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Abstract

A discrete event system (DES) is a dynamic system which evolves
in response to the occurrence of specific events at discrete points in
time. Ramadge and Wonham have established a control theory of
DES modeled by state machines which has been expanded by oth-
ers to include the concepts of observability and stability. Previous
work by Ramadge extended the concept of controllable languages to
infinite languages and presented conditions for the existence of a su-
pervisor for systems modeled by Biichi automata. The goal of this
paper is to derive requirements for the existence of a supervisor under
less restrictive conditions on the constraint language for plants which
satisfy certain conditions. This supervisor is shown to approach the
prescribed closed loop behavior and retain all behaviors within a spec-
ified error bound of the desired behavior. Both deterministic and non-
deterministic supervisors are considered. The construction for such a
supervisor is given along with examples of its application .
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1 Introduction

A discrete event system is a dynamic system which evolves in time in re-
sponse to the occurrence of specific events at discrete points in time [7].
The dynamics of a general discrete event dynamic system are described as
nondeterministic transitions which occur in response to events occurring at
random asynchronous times. The state of such systems can be described
with logical, symbolic, or numeric values depending on the application, such
as manufacturing systems or computer networks.

Control of discrete event dynamic systems consists of supervising the
system so that the performance of the system conforms to some previously
specified behavior. System control is accomplished by enabling or disabling
events based on the previous inputs, the observed output, or the current
state of the system. By enabling or disabling certain events, the supervisor
can insure that the system conforms to the desired behavior if the system
meets certain controllability constraints [17, 19, 14]. Controlling resources
on a computer network such as access to printers or network gateways can
be modeled and accomplished using discrete event formalism and control
concepts.

Infinite strings are used to model infinite sequences of events which a
discrete event dynamic system can accomplish. Biichi [2] originally used
infinite strings in the investigation of a decision procedure for a system of
logic known as “the Sequential Calculus.” In a more related application,
Muller [13] used infinite strings as a means of describing and analyzing the
behavior of asynchronous switching circuits. When systems are modeled
using infinite strings, nonterminating behaviors can be explicitly considered
and various asymptotic, or steady-state, results can be investigated [16].
McNaughton [12] showed that the language recognized by a Biichi machine
is a regular w-language; hence, Blichi automata are sufficient to model
systems which can be described by regular w-languages.

Often one wants to insure that the asymptotic behavior of systems,
which can be described by discrete event formalisms, such as Biichi au-
tomata, conforms to certain constraints, or meets certain conditions [16,
1, 14, 18]. In order to insure that certain asymptotic behaviors occur, one
must be able to make assertions concerning the infinite behavior of systems
described by Buchi automata. Previous work requires that the w-languages
describing the system and the desired behavior have certain characteristics



for the existence of supervisors [19, 16, 10, 18]. If these conditions are not
met, then little can be determined about the kind of supervisory perfor-
mance which can be obtained. A goal of this work is to relax some of the
conditions on the constraint language required by the previous work and
determine what type of supervisor performance can be achieved. In this
study, we limit our attention to systems which can be represented by deter-
ministic Buchi automata. In this work, the requirement that the language
which describes the desired behavior be topologically closed with respect
to the language which describes the system behavior is relaxed. We obtain
a constructive proof which provides that the behavior of the closed loop
system can be within a specified error bound of the desired behavior if
the constraint language is controllable and stabilizable with respect to the
language which describes the plant behavior [16, 1, 14, 18].

Section 2 briefly describes some of the results relevant to infinite strings,
finite automata, and controllable languages. Section 3 presents the main
results and compares the results to some previous results for systems de-
scribed with Biichi automata. Section 4 provides some examples of how
the various approaches apply in different situations.

We use calculational style of proofs for many of our Theorems. A proof
that [A = C] will be rendered in our format as

A

= { hint why [A = B] }
B

= { hint why [B =] }
C.

We also allow implies (=) in the leftmost column. For a thorough treatment
of this proof format we refer interested readers to [4].

2 Description of the Model

2.1 Infinite Strings

We first define the set, A", as the set of all finite, unbounded strings of
elements from the alphabet, A, including the empty string, ¢, and let AT =
A* — 1. A subset L C A" is called a language over A.



In order to extend the concept of finite strings to infinite strings?, we
define a morphism ¢ : N — A and the set of such morphisms as A“. This
morphism defines an infinite sequence of elements of A indexed by N, where
N =1{1,2,...}. Then for a given n € N, we denote by e" the element

e" =e(0)e(1)e(2)...e(n) € A™.

The element ¢” is called the initial segment or prefiz of length n of e and €°
is defined to be e, the empty string. Also observe that e(k) € A, k € N, is
the k' symbol in the string e. Note that uv denotes string v with string
v concatenated to the end of u. One defines s € A* as a prefix of ¢ € A,
denoted s < e, if for some j € N,s = ¢/. Prefixes are related to infinite
strings by the relation that for a given sequence sg < 51 < ... <s, <...of
elements of A*, there exists a unique e € A¥ such that e¥ = s, with k = |s,,|
for all n € N. One writes ¢ = lim oo Sy

For finite languages, one defines the prefix closure of L C A* to be the
subset ¢l(L) C A* defined by ¢l/(L) = {u : uv € L for some v € A*}, i.e.,
cl(L) is the set of all prefixes of strings in L. L is prefix closed if L = ¢l(L).

It X C A" is a language of finite strings, define X*°, the limit of X, as
the set of infinite strings ¢ € A“ having an infinity of prefixes in the set X
[15]. Hence, for o € A%,

o € X if and only if 3%k : 0% € X.

where 3*k means that there exists an infinity of & which satisfy the pred-
icate.

