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1 IntroductionA discrete event system (DES) is one which responds to distinct eventsoccurring at asynchronous times [7]. Examples of such systems includecomputer networks, manufacturing systems, and other dynamic systemswhich require high level coordinated control. There has been some successrecently in developing a theory for the control of such systems (see [13] andthe references therein). Most of this work has assumed that an accuratemodel for the system of interest is available.The motivation for this work is the desire to control systems in thepresence of uncertainty in the model of the system and environment inwhich the system operates. Part of this work is an extension of learningand inference theory [6, 2, 16] to the domain of discrete event systems.This work is also related to recent results concerning the determinationof a system model when certain assumptions are made about the modeland type of experiments [14, 15]. In both the learning theory and systemdetermination work, an assumption is that all events are controllable. Theuncontrollability of certain events �gures prominently in this work. Theapproach taken in this paper is similar to the approach used for systemidenti�cation in [17] in that any model which is falsi�ed is dropped fromconsideration as a correct model.There are many di�erent types of uncertainty which might occur in asystem model. To discuss such uncertainties, a model representation mustbe chosen. In this work, we investigate uncertainty in a deterministic �nitestate machine. An example of such uncertainty is an uncertainty in thetransitions of a system which can be described as a state which has a singleevent speci�ed as providing transitions to at least two di�erent resultingstates; however, only one of the transitions is actually present in the sys-tem. Other examples are discussed in Section 3. Such uncertainty resultsin multiple models of the system which might potentially be correct. Thegoal is to specify conditions and algorithms which enable the identi�cationof the correct model in a �nite number of transitions despite the presenceof uncontrollable actions. In particular, an algorithm provides either noti-�cation that no more models may be controllably distinguished or a �nitedistinguishing language which can be used to remove an incorrect model.Section 2 describes the method used to model the plant and the rele-vant controllability results. Section 3 gives some examples of how a set of2



potentially correct models for a system might arise. Section 4 describes theconcepts and techniques used to identify a correct model from a given setof models. Section 5 provides example applications of the results.2 Description of the ModelWe use the deterministic �nite state machine as a model for system be-havior. In what follows, only the main features of the �nite state machinemodel related to this work are covered in a condensed manner. A more com-plete development related to the �nite state machine model can be found in[5, 9]. More complete descriptions of the controllability and related resultscan be found in [13, 3, 11].2.1 Finite State Machines and Regular LanguagesA �nite state machine is represented by either a four or �ve tuple. Speci�-cally, ifM is a �nite state machine (FSM), then one writesM = (Q;A; �; q0)or M = (Q;A; �; q0; Qm), whereQ = a �nite set of states,A = a �nite set of transition labels or events,� = the transition function, � : Q�A! Q;q0 = the initial state, q0 2 Q; andQm = the marked states, Qm � Q:The transition function � is in general a partial function: �(q; �)! denotesthat the transition event � is de�ned from state q. The marked statessignify a subset of the state set which is used to determine acceptance of agiven string. A string is accepted if the machine executing the string stopsin a marked state.A �nite state machine, P = (Q;A; �; q0; Qm), can also be representedas a directed graph M = (Q;T ) where Q and T are the sets of nodes andarcs, respectively, or states and transitions in this instance [1, 4]. Q is theset of states in the machine and T � Q � A � Q is the set of transitions.If q1; q2 2 Q and �(q1; �) = q2, then one denotes the transition by the threetuple (q1; �; q2). 3



A� is used to denote the set of all �nite sequences of symbols from thealphabet A. A language is a set of strings of elements from an alphabet. Ifu 2 A�, then juj denotes the length of u, u(j) denotes the jth element of thestring, and the set pr(u) denotes the set of all strings which are pre�xes ofu, i.e. for u 2 A�pr(u) = fs 2 A�js = u(1) . . . u(k); 0 < k � jujg:The notation s � u is used to denote that s is a pre�x of u. Note thatthe empty string, ", is the length zero pre�x of all strings. The concept ofpre�x can be extended to a language in the following manner. The pre�xclosure of a language L is de�ned byL = fw 2 A�j9u 2 L : w � ug:We use the notation s 2 ppr(u) or s < u to signify that s is a proper pre�xof u, i.e. that s � u and s 6= u. This concept is extended to a language,L � A�, in the following manner:ppr(L) = fs 2 A�j9u 2 L : s < ug:For this work, we restrict our attention to the class of regular lan-guages which is a strict subset of the class of formal languages. A ba-sic result relates regular languages and �nite state machines: a languageL � A� is regular if and only if it is generated by a �nite state machine[9]. Language Lm(M) is the language marked or recognized by machineM = (Q;A; �; q0; Qm), ifw 2 Lm(M) , �(q0; w) 2 Qm;where � is extended in the usual manner, � : Q � A� ! Q. A languageL(M) is the language generated by machine M ifw 2 L(M) , �(q0; w)!:The product machine is a single machine which can be used to representthe synchronous behavior of two original machines. If machines M1 =(Q1; A; �1; q1;0; Q1;m) and M2 = (Q2; A; �2; q2;0; Q2;m) have the same eventset, A, then the product of the two machines is denotedM1kM2 = (Z;A; �k; z0; Zm)4



