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ABSTRACT | Gossip algorithms are attractive for in-network

processing in sensor networks because they do not require any

specialized routing, there is no bottleneck or single point of

failure, and they are robust to unreliable wireless network

conditions. Recently, there has been a surge of activity in the

computer science, control, signal processing, and information

theory communities, developing faster and more robust gossip

algorithms and deriving theoretical performance guarantees.

This paper presents an overview of recent work in the area. We

describe convergence rate results, which are related to the

number of transmittedmessages and thus the amount of energy

consumed in the network for gossiping. We discuss issues

related to gossiping over wireless links, including the effects of

quantization and noise, and we illustrate the use of gossip

algorithms for canonical signal processing tasks including

distributed estimation, source localization, and compression.
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I . INTRODUCTION

Collaborative in-network processing is a major tenet of
wireless sensor networking, and has receivedmuch attention
from the signal processing, control, and information theory
communities during the past decade [1]. Early research in
this area considered applications such as detection, classi-
fication, tracking, and pursuit [2]–[5]. By exploiting local
computation resources at each node, it is possible to reduce
the amount of data that needs to be transmitted out of the
network, thereby saving bandwidth and energy, extending
the network lifetime, and reducing latency.

In addition to having on-board sensing and processing
capabilities, the archetypal sensor network node is battery
powered and uses a wireless radio to communicate with the
rest of the network. Since each wireless transmission con-
sumes bandwidth and, on common platforms, also consumes
considerably more energy than processing data locally [6],
[7], reducing the amount of data transmitted can
significantly prolong battery life. In applications where
the phenomenon being sensed varies slowly in space, the
measurements at nearby sensors will be highly correlated.
In-network processing can compress the data to avoid
wasting transmissions on redundant information. In other
applications, rather than collecting data from each node, the
goal of the system may be to compute a function of the data
such as estimating parameters, fitting a model, or detecting
an event. In-network processing can be used to carry out the
computation within the network so that, instead of
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transmitting raw data to a fusion center, only the results of
the computation are transmitted to the end user. In many
situations, in-network computation leads to considerable
energy savings over the centralized approach [8], [9].

Many previous approaches to in-network processing
assume that the network can provide specialized routing
services. For example, some schemes require the existence of a
cyclic route through the network that passes through every
node precisely one time1 [9]–[11]. Others are based on forming
a spanning tree rooted at the fusion center or information sink,
and then aggregating data up the tree [8], [12], [13]. Although
using a fixed routing scheme is intuitive, there are many
drawbacks to this approach in wireless networking scenarios.
Aggregating data towards a fusion center at the root of a tree
can cause a bottleneck in communications near the root and
creates a single point of failure. Moreover, wireless links are
unreliable, and in dynamic environments, a significant amount
of undesirable overhead traffic may be generated just to
establish and maintain routes.

A. Gossip Algorithms for In-Network Processing
This paper presents an overview of gossip algorithms

and issues related to their use for in-network processing in
wireless sensor networks. Gossip algorithms have been
widely studied in the computer science community for
information dissemination and search [14]–[16]. More
recently, they have been developed and studied for infor-
mation processing in sensor networks. They have the
attractive property that no specialized routing is required.
Each node begins with a subset of the data in the network.
At each iteration, information is exchanged between a
subset of nodes, and then this information is processed by
the receiving nodes to compute a local update.

Gossip algorithms for in-network processing have
primarily been studied as solutions to consensus problems,
which capture the situation where a network of agents must
achieve a consistent opinion through local information
exchanges with their neighbors. Early work includes that of
Tsitsiklis et al. [17], [18]. Consensus problems have arisen
in numerous applications including: load balancing [19];
alignment, flocking, and multiagent collaboration [20],
[21]; vehicle formation [22], tracking and data fusion [23],
and distributed inference [24].

The canonical example of a gossip algorithm for infor-
mation aggregation is a randomized protocol for distributed
averaging. The problem setup is such that each node in an
n-node network initially has a scalar measurement value,
and the goal is to have every node compute the average of
all n initial valuesVoften referred to as the average
consensus. In pairwise randomized gossiping [25], each
node maintains an estimate of the network average, which
it initializes with its own measurement value. Let xðtÞ
denote the vector of estimates of the global averages after
the tth gossip round, where xð0Þ is the vector of initial

measurements; that is, xiðtÞ is the estimate2 at node i after t
iterations. In one iteration, a randomly selected pair of
neighboring nodes in the network exchange their current
estimates, and then update their estimates by setting
xiðt þ 1Þ ¼ xjðt þ 1Þ ¼ ðxiðtÞ þ xjðtÞÞ=2. A straightforward
analysis of such an algorithm shows that the estimates at
each node are guaranteed to converge to the average
xave ¼ ð1=nÞ

Pn
i¼1 xið0Þ as long as the network is connected

(information can flow between all pairs of nodes), and as
long as each pair of neighboring nodes gossips frequently
enough; this is made more precise in Section II. Note that
the primitive described above can be used to compute any
function of the form

Pn
i¼1 fiðxið0ÞÞ. Computations of this

form appear in many canonical sensor network applications
such as distributed estimation (e.g., computation of means
and variances), source localization, and compression; we
will return to these examples in Section IV.

Gossip algorithms can be classified as being randomized
or deterministic. The scheme described above is randomized
and asynchronous, since at each iteration a random pair of
nodes is active. In deterministic, synchronous gossip
algorithms, at each iteration, node i updates xiðt þ 1Þ with
a convex combination of its own values and the values
received from all of its neighbors, e.g., as discussed in [26].
Asynchronous gossip is much better suited to wireless sensor
network applications, where synchronization itself is a
challenging task. Asynchronous gossip can be implemented
using the framework described in [18] and [27]. Each node
runs an independent Poisson clock, and when node i’s clock
Bticks,[ it randomly selects and gossips with one neighbor.
In this formulation, denoting the probability that node i
chooses a neighbor j by Pi;j, conditions for convergence can
be expressed directly as properties of these probabilities.
Gossip and consensus algorithms have also been the subject
of study within the systems and control community, with a
focus on characterizing conditions for convergence and
stability of synchronous gossiping, as well as optimization of
the algorithm parameters Pi;j; see the excellent surveys by
Olfati-Saber and Murray [28], and Ren et al. [29], and
references therein.

B. Paper Outline
Our overview of gossip algorithms begins on the theo-

retical side and progresses towards sensor network
applications. Each gossip iteration requires wireless trans-
mission and thus consumes valuable bandwidth and energy
resources. Section II discusses techniques for bounding
rates of convergence for gossip, and thus the number of
transmissions required. Because standard pairwise gossip
converges slowly on wireless network topologies, a large
body of work has focused on developing faster gossip
algorithms for wireless networks, and this work is also
described. When transmitting over a wireless channel, one

1This is a Hamiltonian cycle, in graph-theoretic terms.

2Throughout, we will sometimes alternatively refer to the estimates
xiðtÞ as states, and to nodes as agents.

Dimakis et al. : Gossip Algorithms for Distributed Signal Processing

2 Proceedings of the IEEE |



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

must also consider issues such as noise and coding.
Section III discusses the effects of finite transmission rates
and quantization on convergence of gossip algorithms.
Finally, Section IV illustrates how gossip algorithms can be
applied to accomplish distributed signal processing tasks
such as distributed estimation and compression.

II . RATES OF CONVERGENCE AND
FASTER GOSSIP

Gossip algorithms are iterative, and the number of wireless
messages transmitted is proportional to the number of
iterations executed. Thus, it is important to characterize
the rate of convergence of gossip and to understand what
factors influence these rates. This section surveys conver-
gence results, describing the connection between the rate
of convergence and the underlying network topology, and
then describes developments that have been made in the
area of fast gossip algorithms for wireless sensor networks.

