On Self-Stabilizing Systems: An Approach
to the Specification and Design of Fault
Tolerant Systems *

Stanley D. Young |
Vijay K. Garg
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, Texas 78712
stanley@pine.ece.utexas.edu

January 6, 1994

Abstract

A self-stabilizing system is one which can recover from transient
faults in a finite number of steps. We present a theory for determining
if a behavior specification can be satisfied with a self-stabilizing system
and if not, then what the largest self-stabilizing subset and smallest
self-stabilizing superset of the specification is. The effects of self-
stabilizing behavior on the control of discrete event systems is also
investigated ®.

Keywords: Discrete Event Systems, Fault Tolerant, Controllability

*Supported in part by NSF CCR-911065, TRW Faculty Assistantship Award.
TSupported in part by a DuPont Fellowship.
LA preliminary version of this paper appeared as [16].

1 Introduction

The capability to handle arbitrary faults and startup states is a desirable
feature in any real system. A self-stabilizing system is a system which is
guaranteed to converge to a legitimate state in a finite number of transitions
and thenceforth allow only legal transitions [6, 4, 1]. This capability can be
used to overcome transient faults and continue processing while retaining a
previously specified legal behavior. The approach taken in this work is to
consider the entire behavior of a system and not to restrict our attention so
that only the suffixes of the behaviors are legal. Earlier work concentrated
of the characterization that the suffix of a behavior would be legal after
some finite prefix [6, 4, 1].

The approach taken here is also related to the standard approach to
stability in control theory and the stability of discrete event systems. In
control theory, time invariant systems are used extensively to describe sys-
tem behavior. The time invariance provides a type of shift invariance with
respect to time [5]; as described in Section 4, self-stabilizing systems are
invariant with respect to shifts of the events, which can be related to a shift
in the time origin. For discrete event systems, often stability is described
in terms of a state trajectory visiting a set of states [3, 12]; the procedures
given in Section 4 can use the state machine representation of a system to
calculate the self-stabilizing supersets and subsets of a given behavior.

Self-stabilizing systems demonstrate the interaction between computer
science, mathematics, and control theory. The computer science community
has investigated self-stabilizing systems as a means of building systems
which are tolerant of transient faults [6, 4, 1]. Communication protocols
are a primary example of such systems which must withstand transient
faults. The mathematics community has investigated sofic systems, which
are essentially the same as self-stabilizing systems, as the closure under
homomorphisms of subshifts of finite type, or Markov chains [13, 15, 8].
Aspects of topological dynamics concerns the study of such systems. The
control systems community has investigated the stability of various systems
and is interested in designing systems which are inherently stable. The
techniques which are used to calculate the self-stabilizing behavior for a
system are very useful for the stability analysis and design of discrete event
systems [14, 11, 3, 12]. Such techniques determine whether a system is
stable or not and can be used in the design of stable systems to provide

the behaviors which must be removed to leave the largest subset of the
behavior which is self-stabilizing or the behaviors which must be added to
provide the smallest superset of the behavior which is self-stabilizing.

In Section 2, the background material from formal language theory and
controllability for discrete event systems is reviewed. In Section 3, the
concept of self-stabilization is discussed and the self-stabilizing machine
is introduced. In Section 4, shift invariant languages are introduced along
with the main results concerning the shift invariant sublanguage and super-
language of a given language. In Section 5, s-regular systems are introduced
and their relation to regular languages and shift invariant systems is given.
In Section 6, the effects which shift invariance has on controllability for
discrete event systems are investigated. In Section 7, some applications of
the results in the paper are given.

We use calculational style of proofs for many of our theorems. A proof
that [A = C] will be rendered in our format as

A

= { hint why [A = B] }
B

= { hint why [B =] }
C.

We also allow implies (=) in the leftmost column. For a thorough treatment
of this proof format we refer interested readers to [7].

2 Machines, Languages and Control

Languages and machines provide a way of representing the behavior of
systems, such as the automaton model of a circuit. We use this modeling
technique to describe systems and their specification.

2.1 Machines, Languages, and Shifts

A state machine, M, is represented by a five tuple: M = (Q, A, 6, ¢0,Qm),
where

Q = aset of states,

A = a finite set of transition labels or events,
1) = the transition relation, § : Q x A — 29,
go = the initial state, ¢y € Q,

Q,, = the marked states, Q,, C Q.