where, Z = Q1 �Q2 and z0 = (q1;0; q2;0);�k((q1; q2); �) = ( (�1(q1; �); �2(q2; �)) if de�nedunde�ned otherwise,and, Zm = Q1;m �Q2;m:The languages generated and marked by the product machine have a spe-ci�c relation to the languages of the machines from which they are com-posed. If Mk =M1kM2 thenL(Mk) = L(M1) \ L(M2) and Lm(Mk) = Lm(M1) \ Lm(M2):2.2 Control of Discrete Event SystemsThe event set, A, can be partitioned into two sets: Ac and Au represent-ing controllable and uncontrollable events, respectively. A language K iscontrollable with respect to language L ifK:Au \ L � K;where a:b denotes concatenation and is often denoted by ab. A supervisorfor a plant, modeled with �nite state machine P , where L = L(P ), is a mapf : L! 2Awhich speci�es a set of inputs enabled by the supervisor which can be ap-plied as a function of the string in L of events which the plant has previouslyexecuted. The closed loop system consisting of a supervisor, f , and plant,P , has the closed loop behavior denoted by Lf , and is de�ned as follows:1. " 2 Lf ;2. w� 2 Lf if and only if w 2 Lf ; � 2 f(w); and w� 2 L:A supervisor, f , is complete with respect to a given plant P , with L =L(P ), if all uncontrolled actions of the plant are respected, i.e., if x 2 Lf andx�u 2 L, then x�u 2 Lf where �u 2 Au and Lf is the closed loop behavioras discussed above. The following result is a basic theorem relating theseconcepts. 5



Theorem 2.1 ([12]) For non-empty K � L, there exists a complete su-pervisor f such that Lf = K if and only if K is pre�x closed and control-lable.The region of weak attraction, as discussed in [3, 11], can be directlyrelated to distinguishing di�erent machines. The region of weak attractionfor a speci�ed set of states can be described informally as the set of statesfrom which the system can be controlled so as to enter the set of speci�edstates in a �nite number of transitions.The region of weak attraction, 
M (G), for a machine,M = (Q;A; �; q0),or in graph notation, M = (Q;T ), and a speci�ed subset of states, G � Q,can be determined by the algorithm in [3]. For a speci�c calculation of theregion of weak attraction of a given set of states, G, the transitions usedin its construction are denoted by T
(G). This algorithm builds the regionof weak attraction starting from G. Each iteration of the algorithm addsstates to the region de�ned in the previous iteration. A state is added tothe region of weak attraction only if there is an event � which describes atransition into the region de�ned in the previous iteration and there doesnot exist an uncontrolled event to a state not in the region de�ned by theprevious iterations of the algorithm. The transition labeled by this � isadded to T
(G) as are the uncontrolled transitions from this state. Thestates in 
M (G) are well de�ned; as discussed in [3], the transitions chosenfor T
(G) are not necessarily uniquely de�ned. The algorithm is guaranteedto terminate by the �nite state description of the machine. An e�cientalgorithm in [11] computes the region of weak attraction in O(jQj � jAj)time.The characteristics of the region of weak attraction are most easily de-scribed by certain conditions on the directed graph which describes the �-nite state machine. Let the machine be described by the graphM = (Q;T )with G � Q. The region of weak attraction satis�es three main criteria asdescribed in the following proposition.Proposition 2.1 ([3])M 0 = (
M (G); T
(G)) � (Q;T )if and only if1) M 0 is G-connected, 6



2) M 0 is realizable,3) M 0 �G is acyclic.A graph M = (Q;T ) is F -connected if F � Q and from every state inQ there exists a path to a state in F . A subgraph M 0 = (Q0; T 0) � (Q;T )is realizable if(((q1; �; q2) 2 T ) ^ (q1 2 Q0) ^ (� 2 Au))) ((q1; �; q2) 2 T 0):A realizable subgraph includes all uncontrollable arcs which are de�nedfrom any state in the state set of the subgraph.If the initial state, q0, for the machine, M , is in the region of weakattraction, i.e., q0 2 
M(G), then we also de�ne a machine based on theregion of weak attraction, M
(G), whereM
(G) is formally de�ned by thetuple: M
(G) = (Q;A; �
; q0; G):And �
(q1; �) = q2 if and only if (q1; �; q2) is an arc de�ned in the construc-tion of the region of weak attraction, i.e. (q1; �; q2) 2 T
(G). With M
de�ned, the language recognized by the resulting machine is denoted byL(M
(G)). As mentioned above and in [3], M
(G), and hence L(M
(G)),is not unique.3 Model UncertaintyUncertainties in the plant model provide a set of models which are po-tentially correct models of the plant. Each model in this set is obtainedby assuming that the uncertainty results from a speci�c lack of knowledgeabout the structure of the plant.Example 3.1 Consider an automatic guided vehicle system guided bywires in the oor of a manufacturing facility. The model of the guidancesystem may contain errors. Each error will produce an uncertain model ofthe correct system. For instance, two branch nodes in the wiring may becombined into a single node in the model, an extra branch may be in themodel which is not installed in the plant, or the model may be lacking abranch which is installed in the plant. Each of these errors generates anuncertain model which can be used to de�ne a set of potentially correctmodels. 7



