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Explicit Matrices for Sparse Approximation
Amin Khajehnejad, Arash Saber Tehrani, Alexandros G. Dimakis, Babak Hassibi

Abstract—We show that girth can be used to certify
that sparse compressed sensing matrices have good
sparse approximation guarantees. This allows us to
present the first deterministic measurement matrix
constructions that have an optimal number of mea-
surements for `1/`1 approximation. Our techniques are
coding theoretic and rely on a recent connection of com-
pressed sensing to LP relaxations for channel decoding.

I. Introduction

Assume we observe m linear measurements of an un-
known vector e ∈ Rn:

H · e = s,

where H is a real-valued matrix of size m × n, called the
measurement matrix. When m < n this is an underde-
termined system of linear equations and one fundamental
compressed sensing problem involves recovering e assum-
ing that it is also k-sparse, i.e. it has k or less non-zero
entries.

The sparse approximation problem goes beyond exactly
sparse vectors and requires the recovery of a k-sparse
vector ê that is close to e, even if e is not exactly k-
sparse itself. Recent breakthrough results [11]–[13] showed
that it is possible to construct measurement matrices with
m = O(k log(n/k)) rows that recover k-sparse signals
exactly in polynomial time. This scaling is also optimal, as
discussed in [2], [3]. These results rely on randomized ma-
trix constructions and establish that the optimal number
of measurements will be sufficient with high probability
over the choice of the matrix and/or the signal. Unfor-
tunately the required properties RIP [11], Nullspace [14],
[19] and high expansion (expansion quality ε < 1/6) have
no known ways to be deterministically constructed or
efficiently checked . There are several explicit constructions
of measurement matrices (e.g. [4], [7]) which, however,
require a slightly sub-optimal number of measurements (m
growing super-linearly as a function of n for k = p · n).

In this paper we focus on the linear sparsity regime
where k is a fraction of n and optimal number of measure-
ments will also be a fraction of n. The explicit construc-
tion of measurement matrices with an optimal number of
rows is a well-known open problem in compressed sensing
theory (see e.g. [2] and references therein). A closely
related issue is that of checking or certifying in polynomial
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time that a given candidate matrix has good recovery
guarantees.

Our Contributions: Consider a sparse matrix H in
{0, 1}m×n that has dc ones per row and dv ones per
column. If the bipartite graph corresponding to H has
Ω(log n) girth, then for k = p · n and an optimal number
of measurements m = c2 · n, we show that H offers `1/`1
sparse approximation under basis pursuit decoding. Our
technical requirement of girth, unlike expansion or RIP,
is easy to check and several deterministic constructions of
matrices with m = c · n and Ω(log n) exist, starting with
the early construction in Gallager’s thesis [16], and the
progressive edge-growth Tanner graphs of [17].

Our result is a weak bound, also known as a ‘for-
every signal’ guarantee [2]. This means that we have
a fixed deterministic matrix and show the `1/`1 sparse
approximation guarantee with high probability over the
support of the signal. To the best of our knowledge, this
is the first deterministic construction of matrices with an
optimal number of measurements.

Our techniques are coding-theoretic and rely on recent
developments that connect the channel decoding LP re-
laxation by Feldman et al. [20] to compressed sensing [8].
We rely on a primal-based density evolution technique
initiated by Koetter and Vontobel [18] and analytically
strengthened in the breakthrough paper of Arora et al. [9]
that established the best known finite-length threshold
results for LDPC codes under LP decoding.

To show our `1/`1 sparse approximation result, we first
need to extend [8] for non-sparse signals. Specifically, the
first step in our analysis (Theorem 3) is to show that `1/`1
sparse approximation corresponds to a channel decoding
problem for a perturbed symmetric channel. The second
component is to extend the Arora et al. argument for
this perturbed symmetric channel, an analysis achieved
in Theorem 2. This is performed by showing how a similar
tree recursion allows us to establish robustness of the
fundamental cone (FCP), i.e. every pseudocodeword in the
fundamental cone [18] has a non-negative pseudoweight
even if the flipped bit likelihoods are multiplied by a factor
larger than one. The FCP condition shows that the matrix
H, taken as an LDPC code can tolerate a constant fraction
of errors for this perturbed symmetric channel under LP
decoding.