The transition relation ¢ is in general a partial relation; consequently, we
use 6(¢, a)! to denote that the transition event « is defined from state ¢. The
marked states signify a subset of the state set which is used to determine
acceptance of a given sequence of events. A sequence of events is accepted
if the machine executing the sequence stops in a marked state.

A language is a set of sequences of symbols. The symbol set A is as-
sociated with the events which can occur in a system. The set of finite
sequences which consist of symbols from the set A, along with the empty
string, e, is denoted by A*. A sequence s € A* is called a string. The length
of a string s € A is denoted by | s |. A subset L C A* consisting of strings
is called a language.

The standard Boolean operations of union, intersection, and comple-
mentation can be applied to languages in the standard manner. Some
other operations are also useful for manipulating languages. The concate-
nation of two strings s,t € A" is denoted by st, or by s.t, with the result
being a single string consisting of the symbols of the first string s followed
by the symbols of the second string ¢. For example, if s = ab and t = cd,
then st = abed. The Kleene closure of a language L C A* is denoted by
L* and consists of the set of finite concatenations of strings from L U {e}.
For example, if L = {a}, then L* = {¢,a, aa,aaa,...}. Note that the de-
scription of A* given above is consistent with this definition. The reverse
of a language L is denoted by L and is obtained by reversing each string
in the language. For example, if L = {ab}, then L? = {ba}. The (left)
shift operator applied to a string shifts each symbol to the left and throws
away the symbol in the first or head position and is denoted by o;(s) where
s € A*. For example, if s € A* and s = abe, then oy(s) = be. The right
shift operator applied to a string shifts each symbol to the right and throws
away the symbol in the last or tail position and is denoted by o,(s) where

s € A*. For example, if s € A* and s = abe, then o,(s) = ab. Usually, we
discuss the left shift operator and use o(s) to denote the left shift operator
acting on string s.

In the following development, the concept of combining two finite state
machines to create a single machine, the product machine, is useful. The
product machine is a single machine which can be used to represent the
synchronous behavior of two original machines. If My = {Q1, 4,61, ¢10}
and My = {Q2, A, 62,q20} are two machines with the same event set, A,
then the product of the two machines is denoted

M| M,y = (Z, A, ¢, 20)
where,
Z = Q1 x Qz and 20 = (q1,0,420) € Q1 X Q2
(g1, 42),0)! & 61(q1,)L A d2(g2, o)1,
§1((d1s 42),) = { (61(q1,0),02(q2,0)) if defined

undefined otherwise.

Note that this is not the most general type of product composition since we
require that the event sets be the same; however, this definition is adequate
for our purposes. The language generated by the product machine has a
specific relation to the languages of the machines from which it is composed.

If MH = M1HM2 then
L(My) = L(My) N L(M3).
These relations follow directly from the definition of the transition function

of the product machine.

2.2 Prefixes, Suffixes, and Substrings

A string u € A* is said to be a prefix of string s € A* if there is another
string v € A* such that s = uv. We denote that u is a prefix of s by u < s.
The prefix closure of a language L C A*, denoted precl(L), is given by

precl(L) ={u e A" | Jv € A" wv € L}.

The prefix closed subset, or sublanguage, of a given language L, denoted
by prered(L), as in prefix reduction, is given by

prered(L) ={u e L|Yvo<wu:v €L}
prered(L) and precl(L) are related by
prered(L) C L C precl(L).

Similarly, one can define suffixes, suffix closure, and the suffix closed
sublanguage by considering the reverse of the original language. Hence,
u is a suffix of string s if u® < sF. The suffix closure of L, denoted by

sufel(L), is defined by
sufel(L) = {u e A* | Jv € A" - o e LT},
And the suffix closed sublanguage of L, denoted by sufred(L), is given by
sufred(L) = {u € L | Vo' <uff:of e L7
sufred(L) and sufcl(L) are related by,
sufred(L) C L C sufel(L).

The set of substrings of a given string s € A* is specified by sub(s) and
defined by
sub(s) ={t € A" | Ju,v € A" : s = utv}.

Lemma 2.1 demonstrates a monotonicity property for sub().

Lemma 2.1

Let s,t € A™.
s € sub(t) = sub(s) C sub(t).

Proof:
The proof of this is obvious and follows from the definition of sub(t).
Q.E.D.