A. Analysis of Gossip Algorithms
In pairwise gossip, only two nodes exchange informa-

tion at each iteration. More generally, a subset of nodes
may average their information. Many of the gossip
algorithms that we will be interested in can be described
by an equation of the form

xðt þ 1Þ ¼ WðtÞxðtÞ (1)

where WðtÞ are randomly selected averaging matrices,
selected independently across time, and xðtÞ 2 R

n is the
vector of gossip states after t iterations. When restricted to
pairwise averaging algorithms, in each gossip round only
the values of two nodes i; j are averaged (as in [25]) and the
corresponding WðtÞ matrices have 1/2 in the coordinates
ði; iÞ; ði; jÞ; ðj; iÞ; ðj; jÞ and a diagonal identity for every other
node. When pairwise gossip is performed on a graph
G ¼ ðV; EÞ, only the matrices that average nodes that are
neighbors on G (i.e., ði; jÞ 2 E) are selected with nonzero
probability. More generally, we will be interested in
matrices that average sets of node values and leave the
remaining nodes unchanged. A matrix WðtÞ acting on a
vector xðtÞ is a set averaging matrix for a set S of nodes, if

xiðt þ 1Þ ¼ 1

jSj
X

i2S
xiðtÞ; i 2 S (2)

and xiðt þ 1Þ ¼ xiðtÞ, i 62 S. Such matrices therefore have
entry 1=jSj at the coordinates corresponding to the set S
and a diagonal identity for all other entries.

It is therefore easy to see that all such matrices will
have the following properties:

~1TWðtÞ ¼~1T

WðtÞ~1 ¼~1

!
(3)

which, respectively, ensure that the average is preserved at
every iteration, and that ~1, the vector of ones, is a fixed
point. Further, any set averaging matrix W is symmetric
and doubly stochastic. A matrix is doubly stochastic if its
rows sum to unity, and its columns also sum to unity, as
implied in (3). The well-known Birkhoff–von Neumann
theorem states that a matrix is doubly stochastic if and only
if it is a convex combination of permutation matrices. In
the context of gossip, the only permutation matrices which
contribute to the convex combination are those which
permute nodes in S to other nodes in S, and keep all other
nodes not in S fixed. The matrix W must also be a
projection matrix; i.e., W2 ¼ W since averaging the same
set twice no longer changes the vector xðtÞ. It then follows
that W must also be positive semidefinite.

We are now ready to understand the evolution of the
estimate vector xðtÞ through the product of these randomly
selected set averaging matrices

xðt þ 1Þ ¼ WðtÞxðtÞ ¼
Yt

k¼0

WðkÞxð0Þ: (4)

Since WðtÞ are selected independently across time,
EWðtÞ ¼ EWð0Þ and we can drop the time index and
simply refer to the expected averaging matrix EW, which is
the average of symmetric, doubly stochastic, positive-
semidefinite matrices and therefore also has these
properties. The desired behavior is that xðt þ 1Þ ! xave~1
that is equivalent to asking that

Yt

k¼0

WðkÞ ! 1

n
~1~1 T: (5)

B. Expected Behavior
We start by looking at the expected evolution of the

random vector xðtÞ by taking expectations on both sides of (4)

Exðt þ 1Þ ¼ E
Yt

k¼0

WðkÞ

 !

xð0Þ ¼ ðEWÞtþ1xð0Þ (6)

where the second equality is true because the matrices are
selected independently. Since EW is a convex combination
of the matricesWðtÞ, which all satisfy the conditions (3), it
is clear that EW is also a doubly stochastic matrix. We can
see that the expected evolution of the estimation vector
follows a Markov chain that has the !xave~1 vector as its
stationary distribution. In other words,~1 is an eigenvector
of EW with eigenvalue 1. Therefore, if the Markov chain
corresponding to EW is irreducible and aperiodic, our
estimate vector will converge in expectation to the desired
average. Let !2ðE½W&Þ be the second largest eigenvalue
of EW . If condition (3) holds and if !2ðE½W&Þ G 1, then xðtÞ
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converges to xave~1 in expectation and in mean square.
Further precise conditions for convergence in expectation
and in mean square can be found in [30].

C. Convergence Rate
The problem with the expectation analysis is that it

gives no estimate on the rate of convergence, a key param-
eter for applications. Since the algorithms are randomized,
we need to specify what we mean by convergence. One
notion that yields clean theoretical results involves defining
convergence as the first time where the normalized error is
small with high probability, and controlling both error and
probability with one parameter ".

Definition 1 ["-averaging time Taveð"Þ]: Given " > 0, the
"-averaging time is the earliest gossip round in which the
vector xðkÞ is " close to the normalized true average with
probability greater than 1 ' "

Taveð"Þ¼sup
xð0Þ

arg inf
t¼0;1;2...

P
xðtÞ ' xave~1

"" ""
xð0Þk k

("

 !

)"

( )

:

(7)

Observe that the convergence time is defined for theworst case
over the initial vector of measurements xð0Þ. This definition
was first used in [25] (see also [31] for a related analysis).

The key technical theorem used in the analysis of
gossip algorithms is the following connection between the
averaging time and the second largest eigenvalue of EW.

Theorem 1: For any gossip algorithm that uses set-
averaging matrices and converges in expectation, the aver-
aging time is bounded by

Taveð";EWÞ ) 3 log "'1

log
1

!2ðEWÞ

# $ ) 3 log "'1

1 ' !2ðEWÞ
: (8)

This theorem is a slight generalization of [25, Th. 3] for
nonpairwise averaging gossip algorithms. There is also a
lower bound of the same order, which implies that3

Taveð"; EWÞ ¼ "ðlog "'1=ð1 ' !2ðEWÞÞÞ.
The topology of the network influences the conver-

gence time of the gossip algorithm, and using this theorem,
this is precisely quantified; the matrix E½W& is completely

specified by the network topology and the selection
probabilities of which nodes gossip. The rate at which
the spectral gap 1 ' !2ðE½W&Þ approaches zero, as n
increases, controls the "-averaging time Tave. The spectral
gap is related to the mixing time (see, e.g., [32]) of a
random walk on the network topology. Roughly, the gossip
averaging time is the mixing time of the simple random
walk on the graph times a factor of n. One therefore would
like to understand how the spectral gap scales for different
models of networks and gossip algorithms.

This was first analyzed for the complete graph4 and
uniform pairwise gossiping [15], [25], [30]. For this case it
was shown that !2ðE½W&Þ ¼ 1 ' 1=n, and therefore,
Tave ¼ "ðn log "'1Þ. Since only nearest neighbors interact,
each gossip round costs two transmitted messages, and
therefore, "ðn log "'1Þ gossip messages need to be ex-
changed to converge to the global average within " accuracy.
This yields "ðn log nÞ messages to have a vanishing error
with probability 1=n, an excellent performance for a
randomized algorithm with no coordination that averages
n nodes on the complete graph. For other well-connected
graphs (including expanders and small world graphs),
uniform pairwise gossip converges very quickly, asymptot-
ically requiring the same number of messages ð"ðn log "'1ÞÞ
as the complete graph. Note that any algorithm that averages
n numbers with a constant error and constant probability of
success should require #ðnÞ messages.

If the network topology is fixed, one can ask what is the
selection of pairwise gossiping probabilities that max-
imizes the convergence rate (i.e., maximizes the spectral
gap). This problem is equivalent to designing a Markov
chain which approaches stationarity optimally fast and,
interestingly, it can be formulated as a semidefinite
program which can be solved efficiently [25], [26], [33].
Unfortunately, for random geometric graphs (RGGs)5 and
grids, which are the relevant topologies for large wireless
ad hoc and sensor networks, even the optimized version of
pairwise gossip is extremely wasteful in terms of commu-
nication requirements. For example, for a grid topology,
the number of required messages scales like "ðn2 log "'1Þ
[25], [35]. Observe that this is of the same order as the
energy required for every node to flood its estimate to all
other nodes. On the contrary, the obvious solution of

3Because our primary interest is in understanding scaling lawsVhow
many messages are needed as the network size growsVour discussion
centers on the order-wise behavior of gossip algorithms. Recall the Landau
or Bbig O[ notation: a function f is asymptotically bounded above by g,
written fðnÞ ¼ OðgðnÞÞ, if there exist constants N > 0 and c1 > 0 such
that fðnÞ ) c1gðnÞ for all n ( N; f is asymptotically bounded below by g,
written fðnÞ ¼ #ðgðnÞÞ, if there exist constants c2 > 0 and N > 0 such
that fðnÞ ( c2gðnÞ for n ( N; and f is asymptotically bounded above and
below by g, written fðnÞ ¼ "ðgðnÞÞ, if c2gðnÞ ) fðnÞ ) c1gðnÞ for all
n ( N.

