Model Uncertainty in Discrete Event
Systems *

Stanley Young
Vijay K. Garg
Department of Electrical and Computer Engineering,

University of Texas, Austin, TX 78712
stanley@pine.ece.utexas.edu

January 6, 1994

Abstract

Earlier work concerning control of discrete event systems usually
assumed that a correct model of the system to be controlled was avail-
able. A goal of this wok is to provide an algorithm for determining
the correct model from a set of models. The result of the algorithm
is a finite language which can be used to test for the correct model or
notification that the remaining models cannot be controllably distin-
guished. We use the finite state machine model with controllable and
uncontrollable events presented by Ramadge and Wonham *.

Keywords: Discrete Event Systems, System Identification
AMS(MOS) subject classification: 93A,93B

*Supported in part by National Science Foundation CCR-911065, and in part by the
University Research Institute, University of Texas at Austin.

LA preliminary version of this paper appeared as [18]. Another version will appear in
SIAM Journal of Control and Optimization.

1 Introduction

A discrete event system (DES) is one which responds to distinct events
occurring at asynchronous times [7]. Examples of such systems include
computer networks, manufacturing systems, and other dynamic systems
which require high level coordinated control. There has been some success
recently in developing a theory for the control of such systems (see [13] and
the references therein). Most of this work has assumed that an accurate
model for the system of interest is available.

The motivation for this work is the desire to control systems in the
presence of uncertainty in the model of the system and environment in
which the system operates. Part of this work is an extension of learning
and inference theory [6, 2, 16] to the domain of discrete event systems.
This work is also related to recent results concerning the determination
of a system model when certain assumptions are made about the model
and type of experiments [14, 15]. In both the learning theory and system
determination work, an assumption is that all events are controllable. The
uncontrollability of certain events figures prominently in this work. The
approach taken in this paper is similar to the approach used for system
identification in [17] in that any model which is falsified is dropped from
consideration as a correct model.

There are many different types of uncertainty which might occur in a
system model. To discuss such uncertainties, a model representation must
be chosen. In this work, we investigate uncertainty in a deterministic finite
state machine. An example of such uncertainty is an uncertainty in the
transitions of a system which can be described as a state which has a single
event specified as providing transitions to at least two different resulting
states; however, only one of the transitions is actually present in the sys-
tem. Other examples are discussed in Section 3. Such uncertainty results
in multiple models of the system which might potentially be correct. The
goal is to specify conditions and algorithms which enable the identification
of the correct model in a finite number of transitions despite the presence
of uncontrollable actions. In particular, an algorithm provides either noti-
fication that no more models may be controllably distinguished or a finite
distinguishing language which can be used to remove an incorrect model.

Section 2 describes the method used to model the plant and the rele-
vant controllability results. Section 3 gives some examples of how a set of

potentially correct models for a system might arise. Section 4 describes the
concepts and techniques used to identify a correct model from a given set
of models. Section 5 provides example applications of the results.

2 Description of the Model

We use the deterministic finite state machine as a model for system be-
havior. In what follows, only the main features of the finite state machine
model related to this work are covered in a condensed manner. A more com-
plete development related to the finite state machine model can be found in
[5, 9]. More complete descriptions of the controllability and related results
can be found in [13, 3, 11].

2.1 Finite State Machines and Regular Languages

A finite state machine is represented by either a four or five tuple. Specifi-
cally, if M is a finite state machine (FSM), then one writes M = (Q, A, 6, o)
or M =(Q,A,6,q,Qn), where

(Q = a finite set of states,

A = a finite set of transition labels or events,
1) = the transition function, 6 : Q x A — Q,
go = the initial state, ¢y € Q, and

Q,, = the marked states, Q,, C Q.

The transition function ¢ is in general a partial function: 6(¢,o0)! denotes
that the transition event o is defined from state ¢. The marked states
signify a subset of the state set which is used to determine acceptance of a
given string. A string is accepted if the machine executing the string stops
in a marked state.

A finite state machine, P = (Q, 4,9, ¢o, Qm), can also be represented
as a directed graph M = (Q,T) where and T are the sets of nodes and
arcs, respectively, or states and transitions in this instance [1, 4]. @ is the
set of states in the machine and T'C @ x A x @ is the set of transitions.
If 1,42 € Q@ and 6(¢1,0) = ¢q2, then one denotes the transition by the three

tuple (¢1,0,¢2).

A* is used to denote the set of all finite sequences of symbols from the
alphabet A. A language is a set of strings of elements from an alphabet. If
u € A, then |u| denotes the length of u, u(j) denotes the j' element of the
string, and the set pr(u) denotes the set of all strings which are prefixes of
u, i.e. for u € A*

priu)={s € A%s =u(l)...u(k),0 < k < |u|}.

The notation s < u is used to denote that s is a prefix of u. Note that
the empty string, e, is the length zero prefix of all strings. The concept of
prefix can be extended to a language in the following manner. The prefiz
closure of a language L is defined by

L={weA|Fuel:w<u}.

We use the notation s € ppr(u) or s < u to signify that s is a proper prefix
of u, i.e. that s < w and s # u. This concept is extended to a language,
L C A*, in the following manner:

ppr(L) ={s € A*|FJu € L : s < u}.

For this work, we restrict our attention to the class of regular lan-
guages which is a strict subset of the class of formal languages. A ba-
sic result relates regular languages and finite state machines: a language
L C A" is regular if and only if it is generated by a finite state machine
[9]. Language L, (M) is the language marked or recognized by machine

M = (QvAv(Sv quQm)v if
w € L, (M) < §(qo,w) € Qu,

where ¢ is extended in the usual manner, 6 : Q x A* — Q. A language
L(M) is the language generated by machine M if

w € L(M) < 6(qo,w)!.