We note that even though our analysis involves a rigor-
ous density evolution argument, our decoder is always the
basis pursuit linear relaxation which is substantially differ-
ent from the related work on message-passing algorithms
for compressed sensing [15], [28].
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II. Background Information

In this section we provide a brief background for the
major topics we will discuss. We begin by introducing
the noiseless compressed sensing problem and the basis
pursuit. Then, we mention the channel coding problem
and its relaxation.

A. Compressed Sensing Preliminaries

The simplest noiseless compressed sensing (CS) problem
for exactly sparse signals consists of recovering the sparsest
real vector e′ of a given length n, from a set of m real-
valued measurements s, given by H · e′ = s; namely

CS-OPT: minimize ‖e′‖0
subject to H · e′ = s.

Since `0 minimization is NP-hard, one can relax CS-OPT
by replacing the `0 norm with `1, specifically

CS-LPD: minimize ‖e′‖1
subject to H · e′ = s.

This LP relaxation is also known as basis pursuit. A
central question in compressed sensing is under what
conditions the solution given by CS-LPD equals (or is
very close to, specially in the case of approximately sparse
signals) the solution given by CS-OPT, i.e., the LP
relaxation is tight. There has been a substantial amount
of work in this area, see e.g. [2], [11]–[14], [19].

One sufficient way to certify that a given measurement
matrix is“good”is through the well-known restricted isom-
etry property (RIP), which guarantees that the LP relax-
ation will be tight for all k-sparse vectors e and further the
recovery will be robust to approximate sparsity [11], [12].
However, RIP condition is not a complete characterization
of the LP relaxation of “good” measurement matrices
(see, e.g., [21]). In this paper we rely on the nullspace
characterization (see, e.g., [22], [23]) instead, that gives
a necessary and sufficient condition for a matrix to be
“good”.

Definition 1: Let S ⊂ {1, . . . , n} and let CR ≥ 0. We
say that H has the nullspace property NSP≤R (S, CR), and

write H ∈ NSP≤R (S, CR), if

CR.‖νS‖1 ≤ ‖νS‖1, for all ν ∈ N (H).

We say that H has the strict nullspace property
NSP<R (S, CR) and write H ∈ NSP<R (S, CR), if

CR.‖νS‖1 < ‖νS‖1, for all ν ∈ N (H) \ {0}.
The next performance metric (see, e.g., [1], [6]) for CS

involves recovering approximations to signals that are not
exactly k-sparse. This is the main performance metric we
use in this paper:

Definition 2: An `1/`1 approximation guarantee means
that the Basis Pursuit LP relaxation outputs an estimate
ê that is within a constant factor from the best k-sparse
approximation for e, i.e.,

‖e− ê‖1 ≤ 2
CR + 1

CR − 1
· min
e′∈Σ

(k)
Rn

‖e− e′‖1. (1)

where Σ
(k)
Rn = {w ∈ Rn | |supp(w)| ≤ k}. The nullspace

condition is a necessary and sufficient for a measurement
matrix to yield `1/`1 approximation guarantees [8], [27].

B. Channel Coding Preliminaries

A linear binary code C of length n is defined by an m×n
parity-check matrix HCC, i.e. C , {x ∈ Fn2 |HCC ·x = 0}.
We define the set of codeword indices I , I(HCC) ,
{1, . . . , n}, the set of check indices J , J (HCC) ,
{1, . . . ,m}, the set of check indices that involves the i-th
codeword position Ji , Ji(HCC) , {j ∈ J |[HCC]j,i =
1}, and the set of codeword positions that are involved in
the j-th check Ij , Ij(HCC) , {i ∈ I|[H]j,i = 1}. For a
regular code, the degrees of the codeword adjacency |Ji|
and the size of check equations |Ij | are denoted by dv and
dc respectively. If a codeword x ∈ C is transmitted through
a channel and an output sequence y is received, then
one can potentially decode x by solving for the maximum
likelihood codeword in C, namely

CC-MLD: minimize λTx′

subject to x′ ∈ conv(C)),

where λ is the likelihood vector defined by λi =
log(P(yi|xi=0)

P(yi|xi=1) ), and conv(C) is the convex hull of all code-
words of C in Rn. CC-MLD solves the ML decoding
problem by the virtue of the fact that the objective λTx
is minimized on a corner point of conv(C), which is a
codeword. CC-MLD is NP-hard and therefore an efficient
description of the exact codeword polytope is very unlikely
to exist.