Lemma 2.2 demonstrates that the sub() function can be constructed by
considering the prefix and suffix closures in a recursive manner.

Lemma 2.2
Let s € A*, and a € A.
1. sub(sa) = sub(s) U sufel(s).a,
2. sublas) = sub(s) U a.precl(s).

Proof:
The proof of this lemma is obvious and follows from the fact that all the
substrings of sa, or as, consist of the substrings of s and the suffixes followed
by a, or a followed by the prefixes of s.
Q.E.D.

A more complete description of machines and languages can be found
in [9].

2.3 Controllability for Languages

In many systems, the event set, A, can be partitioned into two sets: A,
and A, representing controllable and uncontrollable events, respectively. A
language K is said to be controllable with respect to language L if

precl(I{)A, N L C precl(K).

With the concept of controllable and uncontrollable events, one defines a
supervisor for a plant which affects the controllable events which a plant
executes based on some specified constraints. A supervisor for a plant P
where L = L(P) is a map

f:L—24

which specifies a set of enabled inputs which can be applied as a function of
the string of previously generated events in L. The closed loop system con-
sisting of a supervisor, f, and plant, P, has the finite closed loop behavior
denoted by Ly, and defined as follows:

1. e € Lf,
2. wo € Lyif and only if w € Ly, 0 € f(w), and wo € precl(L).

Note that the definition of Ly implies that L; C precl(L) and that
precl(Lys) = Ly [14].

Often, one obtains that a language K is not controllable with respect to
language L, and the question arises as to what is the largest sublanguage of
K which is controllable with respect to L. As shown in [2], the formula for
the supremal controllable sublanguage of K, denoted by K, with respect
to L is given by

K'=K—((L-K)/A,)A".

As indicated by the formula, the controllable sublanguage is constructed
from the original desired behavior, K, by subtracting those strings which
lead to behaviors which cannot be controlled to remain in K.

A more complete introduction to the control of discrete event systems
can be found in [14].

3 Self-Stabilization

A self-stabilizing machine (ssm) is one which can execute only legal strings
regardless of the initial or current state of the system.

Definition 3.1 G is a self-stabilizing state machine if G = (Q, A4, 6) where
Q is a set of states, A is a finite set of events, and § : Q x (A U {e}) — 29.

The transition relation ¢ can be extended in the standard manner to
handle strings, i.e. § can be extended to 6 : Q x A* — 29 by §(q,sa) =
Uyres(ans) 0(¢'s @) where s € A* and « € A.

A string s € A* is in the behavior of a ssm G = (@, A,6) if and only
if there exists a ¢ € @ such that 6(¢,s)!. Hence, the language of a ssm G,
denoted by L(G), is defined as

L(G) = UQ{S € A" | 6(q,9)1}.

The primary characteristic of a self-stabilizing system is that the strings
of events which are generated by the system remain legal, or valid, regard-
less of the initial state of the system.

Example 3.1 Suppose we need a controller for determining the loading
order of cargo onto a pallet subject to the constraint that all packages of

type A precede all packages of type B, which in turn precede all packages
of type C. Figure 1 gives the self-stabilizing machine which enforces the
packing constraint.

C
Figure 1: Pallet Packing Controller. (A means load type A, similarly for
B and C.)

The system in Example 3.1 is clearly a self-stabilizing machine by in-
spection of the machine in Figure 1.

Example 3.2 A system which insures that there only an even number of
1’s occur between any pair of 0’s is given in Figure 2.

0

Figure 2: Even System.

Under the interpretation that a new string is started any time the system
starts operating, either at startup or after a fault, the system in Example 3.2
is also clearly self-stabilizing. (See Section 4.1 for further discussion of this
approach to fault tolerance.)

One technique of describing the desired system behavior is to give a list
of behaviors which are not to occur.

Example 3.3 Consider a system which is not to allow either three con-
secutive zero’s or one’s. Figure 3 gives a machine which generates such a
system.

Figure 3: System which disallows three zero’s or one’s.

4 Shift Invariance

Each application of the shift operator on a string can be viewed as the
occurrence of the event which is represented by the symbol at the start, or
head of the string. This symbol can also be viewed as the occurrence of the
event at the current time. The motivation for studying shift invariant sets
is that it would be nice to have a description of the system behavior which
does not depend on the definition of the start symbol or time.