The product machine is a single machine which can be used to represent
the synchronous behavior of two original machines. If machines M; =
(Q1, A, 61, q10,Q1m) and My = (Q2, A, b2, ¢20, Q2,m) have the same event
set, A, then the product of the two machines is denoted

M1HM2 = (Z,A,6||,Zo, Zm)

4

where,
Z =@ x Qg and 2y = (91,0792,0)7

) (1(q1,0),02(q2,0)) if defined
6”((%7 0),7) = { undefined otherwise,

and,

Zm - Ql,m X QQ,m-
The languages generated and marked by the product machine have a spe-
cific relation to the languages of the machines from which they are com-

posed. If My = M;||M, then
L(M;) = L(My) N L(M;) and L, (M) = L,(My) N Ly, (My).

2.2 Control of Discrete Event Systems

The event set, A, can be partitioned into two sets: A. and A, represent-
ing controllable and uncontrollable events, respectively. A language K is
controllable with respect to language L if

KANLCK,

where a.b denotes concatenation and is often denoted by ab. A supervisor
for a plant, modeled with finite state machine P, where L = L(P), is a map

f:L—24

which specifies a set of inputs enabled by the supervisor which can be ap-
plied as a function of the string in L of events which the plant has previously
executed. The closed loop system consisting of a supervisor, f, and plant,
P, has the closed loop behavior denoted by Ly, and is defined as follows:

1. e € Lf,
2. wo € Ly if and only if w € Ly, 0 € f(w), and wo € L.

A supervisor, f, is complete with respect to a given plant P, with L =
L(P), if all uncontrolled actions of the plant are respected, i.e.,if & € L; and
xo, € L, then zo, € Ly where o, € A, and Ly 1s the closed loop behavior
as discussed above. The following result is a basic theorem relating these
concepts.

Theorem 2.1 ([12]) For non-empty K C L, there exists a complete su-
pervisor f such that Ly = K if and only if K is prefix closed and control-
lable.

The region of weak attraction, as discussed in [3, 11], can be directly
related to distinguishing different machines. The region of weak attraction
for a specified set of states can be described informally as the set of states
from which the system can be controlled so as to enter the set of specified
states in a finite number of transitions.

The region of weak attraction, Qy(G), for a machine, M = (Q, A, 6, ¢o),
or in graph notation, M = (@, T), and a specified subset of states, G C @,
can be determined by the algorithm in [3]. For a specific calculation of the
region of weak attraction of a given set of states, GG, the transitions used
in its construction are denoted by T(G). This algorithm builds the region
of weak attraction starting from G. Each iteration of the algorithm adds
states to the region defined in the previous iteration. A state is added to
the region of weak attraction only if there is an event ¢ which describes a
transition into the region defined in the previous iteration and there does
not exist an uncontrolled event to a state not in the region defined by the
previous iterations of the algorithm. The transition labeled by this o is
added to To(G) as are the uncontrolled transitions from this state. The
states in Qp(G) are well defined; as discussed in [3], the transitions chosen
for To(G) are not necessarily uniquely defined. The algorithm is guaranteed
to terminate by the finite state description of the machine. An efficient
algorithm in [11] computes the region of weak attraction in O(|Q| - |A|)
time.

The characteristics of the region of weak attraction are most easily de-
scribed by certain conditions on the directed graph which describes the fi-
nite state machine. Let the machine be described by the graph M = (Q,T)
with G C Q). The region of weak attraction satisfies three main criteria as
described in the following proposition.

Proposition 2.1 ([3])
M = (Qu(G), Ta(G)) € (Q.T)
if and only if

1) M’ is G-connected,

2) M’ is realizable,
3) M' — G is acyclic.

A graph M = (Q,T) is F-connected if F' C @ and from every state in
Q there exists a path to a state in F. A subgraph M’ = (Q',T") C (Q,T)

1s realizable if

(((q1,0,02) €T)AN (1 € Q)N (0 € Ay)) = ((q1,0,¢2) €T").

A realizable subgraph includes all uncontrollable arcs which are defined
from any state in the state set of the subgraph.

If the initial state, qo, for the machine, M, is in the region of weak
attraction, i.e., ¢qo € Qu(G), then we also define a machine based on the
region of weak attraction, Mq(G), where Mq(G) is formally defined by the
tuple:

MQ(G) = (Q, A, 697 qo, G)

And 6q(q1,0) = ¢z if and only if (¢1, 0, ¢2) is an arc defined in the construc-
tion of the region of weak attraction, i.e. (¢1,0,q2) € To(G). With Mg
defined, the language recognized by the resulting machine is denoted by
L(Ma(G)). As mentioned above and in [3], Mq(G), and hence L(Mq(G)),

1s not unique.

3 Model Uncertainty

Uncertainties in the plant model provide a set of models which are po-
tentially correct models of the plant. Each model in this set is obtained
by assuming that the uncertainty results from a specific lack of knowledge
about the structure of the plant.

Example 3.1 Consider an automatic guided vehicle system guided by
wires in the floor of a manufacturing facility. The model of the guidance
system may contain errors. Each error will produce an uncertain model of
the correct system. For instance, two branch nodes in the wiring may be
combined into a single node in the model, an extra branch may be in the
model which is not installed in the plant, or the model may be lacking a
branch which is installed in the plant. Each of these errors generates an
uncertain model which can be used to define a set of potentially correct
models.

a

Example 3.2 Model (A) in Figure 1 gives an example of a system with
uncertainty in the transitions. For this transition uncertainty, there is a
single state, ¢o, in the model which has “b” transitions defined to &k different
states, ¢1, ..., qg; yet, in the actual system, only one of these “b” transitions

1s defined.

