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Abstract—Gossip algorithms have recently received significant
attention, mainly because they constitute simple and robust mes-
sage-passing schemes for distributed information processing over
networks. However, for many topologies that are realistic for wire-
less ad-hoc and sensor networks (like grids and random geometric
graphs), the standard nearest-neighbor gossip converges as slowly
as flooding (O(n?) messages). A recently proposed algorithm
called geographic gossip improves gossip efficiency by a /n
factor, by exploiting geographic information to enable multihop
long-distance communications. This paper proves that a variation
of geographic gossip that averages along routed paths, improves
efficiency by an additional /7 factor, and is order optimal (O(n)
messages) for grids and random geometric graphs with high prob-
ability. We develop a general technique (travel agency method)
based on Markov chain mixing time inequalities which can give
bounds on the performance of randomized message-passing algo-
rithms operating over various graph topologies.

Index Terms—Average consensus, distributed algorithms, gossip
algorithms, sensor networks.

I. INTRODUCTION

OSSIP algorithms are distributed message-passing

schemes designed to disseminate and process informa-
tion over networks. They have received significant interest
because the problem of computing a global function of data
distributively over a network, using only localized mes-
sage-passing, is fundamental for numerous applications.

These problems and their connections to mixing rates of
Markov chains have been extensively studied starting with
the pioneering work of Tsitsiklis [31]. Earlier work studied
mostly deterministic protocols, known as average consensus
algorithms, in which each node communicates with each of its
neighbors in every round. More recent work (e.g., [16] and [5])
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has focused on so-called gossip algorithms, a class of random-
ized algorithms that solve the averaging problem by computing
a sequence of randomly selected pairwise averages. Gossip and
consensus algorithms have been the focus of renewed interest
over the past several years [16], [6], [18], and distributed control
systems (see [33] for a recent survey of this area).

The simplest setup is the following: n nodes are placed on a
graph whose edges correspond to reliable communication links.
Each node is initially given a scalar (which could correspond to
some sensor measurement like temperature) and we are inter-
ested in solving the distributed averaging problem: namely, to
find a distributed message-passing algorithm by which all nodes
can compute the average of all n scalars. A scheme that com-
putes the average can easily be modified to compute any linear
function (projection) of the measurements as well as more gen-
eral functions. Furthermore, the scalars can be replaced with
vectors and generalized to address problems like distributed fil-
tering and optimization as well as distributed detection in sensor
networks [29], [32], [24]. Random projections computed via
gossip, can be used for compressive sensing of sensor mea-
surements and field estimation as proposed in [23]. Note that
throughout this paper we will be interested in gossip algorithms
that compute linear functions, and will not discuss related prob-
lems like information dissemination (see, e.g., [19], [25], and
references therein).

Gossip algorithms solve the averaging problem by first having
each node randomly pick one of their one-hop neighbors and it-
eratively compute pairwise averages: Initially all the nodes start
with their own measurement as an estimate of the average. They
update this estimate with a pairwise average of current estimates
with a randomly selected neighbor, at each gossip round. An at-
tractive property of gossip is that no coordination is required for
the gossip algorithm to converge to the global average when the
graphis connected—nodes can just randomly wake up, select one
of their one-hop neighbors randomly, exchange estimates and up-
datetheir estimate with the average. We will refer to this algorithm
as standard or nearest-neighbor gossip.

A fundamental issue is the performance analysis of such
algorithms, namely the communication (number of messages
passed between one-hop neighboring nodes) required before a
gossip algorithm converges to a sufficiently accurate estimate.
For energy-constrained sensor network applications, commu-
nication corresponds to energy consumption and, therefore,
should be minimized. Clearly, the convergence time will de-
pend on the graph connectivity, and we expect well-connected
graphs to spread information faster and hence to require fewer
messages to converge.

This question was first analyzed for the complete graph in
[16], [5], and [6], where it was shown that ©(n log e~1) gossip
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messages need to be exchanged to converge to the global av-
erage within € accuracy! Boyd et al. [6] analyzed the conver-
gence time of standard gossip for any graph and showed that it
is closely linked to the mixing time of a Markov chain defined on
the communication graph. They further addressed the problem
of optimizing the neighbor selection probabilities to accelerate
convergence.

For certain types of well connected graphs (including
expanders and small world graphs), standard gossip con-
verges very quickly, requiring the same number of messages
(©(nloge~1t)) as the fully connected graph. Note that any
algorithm that averages n numbers with a constant error and
constant probability of success should require 2(n) messages.

Unfortunately, for random geometric graphs and grids,
which are the relevant topologies for large wireless ad-hoc
and sensor networks, standard gossip is extremely wasteful
in terms of communication requirements. For instance, even
optimized standard gossip algorithms on grids converge very
slowly, requiring ©(n?loge ') messages [6], [11]. Observe
that this is of the same order as the energy required for every
node to flood its estimate to all other nodes. On the contrary, the
obvious solution of averaging numbers on a spanning tree and
flooding back the average to all the nodes requires only O(n)
messages. Clearly, constructing and maintaining a spanning
tree in dynamic and ad-hoc networks introduces significant
overhead and complexity, but a quadratic number of messages
is a high price to pay for fault tolerance.

Recently, Dimakis et al. [11] proposed geographic
gossip, an alternative gossip scheme that reduces to
O(n'Sloge!/\/logn) the number of required messages,
with slightly more complexity at the nodes. Assuming that the
nodes have knowledge of their geographic location and under
some assumptions in the network topology, greedy geographic
routing can be used to build an overlay network where any pair
of nodes can communicate. The overlay network is a complete
graph on which standard gossip converges with ©(nloge™1)
iterations. At each iteration we perform greedy routing, which
costs O(y/n/logn) messages on a geometric random graph. In
total, geographic gossip thus requires ©(n!-5loge=1/\/logn)
messages.

Li and Dai [17] recently proposed Location-Aided Dis-
tributed Averaging (LADA), a scheme that uses partial locations
and markov chain lifting to create fast gossiping algorithms.
The cluster-based LADA algorithm performs slightly better
than geographic gossip, requiring ©(n'3loge=1/(logn)"?)
messages for random geometric graphs. While the theoretical
machinery is different, LADA algorithms also use direction-
ality to accelerate gossip, but can operate even with partial
location information and have smaller total delay compared to
geographic gossip, at the cost of a somewhat more complicated
algorithm.

In [26], Savas et al. develop a distributed message-passing
algorithm that is based on information fusion from multiple
random walks without requiring any location information. The

INote that € measures both accuracy and probability of success and is usually
set to 1/n>. This yields ©(n log n) messages to have a vanishing error with
probability 1/n. Throughout this paper we keep the € explicitly in our results;
see Definition 1 for more details.
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proposed algorithm has same order complexity as the proposed
path averaging gossip (requires O(n log n) messages to average
on the planar torus with high probability). The main difference
is that the coalescence scheme uses information fusion to save
energy whereas the path averaging scheme keeps updating
information in all the nodes throughout the execution of the
algorithm.

This paper: We investigate the performance of path aver-
aging, which is the same algorithm as geographic gossip with
the additional modification of averaging all the nodes on the
routed paths. Observe that averaging the whole route comes al-
most for free in multihop communication, because a packet can
accumulate the sum and the number of nodes visited, compute
the average when it reaches its final destination and follow the
same route backwards to disseminate the average to all the nodes
along this route.

On a grid, if a signal is averaged along lines first, and along
columns next, then its average is computed in finite time, using
4n messages. On random geometric graphs and in a distributed
scheme, this efficient line/column scheme would require global
knowledge and coordination so it is undesirable. Instead, it
is easy to create paths by randomly selecting a starting and
ending position and to average estimates along these routes.
Although any route sequence is possible when the routes to
be averaged are chosen in a random order, the probability
of a line/column articulation of routes is so small that it is
not observed in reasonably short times. With time, however,
similarly to previous gossip algorithms, the estimation of the
average at each node with path averaging approaches the true
average up to any desired level of precision e. This paper shows
that the line/column averaging idea, generalized to random
path averaging, converges considerably faster than previous
distributed averaging algorithms.

In path averaging, the selection of the routed path (and hence
the routing algorithm) affects the performance of the algorithm.
We start by empirically observing that the number of messages
for grids and random geometric graphs seems to scale linearly
when random greedy routing is used. The mathematical anal-
ysis of path averaging with greedy routing seems hard to theo-
retically characterize. To make the analysis tractable we make
two simplifications: a) We eliminate edge effects by assuming
a grid or a random geometric graph on a torus, b) we use box-
greedy routing, a scheme very similar to greedy routing with the
extra restriction that each hop is guaranteed to be within a vir-
tual box that is not too close or too far from the existing node.
Box-greedy routing (described in Section III-C) can be imple-
mented in a distributed way if each node knows its location and
the location of the virtual boxes. We call path averaging with
box-greedy routing Box-path averaging.