2Example 3.2 Model (A) in Figure 1 gives an example of a system withuncertainty in the transitions. For this transition uncertainty, there is asingle state, q0, in the model which has \b" transitions de�ned to k di�erentstates, q1; . . . ; qk; yet, in the actual system, only one of these \b" transitionsis de�ned.
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Figure 1: Model for Transition Uncertainty. (A) Model with transitionuncertainty, (B) One of the possibly correct models.2Example 3.3 Assume that the set of events which a system can accom-plish is known and that there is a known upper bound on the size of thestate space. Using these two assumptions, one can construct all possiblemodels for the system. After all unique models have been constructed, atechnique is required to generate tests which can distinguish the correctmodel.24 Distinguishing Between ModelsWe present deterministic techniques which provide an easily checked con-dition and an algorithm for correctly removing inconsistent models fromconsideration and identifying the correct model.8



Certain concepts will provide a uni�ed framework for the developmentwhich follows. For the following de�nitions, we assume that there are mod-els M = (Q;A; �; q0), M1 = (Q1; A; �1; q1;0), M2 = (Q2; A; �2; q2;0), whichhave states q1 2 Q1, q2 2 Q2 and an event � 2 A.De�nition 4.1 Given M1 and M2, the predicate di�erent(z;w) holds if(�1(q1; w)! ^ :�2(q2; w)!) _ (:�1(q1; w)! ^ �2(q2; w)!)where z = (q1; q2); and w 2 A�:2This predicate depends on both the state in the product machine and thestring chosen to di�erentiate the states which make up the product state.Example 4.1 For the machines de�ned in Example 3.2, let Mi and Mjbe the possible models which have the b transition de�ned to states qi andqj, respectively. di�erent((qi0; qj0); bvj ) holds, whereas, di�erent((qi0; qj0); b)does not hold, where (qi0; qj0) is the product initial state.2 In the following A4B denotes the symmetric di�erence of the two setsA and B, i.e. A4B = (A [ B) n (A \ B).De�nition 4.2 A string w is a distinguishing string for languages L1 andL2 if (w 2 L14L2):2De�nition 4.3 A string w is a minimally distinguishing string for lan-guages L1 and L2 if(w 2 L14L2) ^ (ppr(w) � L1 \ L2):2A minimally distinguishing string is minimal in the sense that no pre�x isalso a distinguishing string. 9



De�nition 4.4 A non-empty language L is a distinguishing language forL1 and L2 if w 2 L implies that w is a minimally distinguishing string forL1 and L2.2Hence, a string in a distinguishing language is one which uses the lastevent to distinguish between L1 and L2. Note that, in general, there is nota unique distinguishing language for two machines M1 and M2.Example 4.2 Let L1 = a� and L2 = a�b� be two languages which describethe behavior of two possible models of a black box machine. For theselanguages, L1 [ L2 = a�b� and L1 \ L2 = a�; consequently, L14L2 = a�b�b.For a distinguishing language L to satisfy (ppr(L) � L1\L2), we must havethat L � a�b.Observe that if the machine executes the �nal b, then L2 is the correctlanguage, and if not, then L1 is the correct language.2 For languages generated by a state machine, we have the following re-sult.Proposition 4.1Let L1 and L2 be languages generated by the machines M1 and M2.There exists a distinguishing language, L, for L1 and L2if and only if(9w 2 A� :di�erent(z0; w)), where z0 = (q1;0; q2;0).Proof:=)Let w 2 L. Since w 2 L14L2, we immediately have that di�erent(z0; w)holds.(=Let w be the string which satis�es di�erent(z0; w). From the de�nition ofdi�erent(�; �), there is some v 2 L1 \ L2 such that v < w and a � 2 A suchthat v� 62 L1 \ L2 and v� � w. Set L = fv�g. It is clear that L is adistinguishing language for L1 and L2.2 End proof of Proposition 4.1. 10



Example 4.3 For the machines in Example 4.1, di�erent((qi0; qj0); bvi)holds; consequently, there is a distinguishing language, L = bvi+bvj , wherea+ b = fa; bg.24.1 Distinguishing Between Two ModelsAssume that machineM has an uncertainty which causes the set of poten-tially correct models to consist of the models M1 and M2. We assume thatone of these models is correct. The models are speci�ed by the followingtuples: M1 = (Q1; A; �1; q1;0); and M2 = (Q2; A; �2; q2;0):The languages generated by these models are referenced by L(M1) andL(M2). We also refer to the standard synchronous product machine:Mk =M1kM2 = (Z;A; �k; z0):The set of states in the product machine which can be used to control-lably distinguish the two models is de�ned in the following manner.De�nition 4.5 G is the controllably distinguishing set of states forM1 andM2 ifG = nz 2 Zj (9� 2 A : di�erent(z; �)) ^ (:9�u 2 Au : �k(z; �u)!) o ;where M1kM2 = (Z;A; �k; z0).2A particular event which can be used to distinguish two states is called acontrollably distinguishing event. Hence, an event � is a controllably distin-guishing event for z if di�erent(z; �) holds and there is not an uncontrolledevent �u de�ned in the product machine from z.Example 4.4 For the machines given in Figure 2, let Au = fbg. The con-trollably distinguishing state set is G = f(q1; q); (q2; q)g. In this example,the set of controllably distinguishing states is the entire product space.2 11
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M1kM2(G),where 12