A set B C A¥ is called an w-language over A. The prefix of B is the set
of all strings in A* which are prefixes of some string in B. Formally, one
defines the prefiz of B C A% as the set pr(B) C A* such that pr(B) = {¢’ :
e € B,j >0}. When B = {e}, for e € A¥, we write pr(e) for pr({e}).

The adherence or limit of L C A* is the w-language

L¥ ={e:e€ AY and 35 : ¢/ € L}.

From the definitions given above, one can derive the following relation-
ships between the prefix and adherence operators: for any B C A“ and
prefix closed K C A*

B C pr(B)™, and

2This material on infinite strings follows the presentations given in [5, 15, 16].
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pr(K=) C K.
A metric, d, can be defined on A“ as follows:

I/n ifef =e5,0<k<n, and e;(n) # es(n)
d(el, 62) = .
0 if e; = es.

The topological closure of a set B C A“ with respect to the above metric
is denoted B. The topological closure, prefix and adherence operations for
B C AY are related by:

B = pr(B)™.

For subsets B and S, which satisfy B C S C A%, we say that B is
topologically closed relative to S if BNS = B. If B C S, it is always the
case that B C BN S, and, consequently, B is topologically closed relative
to S if and only if BN S C B.

As discussed later, the concept of topological closure can play a role in
determining existence of a class of supervisors for a discrete event dynamic
systems.

2.2 Automata Description of a Discrete Event Sys-
tem

Since the behavior of discrete event systems can be represented as sequences
of discrete events, the behavior of many discrete event systems can be mod-
eled as a prefix closed regular language L C A*. Henceforth, languages used
to describe discrete event systems will be considered to be prefix closed and
regular. Modeled in this way, L represents all possible (finite, unbounded)
strings of events which a discrete event system (DES) can generate. An
extension of this model considers the adherence of L, or a subset of it, in
order to discuss the long term or limit behavior of the DES. For this ex-
tension, one models a DES as a pair P = (L, S) where L is a prefix closed
subset of A* and S is a subset of L™ [16].

One can also describe this class of discrete event dynamic systems with
finite automata. As mentioned above, McNaughton [12] and others demon-
strate that the behavior of such systems can be described with rational
(regular) w-languages, often denoted by RAT or DRAT for deterministic
rational languages. Eilenberg [5] provides a development of the relation-
ships between finite machines and infinite languages.



For our automaton model, we define a finite state machine, called a
generator, G = (Q, A, ¢o,9), to be a dynamic system consisting of a state
set (), an event set or alphabet A, an initial state ¢g, and a transition
function ¢ : @ x A — Q. In general, § is only a partial function, i.e. not
defined on the entire space Q@ x A. Also, ¢ can be extended in a natural sense
to a function on @ x A* by 6(qo, wo) = 6(6(qo,w), o). We write 6(¢, w)! to
denote that (¢, w) is defined.

A machine is called a trim machine if every state is a vertex in some
successful path [5]. This concept is related to accessible and co-accessible
automata in [16] and live systems in [14].

The language generated by the machine G is defined to be the set

L(G) ={w:w € A" and (g0, w)!}.

Languages generated in this manner are closed and regular [5, 8|.

An infinite path in the machine G is an infinite sequence o € A“ such
that §(qo,0”)! for all 6/ € pr(c). Such sequences are used to model the
asymptotic behavior of DES. Consequently, one extends the definition of
the generator to that of a Blichi automaton in order to capture this infinite
or limit behavior.

The infinite or limit behavior, S(G), of a finite state Biichi machine G
can be specified in the following manner. A set of states called the marked
states is added to the description of machine G = (A4, Q,,¢o). This set
is denoted by @Q,, € Q. @Q,, corresponds to the set of marked or final
states in the standard finite state machine description. To each sequence of

events e € L(G)™ there corresponds a unique state trajectory s. : N — Q
satisfying s.(7) = 6(qo, ¢’ ). Related to s., for any e € A%, one defines I'n(e),
the states visited an infinite number of times by the infinite string e, by

In(e)={qgeQ:(3F7i:s.(7) =q)}.

The sequence e and trajectory s. are said to be accepted if s. visits the
set @y, infinitely often, i.e. In(e) N @, # 0. The set of event sequences
generated by G = (A, Q, 6, g0, @) is then defined to be

S(G)={e:e € L(G)™, and s, is accepted }[16].

In a related notation, a machine denoted by Mp is a machine which gener-
ates language B.



From the definitions of infinite behavior and the limit of a language it
follows that S(G) C L(G)*> with equality if Q,, = @; and that pr(S(G)) C
L(G). In general, one need not have equality in pr(S(G)) C L(G) since
there may be strings in L(G) that cannot be extended to an accepted event
sequence. If pr(S(G)) = L(G), then G is said to be nonblocking. There is
equality if and only if for every ¢ € @ there exists w € A* with é(¢,w) € Qu,
and for every ¢ € @, there exists an event o € A with 6(¢,0)! [16].

2.3 Controllability and Stability

The event set A for a DEDS described as a plant modeled by the automaton
P = (L,S) can be partitioned into two disjoint sets: A. and A4,. A,
contains all events which are uncontrollable, i.e. no supervisor may affect
the behavior of the plant with respect to these events. A. contains all
events which a supervisor can enable or disable in order to effect the desired
behavior.

With the concept of controllable and uncontrollable events, one can
define a supervisor for a plant which affects the controllable events which
a plant can execute based on some specified constraints. A supervisor for

a DES i1s a map
f:L—24

which specifies the next enabled inputs which can be applied based on
the string of generated events. One can consider the closed loop system
consisting of a supervisor, f, and plant, P, where the finite and infinite
closed loop behaviors are denoted by L; and Sy respectively defined as
follows:

1. e € Ly;
2. wo € Ly if and only if w € Ly, 0 € f(w), and wo € L;
5.5, =L¥NS.
Note that the definition of L; implies that Ly C L and that ¢l(Ly) = Ly
[16].