This paper extends the preliminary work [3] with detailed
proofs and simulations, and it provides a description of our gen-
eral techniques. Its main result is that path averaging requires
O(nloge~!) messages (to reach accuracy e with probability
bigger than 1 — ¢) in the following two cases:

* on grids embedded in the forus;

* w.h.p. on random geometric graphs, embedded in the

torus, using box-greedy routing with a connection radius
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r(n) = y/15logn/n, where n is the number of nodes in
the graph.

Therefore, for these two cases, it requires O(nlogn) mes-
sages to average with high probability and error ¢ = 1/n
vanishing as the number of nodes n scales. As we will see
later, a large enough connection radius in random geometric
graphs (r(n) > \/15logn/n) guarantees a fair allocation of
communication links among nodes, which helps the perfor-
mance of path averaging. Our theoretical analysis is based on
the Poincaré’ inequality [10] for bounding the mixing times
of Markov chains. We explain the intuition conveyed by the
theorem with a method we called “travel agency”, which allows
to visualize the diffusion of information in the network and to
understand the key features of a good averaging algorithm.

The remainder of this paper is organized as follows: In
Section II, we define our time and network models, present
the different gossip algorithms we will discuss and explain
our metrics for performance evaluation. In Section III, we
describe path averaging with greedy routing and empirically
show its good performance. We also define path averaging
with box-greedy routing (box-path averaging), whose analysis
is tractable and gives insight on general gossip algorithms.
In Section IV, we present the travel agency method and the
technical tools we use to theoretically show the efficiency of
box-path averaging. We show that the methodology developed
in that section can be generally applicable in bounding the
convergence rate of message-passing algorithms. Section IV-D
outlines the proofs, which can be found in the Appendix.

II. BACKGROUND AND METRICS

A. Time Model

We use the asynchronous time model [4], [6], which is well-
matched to the distributed nature of sensor networks. In par-
ticular, we assume that each sensor has an independent clock
whose “ticks” are distributed as a rate A Poisson process. How-
ever, our analysis is based on measuring time in terms of the
number of ticks of an equivalent single virtual global clock
ticking according to a rate nA Poisson process. An exact anal-
ysis of the time model can be found in [6]. We will refer to the
time between two consecutive clock ticks as one timeslot.

Throughout this paper, we will be interested in minimizing
the number of messages without worrying about delay. We can,
therefore, adjust the length of the timeslots relative to the com-
munication time so that only one packet exists in the network
at each timeslot with high probability. This ensures that there is
only one active path being averaged at any given time and we do
not have to worry about paths intersecting or any other timing
or congestion issues. Note that this assumption is made only for
analytical convenience; in a practical implementation, several
packets might co-exist in the network, but the associated issues
are beyond the scope of this work.

B. Network Model

We model the wireless networks as random geometric graphs
(RGQG), following standard modeling assumptions [14], [22]. A
random geometric graph G(n, r) is formed by choosing n node
locations uniformly and independently in the unit square, with
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Fig. . Random geometric graph example. The connectivity radius is r(n).

any pair of nodes 7 and j connected if their Euclidean distance
is smaller than some transmission radius r (see Fig. 1). We as-
sume throughout this paper that all the nodes know their loca-
tion as well as the location of their one-hop neighbors. Exact
localization can be hard to achieve and approximate algorithms
(e.g., [2]) can be used to give partial location information. It
is probable that partial location is sufficient (as it is for geo-
graphic gossip, e.g., [17]) for efficient path averaging gossip but
the analysis remains as an open problem.

It is well known [22], [14], [13] that in order to maintain con-
nectivity and to minimize interference, the transmission radius
r(n) should scale as r(n) = \/clogn/n. For the purposes of
analysis, we assume that communication within this transmis-
sion radius always succeeds. However, thanks to their distribu-
tive nature, our proposed algorithms are robust to communica-
tion and node failures. Indeed, generating a route is robust since
the routing protocol can choose the following hop among suc-
cessful nodes and communications. Routing back the average
is more delicate: if a failure occurs when the update is routed
back, then the message should be retransmitted until it is suc-
cessfully received, which increases delay. Thus, path averaging
is particularly efficient and robust when the network topology
changes at a slower time scale than the routing delay. Note that
we assume that the messages involve real numbers and there are
no link failures; the effects of message quantization and errors
in gossip and consensus algorithms, is an active area of research
(see for example [21], [1], [15], and [30]).

In the Appendix, we show a slightly stronger condition than
connectivity, on how the scaling coefficient ¢ in 7(n) tunes the
regularity of random geometric graphs. The result states that
if ¢ > 15 (r(n) > /15logn/n), then a random geometric
graph is balanced with high probability when n is large. Bal-
anced geometric graphs are random geometric graphs with de-
grees bounded above and below. In particular, select constants
a < a < b, draw a random geometric graph and divide the
unit square in squares of size alog n/n. If each square contains
between a logn and blog n nodes, then the graph is called bal-
anced with respect to a and b. A set of random geometric graphs
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TABLE I
PERFORMANCE OF DIFFERENT GOSSIP ALGORITHMS. 1,ye DENOTES €-AVERAGING TIME (IN GOSSIP ROUNDS) AND
C.ve DENOTES EXPECTED NUMBER OF MESSAGES REQUIRED TO ESTIMATE WITHIN ¢ ACCURACY

Grid

Random geometric graph

Standard gossip [6]

Cave = O(n?loge™1)

2 ce—1
Ca,?)e e (n log € >

logn

E[R] = ©(v7)

Hops per time-slot

E[R] = © (\/%)

Geographic Tave = O(nloge1) Tave = O(nloge™?)
gossip [11] Cave = O(n'Ploge™) | Cave =© (nljll:f%_l)
Box- Tave = e(\/ﬁIOge_l) Tave = 6( v nlognloge_l)

path averaging

Cave = O(nloge™1)

Cave = O(nloge™1)

is balanced if all the graphs are balanced with respect to some
common constants ¢ and b.

C. Gossip Algorithms

Gossip is a class of distributed averaging algorithms, where
average consensus can be reached up to any desired level of
accuracy by iteratively averaging small random groups of es-
timates. At time-slot ¢ = 0,1,2,...,eachnode: = 1,...,n
has an estimate x;(t) of the global average. We use z(¢) to de-
note the n-vector of these estimates and, therefore, z(0) gathers
the initial values to be averaged. The ultimate goal is to drive
the estimate z(t) to the vector of averages Tye T, where Zaye :=
Ly 1 2:(0), and 1 is an n-vector of ones. In gossip, at each
time-slot ¢, a random set S(t) of nodes communicate with each
other and update their estimates to the average of the estimates
of S(t): forall j € S(t),2;(t +1) = > icq0) xi(t)/IS(H)].
In standard gossip (nearest neighbor) and in geographic gossip,
only random pairs of nodes average their estimates; hence, S()
always contains exactly two nodes. On the other hand, in path
averaging, S(t) is the set of nodes in the random route gener-
ated at each time-slot ¢. Therefore, in this case, S(¢) contains a
random number of nodes.

D. Metrics for Convergence Time and Message Cost

We use two different metrics: the first one is useful for theo-
retical analysis, the second one is well-adapted to experimental
measurements.

1) Theoretical Metric Taye(€): Previous work defined the
e-averaging time Thye(€), a quantity describing speed of con-
vergence [6] (see also [12] for a related analysis).

Definition 1: e-averaging time T,.(€). Given ¢ > 0, the
e-averaging time is the earliest time at which the vector z (k) is
e close to the normalized true average with probability greater
than 1 — ¢

l|lz(t) — Tavelll

[[(0)]

>e] <e

Tove(€) =sup inf (D

.r(O) t=0,1,2...

Although T,ye(€) is hard to measure in practice because (1)
requires the evaluation of an infinite number of probabili-
ties, it is easily upper and lower bounded theoretically in

terms of the spectral gap (see Section IV). We compare al-
gorithms based on the amount of required communication.
More specifically, let R(t) represent the number of one-hop
radio transmissions required in time-slot ¢. In a standard
gossip protocol, the quantity R(¢) = R is simply a con-
stant, whereas for our protocol, { R(t)}+>1 will be a sequence
of i.i.d. random variables. The total communication cost at
time-slot ¢, measured in one-hop transmissions, is given by
the random variable C(t) = ;_; R(k). We define the
expected e-averaging cost Caye(€) to be the expected commu-
nication cost in the first T,ye(€) iterations of the algorithm:
Cave(€) = E[C(Tave(€))] = E[R(1)]Tave(€). Table I summa-
rizes the behavior of T,y (€) and C,ye(€) in previous work.