(A) (B)

Figure 1: Model for Transition Uncertainty. (A) Model with transition
uncertainty, (B) One of the possibly correct models.

a

Example 3.3 Assume that the set of events which a system can accom-
plish is known and that there is a known upper bound on the size of the
state space. Using these two assumptions, one can construct all possible
models for the system. After all unique models have been constructed, a
technique is required to generate tests which can distinguish the correct
model.

a

4 Distinguishing Between Models

We present deterministic techniques which provide an easily checked con-
dition and an algorithm for correctly removing inconsistent models from
consideration and identifying the correct model.

Certain concepts will provide a unified framework for the development
which follows. For the following definitions, we assume that there are mod-
els M = (QvAv(Sv q0)7 Ml = (leAv(Slvql,O)v M2 = (Q27A7627q2,0)7 which
have states ¢; € Q1, ¢2 € Q2 and an event o € A.

Definition 4.1 Given M; and M,, the predicate different(z,w) holds if

(61(q1,w)! A =62(ga, w)!) V (01 (qr, w)! A da(gz, w)!)

where
z=(q1,q2), and w € A”.

O
This predicate depends on both the state in the product machine and the
string chosen to differentiate the states which make up the product state.

Example 4.1 For the machines defined in Example 3.2, let M; and M;
be the possible models which have the b transition defined to states ¢; and
q;, respectively. different((qio, ¢j0), bv;) holds, whereas, different((qio, ¢;0),b)
does not hold, where (g0, ¢;j0) is the product initial state.

a

In the following AAB denotes the symmetric difference of the two sets
A and B,ie. AAB=(AUB)\(ANB).

Definition 4.2 A string w is a distinguishing string for languages L and
Ly if
(w € LlALg)

a

Definition 4.3 A string w is a minimally distinguishing string for lan-
guages Ly and Lo if

(w € LiALy) A (ppr(w) € Ly N Ly).

O
A minimally distinguishing string is minimal in the sense that no prefix is
also a distinguishing string.

Definition 4.4 A non-empty language L is a distinguishing language for
Ly and L if w € L implies that w is a minimally distinguishing string for
L1 and LQ.

O

Hence, a string in a distinguishing language is one which uses the last
event to distinguish between Ly and L;. Note that, in general, there is not
a unique distinguishing language for two machines M; and M,.

Example 4.2 Let Ly = a* and L, = a*b* be two languages which describe
the behavior of two possible models of a black box machine. For these
languages, L1 U Ly = a*b* and Ly N Ly = a*; consequently, L1 ALy = a*b*b.
For a distinguishing language L to satisfy (ppr(L) C L1N Ly), we must have
that L C a*b.

Observe that if the machine executes the final b, then L; is the correct
language, and if not, then L is the correct language.

O
For languages generated by a state machine, we have the following re-
sult.

Proposition 4.1
Let Ly and L, be languages generated by the machines M; and M,.
There exists a distinguishing language, L, for Ly and L,
if and only if
(Jw € A* :different(zo,w)), where zg = (q1,0,¢2,0)-

Proof:
—
Let w € L. Since w € L1 ALy, we immediately have that different(zo,w)
holds.
—
Let w be the string which satisfies different(zo,w). From the definition of
different(-,-), there is some v € Ly N Ly such that v < w and a ¢ € A such
that vo € Ly N Ly and vo < w. Set L = {vo}. It is clear that L is a
distinguishing language for Ly and L.

O End proof of Proposition 4.1.

10

Example 4.3 For the machines in Example 4.1, different((gio, ¢;0), bv;)
holds; consequently, there is a distinguishing language, L = bv; 4+ bv;, where

a+b=1{a,b}.

a

4.1 Distinguishing Between Two Models

Assume that machine M has an uncertainty which causes the set of poten-
tially correct models to consist of the models M; and M,. We assume that
one of these models is correct. The models are specified by the following
tuples:

M1 - (le A7 617 ql,O)v and M2 - (Q27 A7 627 Q2,0)-

The languages generated by these models are referenced by L(M;) and
L(M,;). We also refer to the standard synchronous product machine:

My = M| M = (Z,A, 4, 20).

The set of states in the product machine which can be used to control-
lably distinguish the two models is defined in the following manner.

Definition 4.5 G is the controllably distinguishing set of states for My and
M, if

G = {Z € Z| (Jo € A: different(z,0)) A (—Foy, € Ay : (2, 00)!) },

where M| M; = (Z, A, ¢, 20).

O

A particular event which can be used to distinguish two states is called a
controllably distinguishing event. Hence, an event ¢ is a controllably distin-
guishing event for z if different(z, o) holds and there is not an uncontrolled
event o, defined in the product machine from z.

Example 4.4 For the machines given in Figure 2, let A, = {b}. The con-
trollably distinguishing state set is G = {(¢1,¢),(¢2,¢)}. In this example,
the set of controllably distinguishing states is the entire product space.

a

11

M M IIM,

Figure 2: Machines for controllably distinguishing state set calculation.

Example 4.5 Consider the same machines as Example 4.4, but let A, =
{a}. In this instance, the set of controllably distinguishing states is G =

{(q2,9)}-

O

To controllably distinguish states in the product machine, a string must
be found which leads to a state in G. Note that G is a superset of states
which can be used to distinguish states in the product machine and reached
from the initial state. This inclusion is a result of defining G to be all
states in the product machine which have controllably distinguishing events
defined without consideration of reachability constraints.

Proposition 4.2 states that there is a finite controllable method for dis-
tinguishing between two finite state machines if and only if the initial state
of the product machine is in the region of weak attraction of the set of
states which can be used to distinguish between the two machines.

Proposition 4.2
Let My = (@1, A, 61,q10) and My = (Q2, A, 62, ¢2,0), be two machines.