4In a complete graph, every pair of nodes is connected with an edge.
5The family of random geometric graphs with n nodes and

connectivity radius r, denoted Gðn; rÞ, is obtained by placing n nodes
uniformly at random in the unit square, and placing an edge between two
nodes if their Euclidean distance is no more than r. In order to process
data in the entire network, it is important that the network be connected
(i.e., there is a route between every pair of nodes). A fundamental result
due to Gupta and Kumar [34] states that the critical connectivity threshold
for Gðn; rÞ is rconðnÞ ¼ "ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
Þ; that is, if r does not scale as fast as

rconðnÞ, then the network is not connected with high probability, and if
r scales at least as fast as rconðnÞ, then the network is connected with high
probability. Throughout this paper, when using random geometric graphs,
it is implied that we are using Gðn; rconðnÞÞ, in order to ensure that
information flows across the entire network.
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averaging numbers on a spanning tree and flooding back
the average to all the nodes requires only OðnÞ messages.
Constructing and maintaining a spanning tree in dynamic
and ad hoc networks introduces significant overhead and
complexity, but a quadratic number of messages is a high
price to pay for fault tolerance.

D. Faster Gossip Algorithms
Pairwise gossip converges very slowly on grids and

random geometric graphs because of its diffusive nature.
Information from nodes is essentially performing random
walks, and, as is well known, a random walk on the 2-D
lattice has to perform d2 steps to cover distance d. One
approach to gossiping faster is to modify the algorithm so
that there is some directionality in the underlying diffusion
of information. Assuming that nodes have knowledge of
their geographic location, we can use a modified algorithm
called geographic gossip [35]. The idea of geographic gossip
is to combine gossip with greedy geographic routing
towards a randomly selected location. If each node has
knowledge of its own location and under some mild
assumptions on the network topology, greedy geographic
routing can be used to build an overlay network where any
pair of nodes can communicate. The overlay network is a
complete graph on which pairwise uniform gossip
converges with "ðn log "'1Þ iterations. At each iteration,
we perform greedy routing, which costs "ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= log n

p
Þ

messages on a random geometric graph (also the order of
the diameter of the network). In total, geographic gossip
thus requires "ðn1:5 log "'1=

ffiffiffiffiffiffiffiffiffiffi
log n

p
Þ messages. The tech-

nical part of the analysis involves understanding how this
can be done with only local information: assuming that
each node only knows their own location, routing towards
a randomly selected location is not identical to routing
towards a randomly selected node. If the nodes are evenly
spaced, however, these two processes are almost the same
and the "ðn1:5Þ message scaling still holds [35].

Li and Dai [36] recently proposed location-aided
distributed averaging (LADA), a scheme that uses partial
locations and Markov chain lifting to create fast gossiping
algorithms. Lifting of gossip algorithms is based on the
seminal work of Diaconis et al. [37] and Chen et al. [38] on
lifting Markov chain samplers to accelerate convergence
rates. The basic idea is to lift the original chain to one with
additional states; in the context of gossiping, this corre-
sponds to replicating each node and associating all replicas of
a node with the original. LADA creates one replica of a node
for each neighbor and associates the policy of a node given it
receives a message from the neighbor with that particular
lifted state. In this manner, LADA suppresses the diffusive
nature of reversible Markov chains that causes pairwise
randomized gossip to be slow. The cluster-based LADA
algorithm performs slightly better than geographic gossip,
requiring "ðn1:5 log "'1=ðlog nÞ1:5Þ messages for random
geometric graphs. While the theoretical machinery is
different, LADA algorithms also use directionality to

accelerate gossip, but can operate even with partial location
information and have smaller total delay compared to
geographic gossip, at the cost of a somewhat more
complicated algorithm. A related scheme was proposed
concurrently by Jung et al. [39], [40] and is based on the idea
of lifting to an expander graph.6Mosk-Aoyama and Shah [41]
use an algorithm based on the work of Flajolet and Martin
[42] to compute averages and bound the averaging time in
terms of a Bspreading time[ associated with the communi-
cation graph, with a similar scaling for the number of
messages on grids and RGGs.

Just as algorithms based on lifting incorporate addi-
tional memory at each node (by way of additional states in
the lifted Markov chain), another collection of algorithms
seek to accelerate gossip computations by having nodes
remember a few previous state values and incorporate these
values into the updates at each iteration. These memory-
based schemes can be viewed as predicting the trajectory as
seen by each node, and using this prediction to accelerate
convergence. The schemes are closely related to shift-
register methods studied in numerical analysis to acceler-
ate linear system solvers. The challenge of this approach is
to design local predictors that provide speedups without
creating instabilities. Empirical evidence that such schemes
can accelerate convergence rates is shown in [43], and
numerical methods for designing linear prediction filters are
presented in [44] and [45]. Recent work of Oreshkin et al.
[46] shows that improvements in convergence rate on par
with geographic gossip are achieved by a deterministic,
synchronous gossip algorithm using only one extra tap of
memory at each node. Extending these theoretical results to
asynchronous gossip algorithms remains an open area of
research.

The geographic gossip algorithm uses location infor-
mation to route packets on long paths in the network. One
natural extension of the algorithm is to allow all the nodes
on the routed path to be averaged jointly. This can be easily
performed by aggregating the sum and the hop length
while routing. As long as the information of the average
can be routed back on the same path, all the intermediate
nodes can replace their estimates with updated value. This
modified algorithm is called geographic gossip with path
averaging. It was recently shown [47] that this algorithm
converges much faster, requiring only "ð

ffiffiffi
n

p
Þ gossip

interactions and "ðn log "'1Þ messages, which is clearly
minimal.

A related distributed algorithm was introduced by
Savas et al. [48], using multiple random walks that merge
in the network. The proposed algorithm does not require
any location information and uses the minimal number of
messages "ðn log nÞ to average on grid topologies with
high probability. The coalescence of information reduces
the number of nodes that update information, resulting in

6Roughly speaking, one can think of an expander as a graph having
the fast mixing properties of the complete graph, but with relatively few
edges, like a tree.
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optimal communication requirements but also less fault
tolerance. In most gossip algorithms, all nodes keep
updating their information which, as we discuss in the next
section, adds robustness with respect to changes to the
network and noise in communications.

Finally, we note the recent development of schemes
that exploit the broadcast nature of wireless communica-
tions in order to accelerate gossip rates of convergence
[49]–[51], either by having all neighbors that overhear a
transmission execute a local update, or by having nodes
eavesdrop on their neighbors’ communication and then
using this information to strategically select which
neighbor to gossip with next. The next section discusses
issues arising when gossiping specifically over wireless
networks.

III . RATE LIMITATIONS IN
GOSSIP ALGORITHMS

Rate limitations are relevant due to the bandwidth
restrictions and the power limitations of nodes. Finite
transmission rates imply that nodes learn of their
neighbors’ states with finite precision; if the distortion is
measured by the mean squared error, then it is well
established that the operational distortion rate function is
exponentially decaying with the number of bits [52], which
implies that the precision doubles for each additional bit of
representation. For example, in an additive white Gaussian
noise (AWGN) channel with path loss inversely propor-
tional to the distance squared r2, the rate R needs to be
below the capacity bound R G C ¼ 1=2 logð1 þ #r'2Þ.
Then, at a fixed power budget, every bit of additional
precision requires approximately shrinking the range by
half; i.e., fixing #, the channel capacity increases as the
internode distance decreases. For a uniform network
deployment, this would reduce the size of each node’s
neighborhood by about 75%, decreasing the network
connectivity and therefore the convergence speed. This
simple argument illustrates the importance of understand-
ing if the performance of gossip algorithms degrades grace-
fully as the communication rate of each link decreases.