2) Empirical Metric T{™": To circumvent the difficulty of
measuring Thy.(€) in practice, we develop a simple empirical
metric in order to measure the efficiency of path averaging al-
gorithms using route protocols that are relevant in practice but
that we are not able to theoretically study. As we will see in
Section IV-A, an alternative solution is to measure the spectral
gap of E[W], which requires a precise estimation of the n x n
matrix E[W], since spectral gap is sensitive to slight matrix vari-
ations. The empirical metric is advantageously robust, simple
and fast to compute.

Definition 2: Empirical convergence rate v;,. Let e(t) =
|£(t) — Zavell| be the estimation error at time ¢. Given ¢; and
t > t1, the empirical convergence rate 7, (t) is

) = Bt logett)

If e(t) were exponentially decreasing with negative rate -y, then
v, (t) would be a constant equal to ~y. Interestingly, ¢, (¢) ad-
mits a limit when ¢ — oo [9], but the convergence rate to its limit
is unknown. In other words, (t) decreases exponentially fast in
asymptotic behavior, but we do not know its behavior at finite
times. Simulations show that the distribution of 7, (¢) tends to
concentrate on a finite value ~ at finite times; more precisely,
we observe in gossip algorithms that the error £(¢) decreases at
an exponential rate after some short transient phase. Studying
in theory the distribution of the random variable ~y,, (¢) at finite
times is still ongoing work [9], [12]. In this paper, we justify a
posteriori the use of the empirical convergence rate 7y, (¢), by
noticing the concentration of the measurements of 7y, (¢).
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Definition 3: Empirical consensus time T;"". Given ¢, and
t > t1, the empirical consensus time 7, " is

T (1) = =1/7, ().

If e(t) were exponentially decreasing with negative
rate 7, then the e-averaging time T,v.(e) would be
equal to T;™(t)(log(e™!) + log(|le(0)[|/[|=(0)I})) <
T;™P(t)log(e™!). Although ~y, (t) converges when ¢ — oo,
i.e., although £(¢) tends to be asymptotically exponentially
decreasing, there is no formal link between 77 ™"(t) and
Tave(€) because we do not know at which rate ¢, () converges.
In practice, we see on simulations that measurements of 7y, (¢)
concentrate at finite ¢, and we choose to display T} ""(t) as a
good indication of the empirical speed of convergence. Finding
a theoretical link between 77 "P(t) and Thye(€) remains an
open question.
Similarly we define the experimental number of messages.

Definition 4: Empirical consensus cost C;"P. Given ¢, and
t > t1, the empirical consensus cost Cy* is

B C(t) — C(t1)
log(e(t)) — log(e(t1))
If t > t1, then, by the strong law of large numbers
C(t) — C(t1)
t—1t1

() =

~ E[R(1)]
and
CyP () = E[R(D]TE™ ().

III. PATH AVERAGING ALGORITHMS

A. Path Averaging

1) Algorithm Description: The proposed algorithm com-
bines gossip with random greedy geographic routing, and it is
based on the assumption that each node knows its location and
the extent of the area nodes are embedded in. Path averaging
can be applied on any set of nodes embedded in some compact
and convex region, where pairs of nodes are connected within
a radius r, forming a connected graph.

The algorithm operates as follows: at each time-slot one
random node activates and selects a random position (target)
on the region where the nodes are spread out. No node needs
to be located on the target, since this would require global
knowledge of locations. The node then creates a packet that
contains its current estimate of the average, its position, the
number of visited nodes so far (one), the target location, and
passes the packet to a neighbor that is randomly chosen among
its neighbors which are closer to the target, and which are not
involved in another route at that time. Note that as we describe
in our time model, in our theoretical analysis we choose the
delays so that only one route exists with high probability at
the network, but in practice one can run the algorithm with
multiple simultaneous routes. As nodes receive the packet,
randomly and greedily forwarding it towards the target, they
add their value to the sum and increase the hop counter. When
the packet reaches its destination node (the first node that does
not have a neighbor closer to the target), the destination node
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Fig. 2. Random greedy routing. Node ¢ has to choose the following node in
the route among the nodes that are his neighbors (inside the ball of radius r(n)
centered in node ¢) and that are closer to the target than ¢ (inside the ball of
radius centered in the target, where d is the distance between node ¢ and the
target). The next node is thus randomly chosen in the intersection of the two
balls.

computes the average of all the nodes on the path, and reroutes
that information backwards on the same route.

See Fig. 2 for an illustration of random greedy routing. It
is not hard to show [11] that for G(n,r) when r scales like
©(4/logn/n) and nodes lie on a unit square, greedy forwarding
succeeds to reach the closest node to the random target with
high probability over graphs—in other words there are no large
‘holes’ in the network. We will refer to this whole procedure of
routing a message and averaging on a random path as one gossip
round which lasts for one time-slot, after which O(y/n/logn)
nodes will replace their estimates with their joint average. We
prefer not to route the estimates by choosing the next node as the
closest neighbor to the target, but as one random neighbor closer
to the target, because we observed that the latter is cheaper
(smaller C;™P).

Note that the nodes do not need to know the number of nodes
n in the network, they only need the size and the location of
the deployment field, as well as their own location. A node ini-
tializing a route can pick up a random direction and a random
number of hops instead of a target location to generate a route.
The most important point is to give directionality to the routes,
and this does not require precise location knowledge.

2) Performance on Simulations: We ran standard gossip, ge-
ographic gossip and path averaging on random geometric graphs
with a growing number n of nodes in the unit square. First, in
Fig. 3(a), we can verify that the mean route length in path av-
eraging is indeed almost of order O(y/n) (it is O(y/n/logn)
in theory). Then, in order to evaluate and compare the perfor-
mances of the algorithms, we measured 7} (t) and C} ™" (t)
for t; = 700 and values of ¢ increasing linearly with n, starting
at t = 1750. The algorithms were run several times for every
n by sampling different RGG’s. We observed that the sets of
measurements concentrate, not only with respect to the initial
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Fig. 3. Performance of path averaging. The simulations were performed over 15 graphs per n and four runs per graph starting from different random initial
signals. Empirical consensus costs Cfi“p(t) were measured with ¢; = 700 and values of ¢ increasing linearly with n starting from 1750. (a) The mean route
length in random greedy routing behaves in /n/log n. (b) Comparison between the average empirical consensus costs of standard gossip, geographic gossip
(without rejection sampling) and path averaging with 7(n) = /4.5 log n/n. (c), (d) Empirical consensus costs C*™ for radii 7(n) = /6logn/n and r(n) =
V25 log n/n. (e), (f) Examples of error decay in log scale, for n = 1500 nodes and for radii r(n) = /6log n/n and r(n) = /25 log n/n. Larger radii imply
smoother convergence, and more concentrated measurements. (a) Mean route length E(R). (b) Mean cost C°™P: compare three methods, (¢) C°™P: path averaging,

r(n) = \/6logn/n; (d) Co™P: path averaging, r(n) = /25 log n/n; () log| |¢| |: path averaging, r(n) = /6 logn/n; (f) log | |¢| |: path averaging, r(n) =
V25logn/n.

signal, but also with respect to the sampled graphs, which justi-
fies their relevance. Fig. 3(b), which displays average measure-
ments of C;"P(t), shows that our algorithm behaves strikingly
better than standard gossip and geographic gossip, when, for
example, r(n) = y/clogn/n with ¢ = 4.5. For other values

of ¢, the performance of our algorithm also greatly improves

previous gossip schemes. Most importantly, for small connec-
tion radius r(n) (small ¢), the number of messages C;"" (t) be-
haves slightly super-linearly in n, and as c increases, the be-
havior improves. This is illustrated in Fig. 3(c) and (d), where
the measurements are shown with boxplots. Boxplots display
the lower and upper quartiles as welll as the median of a set of
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measurements. In our figures, each boxplot represents 60 mea-
surements, since for each n, 15 graphs were sampled and path
averaging was run starting from 4 different signals on each of
them. Measurements in Fig. 3(d) are better concentrated than
measurements in Fig. 3(c), mainly because large radii 7(n) re-
duces edge effects (see Fig. 4). Note that a node that stays in-
active for a long period of time, destroys the smoothness of
convergence [Fig. 3(e)], and corrupts the concentration of the
measurements. Nodes on the edges of the network domain are
not likely to appear on routes; they are naturally isolated. These
routing edge effects do not exist in standard and geographic
gossip, which usually present very concentrated measurements.
The slight super-linearity of the empirical consensus cost for
small ¢ is probably due to these edge effects and to the con-
nectivity unbalance (variance in the degree of the nodes), which
is accentuated for small connection radii. An efficient way to
reduce edge effects for small ¢, is to systematically extend the
routes until the edges of the network, by keeping the route di-
rection (angle) unchanged. Therefore, the proposed algorithm
seems empirically very efficient but unfortunately, a theoretical
analysis of path averaging with greedy routing seems difficult.
However, with a slight modification in the routing scheme, and
by ignoring edge effects we are able to analyze path averaging,
first for grids and then for balanced geometric graphs. Recall
that random geometric graphs are balanced geometric graphs
with high probability when n is large if r(n) scales appropri-
ately to guarantee connectivity (Section II-B).