1. z0 = (q1;0; q2;0),2. G is the controllably distinguishing set of states, and3. 
M1kM2(G) is the region of weak attraction of G in M1kM2.for M1 and M2.Proof:(=:We will demonstrate a language L which satis�es De�nition 4.4 withrespect to L(M1) and L(M2), and is controllable with respect to L(M1) \L(M2).Since z0 2 
M1kM2(G), we can de�ne a machine M
(G), as discussed inSection 2.2, and let Lm(M
) be the language marked by this machine withGas the marked states. De�ne X � A such that if t 2 Lm(M
) then 9� 2 Xto satisfy the de�nition of G, i.e. that (�k(z0; t) = z)^(z 2 G)) :�k(z; �)!.Such a symbol is de�ned for every string in Lm(M
) by the de�nition of G.Further de�ne L � Lm(M
)X by t� 2 L if t 2 Lm(M
), z = �k(z0; t), and� is a controllably distinguishing event for z.We must show that this language is �nite, satis�es the de�nition forcontrollability and satis�es the de�nition of a distinguishing language.1. L �nite: (
Mk(G); T
(G)) �G acyclic) fproperty of 
M(G)gno cycles in M
 �G) :9s 2 Lm(M
) : jsj � j
Mk(G)j) L �nite:2. L controllable with respect to L(M1) \ L(M2):Let (Z
; T
) = (
Mk(G); T
(G)) and assume that13



(t 2 L) ^ (� 2 Au) ^ (t� 2 L(M1) \ L(M2)).t 2 L ^ z0 2 
Mk(G)) fL � Lm(M
):X and de�nition of Lm(M
)g�k(z0; t) 2 Z
) ft� 2 L(M1) \ L(M2) , 
M (G) realizable, z = �k(z0; t)g9z0 2 Z
 : (z; �; z0) 2 T
) fde�nition of Lm(M
)gt� 2 L(M
)) t� 2 L:Hence L is controllable with respect to L(M1) \ L(M2).3. L non-empty: z0 2 
Mk(G)) fM
 is G-connectedg9v 2 A� : �k(z0; v) 2 G) fde�nition of G and Xg9t = v� 2 A� : t 2 Lm(M
):X) L 6= ;:4. ppr(L) � L(M1) \ L(M2):L � Lm(M
):X) ppr(L) = L(M
)) fde�nition of M
 and Mkgppr(L) � L(M1kM2)) fproperty of regular languages and FSMgppr(L) � L(M1) \ L(M2):14



5. L � L(M1)4L(M2):(t 2 L) ^ (t = v�)) fde�nition of G and Lgz = �k(z0; v) 2 G) fde�nition of G and Xg;di�erent(z; �)) fde�nition of Ggt 2 L(M1)4L(M2):The last three items combine to show that L satis�es the conditions forbeing a distinguishing language.=):Let (V; T ) denote the graph representation of the product machineM1kM2.Consider the subgraph, (V0; T0), of (V; T ) obtained by running all stringsin L on (V; T ). De�ne (V0; T0) byV0 = fz 2 Q1 �Q2 : (9w 2 L : �k(z0; w) = z)gT0 = f(z1; �; z2) 2 T : (9w 2 L : (�k(z0; w) = z1) ^ (w� 2 L))g:Any state in the product machine reached by a string in the closure of Lis included in V0 and any transition traversed by a string in the closureof L in included in T0. Since L is �nite and ppr(L) � L1 \ L2, it is clearthat (V0; T0) is well de�ned and that a simple algorithm will generate thissubgraph.Consider the states reached by string in L=A. (Recall, L=A denotesstrings in L with the last symbol removed.) The following lemma followseasily from the de�nition of a distinguishing language and controllability.Lemma 4.1 With L as assumed in the statement of the proposition,8w 2 L=A : �k(z0; w) 2 Gwhere z0 and G are as de�ned in the statement of Proposition 4.2.The following lemma provides the realizability of (V0; T0) with respectto (V; T ) and Au.Lemma 4.2 (V0; T0) is realizable with respect to (V; T ) and Au.15