Also from the properties given above, it follows that pr(S;) € Ly. When
pr(Ss) = Ly, one says that f is nonblocking for P [16]. A result concerning



the finite behavior of nonblocking supervisors is that for all ¢ € L; there
exists a b € A such that tb € Ly.

The language K C L is said to be controllable with respect to L if
cl(K)A,NL C cl(K). A supervisor, f, is said to be complete with respect
to a given plant P = (L, S) if all uncontrolled semantics of the plant are
respected, in other words, if + € L, * € Ly and 2o, € L then 2o, € Ly
where o, € A, and Ly 1s the closed loop behavior as discussed above. For
nonempty A C L, there exists a complete, nonblocking supervisor f such
that Ly = I if and only if K is prefix closed and controllable [17].

Also, the family of closed and controllable sublanguages of L is closed
under set union and for any closed K C L there exists a unique supremal
closed and controllable language, K = K — ((L — K)/A%)A* [17, 9].

The region of weak attraction, as discussed in [1, 11, 14], can be directly
related to the existence of certain types of supervisors. The algorithm
given below is essentially the same one given in [1] for determining the
region of weak attraction. The main result of our work relates conditions
on the region of weak attraction to certain supervisor characteristics for
systems which can be modeled by finite state machines or whose language
descriptions are in DRAT.

For this paper, the region of weak attraction, Qu(Q.,), for a given
machine, M = (Q, A, 6,0, @), with a given set of marked states, @, is
defined by the following algorithm [1]:

Initial Step: Set Py = @Q,, and © = 1.
do:6(q,0) € Py
Iteration Step: Define P, =P,_1U{q € @Q: and
Ao, € Ay 2 6(q,04) & Piy
If P, = P4, stop and set Qu(Q.) = P

T ination Step: . . .
crination wiep else ¢ =14 1; goto iteration step .

This algorithm builds the region of weak attraction starting from @,,.
Each iteration of the algorithm adds states to the region defined in the
previous iteration. A state is added to the region of weak attraction only if
there is an event ¢ which describes a transition into the region defined in
the previous iteration and there does not exist an uncontrolled event which
provides a path to a state which is not in the region defined by the previous
iteration of the algorithm. The algorithm is guaranteed to terminate by the



finite state description of the machine. An efficient algorithm is given in
[11] which computes the region of weak attraction in O(|Q|) time.
Stability and stabilizability characteristics are often used to describe
systems modeled with infinite strings. The stability of a discrete event
dynamic system can be related to the region of weak attraction [1, 11, 14].

Definition 2.1 An w-language B is finitely stabilizable if and only if B €
DRAT, and for all Mp = (Q, A, 6,0, @) such that Mg is trim and recog-
nizes B, we get that Qa,(Qn) = Q.

Although finite stabilizability is defined in terms of machines which rec-
ognize a language, the following lemma demonstrates that finite stabiliz-
ability 1s a characteristic of a language and is independent of the structure
of a particular machine used to generate the language.

Lemma 2.1 Let B € DRAT.

If
there exists a trim Mp = (Q, 4,0, ¢o, Q) with Q. (Qr) = Q,
then
for all trim Mp = (Q', A,¢, 5, Q),), Qi (Q,) = Q.
Proof:

We use proof by contradiction:
Assume that there exists a machine M; = (@, A, «, g0, @) such that:

My is trim, B = S(M;), and Qa, (Qn) = Q,
and that there exists another machine M, = (R, A, 3,79, R.,) such that:
M, is trim, B = S(M;), but that Qu(R,,) # R.

Given these two machines:

QM2(RM) 7£ R

(Fw e pr(B))A(r € R: B(ro,w) =1 & Py, Vk > 0)
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= {(Q1,(Qu) = Q) A (w € pr(B))}
a(qo,w) = q € Py for some k

where P;;’s are the sets generated in the k' iteration of the algorithm
which determines the region of weak attraction for the :'* machine.

(1,(Qm) = Q) A (w € pr(B))

dvy € A% @ (alqo, wv1) € Q)N (a(qo, wv1(0)...v1(n)) € Py j_pn,Vn,0 <
n < k)

= {(Q, (Ry) # R) A (M trim)}
(Juy < vi) Aoy € Ay : (uror L v1) A (B(ro, wuro1) &€ Pay, Yk > 0)).
Let [y be such that v1(0)...v(l1) = uy.

Definition of P j

(a(qo, wur) € Py j—iy) A (alqo, wur0o1) € Pyj—i—1).

Let wo = wuyoy and by =k — 1.

(1, (@) = Q) A (w; € pr(B))

dvy € A% @ (a(qo, wavs) € Q)N (a(qo, wava(0) ... va(n)) € Py jy—pn,Vn,0 <

- {Qu,(R,) # R)
Jus < V3,09 € Ay : Blro, wauzos) & Poy, ¥k > 0.
Continue choosing v; such that:
a(qo, wv;) € Qm
= {(n (Qn) = Q) A (wi € pr(B)) A (,(Rin) # R)}
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Ju; < w00 € Ay 2 B(ro, winio;) & Pyg,Vk > 0 where w; = w;_qu;-10,_1

= {Mi, M5 trim}
0, € pr(B) (g, 0;) € Qu) A (Bro ) # D (F) A (f] >
1Q + [R]))

=

deyelew;(m)...wj(n), 0 <m < n < |w;|, where (wow;(m)...w;(n) <
w;) A (wo < wji(0)...wj(m))

(Iny(wo(w;(m) ... wi(n))*) N Qum # B) A (Ins(wo(wi(m) ... w;i(n))*) N
R, =0)

where In; and Iny denote the states which are visited an infinite number
of times by w; in M; and M, respectively.