B. (<, ])-Path Averaging on Grids

The first step in our analysis is understanding the behavior of
path averaging on regular grids using a simple routing scheme.
Throughout this paper, a grid of n nodes will be a 4-connected
lattice on a torus of size v/n X /n. Assuming that each node
knows its location in the grid, (<, |)-path averaging performs
as follows: At each iteration ¢, a randomly selected node I wakes
up and selects a random destination node .J so that the pair (1, J)
is independently and uniformly distributed. Node I also flips a
fair coin to design the first direction: horizontal («) or vertical
(1). If for instance horizontal was picked as the first direction,
the path between I and .J is then defined by the shortest hori-
zontal-vertical route between I and .J [see Fig. 5(a)]. The esti-
mates of all the nodes on this path are aggregated and averaged
by messages passed on this path, and at the end of the itera-
tion the estimates of the nodes on this path are updated to their
global average. Clearly, this message-passing procedure can be
executed if each node knows its location on the grid.

Theorem 1 (<, |)-Path Averaging on Grids: Ona/n x \/n
torus grid, the e-averaging time Thy.(€,n) of (<, ])-path av-
eraging, described above, is O(y/nloge~1). Furthermore, the
expected e-averaging cost is linear: Cave(€,n) = O(nloge™1).
In Section IV, we present useful tools to prove this Theorem.
The proof itself is in the Appendix.

C. Box-Path Averaging on Balanced Geometric Graphs

As seen in Section II-B, a balanced geometric graph can be
organized in virtual squares of size alogn/n with the trans-
mission radius r(n) = y/clogn/n selected so that a node can
pass messages to any node in the four squares adjacent to its
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Fig. 4. Random greedy routing. For each node, we represent the empirical per-
centage of routes it participates in, by coloring its Voronoi cell according to a
linear color scale. As ¢, and thus r(n), increases, edge effects are attenuated.
Note that isolated nodes in the network (large Voronoi cells) appear in more
routes than nodes that are in densely populated zones (small Voronoi cells). In-
deed, isolated nodes are “inevitable” hops when routes should cross sparsely
populated zones, mostly when 7(n) is small. (a) ¢ = 1, (b) ¢ = 6, (¢) ¢ = 25.
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Fig. 5. (a) Shortest («, ])-route from I to J on the grid. (b) Example of
box-path averaging on an RGG: The node with inital value 3 selects a random
position and places a target. Using (<, | )-box routing towards that target, all
the nodes on the path replace their values with the average of the four nodes.
(a) («, ])-route; (b) box-path averaging.

own square (¢ > 5a). Assume that each node knows its lo-
cation and the location of the virtual boxes, then box-path av-
eraging can be performed: When a node activates, it chooses
uniformly at random a target location in the unit square and its
initial direction: horizontal or vertical. Then, a node is selected
(and activated) uniformly at random from the nodes in the ad-
jacent square which is in the correct routing direction. (Recall
that regularity ensures that w.h.p. ©(log n) nodes will be in each
square.) The routing stops when the message reaches a node in
the square where the target is located. As in the previous path
averaging algorithms, the estimates of all the nodes on the path
are averaged and all the nodes replace their values with this es-
timate [see Fig. 5(b)].

Box-greedy routing is a regularized version of random
greedy routing, and is introduced to make the analysis tractable.
Both routing schemes proceed by choosing the next hop among
©(logn) nodes (Fig. 7). Box-greedy routing generates routes

with O(y/n/logn) hops on average, and random greedy
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routing does as well on experiments [Fig. 3(a)]. Interestingly,
the analysis shows that box-path averaging on the torus con-
verges linearly for a fixed e.

Theorem 2 (Box-Path Averaging on RGG): Consider a
random geometric graph G(n,r) on the unit torus with
r(n) = Ck’%, ¢ > 5a > 15. With high probability over
graphs, the e- averaging time T, (€, n) of box-path averaging,
described above, is O(y/nlognloge™!). Furthermore, the
expected e- averaging cost is linear: Caye(€,n) = O(nloge™1).

Empirical Behavior: Fig. 6 shows the behavior of the em-
pirical consensus cost when running box-path averaging with
parameters o = 2.5 and a = 10, on planar random geometric
graphs, and on these graphs embedded in a torus. Measurements
concentrate better on the torus than on a planar graph, because
the latter induces edge effects and isolates the nodes on the edge
of the graph domain. Similarly, the measurements concentrate
better with large «, because the virtual boxes contain similar
number of nodes for large o, whereas with small «, some boxes
are over-crowded compared to others. A node in a crowed box
has less chance to be chosen when a route goes through its box,
and it is paradoxically “isolated” in the algorithm. The param-
eter o does not influence much the empirical performance of
box-path averaging on the torus; the algorithm performs better
for o = 2.5 than for « = 10, probably because small « reduces
the number of nodes within a virtual box (nodes in the same box
never belong to the same route, and thus never directly average
their estimates together, which is harmful for the performance
of the algorithm), and maybe also because small « imply longer
routes. On the contrary, on planar graphs, large o = 10 reduces
the isolation of nodes on the edge of the network domain, and
it is beneficial to the performance of box-path averaging com-
pared to small « = 2.5.

IV. ANALYSIS

A. Averaging and Eigenvalues.

Let z:(t) denote the vector of estimates of the global averages
after the ¢th gossip round, where z(0) is the vector of initial
measurements. Any gossip algorithm can be described by an
equation of the form

w(t+1) = W(t)z(t) @)

where W (t) is the averaging matrix over the ¢th time-slot.

We say that the algorithm converges almost surely (a.s.) if
Pllimy_ o 2(t) = xavef] = 1. It converges in expectation if
lim;—, oo Efz(t) — a:avef] = 0, and there is mean square con-
vergence if limy_oo E[||z(t) — Zavel]|2] = 0. There are two
necessary conditions for convergence:

{ Tw(t) =17 3)

wHl=1

which respectively ensure that the average is preserved at every
iteration, and that Tis a fixed point. Furthermore, the network
should be jointly connected in time since all the nodes should
participate in the algorithm. For any linear distributed averaging
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Fig. 6. Box-path averaging on RGG and the behavior of its empirical consensus costs. For a given «, box-path averaging is run on networks of size n, where n
is chosen such that \/r/(alogn) is very close to an integer k. The unit area is split into virtual boxes of length 1/k, so that the k2 boxes have the same size,
each of them containing in average approximatively «log n nodes. For each figure, box-path averaging was run on 15 random geometric graphs per n, with 6
different random initial signals per graph: there are 90 measurements per boxplot. Each figure also displays the average empirical consensus cost with a solid line.
Top figures are run with virtual boxes of parameter o« = 2.5, and bottom figures with «« = 10. Left figures show measurements on planar graphs (they include
edge effects), right figures on toruses (without edge effects). (a) planar, « = 2.5, (b) torus, « = 2.5, (c) planar, « = 10, (d) torus, o = 10.
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Fig. 7. Choosing the next node in the route. On the left: Random greedy
routing. On the right: (], < )-box routing. It is easy to see that the two choice
areas contain on average ©(log n) nodes.

algorithm following (2) where {W (¢)};> is i.i.d., precise con-
ditions for convergence in expectation and in mean square can
be found in [5]. In gossip algorithms, W (t) are symmetric and
projection matrices. Taking into account this particularity, we
can state specific conditions for convergence. Let Ao (E[W]) be
the second largest eigenvalue in magnitude of the expectation of
the averaging matrix E[W] = E[W (t)]. If condition (3) holds

and if Ao(E[W]) < 1, then z(t) converges to Zye1 in expecta-
tion and in mean square.

In the case where {W (t)};> is stationary and ergodic (and
thus, in particular, when {W(¢)}:>¢ is 1i.d.), sufficient con-
ditions for a.s. convergence can be proven [8]. Define 7 :=
inf{t >1: H;=0 W(t —p) > n > 0}, for some n > 0, then
7T is a stopping time. If Conditions (3) hold, ||W (¢)||> < 1 and
E[r] < oo, then the estimates converge to the global average
with probability 1. E[r] < oo is a connectivity condition since
it is satisfied if every node eventually connects to the network;
in other words, if the network is jointly connected.

Interestingly, the value of A2 (E[W]), that appears in the cri-
teria of convergence in expectation and of mean square conver-
gence, controls the speed of convergence. A straightforward ex-
tension of the proof of Boyd et al. [6] from the case of pair-
wise averaging matrices to the case of symmetric projection av-
eraging matrices yields the following bound on the e-averaging
time:

1 1

3loge™
1= (EW])

1 _
Tave(é) < 3loge

B log (m)

“)
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There is also a lower bound of the same order, which implies
that Tyyo(€) = O(log et /(1 — M (E[W]))).