Proof:Let z1 = �k(z0; w) where w 2 ppr(L), (z1; �; z2) 2 T , and � 2 Au. Fromthese facts, we must show that (z1; �; z2) 2 T0. Notice that from the con-struction of V0, we have that w 2 ppr(L) implies that z1 2 V0.(z1; �; z2) 2 T) �k(z0; w�)!) fL controllable with respect to L1 \ L2gw� 2 ppr(L)) (z1; �; z2) 2 T0:2 End proof of Lemma 4.2.By Lemma 4.1, (V0; T0) is G-connected. By Lemma 4.2, (V0; T0) isrealizable. If there are no cycles in (V0; T0), then by Proposition 2.1 wehave that z0 2 
M1kM2(G) as desired.If there are cycles, more work is required. The idea is to disable a cycleand show that the remaining subgraph is still G-connected and realizable.Since (V0; T0) is a �nite graph, there are only �nitely many cycles; con-sequently, after disabling all cycles, we have a subgraph remaining whichis G-connected, realizable, and acyclic. By Proposition 2.1, we have thatz0 2 
M1kM2(G) as desired.Now we must show that cycles may be removed while retaining theconnectedness and realizability of the subgraph (V0; T0).We start by classifying all transitions in T0. A transition is includedin class C if it must be included in T0 for controllability reasons, i.e. ifthe subgraph would lose the realizability characterization by not having aspeci�c transition, then that transition is included in C. Hence,(z1; �; z2) 2 C , ((z1; �; z2) 2 T0 ^ � 2 Au):A transition is included in class R if it must be included in T0 for reach-ability reasons, i.e. if a node would no longer be G-connected withoutthe presence of a speci�c transition, then that transition is included in R.Hence, (z1; �; z2) 2 R if and only if there does not exist a w 2 A� such thatthere is a path labeled by w from z1 to G in the subgraph (V0; T0), wherew(1) 6= �. 16



Assume that there is a cycle in (V0; T0). If there is a transition (z1; �; z2)on the cycle which is not in C[R, then we can clearly remove this transitionand retain the G-connectivity and realizability. This fact follows from thefacts that any transition, (z1; �; z2), not in C [R is controllable and there isanother path in the subgraph from z1 to G which does not use the transitionin question.Hence, if we can remove all cycles by deleting transitions which are notin C [ R, then we are done.Assume that there is a cycle remaining which only has transitions inC [R. Let (z1; �; z2) be a transition on this cycle. From the construction ofthe subgraph (V0; T0), we have that there is a string s 2 ppr(L) such that�k(z0; s) = z1. The following lemma provides the crucial result.Lemma 4.3 Let L and C [ R be as above.If there is a cycle which has transitions only in C [R, then there are stringsof arbitrary length in L.Proof:Let x 2 A� be the labels of the transitions on this cycle, i.e. �k(z1; x) = z1.Let m = jxj. Let zi denote the state immediately preceding label x(i), i.e.(zi; x(i); zi+1) is a transition on this cycle. Note that zm+1 = z1.From the controllability of L with respect to L1 \ L2, Lemma 4.1, andthe fact that every transition on the cycle is in C [ R, it is clear thatsx(1) 2 ppr(L). The same result holds for each i, i.e. 8i : 1 � i � m :sx(1) . . . x(i) 2 ppr(L). Hence, sx 2 ppr(L), implying that sx� � ppr(L).2 End proof of Lemma 4.3.This last statement contradicts the �niteness of L; consequently, therecan be no cycle consisting only of transitions from C [ R. As a result ofLemma 4.3, any cycle in the subgraph can be removed while retaining G-connectivity and realizability. Hence, the conditions of Proposition 2.1 aresatis�ed and we get that z0 2 
M1kM2(G).2 End proof of Proposition 4.2.Based on Proposition 4.2, we de�ne a predicate which is true if twomachines can be distinguished as described in the proposition.De�nition 4.6 Given machines M1 and M2, where M1 = (Q1; A; �1; q1;0)and M2 = (Q2; A; �2; q2;0), the predicate disting(M1;M2) holds if (q1;0; q2;0)17



2 
M1kM2(G1;2), where,G1;2 = 8><>:(q1; q2) 2 Q1 �Q2j (9� 2 A : di�erent((q1; q2); �))(̂:9�u 2 Au : �k((q1; q2); �u)!) 9>=>; :2If two machines satisfy this predicate, then the machines, or their languages,are said to be controllably distinguishable.The following corollary provides the application of Proposition 4.2 toresolving an uncertainty which gives two potentially correct models. Ifz0 2 
Mk(G), then a supervisor corresponding to the machine representedby the graph created by the algorithm which generates the region of weakattraction can be built which will constrain the behavior of the unknownsystem such that an incorrect model can be identi�ed in a �nite numberof transitions. (See [13] for details on how a machine representation of asupervisor is used to control a plant.)Corollary 4.1 Let M1 and M2 be two models, such that one of themcorrectly models the plant, M . Let Mk = M1kM2, z0 = (q1;0; q2;0), and Gbe the controllably distinguishing set of states for M1 and M2.z0 2 
Mk(G)if and only ifthe correct model can be chosen in a �nite number of transitions.Proof:=):By Proposition 4.2, if z0 2 
Mk(G), then there exists a �nite non-empty con-trollable language, L, such that any string in the language can distinguishL(M1) and L(M2). By Theorem 2.1, a supervisor f can be constructed suchthat Lf = L; hence, the plant can be controlled so as to execute strings fromL. Since one of the models correctly models the plant, ppr(L) � L(M),and any proper pre�x of a string t in L can be executed by the plant. SinceL � L(M1)4L(M2), the last symbol in the string will either be executedor not depending on whether M = M1 or M =M2 and which model has tde�ned in its language.(=: 18