10

4.1 Relation of Shift Invariance to Transient Faults

A transient fault is a fault which changes the state of the system but does
not change the structure of the system. There are at least two approaches
to specifying a fault tolerant system. In both approaches the system is
assumed to be operating normally when a fault occurs.

In one approach, the concatenation of the behavior before and after the
fault must remain within the specification. It is easy to show that in the

* where

worst case this approach requires the specification to include (Ag)
A 1s the set of events which appear in strings in the specification K.

In the second approach, which is the one taken in this paper, “time” is
assume to start over after each fault. Hence, the strings for consideration
as to whether they meet the specification are those which can occur after
a fault, i.e. starting from any state in the system. Note that the concate-
nation of the strings on both “sides” of a fault are not considered as to
whether they satisfy the specification or not, only those occurring after the

fault are considered.

4.2 Shift Invariant Theory
Definition 4.1 A language X C A* is said to be shift invariant if

Va,s:(a € A)AN(s € A™): ((as € K)V (sa € K)) = (s € K).

The predicate invariant() is used to denote that a set is shift invariant.
Hence, invariant(K) denotes that a language K is shift invariant.

Theorem 4.1 demonstrates that shift invariance is preserved under some
standard operations such as union, intersection, reversal, concatenation,
and Kleene closure. Since shift invariant characteristics are preserved under
these operations, large shift invariant systems may be built by combining
smaller ones in order to get the desired behavior.

Theorem 4.1
Let J, K, L C A*.

1. (Vi € A @ invariant(K;)) = (invariant(UJ,(K;))), where A is any
nonempty index set.

11

2. (Vi € A :nvariant(K;)) = (tnvariant(;(K;))), where A is any
nonempty index set.

3. (tnvartant(J) Ainvariant(K)) = invariant(J.IK).
4. (tnvariant(J)) = (invariant(JR)).
5. (invartant(J)) = (invariant(J*)).

Proof:
It is clear that the empty string ¢ is an element of all shift invariant lan-
guages. Hence, it i1s also clear that ¢ is in the union, intersection, con-
catenation, reversal, and Kleene closure of those languages. Hence, we will
consider only nonempty strings in the following proofs of the different parts
of the theorem.

In the following proof, s denotes a string, s € A*, and a denotes a
symbol, a € A.

1. To prove: (Vi € A :wnvariant(K;)) = (invariant(UJ;(K;))), where A
is any nonempty index set.

as € (UZ IX’Z)

{property of union}
35 : (as € Kj)
= {Vi: invariant(K;)}
3] : (8 € I&’]‘)

{property of union}
s E UZ IX’Z

The proof for (sa € U; K;) = (s € U; K;) follows similarly. From
these two facts, it follows that |, K; is invariant.

2. To prove: (Vi € A :invariant(K;)) = (tnvariant(N,;(K;))), where A
is any nonempty index set.

This proof is similar to that given for union and is left as an exercise.

3. To prove: (invartant(J) A invariant(K)) = invariant(J.IK).

12

If as € J or as € K, then, by the invariance of J and K, one has
immediately that s € JK. Now, consider the case in which as ¢ J
and as ¢ K:

as € JK

{s = uv}
Ju,v € A% : (au € J) A (v € K) A (as = auv)
= {invariant(J)}
(we J)A(veEK)

{s = uv}

sec JK.

The proof for (sa € JK) = (s € JK) follows similarly. The shift
invariance of JK follows from these two facts.

4. To prove: (invariant(J)) = (invariant(J?)).

as € JB

= {definition of ()}
sfa e J

= {invariant(L)}
sfelg

= {definition of ()}
se JE

The proof for (sa € J) = (s € J%) follows similarly. The shift
invariance of J% follows from these two facts.

5. To prove: (invariant(J)) = (tnvartant(J*)).
This fact follows directly from items (1) and (3) by observing that
J*=U;—y o J where J' = J ... J.
? — p—

i terms

Q.E.D.
As Example 4.1 illustrates, shift invariance is not preserved under com-
plementation.

Example 4.1 Let A = {a} and K = {¢,a}. The complement of K in A*
contains aa but not a; hence, the complement is not shift invariant.

13

Lemma 4.1 gives the characteristic that, for invariant languages, all the
substrings of any string in the language are also in the language.

Lemma 4.1
For language L C A*:
invariant(L) = (Vs € A" : s € L = sub(s) C L).