Consequently, the rate at which the spectral gap 1 —
A2(E[W]) approaches zero as n increases, controls the e-av-
eraging time T,y.(€). For example, in the case of a complete
graph and uniform pairwise gossiping, one can show that
A2(E[W]) =1 — 1/n. Therefore, as previously mentioned, the
e-averaging time of this scheme is O(nloge™1). In pairwise
gossiping, the convergence time and the number of messages
have the same order because there is a constant number I of
transmissions per time-slot. In geographic gossip and in path
averaging on random geometric graphs, one round uses many
messages for the path routing (1/n/logn messages on av-
erage), hence multiplying the order of e-averaging time T,y (€)

by \/n/logn gives the order of e-averaging cost Caye(€).

B. Travel Agency Method

A direct consequence of the previous section is that the eval-
uation of consensus time requires an accurate upper bound on
A2(E[W]). Consequently, computing the averaging time of a
scheme takes two steps: (1) evaluation of E[WV], (2) upperbound
of its second largest eigenvalue in magnitude. E[W] is a doubly
stochastic matrix that corresponds to a time-reversible Markov
Chain.

We can, therefore, use techniques developed for bounding the
spectral gap of Markov Chains to bound the convergence time
of gossip. In particular, we will use Poincaré’s inequality by
Diaconis and Stroock [10] (see also [7, p. 212-213] and the
related canonical paths technique [28]) to develop a bounding
technique for gossip.

Theorem 3 (Poincaré’s inequality [10]): Let P denote an
n X n irreducible and reversible stochastic matrix, and = its
left eigenvector associated to the eigenvalue 1 (77 P = 77)
such that """, 7(i) = 1. A pair e = (k,[) is called an edge if
Py # 0. For each ordered pair (i, 7) where 1 < 4,5 < n,i # 7,

choose one and only one path v;; = (¢,41,. .., %m, j) between i
and j such that (i,41), (41,%2), . . ., (im, j) are all edges. Define
1 1 1
il = — + — +ot = )
= r@r T rar, T P,

The Poincaré coefficient is defined as

> gl (i) (). (6)

Yij e

K = Imax
edge e

Then the second largest eigenvalue of P is bounded as follows:
A(P)<1—-—. @)

We will apply this theorem with P = E[W]. Here, 7(7) = 1/n
foralll <2 < n.

The combination of Poincaré inequality with bound (4) forms
a versatile technique for bounding the performance of gossip al-
gorithms that we call the travel agency method. It is crucial to
understand that the edges used in the application of the theorem
are abstract and do not correspond to actual edges in the phys-
ical network. They instead correspond to paths on which there
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is joint averaging, and hence, information flow, through mes-
sage-passing. Consider the following analogy. Imagine that n
airports are positioned at the locations of the nodes of the net-
work. In this scenario, we are given a table P = E[WW] of the
flight capacities (number of passengers per time unit) between
any pair of airports among the n airports. A good averaging
intensity E[WW;;] between nodes ¢ and j correspond to a good
capacity flight between airports ¢ and j in the travel agency
method. Here, edges ¢ are existing flights and, in our specific
case, there is the same number of travelers in all the airports
(m(i) = 1/n for all 7). We are asked to design one and only one
road map -;; between each pair of airports ¢ and j that avoids
congestion and multiple hops. |;;| measures the level of con-
gestion between airport ¢ and airport 7. The theorem tells us that
if we can come up with a road map that avoids significant con-
gestion on the worst flight (i.e., if x is small), then we will have
proven that the network is efficient (Ao is small). The previous
bound (4) can now be used to bound the consensus time and
consensus cost.

One of the important benefits of this bounding technique is
that we do not need know the entries of E[W] to bound the av-
eraging cost, and only good lower bounds suffice. In terms of
the analogy, we only need to know that each flight (¢, 7) has at
least capacity C; ;. If (4, j) can actually carry more passengers
(Pi, i = G j), then our measure of congestion x will be over-
estimated. While our final upper-bounds will not be as tight as
they could have been if we had exact knowledge of E[I¥/], they
suffice to establish the optimal asymptotic behavior.

C. Example: Standard Gossip Revisited

In order to illustrate the generality of our technique, we show
how to apply it on simple examples, by giving sketches of novel
proofs for known results on nearest neighbors gossip on the
complete graph and on the random geometric graph.

1) Complete Graph: For any i # j,E[W;;] = 1/n>. In-
deed W;; = 0.5 when node 7 wakes up (event of probability
1/n) and chooses node j (event of probability 1/n, as well), or
when j wakes up and chooses :. We apply now the travel agency
method. We see in E [W] that all flights have equal capacity 1/n2
and that there are direct flights between any pair of airports. We
choose here the simplest road map one could think of: to go from
airport ¢ to airport j, each traveller should take the direct hop
7ij = (i, 7). Then the sum in (5) has only one term: |7;;| = n3.
In this case all flights are equal and one flight e = (3, j) belongs
only to one road map: ;. Thus, the sum in (6) also has only one
term and x = n3/(n-n) = n. Therefore, Ao (E[W]) < 1—1/n,
which proves that Tyye(e,n) = O(nloge™!). Note that the
complete graph is the overlay network of geographic gossip?
(every pair of node can be averaged at the expense of routing),
which thus performs in Coe(€,17) = O(ny/n/lognloge™1).

2) Random Geometric Graph (RGG): We show in the
Appendix that if the connection radius r(n) is large enough,
then RGGs are balanced with high probability, i.e., the nodes
are very regularly spread out in the unit square, which implies
that each node has ©(log n) neighbors. To keep the illustration
of the travel agency method simple, we assume that the nodes

2In reality, geographic gossip will not be completely uniform but rejection
sampling can be used [11] to tamper the distribution.
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lie on a torus (no border effects). Consider the pair of nodes
(,7). If 4 and j are not neighbors, then E[W;;] = 0; if ¢ and
Jj are neighbors, then E[W;;] = ©(1/(nlogn)) because node
1 wakes up with probability 1/n and chooses node j with
probability ©(1/logn). We now have to create a roadmap
with only short distance paths. Regularity ensures that there are
no isolated nodes that could create local congestion. We thus
naturally decide that the best way to go is to select paths along
the straightest possible line between the departure airport and
the destination airport. This will require O(1/n/logn) hops;
therefore, the right-hand side of (5) is the sum of O(y/n/ logn)
terms, each of equal order

n 1 1
1=0(/5z) 720 (77em)
= 0(n*\/nlogn). (3)

Now we need to compute in how many paths each partic-
ular flight is used. It follows from our regularity and torus
assumptions that each flight appears in approximatively the
same number of road maps. There are n? paths that use
O(y/n/logn) flights, but there are only ©(nlogn) different
flights; hence, each flight is used in O((n/logn)'?) paths.
We can now compute the Poincaré coefficient x. We drop
the max, argument in (6) because all flights are equal. As

w(i) = n(j) = 1/n

K= Z O(n%/nlogn)%% )

Yijoe

(10)

e <<lgn)) O(y/nlogn)

-0(5e)
logn

which proves that Tyye(e,n) = O(n?loge=1/logn).

3) Comments: The proof of the performance of path aver-
aging on a RGG given in Section I'V-B gives insight on how to
complete this last proof. It is interesting to see that the travel
agency method describes how information diffuses in the net-
work. In the second example, far away nodes never directly av-
erage their estimates together, but they do it indirectly, using the
nodes between them.

Note that our method does not give lower-bounds on
A2 (E[W]), which would be useful to give an equivalent order
for e-averaging time T,... In the case of path averaging, this
is not an issue since it is not possible to achieve better than
linear e-averaging cost Caye(n). So if the method shows that
Tave(e,n) = O(v/nlognloge™!), we have that Coye(€,n) =
O(v/nlognloge1)O(y/n/logn) = O(nloge™!), and we

can conclude that C,ye(€,n) = O(nloge™1).

(1)

D. Application to Path Averaging

The main result of this paper is that the consensus cost of
(<, ])-path averaging on torus grids and of box-path averaging
on random geometric graphs embedded in the torus, behave /in-
early in the number of nodes n (Theorems 1 and 2). The proofs
of Theorem 1 and Theorem 2 are given in the Appendix. Both
proofs have the same structure: we first lower bound the entries
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Fig. 8. Simplified behavior of E[W;;] as a function of the distance in norm 1
between ¢ and j for standard gossip, geographic gossip and box-path averaging.
In a glance, this figure shows the main differences between the three algorithms.

of E[W] and next upper bound its second largest eigenvalue in
magnitude. Fig. 8 sketches the behavior of E[W;;] as a func-
tion of the L, distance (see definition in Section A.1) between
nodes ¢ and j for standard gossip, geographic gossip and path
averaging on the torus; respectively the proofs give us the insight
behind the good performance of box-path averaging compared
to standard gossip and geographic gossip by simply analysing
Fig. 8. Box-path averaging concentrates the averaging intensi-
ties E[W;;] of node ¢ in the area of nodes j close to i. Indeed,
the closer two nodes, the higher the probability that they are
on the same route. Thus, as we can observe on Fig. 8, close
nodes have a much higher averaging intensity E[IV;;] than in
geographic gossip, where nodes are equally rarely averaged to-
gether (the proof shows an order y/n/logn higher). However,
the averaging intensity gained by close nodes is lost for far away
nodes, which do not average together well anymore (a factor n
loss compared to geographic gossip).