By Proposition 4.2, if z0 62 
Mk(G), then we can construct a string of ar-bitrary length which the plant can execute such that no supervisor maydisable events such that an inconsistency is observed.2 End proof of Corollary 4.1.The complexity of this approach is governed by the necessity to considerthe product machine forM1 andM2 in order to determine the distinguishinglanguage. This operation requires O(jQ1jjQ2j) operations. In this paper,the dependency of the complexity on the size of the event set A is assumedto be a constant factor; hence is not included in the expression for theorder of complexity. As shown in Section 5.1, this is a sharp bound on thecomplexity.4.2 Distinguishing Multiple ModelsThe technique for distinguishing between multiple models with a reset capa-bility available is an extension of the technique used to distinguish betweentwo models. The strategy is to construct a product machine from twomodels in the set of models which results from considering all possible per-mutations of the uncertainties. Then, from this product machine, calculatethe region of weak attraction for the set of controllably distinguishing statesfor these two models as described in Corollary 4.1. By using the machinegenerated by the region of weak attraction as a supervisor for the plant, atleast one of these models can be removed from the set of possibly correctmodels by controlling the plant to enter a state which is a component ofone of the product states in the set of controllably distinguishing states.Then, after at least one of these models has been eliminated as a possiblycorrect model, reset the plant and start the procedure over with anotherpair of models. Note that it is possible that neither of the models whichare chosen is the correct model for the system; hence, the plant might gen-erate a string which is not de�ned in either of the models used to generatethe supervisor. In this case, both models are removed and the procedurecontinues by choosing another two models. This procedure continues untilall uncertainties have been resolved or until no pair of models can be foundwhich satisfy the conditions of Corollary 4.1.We denote each possible model as: Mi = (Qi; A; �i; qi;0; Qi;m); wherei = 1; . . . ; k, and k is the initial number of models from which the correctmodel is to be chosen. We denote the initial set of all possible models by19



S0. Using the notation given,S0 = fMiji = 1; . . . ; kg;where each model is in minimal canonical form [5, 9].The following algorithm speci�es the procedure given above. P denotesthe actual machine or the plant which is to be correctly modeled.Algorithm 4.1Input:S0 as given above.Output:Sn = fMij no additional uncertainties can be resolvedg:Algorithm:p = 0:While (jSpj > 1) ^ (9Mi 2 Sp ^ 9Mj 2 Sp : disting(Mi;Mj)):Calculate 
MikMj(Gi;j).Use M
(Gi;j) as supervisor for P .Determine which model is still a possibly correct model andwhich model is not consistent with the plant.Sp+1 = Spn f models which have been determined to beinconsistent with plant g.Reset the plant.p = p+ 1:End while.End of algorithm.In the worst case, the product for every pair of models would need tobe calculated to check for pairs which satisfy z0 2 
Mk(Gi;j). Since thereare k models in S, this calculation of products results in an algorithm withO(k2jQj2) complexity. 20



A slight modi�cation of the proposed algorithm is to simulate, on allmodels in Sp, the strings which result from using M
(Gi;j) as a supervisorfor the plant. Using this technique, any model which cannot successfullysimulate the activity of the plant can be eliminated from consideration andneed not be considered in any future pairing.This modi�ed approach also has worst case complexity of O(k2jQj2)since there is no guarantee that more than one model will be eliminatedon each iteration. Also the actual complexity to accomplish the simulationresults in an additionalO(kjQj2) term in the operation count. These countsare a result of the following reasoning. Each calculation of 
Mk(G) addsa jQ2j term to the count. There are at most k2 pairs which have to becalculated, hence, the O(k2jQ2j) term in the count. To simulate any teststring on all remaining potential models, O(kjQ2j) operations are necessary,hence, this term is added to the count retaining an overall complexity ofO(k2jQ2j).To demonstrate the correctness of the algorithm, several points mustbe addressed: insuring that only bad models are removed from Si, that theorder of choosing models for the test disting(Mi;Mj) does not a�ect theoutput, and that there is no other technique which might produce a smallerset of potential models.4.2.1 Only Bad Models RemovedThe �rst point is easily addressed. A model is removed if it is inconsistentwith the plant. An inconsistency arises from either the plant executing atransition which is not in the model, such as an uncontrolled transition,or the plant not executing a transition which is de�ned in the model, suchas from a state at which a single controlled or uncontrolled transition isde�ned in the model but is not executed by the plant. Hence, only \bad"models are removed from the set used to keep potentially correct models.Note that a consistent model will not be removed from this set.4.2.2 Order Does Not A�ect the ResultThe second point is more subtle. A priori it appears that the order oftesting models might be signi�cant. I.e. there might be some incorrectmodel A which, when combined with another incorrect model B, generates21