There exists a finite language L which satisfies:

1. L is controllable with respect to L(M;) N L(My),
2. L is a distinguishing language for L(M7) and L(M,),

if and only if
Zo € Q]\41||]\42(C;)7

where

12

1. 20 = (%,0,92,0),

2. G is the controllably distinguishing set of states, and

3. Qi (G) is the region of weak attraction of G in M || M.
for M, and M.

Proof:
—:
We will demonstrate a language L which satisfies Definition 4.4 with
respect to L(M;) and L(M,), and is controllable with respect to L(M;) N
L(M,).

Since zp € Q. (G), we can define a machine Mq(G), as discussed in
Section 2.2, and let L,,(Mgq) be the language marked by this machine with G
as the marked states. Define X C A such that if ¢t € L,,,(Mq) then o0 € X
to satisfy the definition of G, i.e. that (é(z0,t) = 2)A (2 € G) = =¢)(2,0)!.
Such a symbol is defined for every string in L,,(Mg) by the definition of G.
Further define L C L,,(Mgq)X by to € Lif t € L,,(Mg), z = 6(20,1), and
o is a controllably distinguishing event for z.

We must show that this language is finite, satisfies the definition for
controllability and satisfies the definition of a distinguishing language.

1. L finite:

(2 (G), To(G)) — G acyclic
= {property of Qn(G)}

no cycles in Mg — G
=

—ds € Lin(Ma) @ [s] = [Qa, (G)]
=

L finite.

2. L controllable with respect to L(M7) N L(My):
Let (Zq,Tqa) = (QM”(G),TQ(G)) and assume that

13

(t e T) A0 € Ay) A (to € L(My) 0 L(My)).

teLAz€ Qg (G)

= {L C L,,(Mq).X and definition of L,,(Mgq)}
(SH(ZO,t) € Zg
= {to € L(My) N L(M,) , Qu(G) realizable, z = 6)(zo0,1)}
12/ € Zg i (z,0,2") € Ty
= {definition of L,,(Mq)}
to € L(MQ)
=
to € L.

Hence L is controllable with respect to L(M;) N L(My).
3. L non-empty:

Zp € QM”(G)

= {Mgq is G-connected}
Jv € A% 4)(20,v) €G

= {definition of G and X'}
dt=vo e A*:t € L,(Mq)X

L#0.

4. ppr(L) C© L(My) N L(Mz):

LCL,(My).X

ppr(L) = L(Mq)

= {definition of Mq and M)}
ppr(L) © L(M||Ms)

= {property of regular languages and FSM}
ppr(L) C L(My) N L(My).

14

5. L C L(M;)AL(M,):

(teL)A(t=vo)

= {definition of G and L}
z = (5”(20,1)) ed

= {definition of G and X},
different(z, o)

= {definition of G}

t e L(M1)AL(M2).

The last three items combine to show that L satisfies the conditions for
being a distinguishing language.
=
Let (V,T) denote the graph representation of the product machine M || M.
Consider the subgraph, (Vo,Tp), of (V,T) obtained by running all strings
in L on (V,T). Define (Vy,Ty) by

‘/OZ{ZEQlXQQ:(EIUJEZ_:(SH(Z(),U)):Z)} B
Ty = {(#1,0,22) €T : (Jw € L : (§(20,w) = 21) A (wo € L))}.

Any state in the product machine reached by a string in the closure of L
is included in Vy and any transition traversed by a string in the closure
of L in included in Ty. Since L is finite and ppr(L) C Ly N Ly, it is clear
that (Vy, o) is well defined and that a simple algorithm will generate this
subgraph.

Consider the states reached by string in L/A. (Recall, L/A denotes
strings in L with the last symbol removed.) The following lemma follows
easily from the definition of a distinguishing language and controllability.

Lemma 4.1 With L as assumed in the statement of the proposition,
Vw e L/A : o)(20,w) € G
where zg and G are as defined in the statement of Proposition 4.2.

The following lemma provides the realizability of (Vg,Tp) with respect
to (V,T) and A,.

Lemma 4.2 (Vp, 1)) is realizable with respect to (V,T') and A,.

15

Proof:

Let z1 = §(20,w) where w € ppr(L), (21,0,22) € T, and o0 € A,. From
these facts, we must show that (z1,0,22) € Ty. Notice that from the con-
struction of Vj, we have that w € ppr(L) implies that z; € V4.

(Zlv g, 22) eT

=
(20, wo)!

= {L controllable with respect to Ly N Ly}
wo € ppr(L)

=

(z1,0,22) € Tp.

O End proof of Lemma 4.2.

By Lemma 4.1, (V,,T) is G-connected. By Lemma 4.2, (V,Tp) is
realizable. If there are no cycles in (Vy, 1)), then by Proposition 2.1 we
have that zg € Qs a,(G) as desired.

If there are cycles, more work is required. The idea is to disable a cycle
and show that the remaining subgraph is still G-connected and realizable.
Since (Vp,Tp) is a finite graph, there are only finitely many cycles; con-
sequently, after disabling all cycles, we have a subgraph remaining which
is G-connected, realizable, and acyclic. By Proposition 2.1, we have that
20 € Qi (G) as desired.

Now we must show that cycles may be removed while retaining the
connectedness and realizability of the subgraph (Vg, Tp).

We start by classifying all transitions in Tp. A transition is included
in class C if it must be included in T for controllability reasons, i.e. if
the subgraph would lose the realizability characterization by not having a
specific transition, then that transition is included in C. Hence,

(z1,0,22) €C & ((z1,0,22) E To Ao € Ay).