The well-known channel decoding LP relaxation is:

CC-LPD: minimize λTx′

subject to x′ ∈ P(HCC),

where P = P(HCC) is known as the fundamental poly-
tope [18], [20]. The fundamental polytope is compactly
described as follows: If hj

T is the j-th row of HCC, then

P = ∩1≤j≤mconv(Cj), (2)

where Cj = {x ∈ Fn | hj
Tx = 0 mod 2}. Due to the

symmetries of the fundamental polytope [20] we can focus
on the cone around the all-zeros codeword without loss
of generality. Given the parity check matrix HCC, its
fundamental cone K(HCC) is defined as the smallest cone
in Rn that encompasses P(HCC), and can be formally
defined as follows.

Definition 3: The fundamental cone K , K(HCC) of
HCC is the set of all vectors w ∈ Rn that satisfy

wi ≥ 0, for all i ∈ I, (3)

wi ≤
∑
i′∈Ij wi′ , for all i ∈ Ij , j ∈ J . (4)
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Fig. 1. Perturbed symmetric channel model.

Given the fundamental cone of a code C, we define the
following property.

Definition 4: Let S ⊂ {1, 2, · · · , n} and CR ≥ 1 be
fixed. A code C with parity check matrix HCC is said
to have the fundamental cone property FCP(S, CR) if for
every w ∈ K(HCC) the following holds:

CR‖wS‖1 < ‖wS‖1. (5)

We introduce the perturbed symmetric channel (PSC)
shown in Fig. 1, where each bit +1 (−1)1 is flipped into
−CR (+CR) with probability p and remains unchanged
with probability (1 − p). For CR = 1, the perturbed
symmetric channel is the same as the binary symmetric
channel (BSC). Note that the data can be received error
free through the perturbed channel. Through solving CC-
LPD, however, it is apparent that the recovery probability
of the perturbed channel with CR > 1 is less than BSC.

III. `1/`1 Guarantee for Ω(log n) Girth Matrices

We start by stating the main Theorem of this paper.

Theorem 1: Let H be an m×n 0-1 measurement matrix
with girth g = Ω(log(n)), and column and row densities
dv and dc respectively. There exists a fraction p∗(dc, dv),
solely a function of dc and dv, so that for every 0 ≤ p ≤
p∗(dc, dv), there exists some CR > 1 such that H provides
`1/`1 guarantee (with parameter CR) for the CS-LPD
and for a randomly chosen support set S of size p ·n, with
probability higher than 1−O(e−αn) for some α > 0.

The function p∗(dc, dv) and CR are deterministic func-
tions computed from a recursion on a tree (see Theorem
2). For example, for dc = 6, dv = 3 and we numerically
obtain p∗ ≥ 0.045, and therefore we can recover almost
all k = 0.045n-sparse signals with m = 1

2n measurements.
To the best of our knowledge, this is the best provable
recovery threshold for sparse compressed sensing mea-
surement matrices. Furthermore, for p = 0.04 we obtain
CR ≥ 1.08, which means that for compressible signals,
`1 minimization gives `1/`1 error bound, given by the
constant 2CR+1

CR−1 = 52, i.e. the `1 norm of the recovery error
is bounded by a factor 52 of the `1 norm of the smallest
(1− 0.04)n coefficient of the signal (see (1)).

1Note that the bits 0,1 are mapped to +1,-1, respectively.

Proof: To prove this Theorem, we take the steps
shown in Fig. 2. We import the best performance guar-
antees for LDPC code C from LP decoding [9] through
the bridge established in [8]. First through Theorem 2, we
show that the code C has the fundamental cone property
FCP(S, CR) with probability at least 1−O(e−αn). Next,
through Lemma 2, we demonstrate that C corrects the
error configuration S at the output of the perturbed
symmetric channel. Finally, by Theorem 3, we establish a
connection between the properties of HCC as parity check
matrix (i.e. FCP condition) and its null space properties
as a measurement matrix in compressed sensing. Conse-
quently, we show that the solution of CS-LPD satisfies
the `1/`1 condition.