a test string which provides that model B is removed, but that when modelB is combined with the correct model a test string cannot be generated.That the order does not matter follows from the following proposition.Proposition 4.3 states that if a pair of models, Mi and Mj , satisfy z0 2
MikMj(Gi;j) and if Mi is removed from the set of possibly correct models,then the correct model Mc and Mi satisfy z0 2 
MikMc(Gi;c). Hence, ifmodel Mj can be used to remove Mi, then model Mc can be used instead.In the statements of the following propositions, the language generatedby model Mi which is usually denoted by L(Mi) is denoted by Li. In theproof of Proposition 4.3, a language L is used to link the fact that theinitial state is in the region of attraction of each of the product machines.The conditions on L are very similar to the conditions for a distinguishinglanguage for Mi and Mj ; however, the fact that neither Mi nor Mj mightbe the correct model requires that slightly di�erent characteristics describehow Mj can be used with Mi to generate a supervisor which will cause Mito be removed from the set of possibly correct models. In the following,Mcdenotes the correct model. z0;i;j is the initial state of MikMj. z0;i;c is theinitial state of MikMc. Gi;j is the set of controllably distinguishing statesfor MikMj. Gi;c is the set of controllably distinguishing states for MikMc.Proposition 4.3 If z0;i;j 2 
MikMj(Gi;j) and Mi is removed from the setof possible machines, then z0;i;c 2 
MikMc(Gi;c).Proof:Consider the languageLmarked by the supervisor generated by 
MikMj(Gi;j)and used to remove Mi. By the assumptions in the proposition statement,this language generates tests which are used to remove Mi from the set ofpotentially correct models.We �rst describe some characteristics which this language satis�es.Lemma 4.4(a) L controllable with respect to Li \ Lj \ Lc,(b) L � (Li4Lc) \ (Lj [ Lc),(c) ppr(L) � Li \ Lj \ Lc, and(d) L is �nite and non-empty. 22



Proof:The controllability of L with respect to Li\Lj follows from the constructionof 
MikMj(Gi;j) and the fact that 
M(G) is realizable. That L is controllablewith respect to Li \ Lj \ Lc, follows from the fact that all pre�xes of theclosed loop behavior are necessarily constrained to Lc.The strings which occur in the distinguishing language generated by
MikMj(Gi;j) consist of the following types:(1) strings which occur in the plant, Mi, and Mj, i.e. Li \ Lj \ Lc,(2) strings which occur in the plant andMj but not inMi, i.e. Lc\Lj\Lci ,(3) strings which occur inMi andMj but not in the plant, i.e. Lcc\Li\Lj ,and(4) strings which occur in the plant but not in Mi andMj , i.e. Lc \ (Li [Lj)c,For this supervisor to cause Mi to be removed from the set of possiblycorrect machines, the strings which occur in all three must be in the pre�xof strings which will causeMi to be removed. Hence, ppr(L) � Li\Lj \Lc.For this supervisor to cause Mi to be removed from the set of possiblycorrect machines in a controllable fashion, we claim that only the stringsin (2), (3), and (4) above can occur as strings in the language. (See shadedareas in Figure 3.) No other string can occur and still allow Mi to beremoved from the set of possibly correct machines. Any other string wouldnot allow Mi to be removed.From this observation we have that:L � (Lc \ Lj \ Lci) [ (Lcc \ Lj \ Li) [ (Lc \ (Lj [ Li)c)) L � ((Lj � Li) \ Lc) [ ((Lj \ Li)� Lc) [ (Lc � (Lj [ Li));which gives part b).The �niteness of L is a result of the fact that 
MikMj(Gi;j) is acyclic.That L is non-empty is a result of the fact that Mi is removed, i.e. at leastone event must be used to determine that Mi is not correct.2 End proof of Lemma 4.4.We now use this language to demonstrate that z0;i;c 2 
MikMc(Gi;c).We demonstrate this fact by verifying that L satis�es the requirements ofProposition 4.2 for Mc and Mi. 23
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Figure 3: Parts of languages which allow removal of Mi.1. L �nite and non-empty:L is �nite and non-empty by hypothesis.2. L controllable w.r.t. Lc \ Li:From the de�nition of L, we have that (t 2 L)) t 2 L[ppr(L).(t�u 2 Lc \ Li)) t 2 (Li \ Lc)) f(b) and (c)gt 2 ppr(L)) f(a) and (c)gt�u 2 L) L controllable w.r.t. Li \ Lc:24



3. L � Lc4Li:L � (Li4Lc) \ (Lj [ Lc), L � ((Lj � Li) \ Lc) [ (Lc � (Lj [ Li)) [ ((Lj \ Li) � Lc)) L � (Lci \ Lc) [ (Lc \ Lci) [ (Li \ Lcc)) L � (Lc \ Lci ) [ (Li \ Lcc)) L � Lc4Li:4. ppr(L) � Lc \ Li: ppr(L) � Li \ Lj \ Lc) ppr(L) � Lc \ LiSince L satis�es the requirements for Proposition 4.2 with respect toMi and Mc, we immediately have that z0;i;c 2 
MikMc(Gi;c).2 End proof of Proposition 4.3.Proposition 4.3 provides that the order does not matter when choosingwhich pair of models to use to generate the next test. When combinedwith the �rst point, that only \bad" models are removed, we have that itis su�cient to test bad models with the correct model, which will never beremoved from the set of potentially correct models.4.2.3 Optimal Complexity of AlgorithmNow we address the question of whether some other procedure might beused to generate a smaller set of potentially correct models.Proposition 4.4Algorithm 4.1 provides a minimal set of potentially correct models.(Minimal in the sense that there does not exist another technique tocontrollably remove more models than are removed by Algorithm 4.1from the set of potentially correct models in a �nite number of tran-sitions .) 25