A transition i1s included in class R if it must be included in T for reach-
ability reasons, i.e. if a node would no longer be G-connected without
the presence of a specific transition, then that transition is included in R.
Hence, (z1,0,2) € R if and only if there does not exist a w € A* such that
there is a path labeled by w from z; to G in the subgraph (V5,Tp), where

w(l) #o.

16

Assume that there is a cycle in (Vp, Ty). If there is a transition (z1,0, 22)
on the cycle which is not in CUR, then we can clearly remove this transition
and retain the G-connectivity and realizability. This fact follows from the
facts that any transition, (z1, 0, z3), not in CUR is controllable and there is
another path in the subgraph from z; to G which does not use the transition
in question.

Hence, if we can remove all cycles by deleting transitions which are not
in C U'R, then we are done.

Assume that there is a cycle remaining which only has transitions in
CUR. Let (z1,0,22) be a transition on this cycle. From the construction of
the subgraph (Vo,Tp), we have that there is a string s € ppr(L) such that
0(z0,5) = z1. The following lemma provides the crucial result.

Lemma 4.3 Let L and C U R be as above.
If there i1s a cycle which has transitions only in CUR, then there are strings
of arbitrary length in L.

Proof:

Let x € A* be the labels of the transitions on this cycle, i.e. (21, 2) = 2.
Let m = |z|. Let z denote the state immediately preceding label z(7), i.e.
(zi,2(%), zi41) 18 a transition on this cycle. Note that z,41 = z1.

From the controllability of L with respect to Ly N Ly, Lemma 4.1, and
the fact that every transition on the cycle is in C U 'R, it is clear that
sx(1) € ppr(L). The same result holds for each 7, ie. ¥Vi:1 < i < m:
sx(1)...x(¢) € ppr(L). Hence, sx € ppr(L), implying that sa* C ppr(L).

O End proof of Lemma 4.3.

This last statement contradicts the finiteness of L; consequently, there
can be no cycle consisting only of transitions from C U R. As a result of
Lemma 4.3, any cycle in the subgraph can be removed while retaining G-
connectivity and realizability. Hence, the conditions of Proposition 2.1 are
satisfled and we get that zo € Qag i, (G).

O End proof of Proposition 4.2.

Based on Proposition 4.2, we define a predicate which is true if two
machines can be distinguished as described in the proposition.

Definition 4.6 Given machines M; and M;, where M; = (Q1, 4,61, ¢10)
and My = (Q2, 4,03, q20), the predicate disting(M;, My) holds if (¢1,0,¢20)

17

€ QMIHMQ(GLQ), where,

(o € A: different((¢1,¢2),0))
Gio=19(q1,02) € Q1 X Q2 A
(—Jow € Au: (g1, 42),0u)Y)

O
If two machines satisfy this predicate, then the machines, or their languages,
are said to be controllably distinguishable.

The following corollary provides the application of Proposition 4.2 to
resolving an uncertainty which gives two potentially correct models. If
Z9 € QM”(G), then a supervisor corresponding to the machine represented
by the graph created by the algorithm which generates the region of weak
attraction can be built which will constrain the behavior of the unknown
system such that an incorrect model can be identified in a finite number
of transitions. (See [13] for details on how a machine representation of a
supervisor is used to control a plant.)

Corollary 4.1 Let M; and M; be two models, such that one of them
correctly models the plant, M. Let M) = M|[M,, z0 = (¢1,0,4920), and G
be the controllably distinguishing set of states for M; and M;.

Zp € QM”(G)

if and only if

the correct model can be chosen in a finite number of transitions.

Proof:

=

By Proposition 4.2, if zo € Qu (@), then there exists a finite non-empty con-
trollable language, L, such that any string in the language can distinguish
L(M) and L(M,). By Theorem 2.1, a supervisor f can be constructed such
that L; = L; hence, the plant can be controlled so as to execute strings from
L. Since one of the models correctly models the plant, ppr(L) C L(M),
and any proper prefix of a string ¢ in L can be executed by the plant. Since
L C L(My)AL(M,), the last symbol in the string will either be executed
or not depending on whether M = M; or M = M, and which model has ¢
defined in its language.

<

18

By Proposition 4.2, if zy ¢ QM”(G), then we can construct a string of ar-
bitrary length which the plant can execute such that no supervisor may
disable events such that an inconsistency is observed.

O End proof of Corollary 4.1.

The complexity of this approach is governed by the necessity to consider
the product machine for M; and M, in order to determine the distinguishing
language. This operation requires O(|Q1]|Q2|) operations. In this paper,
the dependency of the complexity on the size of the event set A is assumed
to be a constant factor; hence is not included in the expression for the
order of complexity. As shown in Section 5.1, this is a sharp bound on the
complexity.

4.2 Distinguishing Multiple Models

The technique for distinguishing between multiple models with a reset capa-
bility available is an extension of the technique used to distinguish between
two models. The strategy is to construct a product machine from two
models in the set of models which results from considering all possible per-
mutations of the uncertainties. Then, from this product machine, calculate
the region of weak attraction for the set of controllably distinguishing states
for these two models as described in Corollary 4.1. By using the machine
generated by the region of weak attraction as a supervisor for the plant, at
least one of these models can be removed from the set of possibly correct
models by controlling the plant to enter a state which is a component of
one of the product states in the set of controllably distinguishing states.
Then, after at least one of these models has been eliminated as a possibly
correct model, reset the plant and start the procedure over with another
pair of models. Note that it is possible that neither of the models which
are chosen is the correct model for the system; hence, the plant might gen-
erate a string which is not defined in either of the models used to generate
the supervisor. In this case, both models are removed and the procedure
continues by choosing another two models. This procedure continues until
all uncertainties have been resolved or until no pair of models can be found
which satisfy the conditions of Corollary 4.1.