Using this technique, we have constructed an infinite string which is
accepted by M; and not accepted by M,, which contradicts the fact that
they both are trim machines which recognize B. Hence, the assumption
that Qan(R,) # R could not be correct and the lemma is proved.

Q.E.D.

Armed with these concepts one can discuss applications in the area of

supervisory control.

3 Supervisory Control of Systems Modeled
with Infinite Strings

3.1 Deterministic Supervisors

For this paper, finite automata on infinite strings are used to model super-
visory control of DES. The motivation for such an application arises from
two considerations.

The first is that often plants or systems which need to be controlled
can be modeled as deterministic or nondeterministic automata; hence, one
needs a technique to analyze and synthesize supervisors for such systems.
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The second consideration arises from the fact that the events which
describe plant activity can be partitioned into controllable, A., and uncon-
trollable, A,, events. For the control of the system, the supervisor must
not attempt to block any actions which include uncontrollable events.

The primary motivation for this work is a result by Ramadge [16] re-
lating to the controllability of systems modeled by Btichi automata. The
relevant result is stated in the following theorem:

Theorem 3.1 ([16]) If B C S C AY is nonempty, then,

there exists a complete, nonblocking supervisor f for plant P =

(L,S) such that Sy = B,
if and only if

pr(B) is controllable with respect to L,i.e., pr(B)A,NL C pr(B),
and

B is topologically closed relative to S, i.e., BN S = B.

One of the characteristics which limit the application of the above theo-
rem is the requirement that B must be topologically closed with respect to
S. One of the primary goals of this work is to determine when a supervisor
exists for systems which do not satisfy this requirement. For situations in
which a supervisor is shown to exist, we give a construction for a complete,
nonblocking supervisor.

Example 1:

This example demonstrates a discrete event dynamic system P = (L,S)
with the event set A = {a,b} which illustrates the application of Theo-
rem 3.1. The dynamics of the system are described by

S =a"+ a"ba” and L = a™ + a"ba™(= pr(S)).

The uncontrollable events are described by A, = {b}. The finite state
machine shown in Figure 1 generates this language.

Consider the constraints imposed by B = a*ba® C S. Since pr(B) =
a* 4+ a*ba* = L, it is clear that pr(B)A, N L C pr(B), or that pr(B) is
controllable. This controllability implies that a supervisor, f, exists such
that Ly = pr(B) [16]. However,

pr(B)*NS=S+#B

12



Figure 1: Machine for Example 1.

i.e., B is not topologically closed relative to S. According to the above
theorem, this fact implies that there is not a nonblocking supervisor f such
that Sy = B; yet supervisors for such systems are still needed.

Lemma 3.1 and Theorem 3.2 extend previous results to demonstrate
the existence of a complete nonblocking supervisor, f, for a given plant,
P = (L,S) when certain criteria are met by the plant and required be-
havior. The motivation for the extension comes from situations as in the
example above where the language describing the desired behavior is not
topologically closed with respect to the language describing the plant be-
havior. The closed loop behavior is shown to be contained in the desired
behavior but not necessarily equivalent to it; the supervisor does not allow
any behavior which is “bad” but might restrict some of the “good” be-
haviors. In some applications, such a supervisor would be adequate. The
strategy for this extension consists of specifying a supervisor which will
restrict the plant to sequences in the topological closure of the constraint
language then to provide an extension to this supervisor which allows the
closed loop behavior to stay within the constraint language yet approach
to within a specified distance of the boundary of the constraint language.

Lemma 3.1 provides that the machine, Mg, which recognizes the desired
behavior, B, acts as a supervisor which gives a closed loop behavior as the
topological closure of B if pr(B) is controllable with respect to pr(S).

Lemma 3.1 Let B C S C A¥, and Mg nonblocking, where pr(S) = L,
and B € DRAT, and Mg = {Q, A, 65, ¢o, @} be a trim machine. Then

pr(B) is controllable with respect to L,

if and only if
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flw)=Ho € A:ép(qo,wo)!} is a supervisor for P = (L, S) such
that:

1. f is complete,
2. f is nonblocking,

3. S;=BnS.
Proof:
(<)
This assertion follows directly from [17].
(=)

1. f is complete:

Let s € Ly and so, € L where 0, € A,: we must show that so, €
L(Mp).
(Ly = L(Mpg)) A (definition of f)
=
s € L(Mp)
= {(L(Mp) =pr(B)) AN(B € DRAT)}
s € pr(B)
= {pr(B) controllable}
soy, € pr(B)
=
so, € L(Mp).

2. f is nonblocking:
We must show that pr(Sy) = L.
Let t € pr(Sy).

= (S;=L¥nS}
t€pr(L¥FNS)
=

14



t e pr(L?o)

= {definition of L7}

te Ly.
Let t € Ly.

= {L; = L(Mp)}
(t € pr(B)) A(t € pr(LY))

= {Mp is trim}
t€pr(BNLY)

= {BCS}
tepr(SNLY)

=X {definition of S;}
t € pr(Sy).

3. S;=BnS:

Definition of Sy

=
S;=IL¥NS

= {definitions of f and L(Mg)}
S; = L(Mg)* N S

= {(L(Mp) =pr(B)) AN(B € DRAT)}
Sy=pr(B)*NS

= {definition of B}
S;=BnNS.

Q.E.D.

Theorem 3.2 gives results for the existence of a supervisor when the lan-
guage describing the desired behavior is not closed relative to the language
which describes the plant behavior. If finite stabilizability is added as a con-
dition on the constraint language, then the closed loop behavior is shown
to be contained in the desired behavior. We prove each part in separate
lemmas and then combine the results into the main theorem, Theorem 3.2.
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Lemma 3.2 Let B C S be nonempty, Ms nonblocking, where B,S €
DRAT, and S is topologically closed with respect to A“.