Proof:
=
Assume that L is not invariant.
—tnvariant(L)
= {definition of tnvariant(L)}
Joce ANse A :(ase LVsae L)ANs¢ L
= {definition of sub(-)}
sublas) € L.
This last implication provides the contrapositive needed to complete the
proof.
=
invariant(L)

{definition of tnvariant(L)}
Va,s:a € ANs€E A :ase€ L =s€eL

Vn:(Va,s:a€ ANs€ AN |s|=n:(as€LVsa€L)=sel)
= {induction on | s |}
Vn:(Va,s:a € ANs € AN |s|=n:as € L = sublas) C L).
This last implication follows by a simple induction on the length of s and
using Lemma 2.2.
Q.E.D.

By adding enough of the appropriate strings, any set can be made shift
invariant. Let the operator (°!) denote the operation of adding enough
strings to a set to make that set shift invariant.

Definition 4.2 For language K C A*, we define K°! as the set of strings
which are substrings of some string in K, i.e.

K5 = U sub(s).

seK

14

The relation between K, K°!, and other shift invariant languages con-
taining K is given by Lemma 4.2.

Lemma 4.2

For language K C A*, K*! is the smallest shift invariant set contain-
ing IK.

Proof:
We must show that if L is any shift invariant language which contains K,
then K°' C L.

s e K51

{definition of (1)}
Ju,v € A%t usv € K

= {K C L}
Ju,v € At usv € L

= {invariant(L)}
s e L.

Q.E.D.
As a result of Lemma 4.2, K°' is called the shift invariant superlanguage
of K.

Theorem 4.2 gives some of the properties of the (°!) operator, such as
distribution over union, monotonicity, and idempotency.

Theorem 4.2
Let K C A~
LUK = UES)
2. K, C K, = K’ C K1
3.(N; KT C (BT
4. (K515 = K51

Proof:

15

1. To prove: (U, K;)*T = J,(K?T).

s € (UZ I&’Z’)SI

{definition of (1)}
Ju,v € A% : (usv € U; I;)

{property of union}
37 : Ju,v € A" : (usv € Kj)

{definition of (1)}

dj:s€ K]SI

{property of union}
S € UZ'(IX’ZSI)

2. To prove: K; C Ky = KT C K51,

K, C K,

{property of union and complement}
Ky =K, U(Ky\ Ky)
= {(®°1) distribute over union}
K31 = K51 U (Ko \ Kp)°t

{property of union}

KT C K31

3. To prove: (N; K:)°T CN,(K?PT).

2 ﬂZ K, C K;
= {monotonicity of (°1)}
2 (ﬂZ I&’Z’)SI C (I&’Z’)Sl
{property of intersection}

(N KT CNu(K)ST

4. To prove: (K1) = K51,

This fact follows directly from the fact that, for any language L, L1
is the smallest shift invariant language which contains L.

Q.E.D.
Note that the (°) operator does not strictly distribute over intersection as
seen in Example 4.2.

16

Example 4.2 Let languages K; and K, each have a single string, iy =
{abc} and K, = {bac}. We have that K! = {a,b,c,ab,be, abc} and that
K5T = {b,a,c,ba,ac, bac}. Hence, (N; K;)*! = 0 and N,(K1) = {a,b,c}.

And, as shown in Example 4.3, (°1) does not distribute over concatena-
tion.

Example 4.3 Let languages K; and K, each have a single string, iy =
{abc} and K, = {bac}. Observe that bb € ((K;)°1)((K;)") but that bb ¢

(K, K,)"1. Hence, (1) does not distribute over concatenation.

Instead of adding enough strings to a set to make it shift invariant, we
can delete strings until the remaining set is shift invariant.

Definition 4.3 For language I C A*, we define Kg; as the set of all
strings s € K such that all substrings of s are also in K, i.e.

Ksr ={t € K | sub(t) C K}.
Lemma 4.3

For language K C A*, Kgy is the largest shift invariant set contained
in K.

Proof:
We must show that if L is any shift invariant language which is contained
in K, then L C Kgj.

s€ L

{invariant(L)}
sub(s) C L
= {L C K}
sub(s) C K

{definition of (s7)}
s € Kgi.

Q.E.D.
As a result of Lemma 4.3, Kg; is called the shift invariant sublanguage of
K.

Some properties concerning the operator (sy), which are similar to those
for the (°1) operator, are given in Theorem 4.3.