Before summarizing the key findings of selected
literature on the subject of average consensus under com-
munication constraints, we explain why some papers care
about this issue and some do not.

A. Are Rate Constraints Significant?
In most sensor network architectures today, the

overhead of packet headers and reliable communication
is so great that using a few bytes to encode the gossip state
variables exchanged leads to negligible additional cost
while practically giving a precision that can be seen as
infinite. Moreover, we can ignore bit errors in transmis-
sions, which very rarely go undetected thanks to cyclic
redundancy check bits. It is natural to ask: why should one
bother studying rate constraints at all?

One should bother because existing sensor network
modems are optimized to transmit long messages, infre-
quently, to nearby neighbors, in order to promote spatial
bandwidth reuse, and were not designed with decentra-
lized iterative computation in mind. Transmission rates
are calculated amortizing the overhead of establishing the
link over the duration of very long transmission sessions.

Optimally encoding for computation in general (and
for gossiping in particular) is an open problem; very few
have treated the subject of communication for computa-
tion in an information theoretic sense (see, e.g., [53] and
[54]) and consensus gossiping is nearly absent in the
landscape of network information theory. This is not an
accident. Broken up in parts, consensus gossip contains the
elements of complex classical problems in information
theory, such as multiterminal source coding, the two-way
channel, the feedback channel, the multiple access of
correlated sources, and the relay channel [55]; this is a
frightening collection of open questions. However, as the
number of possible applications of consensus gossip pri-
mitives expands, designing source and channel encoders to
solve precisely this class of problems more efficiently, even
though perhaps not optimally, is a worthy task. Desired
features are efficiency in exchanging frequently, and
possibly in an optimal order, few correlated bits, and
exchanging with nodes that are (at least occasionally) very
far, to promote rapid diffusion. Such forms of commu-
nications are very important in sensor networks and net-
work control.

Even if fundamental limits are hard to derive, there are
several heuristics that have been applied to the problem to
yield some achievable bound. Numerous papers have studied
the effects of intermittent or lossy links in the context of
gossip algorithms [independent identically distributed (i.i.d.)
and correlated models, symmetric and asymmetric] [56]–
[65]. In these models, lossy links correspond to masking
some edges from the topology at each iteration, and, as we
have seen above, the topology directly affects the conver-
gence rate. Interestingly, a common thread running through
all of the work in this area is that, so long as the network
remains connected on average, convergence of gossip algo-
rithms is not affected by lossy or intermittent links, and
convergence speeds degrade gracefully.

Another aspect that has been widely studied is that of
source coding for average consensus and is the one that we
consider next in Section III-B. It is fair to say that, par-
ticularly in wireless networks, the problem of channel
coding is essentially open, as we will discuss in Section III-C.

B. Quantized Consensus
Quantization maps the state variable exchanged xjðtÞ

onto codes that correspond to discrete points Qt;jðxjðtÞÞ ¼
qjðtÞ 2 Qt;j * R. The setQt;j is referred to as the code used
at time t by node j; the points qjðtÞ are used to generate
an approximation x̂jðtÞ of the state xjðtÞ 2 R that each
node needs to transmit; the quantizer rate, in bits, is
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Rt;j ¼ log2 jQt;jj, where jAj is the cardinality of the set A.
Clearly, under the constraints specified previously on the
network update matrix WðtÞ, the consensus states
fc~1 : c 2 Rg are fixed points. The evolution of the nodes’
quantized states is that of an automaton; under asynchro-
nous random exchanges, the network state forms a Markov
chain with

Qn
j¼1 jQt;jj possible states and consensus states

fc~1 : c 2 Rg that are absorbing states. The cumulative
number of bits that quantized consensus diffuses through-
out the network asymptotically is

R1
tot ¼

X1

t¼1

Rt;tot ¼
X1

t¼1

Xn

j¼1

Rt;j: (9)

The first simple question is: for a fixed uniform
quantizer with step-size $, i.e.,

x̂jðtÞ ¼ uni$ xjðtÞ
& '

¼ argmin
q2Q

xjðtÞ ' q
(( ((

whereQ¼f0;+$;+2$; . . . ;+ð2R'1'1Þ$g, do the states
xðtÞ always converge (in a probabilistic sense) to the fixed
points c~1? The second is: what is the distortion
dðlimk!1 xðtÞ; ð1=nÞ

Pn
i¼1 xið0Þ~1Þ due to limited Rk;i or a

total budget Rtot? Fig. 1 illustrates the basic answers through
numerical simulation. Interestingly, with a synchronous
gossip update, quantization introduces new fixed points
other than consensus [Fig. 1(a)], and asynchronous gossiping
in general reaches consensus, but without guarantees on the
location of outcome [Fig. 1(b)].

Kashyap et al. [66] first considered a fixed code quan-
tized consensus algorithm, which preserves the network
average at every iteration. In their paper, the authors draw
an analogy between quantization and load balancing
among processors, which naturally comes with an integer
constraint since the total number of tasks is finite and
divisible only by integers (see, e.g., [19], [67], and [68]).
Distributed policies to attain a balance among loads were
previously proposed in [69] and [70]. Assuming that the
average can be written as ð1=nÞ

Pn
j¼1 xjð0Þ ¼ S=n and

denoting L ¼$ S mod n, under these updates in [66], it is
proven that any algorithm meeting the aforementioned
conditions makes every node converge to either L or L þ 1,
thereby approximating the average. The random gossip
algorithm analyzed in [71] leads to a similar result, where
the final consensus state differs at most by one bin from
the true average; the same authors discuss bounds on the
rate of convergence in [72]. In these protocols, the agents
will be uncertain on what interval contains the actual
average: the nodes whose final value is L will conclude that
the average is in ½L ' 1; L þ 1& and those who end with
L þ 1 will think that the average is in ½L; L þ 2&. Benezit et al.
[73] proposed a slight modification of the policy, considering

a fixed rate class of quantization strategies that are based on
voting, requiring only 2 bits of memory per agent and
attaining a consensus on the interval that contains the actual
average.

To overcome the fact that not all nodes end up having
the same quantized value, a simple variant on the quantized
consensus problem that guarantees almost sure conver-
gence to a unique consensus point was proposed concur-
rently in [74] and [75]. The basic idea is to dither the state
variables by adding a uniform random variable
u , Uð'ð$=2Þ;$=2Þ prior to quantizing the states, i.e.,
x̂iðtÞ ¼ uni$ðxiðtÞ þ uÞ. This modest change enables gossip
to converge to a consensus almost surely, as shown in [76].
This guarantees that the nodes will make exactly the same
decision. However, the algorithm can deviate more from
the actual average than the quantized consensus policies
considered in [66]. The advantage of using a fixed code is
the low complexity, but with relatively modest additional
cost, the performance can considerably improve.