Note that, if the girth is g = Ω(log log(n)), then
HCC has `1/`1 guarantee with probability higher than
1 − O(1/n). Theorem 1 is our main result and we will
build the blocks necessary to complete the proof in the
remaining of this paper.

A. Extension of CC-LPD

For a fixed code rate, the probabilistic analysis of [9]
yields a (weak) threshold p∗ for the probability of bit flip,
below which CC-LPD can recover the output of a binary
bit flipping channel, with high probability, provided that
the code has a girth at least doubly logarithmic in the
size of the code. The resulting threshold is significantly
tighter than the previously achieved bounds, namely those
obtained in [24], which were established for expander
graph based codes.

Building upon the work of Arora et al., we further prove
that codes with optimal girth maintain the FCP property
in a weak notion. In other words, we prove that if the
probability of bit flip p is sufficiently small, there is a finite
CR > 1 such that with high probability, the output of the
perturbed symmetric channel in Figure 1 with CR can be
recovered by CC-LPD. The parameter CR surely depends
on p. We compute an upper bound on the achievable
robustness factor CR as a function of p, which approaches
1 as p approaches the recoverable threshold p∗ of LP
decoding based on the analysis of [9]. Using the connection
between the CS-LPD and CC-LPD, this result will allow
us to explicitly find the relationship between the `1/`1
robustness factor CR and the fraction p, when the results
are translated to the context of compressed sensing. In
order to state the main theorem of this section, first we
define η to be a random variable that takes the value −CR
with probability p and value 1 with probability 1− p, i.e.
the output of the PSC when 0 is transmitted. Also, let the
sequences of random variables Xi, Yi, i ≥ 0 be defined in
the following way:

Y0 = η,

Xi = min{Y (1)
i , . . . , Y

(dc−1)
i } ∀i > 0,

Yi = 2iη +X
(1)
i−1 + · · ·+X

(dv−1)
i−1 ∀i > 0, (6)
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Fig. 2. The procedure of importing the performance guarantee from LP decoding into compressed sensing.

where X(j)s are independent copies of a random variable
X.

Theorem 2: Let C be a regular (dv, dc)-LDPC code with
girth equal to g, and 0 ≤ p ≤ 1/2 be the probability of bit
flip, and S be the random set of flipped bits. If for some
j ∈ N,

c = γ1/(dv−2) min
t≥0

Ee−tXj < 1

where γ = (dc − 1)CR+1
CR

(CR·p
1−p )1/(CR+1)(1 − p) < 1, then

with probability at least 1−O(n)cdv(dv−1)T−1

the code C
has the FCP(S, CR), where T is any integer with j ≤ T <
g/4.

Note that the value c can be derived for specific values
of p, dv, dc, and CR. The proof of the above theorem
falls along the same lines as the arguments of [9]. The
bottom line is the existence of a certificate in the primal
LP problem for the success of LP decoding, which can
be extended to the case of the perturbed channel. In
order to define the certificate, we first bring the following
definitions from [9]. In the sequel, we denote the bipartite
graph that corresponds to H by G.

Definition 5: A tree T of height 2T is called a skinny
subtree of G, if it is rooted at some variable node vi0 , for
every variable node v in T all the neighboring check nodes
of v in G are also present in T , and for every check node c
in T exactly two neighboring variable nodes of c in G are
present in T .

Definition 6: Let w ∈ [0, 1]T be a fixed vector. A vector
β(w) is called a minimal T -local deviation, if there is a
skinny subtree of G of height 2T , say T , so that for every
variable node vi 1 ≤ i ≤ n,

β
(w)
i =

{
wh(i) if vi ∈ T \ {vi0}
0 otherwise

,

where hi = 1
2d(vi0 , vi).