17

Theorem 4.3
Let K C A~
Lo(Ni Ki)sr = Ni((F5)s1)
2. K1 C Ky = (Ky)sr € (I3)sr
3. (Ui Ki)sr 2 Ui ((K)sr)
4. (Ksr)sr = Ksi

The proof of these properties is very similar to the proofs of the prop-
erties in Theorem 4.2 and is left as an exercise.

Note that the (s7) operator does not strictly distribute over union as
seen in Example 4.4.

Example 4.4 Let languages Ky = {abec, e} and Ky = {ab,bc,a,b,c,c}. We
have that (K7)s; = {¢} and that (K3)s; = Ky. Hence, (U; K;)s; = K1 UK,
and U;((I)sr) = Ky # (I U Ks).

Example 4.5 gives the smallest shift invariant language containing and
the largest shift invariant language contained in the given language K.

Example 4.5 Let K = {abe,ab,a,b,e}. For this language, we have the

following results:
K51 = {abe, ab, be,a, b, c,c}
Ks; = {ab,a,b,e}.

The following theorem relates the concepts of a self-stabilizing machine,
shift invariance, the prefix and suffix closed sublanguages, and the (°!) and
(s1) operators.

Theorem 4.4
Let K C A*. Then the following are equivalent:
1. K is shift invariant.
2. K = K1

3. K = Kgy.

18

4. K = prered(K) and K = sufred(K).

5. K = precl(K) and K = sufel(K).

6. There exists a ssm G such that K = L(G).
Proof:

To prove: K is shift invariant = K = Kgj.
Assume K # Kgj.

Kq CK

= {K # Kg1 N\ invartant(IK)}
ds € K : (s ¢ Kgr Asub(s) C K)

= {definition of (s7)}
s € Kgy.

This last implication is the desired contradiction which completes the
proof of this part.

To prove: K is shift invariant = K = K57,

Assume K # K51,

K C K5

= {K #+ K51}
dse K1 : s ¢ K

= {definition of (°1)}
Ju,v € A%t usv € K

= {invariant(L)}
sublusv) C K

= {definition of sub(-)}
s € K.

This last implication is the desired contradiction which completes the
proof of this part.

To prove: K = K°! = K is shift invariant.

This follows directly from the definitions of (°7) and shift invariance.

19

To prove: K = Kg; = K 1is shift invariant.

This follows directly from the definitions of (s;) and shift invariance.
To prove: (K = Kgr) = (K = precl(K) AN K = sufel(K)).

K = Kgg

{definition of (s7)}

Vs € K :sub(s) C K
{definition of sub(-)}

Vs e K (Vw <s:(we K))AVwl <sf:(w e K)))
{definition of precl(-) and suf(-)}

K =precdl(K)NK = sufel(K).

To prove: (K = Kgr) = (K = prered(K) N K = sufred(K)).
This part follows from the previous part by observing that:
(K =precl(K)) = (K = prered(K)) and

(K =sufe(K)) = (K = sufred(K)).

Both of these equivalences follow directly from the definitions of

precl(-), prered(-), sufcl(-), and sufred(-).

To prove: (There exists a ssm G such that K = L(G)) = (K is shift

invariant).
Let G = {Q, A, 6} be a self-stabilizing machine such that K = L(G).
For a string s € A*, we write s = $185...58,, where | s |= n and
s; € A.
§=8182...5, \Ns € L(G)
= {definition of L(G)}
d¢,¢' € Q : (¢’ =6(q, 1) N6(¢,s2...8,)!)
= {definition of 6(-,-)}

Jue A iu=355...5,): (s;u €)= (ue).

The proof for Jv € A* : v = 51...8,-1 : (vs, € K) = (v € K) is
similar. The shift invariance of I follows from these two facts.

20

To prove: (K is shift invariant) = (there exists a ssm G such that K =
L(@)),
We construct a self-stabilizing machine G = {Q, A, 6} which satisfies
K = L(G).

Define Q = U,cx sub(s).

Hence, for each substring, a different state is defined.
Define the symbol set to be the same used to specify K.
For the transition function, define 6(q,0) = ¢/, where

for ¢ = (0y...0,-1) and s € K such that s = 0y...0,_10,
we have ¢’ = (s).
Otherwise, 6(¢,0) is not defined.

From the construction of the state space, which might be infinite, and
the transitions, it is clear that K = L(G).