If
B is finitely stabilizable, and
pr(B) is controllable with respect to L = pr(S),
then
for all € > 0, there exists:
nonblocking, complete supervisor f for P, such that:
S; € B, and
Yu € B,Jv € Sy d(u,v) <e.
Proof:

In order to show that such a supervisor exists, we will construct one.

Let Mp be a trim machine which recognizes B where Mg = {Q, A, 6, g0, Qum }-
Since pr(B) is controllable with respect to pr(S), from Lemma 3.1, Mp is
a complete, nonblocking supervisor, f’, such that S; = BN S.

We must modify f’ to get a supervisor f so as to retain the complete
and nonblocking characteristics yet further constrain Sy such that Sy C B.

First, construct a machine M, which runs in parallel with Mpg. This
machine, M., is essentially a counter which allows the supervisor to achieve
the e distance criterion.

Define M, = (Q., A, é¢, G0, Qme) Where
Q.= {qcovqclv cee 7ch—1}7N > 1/67 Qe = {QCO}, and

G0 if 6(qo,w) € Qum,
0c(qeir0) =% Geit1 i 0(qo,w) € Qo and i < N — 2,

gen—1 otherwise .

And define the supervisor feedback map f by

flw) = { e if 6c(qeo, w) # gen-1,
A(qw) — Apaa(qw) i 6e(geo, w) = gen—1,

16



where:

Guw = 5(90710)7
Alqy) = {o € A:d(q,wo)l},
and
Apaa(qw) = set of events to disable ,

= {o€ A'(qun) N A : (g0, wo) & Pi_y where 6(qo,w) € P},
with P; and Qa,(Q.,) defined as follows:

PO = va

. ~ Jdo:6(¢q,0) € Py, and
PZ — Pz—lu{q- ﬂauEAué(q,Uu)€P2_1 }7
QMB(Qm) = PZ when PZ = Pi—l-

To show that f is complete, one must show that if an uncontrolled event
is defined in the plant from a state which is reached by the closed loop
system, then that event is allowed by the supervisor; i.e.

(s € Li)N(so, € L)N (o, € Ay) = so, € Ly.

From the definitions of f(s) and completeness it is sufficient to show
that o, € A'(¢s) and o, € Apaalys).

Since pr(B) is controllable with respect to L, one immediately has that
for all o, € A, if s € Ly and 6(qo, s0,,)! then o, € A'(¢s) as desired.

Since o, € A., the definition of Ap.q(¢s) provides that o, € Apa(gs) as
desired; hence, f is complete.

To show that f is nonblocking, one must show that pr(Ss) = Ls. By
Lemma 3.1, Sy = BN S. By construction, Sy € BN S. By the finite
stabilizability of B and the construction of Ay, Sy # 0. The proof of
nonblocking follows in a manner similar to the nonblocking part of the
proof of Lemma 3.1.

To show that Sy C B, one must show that any string in the closed loop
behavior, Sy, i1s contained in the desired behavior, B: 1.e.

u€5f2>u€B.

We will use proof by contradiction. Assume that there exists a v € Sy

such that v ¢ B.
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Definitions of Sy and Mg

Jw € pr(u) : (Vo : wa € pr(u) : (g0, wz) & Q)
= {definition of M.}

for this w, Jy € A : ((wy € pr(u)) A (6.(qe0> wy) = gon—1))
= {u € S; and definition of f(wy)}

Jy,v € A7 : (wyv € pr(u)) A (6(qo, wyv) € Qm), for [v] < Q.
Thus, 6(qo, wyv) € @, which contradicts the original choice of w; hence,
u € B.
To show that for every string in the desired behavior, B, there is a string
within e of it which is in the closed loop behavior, Sy, 1.e. Yu € B,3Jv €
Sy such that d(u,v) < €, one can consider two cases:

1. If u € Sy, then let v = u. In this case, both u and v are in Sy;
hence, d(u,v) =0 < ¢,Ve > 0.
2. Ifu¢g Sy, then w € B— Sy.

Since u € B — Sy, there exists a w € pr(u) such that (w € pr(B)) and
(6c(ge0,w) = gen—1). This situation arises because f must have disabled
some event ¢ in order for u ¢ S;.

Pick w,o so that it is the first string in the prefix of u such that
6C(q007w) = gcN-1 and o € f(w) :

Since f is nonblocking, w € Ly implies that there exists an a € Sy such
that w € pr(a).

Now calculate the distance between v and any « € Sy such that w €
pr(a). As a result of the choice of w and o, this distance satisfies the

following condition:
1

d = —.
(vr) =
Since 6.(qe0,w) = gen-1,|w| > N; consequently, this distance satisfies

the following inequality:
1 1
d = — < — :
(u,a) W SN < €
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The last inequality follows from the choice of V.
Q.E.D.

Lemma 3.3 Let B C S be nonempty, Ms nonblocking, where B,S €
DRAT, and S is topologically closed with respect to A“.

If
for all € > 0, there exists:
nonblocking, complete supervisor f for P, such that:
S; € B, and
Yu € B,Jv € Sy d(u,v) <,
then
B is finitely stabilizable, and
pr(B) is controllable with respect to L = pr(S).
Proof:

For this proof, we will show the contrapositive: i.e. assume that if
1) B is not finitely stabilizable

(i.e. there exists ¢ = 6(qo,w), ¢ € @, where @ is the state set for
machine which recognizes B, such that ¢ ¢ P, where w € pr(B)
and Yk > 0),

or
2) pr(B) is not controllable with respect to L

(i.e. 3t € pr(B) such that da € A, for which ta ¢ pr(B) but
ta € L),

then for each € > 0 there does not exist a complete, nonblocking super-
visor where for all v € B there exists a v € Sy such that d(u,v) < € and
Sy C B.

