices such

that `i > ⌘
3k`1

. Then,
ˆAd = PHAdPH.

We can now guarantee the following upper bound on the error introduced by the elimination.

Title Suppressed Due to Excessive Size

Proposition 11. Let

ˆAd be created as above,

ˆAd = PHAdPH.

where PH is a diagonal matrix of 1s and 0s, with a 1 on (i, i) indices such that `i >
⌘

3k`1
. Then,

1T
XAd1Y

k
� ⌘ 1T

X ˆAd1Y
k

 1T
XAd1Y

k
+ ⌘, (23)

for all subsets of k vertices X ,Y .

Proof. Let for brevity ✓ be a user tuned threshold. Moreover, let PH be a diagonal matrix of 1s and 0s, with a 1 on (i, i)
indices such that `i > ✓, and let PL be a diagonal matrix of 1s and 0s, with a 1 on (i, i) indices such that `i ✓. Clearly,

PH +PL = In⇥n.

Then, we can rewrite Ad as:

Ad = (PH +PL)Ad(PH +PL) = PHAdPH +PLAdPL +PHAdPL +PLAdPH.

Then, we have the following

|1T
X (Ad � ˆAd)1Y | = |1T

X (PLAdPL +PHAdPL +PLAdPH)1Y | (24)

 |1T
XPLAdPL1Y |+ |1T

XPHAdPL1Y |+ |1T
XPLAdPH1Y | (25)

(26)

Observe that for the first error term we have

|1T
XPLAdPL1Y | = |1T

XPLVd⇤
1/2
d S⇤1/2

d VT
d PL1Y | (27)

 k1T
XPLVd⇤

1/2
d k · kS⇤1/2

d VT
d PL1Yk k1T

XPLVd⇤
1/2
d k · kSk · k⇤1/2

d VT
d PL1Yk (28)

= k1T
XPLVd⇤

1/2
d k · 1 · k⇤1/2

d VT
d PL1Yk

p
k · ✓ ·

p
k · ✓ = k · ✓2. (29)

where the second and third inequalities come due to the Cauchy-Schwarz inequality. In the above S denotes the diagonal
matrix that contains the signs of the eigenvalues. Clearly, its operator norm is 1. Hence, the last inequality in the above
is due to the fact that 1X ,1Y have k entries with 1, and each picks the rows of Vd⇤

1/2
d with the highest leverage score.

Then, due to the triangle inequality on the k-largest row norms (i.e., leverage scores) of Vd⇤
1/2
d we get the final result.

Similarly, we can bound the remaining two error terms

|1T
XPLAdPH1Y | = |1T

XPLVd⇤
1/2
d S⇤1/2

d VT
d PH1Y | (30)

 k1T
XPLVd⇤

1/2
d k · kS⇤1/2

d VT
d PH1Yk k1T

XPLVd⇤
1/2
d k · kSk · k⇤1/2

d VT
d PH1Yk (31)

= k1T
XPLVd⇤

1/2
d k · 1 · k⇤1/2

d VT
d PH1Yk

p
k · ✓ ·

p
k · `

1

= k · ✓ · `
1

. (32)

Since, ✓ `
1

, we conclude that the above error can be bounded as

|1T
X (Ad � ˆAd)1Y |

k
 3 · k · ✓ · `

1

= ⌘.

Hence, we obtain the proposition.

8. NP-hardness of DkS on rank-1 matrices
In this section, we establish the hardness of the quadratic formulation of DkS, even for rank-1 matrices. Interestingly the
problem is not hard when we relax it to its bilinear form as we showed in our main result. The claim follows.

Claim 1. DkS is NP-hard for rank-1 matrices A with one negative eigenvalue.

Title Suppressed Due to Excessive Size

Proof. Observe that a rank-1 matrix with 1 negative eigenvalue can be written as

A = �vv

where �
1

= kvk2. Then, see that

max

|S|=k
1T
SA1S = max

|S|=k
�1T

Svv
T1S = min

|S|=k
1T
Svv

T1S =

✓

min

|S|=k
|1T

Sv|
◆

2

=

min

|S|=k

�

�

�

�

�

X

i2S

vi

�

�

�

�

�

!

2

.

An algorithm that can solve the above problem, can be used to solve SUBSETSUM. In SUBSETSUM we are given a set
of integers and we wish to decide whether there exists a non-empty subset of these integers that sums to zero. In the
following algorithm we show how this can be trivially done, by solving min|S|=k

�

�

P

i2S vi
�

� for all values of k. If for some
value of k the sum in the optimizaton is zero, then we decide YES as the output for the SUBSETSUM. Hence, solving

Algorithm 6 SubsetSum via rank-1 DkS
1: Input: v = [v

1

, . . . , vn]
2: for i = 1 : k do
3: si = min|S|=k

�

�

P

i2S vi
�

�

4: if si == 0 then
5: Output: YES
6: else
7: Output: NO
8: end if
9: end for

max|S|=k 1
T
SA1S is NP-hard even for rank-1 matrices, in the general case.

9. Additional Experiments
In Fig. 1, we show additional experiment on 9 more large-graphs. The description of the graphs can be found in Table 1.
Moreover, in Fig. 2. The description of the experiments can be found in the figure captions.