The key to the derivation of a certificate for LP decoding
is the following lemma:

Lemma 1 (Lemma 1 of [9]): For any vector z ∈ P, and
any positive vector w ∈ [0, 1]T , there exists a distribution
on the minimal T -local deviations β(w), such that

Eβ(w) = αz,

where 0 < α ≤ 1.
Lemma 1 has the following interpretation. If a linear prop-
erty holds for all minimal T -local deviations ( f(β(w)) ≥ 0,
where f(.) is a linear function), then it also holds for
all pseudo-codewords (f(z) ≥ 0 ∀z ∈ P). Interestingly
enough, the success of LP decoding over the perturbed
symmetric channel of Figure 1 for a given set of bit flips

S has a linear certificate, namely FCP(S, CR). In other
words, if we define:

f
(S)
C (x) =

∑
i∈S

xi − CR
∑
i∈S

xi, (7)

then LP decoder is successful, if and only if f
(S)
CR

(z) ≥ 0
for every pseudocodeword z ∈ P. Therefore, according to
Lemma 1, it suffices that the condition be true for all T -
local deviations, which is equivalent to FCP(S, CR).

Proof of Theorem 2: We denote the set of variable
nodes and check nodes by Xv and Xc respectively. For a
fixed w ∈ [0, 1]T , let B be the set of all minimal T -local
deviations, and Bi be the set of minimal T -local deviations
defined over a skinny tree rooted at the variable node vi.
Also, assume S is the random set of flipped bits, when
the flip probability is p. Interchangeably, we also use S
to refer to the set of variable nodes corresponding to the
flipped bits indices. We are interested in the probability
that for all β(w) ∈ B, f

(S)
C (β(w)) ≥ 0. For simplicity we

denote this event by f
(S)
C (B) ≥ 0. Since the bits are flipped

independently and with the same probability, we have the
following union bound

P
(
f

(S)
C (B) ≥ 0

)
≥ 1− nP

(
f

(S)
C (B1) ≥ 0

)
. (8)

Now consider the full tree of height 2T, that is rooted at
the node v0, and contains every node u in G that is no more
than 2T distant from v0, i.e. d(v0, u) ≤ 2T . We denote this
tree by B(v0, 2T ). To every variable node u of B(v0, 2T ),
we assign a label, I(u), which is equal to −CRωh(u) if u ∈
S, and is ωh(u) if u ∈ S, where (ω0, ω2, · · · , ω2T−2) = w.

We can now see that the event f
(S)
C (B1) ≥ 0 is equivalent

to the event that for all skinny subtrees T of B(v0, 2T ) of
height 2T , the sum of the labels on the variable nodes of
T is positive. In other words, if Γ0 is the set of all skinny
trees of height 2T that are rooted at v0, then f

(S)
C (B1) ≥ 0

is equivalent to:

min
T ∈Γ0

∑
v∈T ∩Xv

I(v) ≥ 0. (9)

We assign to each node u (either check or variable node)
of B(v0, 2T ) a random variable Zu, which is equal to
the contribution to the quantity minT ∈Γ0

∑
v∈T ∩Xv

I(v)
by the offspring of the node u in the tree B(v0, 2T ),
and the node u itself. The value of Zu can be deter-
mined recursively from all of its children. Furthermore,
the distribution of Zu only depends on the height of u
in B(v0, 2T ). Therefore, to find the distribution of Zu,
we use X0, X1, · · · , XT−1 as random variables with the
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same distribution as Zu when u is a variable node (X0

is assigned to the lowest level variable node) and likewise
Y1, Y2, · · · , YT−1 for the check nodes. It then follows that:

Y0 = ω0ηC ,

Xi = min{Y (1)
i , . . . , Y

(dc−1)
i } ∀i > 0,

Yi = ωiηC +X
(1)
i−1 + · · ·+X

(dv−1)
i−1 ∀i > 0, (10)

where X(j)’s are independent copies of a random variable
X, and ηC is a random variable that takes the value −CR
with probability p and value 1 with probability 1 − p. It
follows that

P
(
f

(S)
C (B1) ≤ 0

)
= P

(
X

(1)
T−1 + · · ·+X

(dv)
T−1 ≤ 0

)
≤ (E(e−tXT−1))dv . (11)

The last inequality is by Markov inequality and is true for
all t > 0. The rest of the proof is modifications to the proof
of Lemma 8 in [9], for the Laplace transform evolution of
the variables Xis and Yis, to account for a non-unitary
robustness factor CR. By upper bounding the Laplace
transform of the variables recursively it is possible to show
that (see Lemma 8 of [9], the argument is completely the
same for our case)