We denote each possible model as: M, = (Q, A, 6;,¢i0, Qim), Where
1 =1,...,k, and k is the initial number of models from which the correct
model is to be chosen. We denote the initial set of all possible models by

19

Sp. Using the notation given,
So={M;|: =1,...,k},

where each model is in minimal canonical form [5, 9].
The following algorithm specifies the procedure given above. P denotes
the actual machine or the plant which is to be correctly modeled.

Algorithm 4.1
Input:
Sp as given above.
Output:

S, = {M;] no additional uncertainties can be resolved}.
Algorithm:

p=0.

While (|S,| > 1) A(IM; € S, NIM; € S, : disting(M;, M;)):
Calculate Qi (G j)-
Use Mq(G, ;) as supervisor for P.

Determine which model is still a possibly correct model and
which model is not consistent with the plant.

Sp+1 = Sp\ { models which have been determined to be
inconsistent with plant }.

Reset the plant.
p=p+1
End while.

End of algorithm.

In the worst case, the product for every pair of models would need to
be calculated to check for pairs which satisty zo € QMll(Gm). Since there
are k models in S, this calculation of products results in an algorithm with

O(k*|Q|?) complexity.

20

A slight modification of the proposed algorithm is to simulate, on all
models in S, the strings which result from using Mq(G,; ;) as a supervisor
for the plant. Using this technique, any model which cannot successfully
simulate the activity of the plant can be eliminated from consideration and
need not be considered in any future pairing.

This modified approach also has worst case complexity of O(k?*|Q|?)
since there is no guarantee that more than one model will be eliminated
on each iteration. Also the actual complexity to accomplish the simulation
results in an additional O(k|@|?) term in the operation count. These counts
are a result of the following reasoning. Each calculation of QM”(G) adds
a |@Q* term to the count. There are at most k? pairs which have to be
calculated, hence, the O(k*|@?|) term in the count. To simulate any test
string on all remaining potential models, O(k|Q?|) operations are necessary,
hence, this term is added to the count retaining an overall complexity of
0021?)).

To demonstrate the correctness of the algorithm, several points must
be addressed: insuring that only bad models are removed from 5;, that the
order of choosing models for the test disting(M;, M;) does not affect the
output, and that there is no other technique which might produce a smaller
set of potential models.

4.2.1 Only Bad Models Removed

The first point is easily addressed. A model is removed if it is inconsistent
with the plant. An inconsistency arises from either the plant executing a
transition which is not in the model, such as an uncontrolled transition,
or the plant not executing a transition which is defined in the model, such
as from a state at which a single controlled or uncontrolled transition is
defined in the model but is not executed by the plant. Hence, only “bad”
models are removed from the set used to keep potentially correct models.
Note that a consistent model will not be removed from this set.

4.2.2 Order Does Not Affect the Result

The second point is more subtle. A prior: it appears that the order of
testing models might be significant. I.e. there might be some incorrect
model A which, when combined with another incorrect model B, generates

21

a test string which provides that model B is removed, but that when model
B is combined with the correct model a test string cannot be generated.
That the order does not matter follows from the following proposition.
Proposition 4.3 states that if a pair of models, M; and M;, satisfy z, €
Qv (G) and if M; is removed from the set of possibly correct models,
then the correct model M. and M; satisfy zo € Qaga.(Gic). Hence, if
model M; can be used to remove M;, then model M. can be used instead.
In the statements of the following propositions, the language generated
by model M; which is usually denoted by L(M;) is denoted by L;. In the
proof of Proposition 4.3, a language L is used to link the fact that the
initial state is in the region of attraction of each of the product machines.
The conditions on L are very similar to the conditions for a distinguishing
language for M; and M;; however, the fact that neither M; nor M; might
be the correct model requires that slightly different characteristics describe
how M, can be used with M; to generate a supervisor which will cause M;
to be removed from the set of possibly correct models. In the following, M.
denotes the correct model. zp, ; is the initial state of M;||M;. zg,. is the
initial state of M;||M.. G, ; is the set of controllably distinguishing states
for M;||M;. G, . is the set of controllably distinguishing states for M;||M..

Proposition 4.3 If zp;; € Qagar, (G ;) and M; is removed from the set
of possible machines, then zo;. € Q.G).

Proof:
Consider the language L marked by the supervisor generated by Qar,ar, (G ;)
and used to remove M;. By the assumptions in the proposition statement,
this language generates tests which are used to remove M, from the set of
potentially correct models.

We first describe some characteristics which this language satisfies.

Lemma 4.4
(a) L controllable with respect to L; N L; N L,
(b) L C(L;AL.)N(L; UL.),
(¢) ppr(L) C L;NL;N L., and

(d) L is finite and non-empty.

22

Proof:
The controllability of L with respect to L;NL; follows from the construction
of Qarar;(Gi ;) and the fact that Qy(G) is realizable. That L is controllable
with respect to L; N L; N L., follows from the fact that all prefixes of the
closed loop behavior are necessarily constrained to L.

The strings which occur in the distinguishing language generated by
Qur v, (G j) consist of the following types:

(1) strings which occur in the plant, M;, and M;, i.e. L; N L; N L,
(2) strings which occur in the plant and M; but not in M;, i.e. L.NL;NLE,

(3) strings which oceur in M; and M; but not in the plant,i.e. LSNL;NL;,
and

(4) strings which occur in the plant but not in M; and M;, i.e. L.N(L; U
Lj)cv
For this supervisor to cause M; to be removed from the set of possibly
correct machines, the strings which occur in all three must be in the prefix
of strings which will cause M; to be removed. Hence, ppr(L) C L,NL;NL..
For this supervisor to cause M; to be removed from the set of possibly
correct machines in a controllable fashion, we claim that only the strings
in (2), (3), and (4) above can occur as strings in the language. (See shaded
areas in Figure 3.) No other string can occur and still allow M, to be
removed from the set of possibly correct machines. Any other string would
not allow M; to be removed.
From this observation we have that:

LC(L.NL;NLHU(LENL;NL)U (LN (L; U L))
= LC((L;—L)NLH)U(L;NL;)—L)U(L.—(L;U L)),

which gives part b).