Table 1. Datasets used in our experiments

DATA SET NODES EDGES DESCRIPTION

COM-DBLP 317,080 1,049,866 DBLP COLLABORATION NETWORK
COM-LIVEJOURNAL 3,997,962 34,681,189 LIVEJOURNAL ONLINE SOCIAL NETWORK
WEB-NOTREDAME 325,729 1,497,134 WEB GRAPH OF NOTRE DAME
EGO-FACEBOOK 4,039 88,234 SOCIAL CIRCLES FROM FACEBOOK (ANONYMIZED)
CA-ASTROPH 18,772 396,160 COLLABORATION NETWORK OF ARXIV ASTRO PHYSICS
CA-HEPPH 12,008 237,010 COLLABORATION NETWORK OF ARXIV HIGH ENERGY PHYSICS
CA-CONDMAT 23,133 186,936 COLLABORATION NETWORK OF ARXIV CONDENSED MATTER
CA-GRQC 5,242 28,980 COLLABORATION NETWORK OF ARXIV GENERAL RELATIVITY
CA-HEPTH 9,877 51,971 COLLABORATION NETWORK OF ARXIV HIGH ENERGY PHYSICS THEORY
LOC-BRIGHTKITE 58,228 214,078 BRIGHTKITE LOCATION BASED ONLINE SOCIAL NETWORK
ROADNET-CA 1,965,206 5,533,214 ROAD NETWORK OF CALIFORNIA
EMAIL-ENRON 36,692 367,662 EMAIL COMMUNICATION NETWORK FROM ENRON
COM-ORKUT 3,072,441 117,185,083 ORKUT ONLINE SOCIAL NETWORK
FLICKR 105,938 2,316,948 NETWORK OF FLICKR IMAGES SHARING COMMON METADATA
FBMEDIUM 63,731 817,090 FRIENDSHIP DATA OF FACEBOOK USERS

http://snap.stanford.edu/data/com-DBLP.html
http://snap.stanford.edu/data/com-LiveJournal.html
http://snap.stanford.edu/data/web-NotreDame.html
http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/ca-AstroPh.html
http://snap.stanford.edu/data/ca-HepPh.html
http://snap.stanford.edu/data/ca-CondMat.html
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-HepTh.html
http://snap.stanford.edu/data/loc-brightkite.html
http://snap.stanford.edu/data/roadNet-CA.html
http://snap.stanford.edu/data/email-Enron.html
http://snap.stanford.edu/data/com-Orkut.html
http://konect.uni-koblenz.de/networks/flickrEdges
http://konect.uni-koblenz.de/networks/facebook-wosn-links

Title Suppressed Due to Excessive Size

References
Boutsidis, Christos, Mahoney, Michael W, and Drineas, Petros. An improved approximation algorithm for the column

subset selection problem. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
968–977. Society for Industrial and Applied Mathematics, 2009.

Cormen, Thomas H, Leiserson, Charles E, Rivest, Ronald L, and Stein, Clifford. Introduction to algorithms. MIT press,
2001.

Gittens, Alex, Kambadur, Prabhanjan, and Boutsidis, Christos. Approximate spectral clustering via randomized sketching.
arXiv preprint arXiv:1311.2854, 2013.

Halko, Nathan, Martinsson, Per-Gunnar, and Tropp, Joel A. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011.

Mahoney, Michael W and Drineas, Petros. Cur matrix decompositions for improved data analysis. Proceedings of the

National Academy of Sciences, 106(3):697–702, 2009.

Papailiopoulos, Dimitris S, Dimakis, Alexandros G, and Korokythakis, Stavros. Sparse pca through low-rank approxima-
tions. arXiv preprint arXiv:1303.0551, 2013.

Rokhlin, Vladimir, Szlam, Arthur, and Tygert, Mark. A randomized algorithm for principal component analysis. SIAM

Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2009.

Vershynin, Roman. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint arXiv:1011.3027,
2010.

Wyner, Aaron D. Random packings and coverings of the unit n-sphere. Bell System Technical Journal, 46(9):2111–2118,
1967.

Title Suppressed Due to Excessive Size

Figure 1. Subgraph density vs. subgraph size (k). We show the comparison of densest subgraph algorithms on several additional
datasets: Academic collaboration graphs from Arxiv (ca-HepTh, ca-HepPh, ca-GrQc, Ca-Astro), Geographic location-based networks
(roadNet, loc-Brightkite), The Enron email communication graph (email-Enron) and a facebook subgraph (facebook-wosn). The number
of vertices and edges are shown in each plot. As can be seen, in almost all cases rank-2 and rank-5 spannograms match or outperform
previous algorithms. One notable exception is the ca-GrQc where, for subgraphs of size above k = 400 or above, T-power performs
better. Another observation is that the spannogram benefits are often more significant for smaller subgraph sizes. It can also be seen that
the tightness of our data-dependent bound (solid black line) varies for different data sets and subgraph sizes.

Title Suppressed Due to Excessive Size

Figure 2. Running times on a MacBook Pro 10.2, with Intel Core i5 @ 2.5 GHz (2 cores), 256 KB L2 Cache per core, 3 MB L3 Cache,
and 8 GB RAM. Experiments were run on MATLAB R2011b (7.13.0.564). As can be seen, Rank-1 is significantly faster than all other
algorithms for all tested cases. Rank-2 is comparable to prior work, having running times of a few seconds. Rank-5 was the highest
accuracy setting we tested. It can take several minutes on large graphs and seems useful only when high accuracy is desired or other
methods are far from the upper bound. The approximation error in the ✏-net was set to 0.1.