Proof:Let S be the set of potentially correct models output by Algorithm 4.1.If jSj = 1, then we are done, i.e. S = fMcg.If jSj > 1, then we know that since the test disting(Mi;Mj) is notsatis�ed for any pair of models in S and consequently8i; j :Mi;Mj 2 S : zo;i;j 62 
MikMj(Gi;j):In particular, we know thatzo;i;c 62 
MikMc(Gi;c): (1)Assume that there is some other technique which controllably removesMi 6= Mc from S. To remove Mi, a test must cause Mi to reach a stateat which an inconsistency with the plant arises. This state in Mi is acomponent to a state in Gi;c, otherwise by controllability constraints Micannot be removed by this test. By (1), we know that we can construct abehavior for Mi which never enters G. Hence, we have a contradiction andthere cannot be any technique which can controllably generate a smallerset of potentially correct models.2 End proof of Proposition 4.4.4.2.4 Resolving Uncertainty Without ResetTo resolve uncertainty without a reset capability, a slight modi�cation mustbe made to the algorithms given previously. The modi�cation consists ofupdating the models still under consideration to reect any actions whichthe actual plant has taken. This update is manifested by modifying themodel descriptions so that the initial state has a dependence on eventswhich have already occurred.Hence, the old model M = fQ;A; �; q0; Qmg, is modi�ed to M(s) =fQ;A; �; q0(s); Qmg, where s is the string which has been executed to thispoint. Note that only the initial state needs to have this dependence. Theother components of the model do not need to be modi�ed.Note that for this modi�cation, all models must be updated to determineif the new initial state after a test string has been executed is in the regionof attraction for the set of distinguishing states. However, the actual region26



of attraction does not need to be recalculated because the states which canbe attracted to the distinguishing states do not change with each test string,only the initial state changes.The need to simulate the test strings does not increase the complexityof the algorithm. In the worst case, this algorithm could require that O(k2)regions of weak attraction be calculated to �nd enough test strings. Hence,this algorithm also has O(k2jQj2) complexity.5 Examples5.1 Optimality for Single Transition UncertaintyThis example demonstrates that resolving a single uncertainty has com-plexity at least as great as that of creating the product machine for the twopotentially correct models. This complexity arises from the fact that theproduct machine is used to generate the set of controllably distinguishingstates and hence the minimally distinguishing language. For this example,z is the event for the uncertain arcs and Au = fa; c; dg. Figure 4 illustratesthe two possible transition functions for the machine.
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distinguish q11 and q21 and the region of weak attraction for G.From the graph representation of the transition function for the productmachine, we can determine thatG = fq1m;2n; q0;11; . . . ; q0;1m; q0;21; . . . ; q0;2n; g:From Figure 5, we observe that the only state in the current G which canhave q0;0 in the region of weak attraction is q1m;2n; hence, we will limit ourcalculations for a new set G0 = fq1m;2ng. Some of the iterations of thealgorithm to calculate the region of weak attraction are given:V0 = fq1m;2ngV1 = V0 [ fq1m;2(n�1)g:::Vn = Vn�1 [ fq1(m�1);21g:::Vm�n = Vm�n�1 [ fq0;0g:Hence, by Proposition 4.2, since z0 2 
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Let L1 = (av)� and L2 = (a(u + v))� be the languages for two pos-sible models where a 2 A and u; v 2 Au. See Figure 6 for the machinerepresentation for these languages.
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approach for a single uncertainty is provided. Also an example is givenwhich demonstrates how the controllability and �niteness requirements areboth necessary for Proposition 4.2. This approach to choosing the correctmodel can be applied in any situation which has a set of models from whichthe correct one should be chosen.Several possibilities exist for extensions to this work. One possibilityis to expand the model used to describe a discrete event system to onewhich can describe a broader category of systems, such as a Petri net [8] oralgebraic [10] models. Another direction of current interest is the inuencewhich di�erent uncertainty models have on the control and stabilizationof systems modeled with discrete event system formalisms. This inuenceincorporates the e�ect that limiting the behavior of a system to a desiredconstraint language would have on correctly controlling the system andresolving any uncertainty in the model. A further extension is to considerhow the addition of unobserved events a�ects the problem described in thiswork.7 AcknowledgementsThe authors would like to thank Ratnesh Kumar, Steve Marcus, Alex Tom-linson, and other reviewers for critically reading and assisting in the prepa-ration of this paper.References[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysisof Computer Algorithms. Addison-Wesley, Reading, MA, 1974.[2] D. Angluin and C. H. Smith. \Inductive Inference: Theory and Meth-ods". Computing Surveys, 15(3):237{269, 1983.[3] Y. Brave and M. Heymann. \On Stabilization of Discrete Event Pro-cesses". Internation Journal Control, 51:1101{1117, 1990.[4] N. Deo. Graph Theory with Applications to Engineering and ComputerSciences. Prentice{Hall, Englewood Cli�s, N.J., 1974.31
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