The finiteness of L is a result of the fact that Q) (G ;) is acyclic.
That L is non-empty is a result of the fact that M; is removed, i.e. at least
one event must be used to determine that M, is not correct.

O End proof of Lemma 4.4.

We now use this language to demonstrate that zg;. € Qg m.(Gic).
We demonstrate this fact by verifying that L satisfies the requirements of
Proposition 4.2 for M. and M;.

23

Figure 3: Parts of languages which allow removal of M;.

1. L finite and non-empty:

L is finite and non-empty by hypothesis.

2. L controllable w.r.t. L.N L;:
From the definition of L, we have that (t € L) =t € LUppr(L).

(tO’u € Lc N LZ)

t € (LZ N L.

= (b) and (¢)}
t € ppr(L)

= {_(a) and (¢)}
to, € L

L controllable w.r.t. L; N L.

24

3. LCL.AL:
L C(LALYN(L;UL)

&
LC((Lj = Li)NLe)U(Le — (L; U Li)) U((L; N L) — L)
=
LC(LiNL)U(L.NL)U(L; N L)
=
LC(L.NL;)U(L;N LY
=
LCL.AL;.

4. ppr(L) C L.N L;:

ppr(L) CL;,NL;NL,
=
ppr(L) C L.NL;

Since L satisfies the requirements for Proposition 4.2 with respect to
M; and M., we immediately have that zo;. € Qs ar. (G)

O End proof of Proposition 4.3.

Proposition 4.3 provides that the order does not matter when choosing
which pair of models to use to generate the next test. When combined
with the first point, that only “bad” models are removed, we have that it
is sufficient to test bad models with the correct model, which will never be
removed from the set of potentially correct models.

4.2.3 Optimal Complexity of Algorithm

Now we address the question of whether some other procedure might be
used to generate a smaller set of potentially correct models.

Proposition 4.4
Algorithm 4.1 provides a minimal set of potentially correct models.

(Minimal in the sense that there does not exist another technique to
controllably remove more models than are removed by Algorithm 4.1
from the set of potentially correct models in a finite number of tran-
sitions .)

25

Proof:
Let S be the set of potentially correct models output by Algorithm 4.1.

If |S| = 1, then we are done, i.e. S = {M._}.

If |[S| > 1, then we know that since the test disting(M;, M;) is not
satisfied for any pair of models in S and consequently

Vi j My, M; € Sz & Qg (Giy)-
In particular, we know that

Zo,ic € QM,HMC(GZ,C) (1)

Assume that there is some other technique which controllably removes
M; # M. from S. To remove M;, a test must cause M; to reach a state
at which an inconsistency with the plant arises. This state in M; is a
component to a state in G, ., otherwise by controllability constraints M;
cannot be removed by this test. By (1), we know that we can construct a
behavior for M; which never enters G. Hence, we have a contradiction and
there cannot be any technique which can controllably generate a smaller
set of potentially correct models.

O End proof of Proposition 4.4.

4.2.4 Resolving Uncertainty Without Reset

To resolve uncertainty without a reset capability, a slight modification must
be made to the algorithms given previously. The modification consists of
updating the models still under consideration to reflect any actions which
the actual plant has taken. This update is manifested by modifying the
model descriptions so that the initial state has a dependence on events
which have already occurred.

Hence, the old model M = {Q,A,0,q90,@n}, is modified to M(s) =
{Q, A, 6, q0(s),Qn}, where s is the string which has been executed to this
point. Note that only the initial state needs to have this dependence. The
other components of the model do not need to be modified.

Note that for this modification, all models must be updated to determine
if the new initial state after a test string has been executed is in the region
of attraction for the set of distinguishing states. However, the actual region

26

of attraction does not need to be recalculated because the states which can
be attracted to the distinguishing states do not change with each test string,
only the initial state changes.

The need to simulate the test strings does not increase the complexity
of the algorithm. In the worst case, this algorithm could require that O(k?)
regions of weak attraction be calculated to find enough test strings. Hence,
this algorithm also has O(k*|Q]*) complexity.

5 Examples

5.1 Optimality for Single Transition Uncertainty

This example demonstrates that resolving a single uncertainty has com-
plexity at least as great as that of creating the product machine for the two
potentially correct models. This complexity arises from the fact that the
product machine is used to generate the set of controllably distinguishing
states and hence the minimally distinguishing language. For this example,
z is the event for the uncertain arcs and A, = {a, ¢, d}. Figure 4 illustrates
the two possible transition functions for the machine.

Figure 4: Set of models for which product method is optimal.

Following the procedure specified in Proposition 4.2, we create the prod-
uct machine (Figure 5) and calculate the states G which can be used to

27

distinguish ¢1; and ¢2; and the region of weak attraction for G.
From the graph representation of the transition function for the product
machine, we can determine that

G = {q1m,2n7 qo,115 - - -540,1m» 490,215 - - - 5 40,205 }

From Figure 5, we observe that the only state in the current G which can
have ¢ 1n the region of weak attraction is ¢, 2,; hence, we will limit our
calculations for a new set G' = {qum 2. Some of the iterations of the
algorithm to calculate the region of weak attraction are given:

‘/0 — {q1m,2n}
Vi = Vo U{qimem-1)}

Vi = Vit Udqiom-1)21}

Vm*n — Vm*n—l U {Q0,0}-

Hence, by Proposition 4.2, since zo € QM”(G’), the two states ¢q1,¢91 are
controllably distinguishable, and the uncertain arc can be resolved. Observe
that ¢im2, € G’ and that there is a string z(¢"ad"a)™ which can occur
uncontrollably before reaching ¢i,,2,; hence, to resolve the uncertainty,
every state which can be reached in the product machine from the initial
state might be visited. This fact demonstrates that resolving this uncertain
transition requires O(mn) operations.