We will show that any complete, nonblocking supervisor with d(u,v) < e
where v € B and v € Sy does not have Sy C B if pr(B) is not controllable
or B is not finitely stabilizable.
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From the assumption that pr(B) is not controllable, it follows that there
exists a t € pr(B) such that there exists an a € A, for which ta & pr(B).

For this ¢, a pair choose € such that 0 < e < ItIEI-I'

For any g € B: (t € pr(f) = d(«,3) < €) and f nonblocking

da € Syt € pr(a)
= {f complete and t € L; by choice of €}
ta € Ly
= {f nonblocking}
dy € A¥ : tay € Sy
= {tay ¢ B since ta ¢ pr(B)}
S, ¢ B

which is as required for this part of the contrapositive.
If B is not finitely stabilizable, then:

Mg a trim machine

dg = 6(qo,w),q € Q: ¢ & P, Vk > 0, and w € pr(B)
= {f is nonblocking}
15 € B:w € pr(f).
Choose € = ﬁ

Hypothesis that Vu € B,3v € Sy : d(u,v) < €

da e Sy:dla, ) <e
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= {choice of €}
w € pr(a)

= {definition of S;}
w e Ly.

If we assume that a € B, then Sy Z B as required for the contrapositive.
Otherwise, assume that o € B:

w € pr(B)

vz (wv € pr(B) A (6(qo, wv) € Q)
= {else ¢ € Py for some k, and definition of P}

dvy <wv:doy € Ayt 6(qo, wor00) € P, ¥k >0

= {a € Sy, definition of Sy, wv € pr(a)}
wvy € Ly

= {wvy € Ly and f complete}
wvy0q € Ly.

Since 6(wv101,qo) € Pr,Vk > 0, one uses similar reasoning to show that
Jvyoy 1 wvro1v909 € Ly and 6(qo, wvroqv203) € Py, VEk > 0,

for vy < v’ such that 6(qo, wv101v") € Q.
Hence, as illustrated in Figure 2 where v! = v;0;, one can construct a

sequence
V101, V202, ..., 0;0; 1 6(qo, W101V309 . .. v;0;) & Pp,Vk > 0.
Since one can construct a sequence vy0y,v209,...,v;0; : j > |Q|, by the

pumping lemma [8], there exists a cycle in this sequence which the super-
visor allows. Consequently, there exists an infinite sequence o’ such that

al € Sy In(a)NQ,, = 0.
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Figure 2: Cycle in a machine which is not finitely stabilizable.

This relationship follows from the fact that pr(B) is controllable with re-
spect to L and that S is topologically closed with respect to A“. And since
there exists an o/ € Sy such that o/ ¢ B, we have that Sy Z B as required
for the contrapositive.

Q.E.D.

Theorem 3.2 Let B C S be nonempty, Mg nonblocking, where B, S €
DRAT, and S is topologically closed with respect to A“. Then

for all € > 0, there exists:

nonblocking, complete supervisor f for P, such that:
S; € B, and
Yu € B,Jv € Sy d(u,v) <,

if and only if
B is finitely stabilizable, and

pr(B) is controllable with respect to L = pr(S).

Proof:
This theorem follows directly from Lemma 3.2 and Lemma 3.3.

The proof of Theorem 3.2 is based on the specific strategy chosen for the
supervisor. In this strategy, the supervisor limits the finite plant behavior
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to strings in the prefix of the desired behavior, which it can do since pr(B)
is controllable with respect to pr(S). Then after a specified period of time
without visiting a marked state, the supervisor forces the plant to take
actions which cause the state trajectory to pass through a marked state
in a finite number of events. If we define n as the size of the state set of
the machine which recognizes B and m is the size of the state set of the
machine which recognizes S, then from [11] determining the region of weak
attraction is an O(n) operation. From [9] we have that determining if pr(B)
is controllable with respect to pr(.S) is an O(mn) operation. Combining
these two operations with the size of the counter gives that constructing a
supervisor is an O(mn + 1/€) operation.

Lemma 3.4 demonstrates the relationship between the concepts of topo-
logical closure and finite stabilizability. A result of this relationship is that
Theorem 3.2 can be considered as a generalization of Theorem 3.1 for some
cases.

Lemma 3.4 Let B C S C A¥, S be topologically closed with respect to
A% and B € DRAT, then

B is topologically closed with respect to S,

B is finitely stabilizable.

Proof: Let Mg ={Q, A, 5,9, @} be a trim machine such that S(Mp) =

B.
Definition of topologically closed
=
BnS=B8B
= {(S closed = S=S)A (B C S)}
B=1B
= {definition of B = B}
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all cycles in Mp go through @Q,,

Q — Q,, 1s acyclic

Q. (@) = @ or that B is finitely stabilizable.

This last implication follows from the facts that Q — @Q,, is acyclic,
that Mp is a trim machine and that B C S [1]. This is readily observed by
applying the algorithm for determining the region of weak attraction to any
trim machine which accepts the desired language for a system where the
desired language is topologically closed with respect to the plant language.
Q.E.D.

That the converse is not true follows from the example presented earlier.
For this example, we have:

S=a"4+a"ba",a € A., and B = a"ba”.

In [16], the constraint language B is shown to be not topologically closed
with respect to the plant language S; however, since,

Py = {Qt}7 and P = {Qty%'} = Qv

one has that:

Qum,(Qrm) = Q, or that B is finitely stabilizable.

3.2 Nondeterministic Supervisors

A modification to the approach given in the previous section consists of
using a supervisor which has some nondeterministic characteristics. The
motivation for this type of supervisor stems from a desire to possibly in-
clude more of the desired behaviors from B in the closed loop response, Sy,
without excessively increasing the complexity of the supervisor.