In terms of the travel agency method, in box-path averaging
over the unit area torus, flights that cover distances shorter than
1/2 have high capacity, whereas long distance flights are rare.
To apply the method, the idea is to chose 2-hop paths: to go from
node (or airport) ¢ to node (or airport) j, the path will contain
two hops that stop half way, in order to exclusively and fairly use
the high capacity flights. Remember that standard gossip needs
v/n/logn flights per path (see Section IV-C1), which heavily
penalizes the performance despite a very high averaging inten-
sity E[W;;] for neighboring nodes i and j (see Fig. 8, where
E[W;,] is large for neighboring nodes but falls to 0 for distances
larger than 7(n)). The performance of path averaging algorithms
is good thanks to a diffusion scheme requiring only O(1) flights
in each path and O(1) uses of each flight in the road map, com-
bined with a high enough level of averaging intensity E[W;;].
Each node can act as a diffusion relay for some far away nodes,
so that the whole network can benefit from the concentration of
the averaging intensity.

As a summary, in contrast with geographic gossip, path aver-
aging and standard gossip concentrate their averaging intensity
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on close nodes, which leads to larger coefficients E[IV; ;] when
nodes 7 and j are close enough. However, while standard gossip
pays for its concentration with long paths overusing every ex-
isting flight, the diffusion pattern of path averaging operates in 2
steps only without creating any congestion (more precisely, we
compute in the proof that each flight is used in 9[b/a] paths,
where a and b are the regularity coefficients of the network).
In conclusion, the analysis shows that path averaging achieves a
good tradeoff between promoting local averaging to increase av-
eraging intensity (large E[WW;;]) and favoring long distance av-
eraging to get an efficient diffusion pattern (every path ;; con-
tains only O(1) edges, and every edge e appears in only O(1)
paths).

V. CONCLUSION

We introduced a novel gossip algorithm for distributed
averaging. The proposed algorithm operates in a distributed
and asynchronous manner on locally connected graphs and
requires an order-optimal number of communicated messages
for random balanced geometric graph and grid topologies
when using box-path routing. The execution of path averaging
requires that each node knows its own location, the location of
the area in which the network is embedded, as well as (for the
routing-scheme that was theoretically analyzed) the location of
some virtual boxes.

Location information is independently useful and likely to
exist in many application scenarios. The key idea that makes
path averaging so efficient is the opportunistic combination of
routing and averaging. The issues of delay (how several paths
can be concurrently averaged in the network) and fault tolerance
(robustness and recovery in failures) remain as interesting future
work.

More generally, we believe that the idea of greedily routing
towards a randomly preselected target (and processing informa-
tion on the routed paths) is a very useful primitive for designing
message-passing algorithms on networks that have some geom-
etry. The reason is that the target introduces some directionality
in the scheduling of message passing which avoids diffusive be-
havior. Other than computing linear functions, such path-pro-
cessing algorithms can be designed for information dissemina-
tion or more general message passing computations such as mar-
ginal computations or MAP estimates for probabilistic graphical
models [27]. Scheduling the message-passing using some form
of linear paths can accelerate the communication required for
the convergence of such algorithms. We plan to investigate such
protocols in future work.

VI. DEFINITIONS

A. Notations

* G(n,r) or RGG: random geometric graph with n nodes
and connection radius 7.

» x(0): vector of the initial values to be averaged.

* Tave = Yy @k(0)/n.

 x(t): vector of the estimates of the average.

* S(t): the random set of nodes that average together at time-
slot ¢.

* R(t): number of one hop transmissions at time-slot .
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e €(t) = &(t) — Tavel: error vector, where 1 is the vector of
all ones.

» W(t): averaging matrix at time ¢.

* \y: second largest eigenvalue in magnitude.

* v;;: path starting in ¢ and ending in j.

* |vi;| measures the “resistance” of path ;; (5).

* x: Poincaré coefficient (6).

* Tave(€): e-averaging time (Def. 1).

o Cave(€) = E[R(1)]Tave(€): expected e-averaging cost.

o T;™,C;™P: empirical consensus time, empirical con-
sensus cost (Def. 3, 4).

B. List of the Algorithms

» Standard gossip: Pairwise gossip where only direct neigh-
bors can average their estimates together.

* Geographic gossip: Pairwise gossip where any pair of
nodes can average their estimates together at the expense
of routing.

» Path averaging: At each iteration a random route is created
by random greedy routing in an RGG. The nodes of the
route average their estimates together.

* (+,])-path averaging: At each iteration a random route is
created by (<, |)-routing on a grid (embedded in a torus in
the analysis). The nodes of the route average their estimates
together.

* Box-path routing: At each iteration a random route is cre-
ated by box-routing on a balanced geometric graph (em-
bedded in a torus in the analysis). The nodes of the route
average their estimates together.

APPENDIX

A. Performance of (<, ])-Path Averaging on a Grid

This section proves Theorem 1, which states the linearity of
consensus cost for (<, )-path averaging on a grid. The ana-
lyzed algorithm is described in Section III-B.

Theorem 1:

1) Notation: We need to define the shortest distance on a
torus. To this end, we introduce a torus absolute value |.|7 and
a torus Ly norm ||.||;. For any algebraic value « on a 1-D torus
(circle with \/n nodes) and any vector 7 on a y/n X y/n 2-D torus

|zl7 = min(|z|, |z — V/n], |2 + V/n|)

il = lizlT + [iy|7-

We call £;; = ||j — i||1 the Ly distance between nodes 7 and
j. The shortest routes between I and J have o = f;; + 1 =
|Jo — I|7 + |Jy — Iy|7 + 1 nodes to be averaged; thus, the
nonzero coefficients of their corresponding matrices W are all
equal to 1/c.

To each route r, we assign a generalized gossip n X n matrix
W) that averages the current estimates of the nodes on the
route. Consequently, at iteration ¢, W (t) = W (1) where r(t)
was randomly chosen. We call R the route random variable,
s(R) its starting node, d(R) its destination node, and ¢(R) =
Ls(Rrya(r) + 1 its number of nodes. As we choose the shortest
route, the maximum number of nodes a route can contain is v/n
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Fig.9. Counting the number of routes of length ¢ = 9 nodes, in the case where

C;; = 5. There are ¢ — {;; = 9 — 5 = 4 possible routes with exactly ¢
nodes going through node ¢ then through node j. We admit only routes going
horizontally first then vertically.

if \/n is odd, \/n + 1 if \/n is even, which can be written as
2|\/n/2] + 1 in short.

2) Evaluating E[W]: Far away nodes are less likely to be
jointly averaged compared to neighboring ones (see Fig. 8). The
following lemma quantifies the behavior of E[W; ;] as a func-
tion of the distance between 7 and j. The main consequence of
this lemma is that nodes that are separated by a distance at most
\/n/2 are strongly averaged together.

Lemma I: (Expected E[W] on the grid) For any pair of nodes
(i,7), if their distance normalized to the maximum distance
6;; = |l7 — t][1/+/n is smaller than a constant, then

E[W,,] =9 (;) .