Q.E.D.

Lemma 4.4 combined with Theorem 4.4 provides a procedure for calcu-
lating the language K¢y for any language K. This lemma shows that the
prefix closed subset of a language, which is then further reduced so that
the resulting set is suffix closed, is still prefix closed.

Lemma 4.4

If L € A, K = prered(L), and M = sufred(K), then M =
prered(M).

Proof:

21

Assume M is not prefix closed.

M # precl(M)

{property of precl(-)}
dseM:(FH<s:t& M)

= {prered(K) = K}
te K\ M
= {sufred(M)= M}
I () <thAY € K)
= {prered(K) = K}
Ju,v: (s =ut'v At'v € K)
= {M C K A sufred(M) = M}
s€ K\ M.

This last implication provides the contradiction needed to prove the result.

The following diagram gives an indication of the relationship of the
strings used in the proof of the lemma. Note that s; = #; = uy, ty = tit’l’
and sjs| = v)y|.

U v

——) | ——
ul...thl...t|t,|v1...v|v|
—_———’

T

tgM

seEM

Q.E.D.
Procedure 4.1 can be used to calculate the shift invariant sublanguage,
Ky, of any language K.

Procedure 4.1
Given language K:
Step 1. Let L = prered(K).
Step 2. Let M = sufred(L).

By Lemma 4.4, M = prered(M), and hence, by Theorem 4.4, M = Kg;.
Lemma 4.5 combined with Theorem 4.4 provides a procedure for calcu-
lating the language K°' for any language K. This lemma shows that the

22

prefix closure of a language, which is then further increased by the suffix
closure operation, is still prefix closed.

Lemma 4.5
If L C A" K =precl(L), and M = sufcl(K), then M = precl(M).

The proof of this lemma is similar to that given for Lemma 4.4.
A procedure similar to Procedure 4.1 may be given which takes as input
a language K and provides K°! as output.

Procedure 4.2
Given language K:
Step 1. Let L = precl(K).
Step 2. Let M = sufel(L).

The correctness of this procedure follows from Lemma 4.5 and Theo-
rem 4.4.

5 S-Regular Systems

With the goal of developing a general theory for shift invariant, or self-
stabilizing systems, we parallel the general development of event based
systems by considering the simplest finite state systems first. More complex
systems will be considered in future work. A self-stabilizing machine G
with a finite state space @ is denoted as a sfsm. Such systems are referred
to as sofic systems in the literature of topological dynamiecs [15, 8]. A
finite state space allows calculations concerning the system to be effectively
accomplished.

A language K is a regular language if and only if it is accepted by an
ordinary finite state machine (ofsm) [9]. We define a related concept for
self-stabilizing machines.

Definition 5.1 A language K C A* is s-regular if it is regular and shift
invariant.

23

For regular languages, a standard result is that a language K is regular
if and only if it is generated by a finite state machine [9]. We have a similar
result relating s-regular languages and self-stabilizing machines.

Theorem 5.1

A language K is s-regular if and only if it is the behavior of a finite
state self-stabilizing machine.

Proof:

Since K is s-regular, K is shift invariant and regular. Since K is regular,
there is a finite state machine which generates the strings in K. Since K is
shift invariant, any substring of a string in K is also in K. The inclusion
of these substrings provides that strings which start from any state in the
machine are also in /K. This characteristic of the language being the same
as the set of strings which start from any state in the machine denotes the
language generated by a self-stabilizing machine. Hence, there is a self-
stablizing machine which generates K. All of this reasoning also applies in
the other direction which completes the proof of this theorem.

Q.E.D.

Since unions, intersections, concatenations, and Kleene closures preserve
regularity and shift invariance, these operations also preserve s-regularity
(see Theorem 4.1 and [9]).

An advantage to restricting attention to finite state systems is that the
procedures used to calculate the shift invariant supersets and subsets can
be shown to terminate; consequently, for a language K, algorithms are
available for calculating K° and K.

Proposition 5.1

If K is a regular language, then Procedure 4.1 and Procedure 4.2
terminate for input K.