For a given error bound, € > 0, the basic supervisor is constructed in
the same manner with the modifications outlined below. The machine M.,
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is constructed in exactly the same manner but the supervisor feedback map
is modified as given:

A/(Qw) 1f 6c(Qc07 w) 7£ geN-1,
flw) =1 A'(qw) if 6.(qe0, w) = gen—1 with probability =1 — p,
A(quw) — Apad(qw) i 6.(ge0, 0) = gen—1 with probability = p,

where A'(¢,) and Apq(qw) are as defined for the deterministic supervisor
and 0 < p <1.

Lemma 3.5 can be used to demonstrate that S; C B. The other aspects
of the development follow directly from the proof for the deterministic case.

Lemma 3.5 Given any graph G of the form shown in Figure 3, with any
initial state, and a transition function é defined by

1 1 = 0, with probability =1 — «,
qo 1 = 0, with probability = z,
qr—1 ¢ =k, with probability = p,
6(o,q;) =1 qr =k, with probability =1 — p,
gi—1 t > 0, with probability = p,
git1 t < k, with probability =1 —p— pl,
i t # k,0, with probability = p/,

where 0 < p<1,0<p/<1,0<z <1 and pi+p <1,
then any infinite trajectory has probability one of visiting state ¢y infinitely
often.

Figure 3: Modified Counting Machine.
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Proof:

This problem is analogous to the one dimensional random walk problem as
discussed in [6].

The proof of Lemma 3.5 can be directly derived from a more general lemma:

Lemma 3.6 For any graph of the form shown in Figure 3, with the tran-
sition function as defined in the Lemma 3.5 statement, then if state ¢;,0 <
7 < k, is visited infinitely often then every state ¢;,0 < ¢ < j, is visited
infinitely often.

Proof:

The proof is by induction on j.

Base Case: 7 =0

Obvious, since ¢q is visited infinitely often.

Induction Hypothesis:

Vj:0 <y <k, if ¢; is visited an infinite number of times, then ¢;, V2 : 0 <
1 < 7, 1s visited infinitely often.

Induction Step:

Vy:0 <y <k, if ¢; is visited an infinite number of times, then ¢;, V2 : 0 <
1 < 7, 1s visited infinitely often.

Proof (of induction step):

If j =0, then we are done. If j # 0, then j > 0. Since g¢; is visited an
infinite number of times and p # 0, the arc to ¢;—; will be taken an infinite
number of times [6]; hence, ¢;j_1 will be visited an infinite number of times.
By the induction hypothesis, since ¢;_; is visited an infinite number of
times and j — 1 < k, one has that ¢; is visited an infinite number of times
Vi:0 <: < j—1. This fact combined with the fact that ¢; is visited an
infinite number of times completes the proof.

Q.E.D.

The proof of Lemma 3.5 follows directly since if the trajectory visits all
states ¢;,0 < ¢ < j, infinitely often it visits the single state, o, infinitely
often.

Q.E.D.

From Lemma 3.5, one sees that the supervisor acts to cause the system
to transition from P; to Py = @, infinitely often; hence S; C B as desired.

While there is a nonzero probability that the action taken by the deter-
ministic and nondeterministic supervisors will be the same, there is also a
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nonzero probability that they will be different. In the case where the ac-
tions are different, the strings in the closed loop behavior of the system with
the nondeterministic supervisor will strictly include the desired behavior of
the system with the deterministic supervisor.

4 Examples

The requirements for a plant, described by w-languages, to be controllable
have been presented. These conditions can be applied to the case of plants
described by Biichi automata. The following examples illustrate some of
the ideas presented in this paper.

4.1 Example 1 Revisited

Recall the first example which considered a discrete event dynamic system
P =(L,S) with the event set A = {a,b} [16]. The dynamics of the system
are described by

S =a"+ a"ba” and L = a™ + a"ba™(= pr(S)).

The uncontrollable events are described by A, = {b}. The finite state
machine shown in Figure 1 generates this language.

Consider the constraints imposed by B = a*ba” C S. B has been
shown to be not topologically closed relative to S [16]; hence, there is not
a nonblocking supervisor f such that S; = B.

Using the extension presented in this paper, one can construct a com-
plete nonblocking supervisor for the given plant which satisfies a relaxed
constraint, i.e. that the desired and the actual behavior differ by some
e > 0.

We have already shown that pr(B) is controllable with respect to pr(S).

Since B and S satisfy the hypothesis of Theorem 3.2, i.e. B is finitely
stabilizable, as seen by constructing the region of weak attraction, P, and
pr(B) is controllable with respect to pr(S), one can construct a supervisor,
f, such that for a given € > 0, f is complete, nonblocking, S; C B and
Ve € B,Ju € Sy :d(e,u) <e.

In order to construct such a supervisor, one first defines the machine

MB = (QvAv(S? qo0, Qm)
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to be the machine which recognizes B, for this example

Q= {ivt}vA = {av b},qo = {Z}va = {t},
o(i,a) =1,6(t,a) =t, and 6(z,b) = t.

The supervisor is constructed in the following manner:
Define M. = (Q., A, b¢,qe0, @me) as in Theorem 3.2; and define the super-
visor feedback map f by

{a,b} i {6(1,w) =i} and {0c(qe0, w) # gen-1},
flw)y=19 {6} i {8(4,w) = i} and {éc(ge0, w) = gen-1},
{a} if 6(2,w) =t.

The behavior of this supervisor is illustrated by considering three cases.

1: If e = a*ba* for k < N, then f(e¢’) = {a,b} for j < k, f(¢’) = {a,b}
for j = k and f(e’) = {a} for j > k; consequently, c¢;11 C f(€’), Vs, or the
supervisor constructed above is such that e € S;.