1-— (Sij + 6” log 6”>

Proof: Observing that E[W () |(«, )] = E[]WB)|(], —
)] because the route from a node I to a node .J horizontally first
has the same nodes as the route from .J to I vertically first, we
get

12)

More precisely

E[W; ;] > el

E[W] = E[]W®)

E (=, )]+ ZEW (], )]
= E[W (=, 1)

So, for a given pair of nodes (3, j), we can compute the (4, j)th
entry of the matrix expectation E[I¥] by systematically routing
first horizontally. Only the («, |)-routes which contain both
these two nodes 7 and j will have a nonzero contribution in
E[W;;]. Pick such a route 7, the (¢, 7)th entry of the corre-
sponding averaging matrix is WL( ]) = 1/4(r). We call Re
the set of (<, |)-routes with £ nodes passing by node  and by
node j, and denote z* = max(z,0). It is not hard to see that
(¢ — £;;)7 is the number of routes of length ¢ passing by i first
and j next (see Fig. 9), so |R{;| = 2(£ — £;;)*. We thus have
for any ¢ # j

E[W; ] = Z WPIR = 1]
1 ”
52 Wi
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2|4
_ 1 . |Rfj|
T n?2 V4
Z:Ei]‘+1
2| 2| 41
2 il L1
T n?2 {
0=t;;+1

from which we can deduce the following upper and lower
bounds when i # j:

Vnt2 o
[E[th,j]ﬁ— ”d
541
Vi +2
= = (=t +1—1;1
m(\/ﬁ bj +1=bijIn oy
2 Ve g
EW; ;] > = X
[WJ]—nQ » - dz

2 Jn
:ﬁ<\/ﬁ—£”—£”1na)

E[W; ;] decreases from —\/— to o(-%) as a function of ¢;;

get a normalized expression with respect to \/n, we use the co-
efficient 0;; defined in the statement of Lemma 1

2
m (1= 6;;+ 6ijInéd;;) <E[W; ;] <

2 1 Vn+2
—— 1 —=6;+6;;Iné;; + —= — 6 In —- | .
nﬁ( AT J”ﬁ%-)

This establishes the claim. In particular, if §;; = 1 /2, then
E[W; ;] ~ 1= 1n2 u

3) Boundzng A2(E[W]): We need now to upperbound the
second largest eigenvalue in magnitude of E[W], or equiva-
lently, the relaxation time 1/(1 — Ao (E[W])).

Lemma 2 (Relaxation Time):
1

Ty~ OV

(13)
Proof: The Poincaré inequality (Theorem 3) bounds the
second largest eigenvalue of a stochastic matrix and not nec-
essarily its second largest eigenvalue in magnitude, which is
the important quantity involved in (4). It could happen that the
smallest negative eigenvalue is larger in magnitude than the
second largest eigenvalue. Consequently, if we show that all
the eigenvalues of E[WW] are positive, then the two eigenvalues
coincide and we can use the Poincaré inequality to bound the
second largest eigenvalue in magnitude. E[W] is symmetric
so all its eigenvalues are real. The sum of all the entries along
the lines of E[W] without counting the diagonal element is
O(1/+/n), whereas the diagonal elements are (1), so by
Gershgorin bound [7], all the eigenvalues of E[W] are positive.
We can now use the bounds on E[I¥] to bound its spectral gap.
We want to prove that path averaging performs /n better than
geographic gossip, where E[W; ;] = 1/n? (Section IV-C1). It
is encouraging to note that for 6;; < 1/2,E[W; ;] > ln\1/“—2,
which is precisely /7 better than 1/n?. We thus observe that it
is possible to find edges with a good capacity with length equal
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to half of the whole graph. However, very distant destinations
remain problematic. Consider the extreme case of a distance /n
between two nodes ¢ and j. There are only two routes that will
jointly average them: the route that goes from ¢ to j, and the
reverse one. These routes are selected with probability 1/n? and
W;; = 1//n, implying that E[W;;] = 2/n?® < 1/n1.

Formally, for each ordered and distinct pair (i, 7), we choose
a 2-hop path «y;; from 4 to j stopping by an “airport” node %
chosen to be located approximatively half way between ¢ and
j. To be more precise, we define direction functions o, and o,
where 0, (7, j) = 1 (respectively, o, (4, j) = 1) if the horizontal
(resp., vertical) part of the route from z to 5 goes to the right
(resp., up) and o,(i,j) = —1 (resp., o, (3,5) = —1) if it goes
left (resp., down). The coordinates of & in the torus are

b= (it ontiod) |55 ) mod v

ky = <LJ +0,(i, §) {MJ > (mod /). (14)
In the road map v we have just constructed, the maximum flight
distance is smaller than 4 + 1 in L; distance. Therefore, for
any edge e iny, 6. < 1/2, and according to Lemma 1, E[W,] >
n/n'-3, where 7 is a non negative constant slightly smaller than
1 — In 2. Thus, for each path +;; we have

Ivij| = L + L
YT R (DEWiA] T m(REW ]
EW;x]  E[Wk,]
i

15)
n
We can now compute the Poincaré coefficient
1
K = max Z |yij|mim; = -z |ax Z |73 (16)

Yijoe Yij e

To compute this sum, we need to count the number of paths «;;
in the road map that use a given flight e. In our construction, we
have balanced the traffic load over all the short flights so that
a flight e belongs to at most 8 paths. Indeed, if a path contains
flight e, then e is either the first or second flight. In the first case,
by construction, the second flight has to be approximatively as
long as e. Moreover, because of quantized grid effects, there
are actually only 4 different possible flights a traveler in flight
e might take as second flight (see Fig. 10). Repeating this argu-
ment in the case where e is the second flight, we then obtain that
a flight e appears in at most 8 paths. Combining (15) and (16),
we get

16
Kk < —=/n.
n
As a result
Ui
Ao <1-—
=" 16yn
which yields Lemma 2. [ |

The proof of Theorem 1 is completed by combining Lemma
2 and (4). [ |
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Fig. 10. Number of paths including an edge ¢ = (A, B) in the road
map. Paths have two hops of equal length, where equality here is de-
fined up to grid effects. Therefore, for a given edge e, there are at most
eight paths including e : (1,4,B),(2,4,B),(3,A,B),(4,A,B) and
(A,B,5),(A.B,6),(A.B,7).(A.B,8).

In the next section, we generalize this proof from grids to bal-
anced geometric graphs. The approach will be the same but the
detailed computations will be different. Also, the construction
of the paths in the travel agency method will need some refine-
ment.

B. Performance of Box-Path Averaging.

Theorem 2: All the fundamental ideas coming from the proof
on grids in the previous section, appear here again, but some-
times in a more technical form. We have k boxes forming a torus
grid as in the previous section and k = [\/n/(alogn)]? ~
n/(alogn), for some o > 3.

Using regularity, each box contains a number of nodes
between alogn and blogn. We use the (<, [)-box routing
scheme presented in Section III-C. A few modifications of the
grid proof lead to the proof on balanced geometric graphs. The
idea is to notice that for any route » = (ry,72,...,7¢), We
can attribute a box route 7 consisting of the boxes the nodes
of 7 belong to. If we call b(4) the box node 7 belongs to, then
7 = (b(r1),b(r2),...,b(re)). We call n; the number of nodes
in the box b(7) node 7 belongs to. The sequence of n; is fixed
by the graph we are considering. The boxes form a grid and
integer coordinates are assigned to each box. In this system of
coordinates, for any pair of nodes 4 and j, £;; is the L; distance
between boxes b(4) and b(j): £;; = ||6(j) — b(¢)|]1. We denote
by £(r) the number of nodes in route r, s(7) the starting box of
route 7 and d(7) its destination box. In our problem, the chosen
route is random, which we will denote by capital case letter: R,
leading to other random variables R, /(R), s(R), etc.

1) Evaluating E[W]:

Lemma 3: (Expected E[W] on the balanced geometric
graph) For any pair of nodes (i,7) that do not belong to the
same box, if their grid-distance normalized to the maximum
grid-distance 6;; = ¢;;/ V'k is smaller than a constant, then

E[W;;] = Q ( (17)

1
ny/n 10gn> '

More precisely

4a 2 n
W..1> -2 [ (1—6.. oo 8
E[Wi;] = b2 n2 \/ alogn (L= bij + 6ij log bij) (18)

Proof: For any node ¢ and node j that do not belong to the
same box, we want to compute the expectation of W;;. Counting
the routes in this setting is complicated because each sender has
at least a log n nodes to send its message to. In order to use our
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simple analysis of the grid, we condition the expectation on the
box routes R. Given a box route, W;; = 0 if 4 or 7 is not in the
box route. On the contrary, if they both are in the box route, then
Wi; = 1/£(R) with probability 1/(n;n;). Indeed, if i (or 7) is
in starting box, the probability that 7 is the starting node is 1/n;,
because all the nodes wake up with the same rate. If 7 (or 7) is in
another box of the given box route, then the probability that ¢ is
chosen is 1/n; as well, because the routing chooses next node
uniformly among the nodes of the next box
E[Wij] = E [Er[Wi 7]

1 1

::Efé[E;ﬁ;zzﬁﬁlbﬁ)eélbojeﬁ}'

From now on, we are back to a problem with routes on
a grid which has k£ “nodes”. The difference with previous
section is that routes are no longer uniform. Indeed, now,
boxes wake up more frequently if they contain more nodes:
the probability that box b(i) wakes up is n;/n. Destination
boxes are still chosen uniformly at random with probability
1/k because there are k boxes in total. Just as before, we
consider only (<, ])-box routes so that a box route is en-
tirely determined by its starting box and its destination box:
PR = #] = P[s(R) = s(7),d(R) = d()]. We count box
routes of different length separately as well. Let Rfj be the set
of box routes of size £ including b(z) and b(j)

=

1 LyyerLo)er _
EWy] = — > OSOSPR = 7]
i

G
2| &

T = Z[ Z

ij+1 ’I‘ER[

_r]

2| ¥E |41 . -

T oy P[s(R) = s(7),d(R) = d(7)]

We now use the regularity of the graph: for any node

m,alogn < n, < blogn
5 L
1 la 0gn4 ogn
EWij] 2 7o—v3 R ]
(blogn)? {
r=t;;41
L ry
4a 1 ij
“pw 2
l:&'j—l—l
4a 2 Vi
2 b_2ﬁ (\/E—gi]’ —&JIHE> .