Fig. 1. Quantized consensus over a random geometric graph with

n ¼ 50 nodes transmission radius r ¼ 0:3 and initial states2 ½0; 1& with

uniform quantization with 128 quantization levels. (a) Synchronous

updates and (b) pairwise exchange.
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Carli et al. [77] noticed that the issue of quantizing for
consensus averaging has analogies with the problem of
stabilizing a system using quantized feedback [78], which
amounts to partitioning the state space into sets whose
points can be mapped to an identical feedback control
signal. Hence, the authors resorted to control theoretic
tools to infer effective strategies for quantization. In
particular, instead of using a static mapping, they model
the quantizer QtðxiðtÞÞ at each node i as a dynamical system
with internal state $iðtÞ, which is coupled with the
consensus update through a quantized error variable qiðtÞ
(see Fig. 2). They study two particular strategies. They
refer to the first as the zoom-in–zoom-out uniform coder/
decoder where they adaptively quantize the state as follows.
The node states are defined as

$iðtÞ ¼ x̂'1;iðtÞ; fiðtÞ
& '

: (10)

The quantized feedback and its update are

x̂iðtÞ ¼ x̂'1;iðt þ 1Þ ¼ x̂'1;iðtÞ þ fiðtÞqiðtÞ (11)

qiðtÞ ¼ uni$
xiðtÞ ' x̂'1;iðtÞ

fiðtÞ

# $
(12)

which is basically a differential encoding, and fiðtÞ is the
stepsize, updated according to

fiðt þ 1Þ ¼ kinfiðtÞ; if qiðtÞj j G 1
koutfiðtÞ; if qiðtÞj j ¼ 1

!
(13)

which allows the encoder to adaptively zoom in and out,
depending on the range of qiðtÞ. The second strategy has
the same node states but uses a logarithmic quantizer

x̂iðtÞ ¼ $iðt þ 1Þ ¼ $iðtÞ þ qiðtÞ (14)

qiðtÞ ¼ log% xiðtÞ ' $iðtÞð Þ (15)

where the logarithmic quantization amounts to

qiðtÞ ¼ sign xiðtÞ ' $iðtÞð Þ 1 þ %

1 ' %

# $‘iðtÞ

‘iðtÞ :
1

1 ' %
) xiðtÞ ' $iðtÞj j 1 þ %

1 ' %

# $'‘iðtÞ

) 1

1 þ %
: (16)

In [77], numerical results are provided for the convergence
of the zoom-in–zoom-out quantizer, while the properties of
the logarithmic quantizer are studied analytically. Re-
markably, the authors prove that if the state average is
preserved and if 0 G % G ðð1 þ !minðWÞÞ=ð3 ' !minðzÞÞÞ,
then the network reaches asymptotically exactly the same
state as the unquantized average consensus. In other
words, for all i, limk!1 xiðtÞ ¼ ð1=nÞ

Pn
i¼1 xið0Þ. One

needs to observe that the logarithmic quantizer replaces
state values in an uncountable set R with discrete
countable outputs ‘ 2 N, in the most efficient way [78],
but there are still infinite many such sets; in other words,
the logarithmic quantizer has unlimited range, and
therefore, Rt;j ¼ 1. Hence, in practice, one will have to
accept a penalty in accuracy when its range is limited.

The vast signal processing literature on sampling and
quantization can obviously be applied to the consensus
problem as well to find heuristics. It is not hard to
recognize that the quantizers analyzed in [77] are
equivalent to predictive quantizers. Noting that the states
are both temporally and spatially correlated, it is clear that
encoding using the side information that is available at
both transmitter and receiver can yield improved perfor-
mance and lower cost; this is the tenet of the work in [79]
and [80], which analyzed a more general class of
quantizers. They can be captured in a similar framework
as that of [77] by adding an auxiliary state variable &ijðtÞ,
which affects the state of the decoder only (see the decoder
in Fig. 3). The idea is similar, since x̂'1;iðt þ 1Þ in (11) is
replaced in [80] by the optimum linear minimum mean
squared error prediction, performed using k previous
states x̂'1;iðtÞ ¼

Pk
l¼1 ai;kðlÞx̂iðt ' lÞ. Similarly, the receiver

state is introduced to utilize the idea of coding with side
information [81], where the side information about xiðtÞ

Fig. 2. Quantized consensus node i encoder and node j decoder,

with memory.

Fig. 3. Node j decoder, with memory and side information.
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that is available at, say, receiver j consists of the receiver’s
present state xjðtÞ, as well as possibly its own past states
and those of neighbors in communication with node j. The
decoder augmented state ð&ijðtÞ; $iðtÞÞ in [80] is useful to
reap the benefits of the refinement in the prediction of
xiðtÞ that the decoder can obtain using its own side
information. This prediction x̂'1;ijðtÞ can more closely
approximate the true state xiðtÞ compared to the trans-
mitter x̂'1;iðtÞ and this, in turn, means that (12) can be
replaced by a nested quantizer, such as, for example, the
nested lattice quantizers in [82]. In practice, to keep the
complexity at bay, one can use a static nested lattice
quantizer at the transmitter without any memory, while
using the current local state as the j-node decoder state,
i.e., &ijðtÞ ¼ xjðtÞ. The main analytical result in [80] is the
conclusion that, even with the lowest complexity (i.e.,
prediction memory k ¼ 1 only or &ijðtÞ ¼ xjðtÞ and no
memory) one needs finite R1

tot G 1 to guarantee that the
network will reach consensus with a bounded error
dðlimk!1 xðtÞ; ð1=nÞ

Pn
i¼1 xið0Þ~1Þ ) D1

tot that decreases
as a function of R1

tot. This is useful to establish since one
may argue that, as long as the network is finite, flooding
each value from each node, rather than gossiping, would
require a total cost in term of transmission bits that is
finite, which can also be reduced via optimal joint source
and network coding methods. It is meaningful to ask if
gossiping can also lead to a similar rate-distortion tradeoff
and the result in [80] suggests that this is, indeed, the case.

Recent work has begun to investigate information-
theoretic performance bounds for gossip. These bounds
characterize the rate-distortion tradeoff either i) as a
function of the underlying network topology assuming that
each link has a finite capacity [83], or ii) as a function of
the rate of the information source providing new
measurements to each sensor [84].

C. Wireless Channel Coding for Average Consensus
Quantization provides a source code, but equally

important is the channel code that is paired with it. First,
using the separation of source and channel coding in
wireless networks is not optimal in general. Second, and
more intuitively, in a wireless network, there is a variety of
rates that can be achieved with a variety of nodes under
different traffic conditions. The two key elements that
determine what communications can take place are
scheduling and channel coding. Theoretically, there is no
fixed-range communication; any range can be reached
albeit with lower capacity. Also, there is no such thing as a
collision; rather, there is a tradeoff between the rate that
multiple users can simultaneously access the channel.

The computational codes proposed in [85] aim to strike
a near-optimal tradeoff for each gossip iteration, by
utilizing the additive noise multiple-access channel as a
tool for directly computing the average of the neighbor-
hood. The idea advocated by the authors echoes their
previous work [54]: nodes send lattice codes that, when

added through the channel, result in a lattice point that
encodes a specific algebraic sum of the inputs. Owing to
the algebraic structure of the channel codes and the
linearity of the channel, each recipient decodes directly
the linear combination of the neighbors’ states, which
provides a new estimate of the network average when
added to the local state. The only drawbacks of this
approach is that 1) it requires channel state information at
the transmitter, and 2) only one recipient can be targeted
at the time. The scenario considered is closer to that in
[84], since a stream of data needs to be averaged, and a
finite round is dedicated to each input. The key result
proven is that the number of rounds of gossip grows as
Oðlog n2=r2Þ where r is the radius of the neighborhood.

IV. SENSOR NETWORK APPLICATIONS
OF GOSSIP

This section illustrates how gossip algorithms can be
applied to solve representative problems in wireless sensor
networks. Of course, gossip algorithms are not suited for
all distributed signal processing tasks. They have proven
useful, so far, for problems that involve computing
functions that are linear combinations of data or statistics
at each node. Two straightforward applications arise from
distributed inference and distributed detection. When
sensors make conditionally independent observations, the
log-likelihood function conditioned on a hypothesis Hj is
simply the sum of local log-likelihood functionsPn

i¼1 log pðxijHjÞ, and so gossip can be used for distributed
detection (see also [86] and [87]). Similarly, if sensor
readings can be modeled as i.i.d. Gaussian with unknown
mean, distributed inference of the mean boils down to
computing the average of the sensor measurements, and
again gossip can be applied. Early papers that made a
broader connection are those of Saligrama et al. [87], and
Moallemi and Van Roy [88], which both discuss connec-
tions between gossip algorithms and belief propagation.