2: If e = a*ba® for k > N, then f(¢/) = {a,b} for j < N, f(e’) = {b}
for j = N and f(e/) = {a} for j > N; consequently, ¢;1; € f(¢/),¥5, but
there does exist a complete, nonblocking supervisor such that Ve € B, 3¢’ €
S¢ i d(e,€') < €, as can be seen by calculating the distance between the
input string and the string in the closed loop behavior.

3: If e = @, then f(¢’) = {a,b} for j < N, f(¢/) = {b} for j = N and
f(e?) = {a} for j > N; consequently, e;11 € f(e’),V7, but there does exist
a complete, nonblocking supervisor such that Ve € B, 3¢’ € Sy : d(e,€') < e,
as can be seen by calculating the distance between the input string and the
string in the closed loop behavior.

4.2 Vending Machine

Another example is a vending machine model. In this system, VM =

(A,Q,0,q0), where
A = {use, fails, repair,reject, accept}, and Q = {qo,¢1,¢2},

with A. = {use, repair}, and ¢o = machine wait, ¢; = machine broken, and
¢2 = machine waits for inspection. The defined transitions are illustrated
in Figure 4.
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Figure 4: Vending Machine Model.

For this system,
S=(L(VM))*, and L = pr(S).

Since we do not want to have the machine in an infinite repair-reject
cycle, the desired behavior is

B = S(VM) where Q,, = qo.
This infinite behavior gives the finite behavior of
pr(B) = L,(VM).

For this example, a supervisor cannot be constructed. This result fol-
lows for both Ramadge’s approach [16] and the extension presented here
in Theorem 3.2, since B is not topologically closed relative to S and the
region of weak attraction does not equal the entire state set.

However, if the option to buy a new machine is added in order to replace
a machine which fails greater than k£ times, then a nonblocking supervisor
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can be constructed subject to the weakened constraint of S; C B and
Yu € B,3u’ € Sy : d(u,u’) < e. This option is symbolized by adding the
event replace and 6(q1,replace) = ¢o. The modified plant is illustrated
in Figure 5. This additional event enlarges the region of weak attraction
so that P = {qo,q1,¢2}; hence, a complete, nonblocking supervisor can
be constructed, subject to the relaxed constraint regarding the distance
between the desired behavior and the closed loop behavior.
For this modified example

S' = (L(VM2))>,
B = S(VM2) where Q,, = qo,
pr(B) = L (VA1)

Observe that pr(B) is controllable with respect to L' = pr(S’) and
that B is finitely stabilizable. This observation provides that a complete
supervisor can be constructed for a given € > 0.

VM2

Figure 5: Modified Vending Machine Model.

For this supervisor, one constructs M, such that Q. = {qo,...,qn-1}
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where (1/N) < € and ¢, such that

qco if 5(%7 w) = Yo,
0c(qeiy 0) =X Qeit1 if {6(qo,w) # qo} and {i +1 < N — 1},

GeN-1 else,

where 6.(¢.0,w) = ¢ei-
And define the supervisor feedback map f by

{use, fails} if {0(qo0,w) = qo},

f(w) _ {replace,repair} if {5(90710) = 91} and {5c(qc0,w) # ch—l}v
{replace) it {6(go, ) = g1} andd {5.(qr0,w) = gy ),
{reject,accept} if {6(qo,w) = ¢2}.

If e € S such that M. never enters gy_1, then e € Sy since f never needs
to disable any event.

If e € S such that M. enters ¢y_1, then Je’ € Sy such that d(e,e’) < e
since ¢ and ¢’ will agree on the prefixes up to the event where 6.(qq,€’) =
gev—1 and ;41 € f(€’). And by the design of the supervisor, |e/| > N;
hence, d(e,e’) < 1/N < e.

4.3 Non-subautomata Constraint

Another example is given by the finite state machine illustrated in Figure 6
with the language descriptions of

S=((a+b+c)(de)*)¥, and
B = (a(c*ba)*c*de)”.

In this example, the machine which recognizes the constraint language is
not a strict subautomaton [3] of the machine which recognizes the plant
language.

If {¢,b,a} C A. and Q,, = {¢2} for the machine which recognizes B,
given in Figure 7, then the region of weak attraction P is equal to @), and
pr(B) is controllable with respect to pr(.S); hence, there exists a complete,
nonblocking supervisor as described in Theorem 3.2.

This supervisor is constructed in the following manner.

For this supervisor, one constructs M, as in Theorem 3.2 and define the
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Figure 6: Plant for Non-subautomaton Example.

Figure 7: Constraint for Non-subautomaton Example.
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supervisor feedback map f by
{a} if {6(qo,w

( ) = QI}v
f(w) _ {b,c,d} if {(5(qo,w) = 91} and {5c(9c07w) 7£ QcN—l},
{d} if {6(QO7w) = 91} and {6C(q007w) = ch—1}7

{e} if {6(q0,w) = g2}

5 Conclusions

This paper has presented an extension to previous work concerning the
control of discrete event systems which can be modeled with deterministic
Bichi automata. The case where the language describing the desired be-
havior is not topologically closed with respect to the language describing
the behavior of the plant is considered and conditions for the existence of
a supervisor and the construction of one are given.

As demonstrated in the examples, situations do arise in which the lan-
guage describing the desired behavior is not topologically closed with re-
spect to the language describing the behavior of the plant, yet some form
of a supervisor is still needed.

The resulting closed loop behavior does not necessarily exactly match
the desired behavior, as in previous work, but can be shown to provide
closed loop behavior that is within a specified error bound of the desired
behavior.

Nondeterministic supervisors for plants are also considered. The closed
loop behavior of such systems can be shown to include the behavior of the
deterministic system.

In order to derive the results presented in this paper, the assumption
that the plant behavior is topologically closed is made. Further work is
needed to determine how weakening this condition affects the attainable
closed loop behavior.
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