The last inequality comes from the same computation as for the
grid, and it can be reformulated as in Lemma 3 when using the
normalized distance coefficient 6;; = £;;/ VEk. [ ]
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2) Bounding A2 (E[W]):
Lemma 4 (Relaxation Time RGG):

1
ESWEiT) = O(y/nlogn).

Proof: As for the grid, we now apply the travel agency

method. The situation is very similar to the grid case, except
that boxes now contain ©(log n) nodes each.
Similarly to the grid case, we will be using 2-hop paths for every
pair of nodes, by adding one intermediate stop half-way. More
precisely, this intermediate stop is chosen in the box whose co-
ordinates on the underlying lattice are given by (14), where ¢ and
7 are the lattice coordinates of the source and destination boxes.
Once box paths are fixed in this way, for each pair of nodes, we
need to carefully and fairly assign the intermediate node within
the intermediate box that will become their relay node. It would
not be wise to always choose the same intermediate node in the
intermediate box for all the paths we need to design. Indeed a
flight should not be used more than a constant number of times
(it was 8 for the grid), otherwise it would create congestion. It is
not hard to design such road maps because the number of nodes
in each box varies at most by a constant multiplicative factor
b/a.

To show this, assume that each box contains exactly the same
number N of nodes. For any pair of boxes Box 1 and Box 3, let
Box 2 be the half-way box that is chosen to be their relay box.
There are N2 road maps to find between all the nodes in Box
1 and Box 3, but happily enough, there are N? flights between
Box 1 and Box 2 and also between Box 2 and Box 3. Therefore,
as we can see in Fig. 11, the box path (Box 1, Box 2, Box 3)
can correspond to N2 node road maps all using different flights
(edges). This flight allocation technique can easily be extended
to cases where the boxes do not have the same number of air-
ports, by using flights at most [b/a] times each in every box
path. Indeed, in the worse congestion case, Box 1 and Box 3
have blog n nodes and Box 2 has a log n nodes only. First split
Box 1 and Box 3 in groups of a log n nodes, which makes [b/a]
groups per box. Then design road maps between each groups of
Box 1 and Box 3 using intermediate nodes in Box 2 in exactly
the same way as before, since the initial group, the intermediate
box and the final group have the same number of nodes. For each
pair of groups (group in Box 1, group in Box 3), all the flights be-
tween the group in Box 1 and Box 2, and all the flights between
Box 2 and the group in Box 3 are used once and only once. Note
that one group in each box has less than a logn nodes if b/a is
not an integer; this is not an issue since it only implies that there
are less roads to design and, therefore, less flights to use. Now,
each group in Box 1 needs to connect to [b/a] other groups in
Box 3, and each of these [b/a] group connections uses the same
edges between the nodes of the group in Box 1 and the nodes in
Box 2. The same reasoning holds for the edges between Box 2
and the groups of Box 3. Therefore, in the worse case, there is
a road map strategy that uses each edge (flight) at most [b/a]
times for each box path.

There is a second refinement to the grid proof: solving the
problem for nodes that share a common box, which do not av-
erage jointly (Our bound on E[W;;] is zero). Note, however, that

19)
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Fig. 11. Path allocation when there are three nodes per box and thus nine paths
to design.

there are strong edges to nodes in neighboring boxes. Formally,
if node ¢ and node j are in the same box, we design the road
map from ¢ to j to be a two hop road map stopping at a node
located in the box above their box. By sharing fairly the avail-
able relay airports, the short north-south flights might be used
in [b/a] extra road maps.

We can now construct road maps for any pair of airports that
will use at most 9[b/a] times each good intensity flight. First we
build the road map at the box level: each pair of boxes appears
in at most 8 box paths as in previous theorem +1 box path to
solve the lack of averaging inside a box, which makes 9 box
paths in total. Then we refine the road maps at the node level.
Each box path between two boxes can be refined at the node
level in such a way that flights in this path are used at most
[b/a] times. Therefore, each pair of nodes will appear in at most
9[b/a] paths. The rest of the proof is identical to the grid proof.

For each path, we have

vl = e+ S E
Y= R EWA] T w(R)EW, ]

ﬂ«H%A+H%M>

< en?y/nlogn

for some constant c. Inequality (20), was obtained with the same
reasoning as in the grid, using that ¢; 5, and 6;, ; are smaller than
the constant 1/2 and applying Lemma 3. We, therefore, con-
clude, using the Poincaré coefficient argument that

b
k<9 ’V——‘ cy/nlogn.
a

(20)

As a result, for n large enough, and some constant ¢’

1
A<l —
2= cv/nlogn
which yields the lemma. ]

The proof of Theorem 2 is completed by combining Lemma 4
and (4). [ |

C. Regularity of Random Geometric Graphs

Lemma 5 (Regularity of Random Geometric Graphs): Con-
sider a random geometric graph with n nodes and partition the
unit square in boxes of size aloi " Then, if « > 3, all the
boxes contain O(logn) nodes (the graph is a balanced geo-
metric graph), with high probability as n — oo.
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Proof: We give two proofs. The first one is very simple and
short, but it works for « > 8 only. The second proof is more
technical and it shows that the lemma holds for o > 3.

Proof 1: Let X; denote the number of nodes contained in
the ¢th box. X; are (nonindependent) Binomially distributed
random variables with expectation «logn. Standard Chernoff
(we do not optimize for the constants) bounds [20] imply

P (X1 S %logn) S e_a/slogn
and
P (X, > 2alogn) < e~*/3lsn,

which give tight bounds on the number of nodes in each box
P(%lognSX,; §2alogn) > 1 —2e" /8l (1)

A union bound over boxes yields the uniform bounds on the
maximum and minimum load of a square

P (% logn < min X; < max X; < 2a10gn)

>1_ples_2
- alogn
Therefore, selecting o > 8 yields the lemma.

Proof 2: The space is divided in boxes of surface alogn/n

with @ > 3. We want to show that the number of nodes in every
box is jointly lower bounded by alogn and upperbounded by
blog n, for some constants ¢ < a < b with high probability. We
denote by E the set of Bernouilli distributions which parameter
p is not included in [a log n, blog n].
We first fix a box B. For any node i, P[i € B] = alogn/n.
Let X? = 1l;cp. The X7 are i.i.d. random variables with
distribution @), where @) is Bernouilli of parameter alogn/n.
Q% (E) is the probability that a realization of X, ..., X has
an empirical distribution in E, i.e., Q}(FE) is the probability
that the empirical proportion of nodes that fall in B is not in
[alogn/n,blogn/n]. Then, according to Sanov’s theorem

QE(E) < (n+1)%27PFIIQ)
where
P* = arg min D(P||Q)

is the distribution in E that is closest to () in relative entropy.
If we can find a and b such that Q%% (E) behaves in n~¢ with
¢ = 1, then we conclude that the event A “There is a box with
less than a log n» nodes or more than b log n nodes” happens with
low probability

PlA1 <D Qp(E)
< Zn_c

1-¢
- 22)
alogn
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Therefore, if ( > 1, we can conclude that the probability
of having all the boxes with a number N of nodes such that
alogn < N < blogn, goes to 1 when n goes to infinity.

Now it remains to prove that, for any « > 3, such a and
b can be found. Take a Bernouilli distribution P, of parameter

qlogn/n

qlogn l—qlo%
D(rI@) = (1= T Yok ( [ =ity

alogn
1
4 1o8n log (2)
n

@
= logn [oz —q (1 — log (g>)} +o0 <10gn> .
n 07 n
Denote by f the function f(z) = a — z(1 — log(x/«)). The
derivative of f is df /dz = log(z /). Therefore, f decreases on
[0, @] and increases on [«, 0c]. Note that f(0) = « > 3, f(«) =
0 and lim, . f(2) = oco. Thus, for a small enough and b large

enough, if ¢ ¢ [a, b], then there is a f such that f(q) > fo > 3
and D(P,1Q) > fo logn/n

Qp(E) < (n+1)%27/oloen
(n+1)
nfo

=0 (n_(f°_2)> .

Assuming that o > 3, we have just proved that we can find
an fy larger than 3, such that { = fy — 2 > 1 (by definition
of (,Q%(E) = O(n¢)). Therefore, if « > 3, by (22), the
probability of event A goes to zero, which concludes the proof.

|
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