Below we consider three additional example applica-
tions. Section IV-A describes a gossip algorithm for
distributed linear parameter estimation that uses stochas-
tic approximation to overcome quantization noise effects.
Sections IV-B and IV-C illustrate how gossip can be used
for distributed source localization and distributed com-
pression, respectively. We also note that gossip algorithms
have recently been applied to problems in camera
networks for distributed pose estimation [89], [90].

A. Robust Gossip for Distributed Linear
Parameter Estimation

The present section focuses on robust gossiping for
distributed linear parameter estimation of a vector of
parameters with low-dimensional observations at each
sensor. We describe the common assumptions on sensing,
the network topology, and the gossiping protocols.
Although we focus on estimation, the formulation is quite
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general and applies to many inference problems, including
distributed detection and distributed localization.

1) Sensing/Observation Model: Let ' 2 R
m-1 be an

m-dimensional parameter that is to be estimated by a
network of n sensors. We refer to ' as a parameter, although
it is a vector of m parameters. For definiteness, we assume
the following observation model for the ith sensor:

ziðtÞ ¼ Hi' þ wiðtÞ (17)

where fziðtÞ 2 R
mi-1gt ( 0 is the i.i.d. observation sequence

for the ith sensor; and fwiðtÞgt ( 0 is a zero-mean i.i.d. noise
sequence of bounded variance. For most practical sensor
network applications, each sensor observes only a subset of
mi of the components of ', with mi . m. Under such
conditions, in isolation, each sensor can estimate at most
only a part of the parameter. Since we are interested in
obtaining a consistent estimate of the entire parameter ' at
each sensor, we need some type of observability condition.
We assume the matrix

Xn

i¼1

HT
i Hi (18)

is full rank. In plain terms, this implies that, in an idealized
scenario with no noise, a fusion center with access to the
observations ziðtÞ from all sensors would have sufficient
information to perfectly recover '. Thus, invertibility is
required by a centralized estimator (one which has access
to data from all sensors at all time) to get a consistent
estimate of '. It turns out that, under reasonable
assumptions on the network connectivity, this necessary
condition for centralized observability is sufficient for
distributed observability, i.e., for each sensor to obtain a
consistent estimate of '. It is not necessary to restrict to
time-invariant observation matrices and the Hi’s can be
random time varying [91], as would be required in most
regression-based analyses. In general, the observations
need not come from a linear statistical model and may be
distributions parameterized by '. The distributed observ-
ability would then correspond to asymptotic distinguish-
ability7 of the collection of these distributions over the
network. A more general mathematical formulation in
such a setting requires the notion of separably estimable
observation models (see [92]).

An equivalent formulation of the estimation problem in
the setting considered above comes from the distributed
least mean square (LMS) adaptive filtering framework

[93]–[95]. The objective here is slightly different. While
we are interested in consistent estimates of the entire
parameter at each sensor, the LMS formulations require,
in a distributed way, to adapt to the environment to
produce a desired response at each sensor, and the
observability issue is not of primary importance. A generic
framework for distributed estimation, both in the static
parameter case and when the parameter is nonstationary,
is addressed in [96]. An important aspect of algorithm
design in these cases is the choice of the intersensor weight
sequence for fusing data or estimates. In the static
parameter case, where the objective is to drive all the
sensors to the true parameter value, the weight sequence
necessarily decays over time to overcome the accumulation
of observation and other forms of noises, whereas, in the
dynamic parameter estimation case, it is required that the
weight sequence remains bounded away from zero, so that
the algorithm possesses tracking abilities. We direct the
reader to the recent paper [97] for a discussion along these
lines. In the dynamic case, we also suggest the significant
literature on distributed Kalman filtering (see, e.g., [98]–
[102] and the references therein), where the objective is
not consensus seeking among the local estimates, but, in
general, optimizing fusion strategies to minimize the mean
squared error at each sensor.

It is important to note here that average consensus is a
specific case of a distributed parameter estimation model,
where each sensor initially takes a single measurement,
and sensing of the field thereafter is not required for the
duration of the gossip algorithm. Several distributed
inference protocols (for example, [24], [103], and [104])
are based on this approach, where either the sensors take a
single snapshot of the field at the start and then initiate
distributed consensus protocols (or more generally dis-
tributed optimization, as in [104]) to fuse the initial
estimates, or the observation rate of the sensors is assumed
to be much slower than the intersensor communicate rate,
thus permitting a separation of the two time scales.

2) Distributed Linear Parameter Estimation: We now
briefly discuss distributed parameter estimation in the
linear observation model (17). Starting from an initial
deterministic estimate of the parameters (the initial states
may be random, we assume deterministic for notational
simplicity), xið0Þ 2 R

m-1, each sensor generates, by a
distributed iterative algorithm, a sequence of estimates
fxiðtÞgt(0. To simplify the discussion in this section, we
assume a synchronous update model where all nodes
exchange information and update their local estimates at
each iteration. The parameter estimate xiðt þ 1Þ at the ith
sensor at time t þ 1 is a function of: 1) its previous
estimate; 2) the communicated quantized estimates at
time t of its neighboring sensors; and 3) the new obser-
vation ziðtÞ. The data are subtractively dithered quantized,
i.e., there exists a vector quantizer Qð:Þ and a family,
f(lijðtÞg, of i.i.d. uniformly distributed random variables on

7Roughly speaking, two distributions are asymptotically distinguish-
able if the bulk of their mass is concentrated on two regions which are
well separated.
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½'$=2;$=2Þ such that the quantized data received by the
ith sensor from the jth sensor at time t are QðxjðtÞ þ (ijðtÞÞ,
where (ijðtÞ ¼ ½(1ijðtÞ; . . . ; (mij ðtÞ&

T
. It then follows that the

quantization error "ijðtÞ 2 R
m-1 is a random vector, whose

components are i.i.d. uniform on ½'$=2;$=2Þ and
independent of xjðtÞ.

3) Stochastic Approximation Algorithm: Let N iðtÞ denote
the neighbors of node i at iteration t; that is, j 2 N iðtÞ if i
can receive a transmission from j at time t. In this manner,
we allow the connectivity of the network to vary with time.
Based on the current state xiðtÞ, the quantized exchanged
data fQðxjðtÞ þ (ijðtÞÞgj2N iðtÞ, and the observation ziðtÞ, the
updated estimate at node i is

xiðt þ 1Þ¼xiðtÞ ' )ðtÞ b
X

j2N iðtÞ
xiðtÞ'Q xjðtÞþ(ijðtÞ

& '& '
2

4

' HT
i ziðtÞ ' HixiðtÞð Þ

3

5: (19)

In (19), b > 0 is a constant and f)ðtÞgt(0 is a sequence of
weights satisfying the persistence condition8:

)ðtÞ ( 0;
X

t

)ðtÞ ¼ 1;
X

t

)2ðtÞ G 1: (20)

Algorithm (19) is distributed because for sensor n it
involves only the data from the sensors in its neighborhood
N iðtÞ.

The following result from [92] characterizes the
desired statistical properties of the distributed parameter
estimation algorithm just described. The flavor of these
results is common to other stochastic approximation algo-
rithms [105]. First, we have a law of large-numbers-like
result that guarantees that the estimates at each node will
converge to the true parameter estimates

P lim
t!1

xiðtÞ ¼ ';8i
) *

¼ 1: (21)

If, in addition to the conditions mentioned above, the
weight sequence is taken to be

)ðtÞ ¼ a

t þ 1
(22)

for some constant a > 0, we also obtain a central-limit-
theorem-like result, describing the distribution of estima-
tion error over time. Specifically, for a sufficiently large,
we have that the error

ffiffi
t

p
xðtÞ '~1 / '
& '

converges in distribution to a zero-mean multivariate nor-
mal with covariance matrix that depends on the observa-
tion matrices, the quantization parameters, the variance of
the measurement noise wiðtÞ, and the constants a and b.
The two most common techniques for analyzing stochastic
approximation algorithms are stochastic Lyapunov func-
tions and the ordinary differential equations method [105].
For the distributed estimation algorithm (19), the results
just mentioned can be derived using the Lyapunov
approach [92], [106].