To resolve the uncertainty, construct a supervisor with finite state ma-
chine representation as shown in Figure 5 and run the unknown plant and
supervisor as a closed loop system. (See [13] for more detail on this proce-
dure.) A distinguishing language for this example is L = z(¢"ad"a)"a.

5.2 Finiteness of Languages in Proposition 4.2

This example demonstrates the requirement for finiteness in Proposition 4.2.

28

a
4 a

Figure 5: Product machine for system for which product method is optimal.

29

Let Ly = (av)* and Ly = (a(u + v))* be the languages for two pos-
sible models where ¢ € A and u,v € A,. See Figure 6 for the machine
representation for these languages.

\/
q q
a
M u
1 M
2
Vv
V4 Z
a
YEIRY
1 2

Figure 6: System to Demonstrate Requirement for Finiteness

For this example, if L = (av)*au, then L is controllable with respect
to Ly N Ly, L € LyALs, and ppr(L) C Ly N Ly as required for a language
which can be used to distinguish L; and L, as described in Proposition 4.2;
however, the initial state of the product machine is not in the region of weak
attraction of the set of controllable distinguishing states, which is empty in
this example.

6 Conclusions

In this paper we have presented a model of uncertainty related to the tran-
sitions of systems modeled with finite state machines. We developed a test
for determining whether or not such uncertainty can be controllably re-
solved. The test using a region of weak attraction calculation also provides
an algorithm for constructing a supervisor which can resolve the uncer-
tainties. An example demonstrating the optimality of the deterministic

30

approach for a single uncertainty is provided. Also an example is given
which demonstrates how the controllability and finiteness requirements are
both necessary for Proposition 4.2. This approach to choosing the correct
model can be applied in any situation which has a set of models from which
the correct one should be chosen.

Several possibilities exist for extensions to this work. One possibility
is to expand the model used to describe a discrete event system to one
which can describe a broader category of systems, such as a Petri net [8] or
algebraic [10] models. Another direction of current interest is the influence
which different uncertainty models have on the control and stabilization
of systems modeled with discrete event system formalisms. This influence
incorporates the effect that limiting the behavior of a system to a desired
constraint language would have on correctly controlling the system and
resolving any uncertainty in the model. A further extension is to consider
how the addition of unobserved events affects the problem described in this
work.

7 Acknowledgements

The authors would like to thank Ratnesh Kumar, Steve Marcus, Alex Tom-
linson, and other reviewers for critically reading and assisting in the prepa-
ration of this paper.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] D. Angluin and C. H. Smith. “Inductive Inference: Theory and Meth-
ods”. Computing Surveys, 15(3):237-269, 1983.

[3] Y. Brave and M. Heymann. “On Stabilization of Discrete Event Pro-
cesses”. Internation Journal Control, 51:1101-1117, 1990.

[4] N. Deo. Graph Theory with Applications to Engineering and Computer
Sciences. Prentice—Hall, Englewood Cliffs, N.J., 1974.

31

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Eilenberg. Automata, Languages, and Machines Volume A. Aca-
demic, New York, NY, 1974.

E.M. Gold. “System Identification via State Characterization”. Auto-
matica, 8:621-636, 1972.

Y.C. Ho. “Scanning the Issue”. Proceedings of IEEFE, 77(1):3-6, Jan-
uary 1989.

L.E. Holloway and B.H. Krogh. “Synthesis of feedback control logic
for a class of controlled Petri nets”. IEEE Transaction on Automatic
Control, 35(5):514-523, May 1990.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, MA. 1979.

K.M. Inan and P.P. Varaiya. “Algebras of Discrete Event Models”.
Proceedings of IEEE, 77(1):24-38, January 1989.

R. Kumar, V.K. Garg, and S.I. Marcus. Language stability and stabi-
lizability of discrete event systems. SIAM Journal Control Optimiza-
tion, 31(5):1294-1320, September 1993.

P.J.G. Ramadge and W.M. Wonham. “Supervisory control of a class
of discrete event processes”. SIAM Journal Control Optimization,
25:206-230, January 1987.

P.J.G. Ramadge and W.M. Wonham. “The control of discrete event
systems”. Proceedings of IEEE, 77(1):81-98, January 1989.

R.L. Rivest and R.E. Schapire. “Diversity-Based Inference of Finite
Automata”. In Proceedings 28" Annual Symposium on Foundations
of Computer Science, pages 78-87, Los Angeles, CA, 1987.

R.L. Rivest and R.E. Schapire. “Inference of Finite Automata Using
Homing Sequences”. In Proceedings 21st Symposium on Theory of
Computing, pages 411-420, Seattle, WA, 1989.

L.G. Valiant. “A Theory of the Learnable”. Communications of the
ACM, 27(11):1134-1142, November 1984.

32

[17] J.C. Willems. “Paradigms and Puzzles in the Theory of Dynamical
Systems”. IEEE Transactions on Automatic Control, 36(3):259-294,
March 1991.

[18] S.D. Young and V.K. Garg. “Transition Uncertainty in Discrete Event
Systems”. In Proceedings 6th IEEFE International Symposium on In-
telligent Control, pages 245-250, Arlington, VA, August 1991.

33