Ee−tXi ≤
(
Ee−tXj

)(dv−1)i−j

∏
0≤k≤i−j−1

(
(dc − 1)Ee−twi−kη

)(dv−1)k

,(12)

for all 1 ≤ j ≤ i < T . If we take the weight vector as
w = (1, 2, · · · , 2j , ρ, ρ, · · · , ρ) for some integer 1 ≤ j < T ,
and use equation (12) for i = T − 1, we obtain:

Ee−tXT−1 ≤ (Ee−tXj )(dv−1)T−j−1

·
(
(dc − 1)Ee−tρη

) (dv−1)T−j−1−1
dv−2 ,

ρ and t can be chosen to jointly minimize Ee−tXj and
Ee−tρη in the above, which along with (11) results in

P(fSC (B1 ≤ 0)) ≤ (Ee−tXT−1)dv

≤ γ−dv/(dv−2) × cdv(dv−1)T−j−1

,

where γ = (dc − 1)CR+1
CR

(1 − p)(CR.p
1−p )1/(CR+1) and c =

γ1/(dv−2) mint≥0 Ee−tXj . If c < 1, then probability of error
tends to zero as stated in Theorem 2.

In the next Lemma, we show that if a code C has
the fundamental cone property FCP(S, CR), then CC-
LPD can correct the perturbed symmetric channel error
configuration S.

Lemma 2: Let HCC be a parity-check matrix of a code
C and let S ⊂ I(HCC) be a particular set of coordinate
indices that are flipped by a perturbed channel with cross-
over probability p > 0. If and only if HCC has the
FCP(S, CR), then the solution of CC-LPD equals the
codeword that was sent.

Proof: Without loss of generality, we can assume
that the all-zero codeword is transmitted. We begin by
proving the sufficiency. Let +1 be the log-likelihood ratio
associated with a received 0, and let −CR < −1 be the log-
likelihood ratio associated with a received 1. Therefore,

λi =

{
+1 if i ∈ S
−CR if i ∈ S .

Then it follows from the assumptions in the lemma state-
ment that for any w ∈ K(HCC) \ {0}

λTw =
∑
i∈S

(+1).wi +
∑
i∈S

(−CR).wi

(a)
= +1.‖wS‖1 − CR.‖wS‖1 > 0

(b)
= λT · 0,

where step (a) follows from the fact that |wi| = wi for
all i ∈ I(HCC), and where step (b) follows from (5).
Therefore, under CC-LPD the all-zero codeword has the
lowest cost function value when compared to all non-zero
pseudo-codewords in the fundamental cone, and therefore
also compared to all non-zero pseudo-codewords in the
fundamental polytope.

Note that the proof of the converse is direct and can
easily be derived by taking the sufficiency proof steps,
backward.

B. Establishing the Connection

In this section, through Lemma 3 (taken from [10]),
we will establish a bridge between LP-decoding and com-
pressed sensing. Specifically, using this bridge, we will
import performance results from LP-decoding context into
compressed sensing.

Lemma 3: (Lemma 6 in [10]): Let HCC be a zero-one
measurement matrix. Then

ν ∈ N (HCC)⇒ |ν| ∈ K(HCC).

Proof: Let w , |ν| and to show that such a vector
w is indeed in the fundamental cone of HCC, we need
to verify (3) and (4). It is apparent that w satisfies (3).
Therefore, let us focus on the proof that w satisfies (4).
Namely, from ν ∈ N (HCC) it follows that for all j ∈ J ,∑
i∈I hj,iνi = 0, i.e., for all j ∈ J ,

∑
i∈Ij νi = 0. This

implies

wi = |νi| =

∣∣∣∣∣∣−
∑

i′∈Ij\{i}

νi′

∣∣∣∣∣∣ ≤
∑

i′∈Ij\{i}

|νi′ | =
∑

i′∈Ij\{i}

wi′ ,

for all j ∈ J and all i ∈ Ij , showing that w indeed satisfies
(4).