Performance analysis of the algorithm for an example
network is illustrated in Fig. 4. An example network of
n ¼ 45 sensors are deployed randomly on a 25 - 25 grid,
where sensors communicate in a fixed radius and are
further constrained to have a maximum of six neighbors
per node. The true parameter Q0 2 R

45. Each node is
associated with a single component of Q0. For the
experiment, each component of Q0 is generated by an
instantiation of a zero-mean Gaussian random variable of
variance 25. (Note that the parameter Q0 here has a
physical significance and may represent the state of the
field to be estimated. In this example, the field is assumed
to be white, stationary and hence each sample of the field
has the same Gaussian distribution and independent of the
others. More generally, the components of Q0 may
correspond to random field samples, as dictated by the
sensor deployment, representing a discretization of the
partial differential equation governing the field.) Each sensor
observes the corresponding field component in additive
Gaussian noise. For example, sensor 1 observes
z1ðtÞ ¼ '0

1 þ w1ðtÞ, where w1ðtÞ , N ð0; 1Þ. Clearly, such a
model satisfies the distributed observability condition

G ¼
X

i

HT
i Hi ¼ I ¼ G'1: (23)

(Note here that Hi ¼ eTi , where ei is the standard unit
vector with 1 at the ith component and zeros elsewhere.)
Fig. 4(a) shows the network topology, and Fig. 4(b)
shows the normalized error of each sensor plotted against
the iteration index t for an instantiation of the algorithm.
The normalized error for the ith sensor at time t is given
by the quantity kxiðtÞ ' Q0k=45, i.e., the estimation error
normalized by the dimension of Q0. We note that the
errors converge to zero as established by the theoretical
findings. The decrease is rapid at the beginning and slows

8We need the )ðtÞ to sum to infinity, so that the algorithm Bpersists[
and does not stop; on the other hand, the ) sequence should be square
summable to prevent the build up of noise over time.
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down as t increases. This is a standard property of
stochastic-approximation-based algorithms and is attrib-
uted to the decreasing weight sequence )ðtÞ required for
convergence.

It is interesting to note that, although the individual
sensors suffer from low-rank observations of the true
parameter, by collaborating, each of them can reconstruct
the true parameter value. The asymptotic normality shows
that the estimation error at each sensor decays as 1=

ffiffi
t

p
, the

decay rate being similar to that of a centralized estimator
having access to all the sensor observations at all times. The
efficiency of the distributed estimator is measured in terms
of its asymptotic variance, the lower limit being the Fisher
information rate of the corresponding centralized estima-
tor. As expected, because of the distributed nature of the
protocol (information needs to disseminate across the
entire network) and quantized (noisy) intersensor com-
munication, the achieved asymptotic variance is larger than
the centralized Fisher information rate. In the absence of
quantization (perfect communication), it can be shown
that the parameter a in (22) can be designed appropriately
so that the asymptotic variance of the decentralized
estimator matches the centralized Fisher information
rate, showing that the distributed estimator described
above is efficient for the centralized estimation problem.
An example of interest, with Gaussian observation noise, is
studied in [92], where it is shown that asymptotic variance
attainable by the distributed algorithm is the same as that of
the optimum (in the sense of Cramér–Rao) centralized
estimator having access to all information simultaneously.
This is an interesting result, as it holds irrespective of the
network topology given, it remains connected on average.
Such a phenomenon is attributed to a time-scale separation
between the consensus potential and the innovation rate
(rate of new information entering the network), when
intersensor communication is unquantized (perfect) with
possible link failures.

As noted before, the observation model need not be
linear for distributed parameter estimation. In [92], a large
class of nonlinear observation models were considered and a
notion of distributed nonlinear observability called separ-
ably estimable observable models introduced. Under the
separably estimable condition, there exist local transforms
under which the updates can be made linear. However, such
a state transformation induces different time scales on the
consensus potential and the innovation update, giving the
algorithm a mixed time-scale behavior (see [92] and [107]
for details.) This mixed time-scale behavior and the effect of
biased perturbations leads to the inapplicability of standard
stochastic approximation techniques.

B. Source Localization
A canonical problem, encompassing many of the chal-

lenges that commonly arise in wireless sensor network
applications, is that of estimating the location of an energy-
emitting source [1]. Patwari et al. [108] present an excellent
overview of the many approaches that have been developed
for this problem. The aim in this section is to illustrate how
gossip algorithms can be used for source localization using
received signal strength (RSS) measurements.

Let ' 2 R
2 denote the coordinates of the unknown

source, and, for i ¼ 1; . . . ; n, let yi 2 R
2 denote the

location of the ith sensor. The RSS measurement at node
i is modeled as

fi ¼ )

kyi ' 'k*
þ wi (24)

where ) > 0 is the signal strength emitted at the source, *
is the path-loss coefficient, and wj is additive white
Gaussian noise. Typical values of * are between 2 and 4.
This model was validated experimentally in [109]. Central-
ized maximum-likelihood estimators for single- and

Fig. 4. Illustration of distributed linear parameter estimation. (a) Example network deployment of 45 nodes. (b) Convergence of normalized

estimation error at each sensor.
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multiple-source scenarios based on this model are pre-
sented in [110] and [111]. Because the maximum-likelihood
problem is, in general, nonlinear and nonconvex, it is
challenging to solve in a decentralized fashion. Distributed
approaches based on finding a cyclic route through the
network are presented in [9] and [10].

An alternative approach, using gossip algorithms [112],
forms a location estimate b' by taking a linear combination
of the sensor locations weighted by a function of their RSS
measurement

b' ¼
Pn

i¼1 yiKðfiÞPn
i¼1 KðfiÞ

(25)

where K : Rþ ! R
þ is a monotone increasing function

satisfying Kð0Þ ¼ 0 and limf!1 KðfÞ G 1. Intuitively,
nodes that are close to the source measure high RSS values,
so their locations should be given more weight than nodes
that are further away, which will measure lower RSS values.
Taking KðfÞ ¼ 1ff ( #g, where # > 0 is a positive threshold,
and where 1f1g is the indicator function, (25) reduces to

b'1 ¼
Pn

i¼1 yi1 kyi''k)#'1=*f gPn
i¼1 1 kyi''k)#'1=*f g

(26)

which is simply the centroid of the locations of sensors that
are no further than #'1=* from the source. In [112], it was
shown that this estimator benefits from some attractive
properties. First, if the sensor locations yi are modeled as
uniform and random over the region being sensed, then b'1
is a consistent estimator, as the number of sensors grows.
It is interesting to note that one does not necessarily need
to know the parameters ) or * precisely to implement this
estimator. In particular, because (25) is self-normalizing,
the estimator automatically adapts to the source signal
strength ). In addition, Rabbat et al. [112] show that this
estimator is robust to choice of #. In particular, even if * is
not known precisely, the performance of (25) degrades
gracefully. On the other hand, the maximum-likelihood
approach is very sensitive to model mismatch and esti-
mating ) and * can be challenging.

Note that (25) is a ratio of linear functions of the
measurements at each node. To compute (25), we run two
parallel instances of gossip over the network, one each for
the numerator and the denominator. If each node initializes
xNi ð0Þ ¼ yiKðfiÞ, and xDi ð0Þ ¼ KðfiÞ, then executing gossip
iterations will cause the values at each node to converge
to limt!1 xNi ðtÞ¼ð1=nÞ

Pn
j¼1 yjKðfjÞ and limt!1 xDi ¼

ð1=nÞ
Pn

j¼1 KðfjÞ. Of course, in a practical implementa-
tion, one would stop gossiping after a fixed number of
iterations tstop, which depends on the desired accuracy and
network topology. Then, each node can locally compute the
estimate xNi ðtstopÞ=xDi ðtstopÞ of the source’s location. Note
that throughout this section it was assumed that each node

knows its own location. This can also be accomplished using
a gossip-style algorithm, as described in [113].

C. Distributed Compression and Field Estimation
Extracting information in an energy-efficient and

communication-efficient manner is a fundamental challenge
in wireless sensor network systems. In many cases, users are
interested in gathering data to see an Bimage[ of activity or
sensed values over the entire region. Let fi 2 R denote the
measurement at node i, and let f 2 R

n denote the network
signal obtained by stacking these values into a vector. Having
each sensor transmit fi directly to an information sink is
inefficient in many situations. In particular, when the values
at different nodes are correlated or the signal is compress-
ible, then one can transmit less data without loosing the
salient information in the signal. Distributed source coding
approaches attempt to reduce the total number of bits
transmitted by leveraging the celebrated results of Slepian
and Wolf [114] to code with side information [115], [116].
These approaches make assumptions about statistical
characteristics of the underlying data distribution that may
be difficult to verify in practice.

An alternative approach is based on linear transform
coding, gossip algorithms, and compressive sensing. It has
been observed that many natural signals are compressible
under some linear transformation. That is, although f may
have energy in all locations (i.e., fi > 0 for all i), there is a
linear basis transformation matrix T 2 R

n-n, such that
when f is represented in terms of the basis T by computing
' ¼ Tf , the transformed signal ' is compressible (i.e.,
'j 2 0 for many j). For example, it is well known that
smooth 1-D signals are well approximated using the
Fourier basis, and piecewise smooth images with smooth
boundaries (a reasonable model for images) are well
approximated using wavelet bases [117].

To formally capture the notion of compressibility using
ideas from the theory of nonlinear approximation [118], we
reorder the coefficients 'j in order of decreasing magnitude

'ð1Þ
(( (( ( 'ð2Þ

(( (( ( 'ð3Þ
(( (( ( 1 1 1 ( 'ðnÞ

(( (( (27)

and then define the best m-term approximation of f in T as
f ðmÞ ¼

Pm
j¼1 'ðjÞT:;ðjÞ, where T:;j denotes the jth column of

T. This is analogous to projecting f onto the m-dimensional
subspace of T that captures the most energy in f . We then
say that f is )-compressible in T, for ) ( 1, when the mean
squared approximation error behaves like

1

n
f ' f ðmÞ"" ""2) Cm'2) (28)

for some constant C > 0. Since the error exhibits a power-
law decay in m for compressible signals, it is possible to
achieve a small mean squared approximation error while
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only computing and/or communicating the few most
significant coefficients 'ð1Þ; . . . ; 'ðmÞ. Fig. 5 shows an
example where 500 nodes forming a random geometric
graph sample a smooth function. As a compressing basis T,
we use the eigenvectors of the normalized graph Laplacian
(a function of the network topology), which are analogous
to the Fourier basis vectors for signals supported onG [119].

Observe that each coefficient 'j is a linear function of
the data at each node, and so one could conceivably
compute these coefficients using gossip algorithms.
Assuming that each node i knows the values fTj;ignj¼1

in
each basis vector, to compute 'j, we can initialize
xið0Þ ¼ nTj;ifi, and, by gossiping, each node will compute
limt!1 xiðtÞ ¼

Pn
k¼1 Tj;kfk ¼ 'j. The main challenge with

this approach is that the indices of the most significant
coefficients are very signal specific, and are generally not
known in advance.

We can avoid this issue by making use of the recent
theory of compressive sensing [120]–[122], which says that
one can recover sparse signals from a small collection of
random linear combinations of the measurements. In the
present setting, to implement the gathering of k compressive
sensing measurements using gossip algorithms, each node
initializes k parallel instances of gossip with xi;jð0Þ ¼ nAi;jfi,
j ¼ 1; . . . ; k, where Ai;j, e.g., are i.i.d. zero-mean normal
random variables with variance 1=n. Let !xj denote the
limiting value of the jth gossip instance at each node.
Stacking these into the vector !x, any node can recover an
estimate of the signal f by solving the optimization

min
'

k!x ' ATT'k2 þ +
Xn

i¼1

j'ij (29)

where + > 0 is a regularization parameter. In practice, the
values Ai;j can be pseudorandomly generated at each node

using a predefined seeding mechanism. Then, any user can
retrieve the gossip values fxi;jðtÞgkj¼1

from any node i and
solve the reconstruction. Moreover, note that the compres-
sing transformation T only needs to be known at
reconstruction time, and to initialize the gossip instances
each node only needs its measurement and pseudoran-
domly generated values Ai;j. In general, there is a tradeoff
between 1) k, the number of compressed sensing measure-
ments collected, 2) ", the accuracy to which the gossip
algorithm is run, 3) the number of transmissions required
for this computation, and 4) the average reconstruction
accuracy available at each node. For an )-compressible
signal f , compressed sensing theory provides bounds on the
mean squared reconstruction error as a function of k and ),
assuming that the values !x are calculated precisely. Larger k
corresponds to lower error, and the error decays rapidly
with k (similar to the m-term approximation), so one can
obtain a very accurate estimate of f with k . n measure-
ments. Inaccurate computation of the compressed sensing
values !x, due to gossiping for a finite number of iterations,
can be thought of as adding noise to the values !x, and
increases the overall reconstruction error. Fig. 5(c) illus-
trates, via numerical simulation, the tradeoff between
varying k and the number of gossip iterations. For more on
the theoretical performance guarantees achievable in this
formulation, see [123] and [124]. A gossip-based approach
to solving the reconstruction problem in a distributed
fashion is described in [125]. For an alternative approach to
using gossip for distributed field estimation, see [126].

V. CONCLUSION AND
FUTURE DIRECTIONS

Because of their simplicity and robustness, gossip algo-
rithms are an attractive approach to distributed in-network
processing in wireless sensor networks, and this paper

Fig. 5. Example illustrating compression of a smooth signal. (a) Original smooth signal which is sampled at 500 random node locations, and

nodes are connected as in a random geometric graph. (b) Them-term approximation error decay in both the original basis and using the

eigenvectors of the graph Laplacian as a transform, which is analogous to taking a Fourier transform of signals supported on the network.

(c) The reconstruction error after gossiping on random linear combinations of the sensor measurements and reconstructing using compressed

sensing techniques. Note that using more random linear projections (larger k) gives lower error, but the number of projections used is much

smaller than the network size.
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surveyed recent results in this area. A major concern in
sensor networks revolves around conserving limited
bandwidth and energy resources, and in the context of
iterative gossip algorithms, this is directly related to the
rate of convergence. One thread of the discussion covered
fast gossiping in wireless network topologies. Another
thread focused on understanding and designing for the
effects of wireless transmission, including source and
channel coding. Finally, we have illustrated how gossip
algorithms can be used for a diverse range of tasks,
including estimation and compression.

Currently, this research is branching into a number of
directions. One area of active research is investigating
gossip algorithms that go beyond computing linear
functions and averages. Just as the average can be viewed
as the minimizer of a quadratic cost function, researchers
are studying what other classes of functions can be
optimized within the gossip framework [127]. A related
direction is investigating the connections between gossip
algorithms and message-passing algorithms for distributed
inference and information fusion, such as belief propa-
gation [88], [128]. While it is clear that computing
pairwise averages is similar to the sum–product algorithm
for computing marginals of distributions, there is no

explicit connection between these families of distributed
algorithms. It would be interesting to demonstrate that
pairwise gossip and its generalizations correspond to
messages of the sum–product (or max–product) algorithm
for an appropriate Markov random field. Such potentials
would guarantee convergence (which is not guaranteed
in general iterative message passing) and further
establish explicit convergence and message scheduling
results.

Another interesting research direction involves under-
standing the effects of intermittent links and dynamic
topologies, and in particular the effects of node mobility.
Early work [129] has analyzed i.i.d mobility models and
shown that mobility can greatly benefit convergence under
some conditions. Generalizing to more realistic mobility
models seems to be a very interesting research direction
that would also be relevant in practice since gossip
algorithms are more useful in such dynamic environments.

Gossip algorithms are certainly relevant in other
applications that arise in social networks and the
interaction of mobile devices with social networks.
Distributed inference and information fusion in such
dynamic networked environments is certainly going to
pose substantial challenges for future research. h
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