From here on, we deal with HCC as a zero-one mea-
surement matrix. Note that the bridge established in [8]
and through Lemma 3 connects CC-LPD of the binary
linear channel code and CS- LPD based on a zero-one
measurement matrix over reals by viewing this binary
parity-check matrix as a measurement matrix. This con-
nection allows the translation of performance guarantees
from one setup to the other. Using this bridge, we can show
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that parity-check matrices of ”good” channel codes can be
used as provably ”good”measurement matrices under basis
pursuit.

Using the bridge of Lemma 3, we show in the next theo-
rem that the parity-check matrix HCC, as a measurement
matrix, has the nullspace property and as a result satisfies
the `1/`1 guarantee.

Theorem 3: Let HCC ∈ {0, 1}m×n be a parity-check
matrix of the code C and let k be a non-negative integer.
Further assume that code C can correct the error config-
uration S over the perturbed symmetric channel where
|S| ≤ k. Additionally, assume that s = HCC · e. Then
HCC as a measurement matrix satisfies

HCC ∈ NSP<R (S, CR).

Furthermore, the solution ê produced by CS-LPD will
satisfy

‖e− ê‖1 ≤ 2.
CR + 1

CR − 1
.‖eS‖1.

Proof: We begin by proving the nullspace property.
Since the code C corrects the configuration S, from Lemma
2, for any point in the fundamental cone K(HCC) includ-
ing w and any set S ⊂ {1, . . . , n} with |S| ≤ k, we have

CR‖wS‖1 < ‖wS‖1. (13)

We prove by contradiction. Assume HCC does not have
the strict nullspace property NSP<R (S, CR), i.e. there
exists a point ν ∈ N (HCC) such that

CR‖νS‖1 ≥ ‖νS‖1.
Further, from Lemma 3, we know there exists w = |ν| in
K(HCC). And

CR‖wS‖1 = CR‖|νS |‖1
= CR‖νS‖1
≥ ‖νS‖1
= ‖|νS |‖1
= ‖wS‖1,

which contradicts the assumption and shows that no such
a point ν exists.

We showed that HCC has the claimed nullspace prop-
erty. Since HCC · e = s and HCC · ê = s, it easily follows
that, ν , e− ê is in the nullspace of HCC. So

‖eS‖1 + ‖eS‖1 = ‖e‖1
(a)

≥ ‖ê‖1
= ‖e− ν‖1
= ‖eS − νS‖1 + ‖eS − νS‖1
(b)

≥ ‖eS‖1 − ‖νS‖1 + ‖νS‖1 − ‖eS‖1
(c)

≥ ‖eS‖1 −
CR − 1

CR + 1
.‖ν‖1 − ‖eS‖1,

(14)

where step (a) follows from the fact that the solution of
CS-LPD satisfies ‖e‖1 ≤ ‖ê‖1, where step (b) follows

from applying the triangle inequality property of the `1-
norm twice, and where step (c) follows from

(CR + 1). (−‖νS‖1 + ‖νS‖1)

= −CR.‖νS‖1 − ‖νS‖1 + CR.‖νS‖1 + ‖νS‖1
(d)

≥ −‖νS‖1 − ‖νS‖1 + CR.‖νS‖1 + CR.‖νS‖1
= (CR − 1).‖νS‖1 + (CR − 1).‖νS‖1
= (CR − 1)‖ν‖1,

where step (d) follows from applying twice the fact
that ν ∈ N (HCC) and the assumption that HCC ∈
NSP≤R (S, CR). Subtracting the term ‖eS‖1 on both sides
of (14), and solving for ‖ν‖1 = ‖e−ê‖1 yields the promised
result.

This Theorem was the last piece in the proof of Theorem
1, and with it, the proof is complete.

Note that it is easy to obtain deterministic construc-
tions of measurement matrices that are regular, have
the optimal order of measurements and have Ω(log n)
girth. Therefore, a byproduct of our result is the explicit
construction of measurement matrices with m = cn rows
which can approximate almost all near-sparse signals in
the `1/`1 sense, for sparsity k = p ·n. These will be parity-
check matrices of codes with girth Ω(log n). To explicitly
obtain such codes, we can use one of the known determin-
istic matrix constructions such as the progressive edge-
growth (PEG) Tanner graphs [17], or the deterministic
construction suggested by Gallager [16].
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