Proof:

Since K is regular, there is a finite state machine G = {Q, A, 6, qo, Qi }
such that I = L(G). Given the fsm which generates I, calculating the
prefix reduction of K takes O(] @ | x | A |) to remove all the nonfinal
states and transitions to them. Since K is regular, the prefix reduction of

24

K is also regular: let M denote this language. Since M is regular there
is a finite state machine G’ = {Q', A,¢", ¢}, Q! } such that M = L(G).
Given the fsm which generates M, calculating the suffix reduction of M
takes O(| A | 219') to reverse the machine. Since @ and Q' are both finite,
Procedure 4.1 terminates.

Since K is regular, there is a finite state machine G = {Q, A, 6, qo, Qi }
such that I = L(G). Given the fsm which generates I, calculating the
prefix closure of K takes O(| @ |) to make all states final states and calcu-
lating the suffix closure also takes O(] @ |) to add an ¢ transition from the
initial state gy to all states in order to include all suffixes in the language
generated by the machine.

Q.E.D.

An example application of Proposition 5.1 is given in Section 7.

Example 5.1 L = a*b*¢” is an example of an s-regular system. The sfsm
which generates this behavior is given in Figure 4.

a b

Figure 4: Example s-regular system.

25

6 Self-Stabilization and Controllability (or
Control Without Reset)

The standard discussion of control and languages starts with two languages,
K and L, which describe the desired and plant behavior, respectively, and
an indication of the controllable and uncontrollable events. As indicated
in Section 2.3, the common question concerns the controllability of K with
respect to L or the supremal controllable sublanguage of K with respect to
L.

The questions relevant to control and languages addressed in this paper
concern how the transient faults and a potential lack of a global reset ca-
pability in the system can affect controllability. Specifically, if there is no
reset capability for the plant, then the plant behavior of interest is actually
LT which might be larger than L. Similarly, the closed loop behavior L;
is actually represented by (L;)°! which is a superset of L;.

We make the assumption that a supervisor has access to the state iden-
tity of the plant, i.e. a supervisor can observe the current state of the
system in order to determine the correct control action.

Example 6.1 and Example 6.2 demonstrates some of the issues which
arise in connection with the control of shift invariant systems.

Example 6.1 Let I = (abe)* and L = (a(b+d)c+ buc)*, where A, = {u}.
Using the formulas given in Section 2.3, the supremal controllable sub-
language can be calculated to be

K' = (abe)”.
The shift invariant superlanguage of this K1 can be calculated to be
(KT)SI = (abe)*(a+ ab+¢e) + (beca) (b+ be+ €) + (cab)" (¢ + ca + ¢).

Since K = K, it follows that K7 = (K1)*!. Again using the formulas
given in Section 2.3, the supremal controllable sublanguage can be calcu-
lated to be

(KSI)T = (abe)*(a+ ab+) + (cab)™ (¢ + ca + ¢).

Hence, (K1) £ (K1)

26

Example 6.2 Let K = {e,a,ab,abc,be,c,b} and L = K U {bu}. In this
case, Kg; = K and (Ks7)! = {¢,a,ab, abc,c}. Note that (Ks;)! is not shift
invariant; consequently, the (1) and (s7) operators do not commute.

Considering the observations and examples above, the primary prob-
lem considered with respect to control of shift invariant systems can be
described as follows:

Problem 6.1 Given a plant and desired behavior, described by languages
L and K respectively, find a supervisor f such that (L;)°! C K.

By Lemma 4.3, Problem 6.1 is equivalent to finding a supervisor f such
that (Lf)SI C Kgj.

Proposition 6.1 The supervisor f such that L; = (Ks;)! is a solution to
Problem 6.1.

Proof:
The proof is clear from the following sequence of set inequalities and the
definition of the operators (1) and (°!):

(Lp)™ = ((Ksp)")?" € (Kgp)™ = Kos C K.

Q.E.D.
Two related problems concern the problem in which the desired behavior
is specified using multiple languages.

Problem 6.2 Given a plant and desired behaviors, described by languages
L and K; respectively, where ¢ = 1...n, find a supervisor f such that
(Lf)SI g Ui:l...nl&’i-

Proposition 6.2 The closed loop behavior which results from the union of
the separate supervisors f; created as a result of Proposition 6.1 controlling
concurrently and the closed loop behavior which results from the monolithic
union of these supervisors are the same, and, additionally, provide solutions
to Problem 6.2.

Proof:
The concurrent operation of the supervisors gives the supervisor the be-
havior Uizlmn(Lfi)SI and the union provides a supervisor with the behavior

27

(Uizlanfi)SI. The first inequality below follows from Theorem 4.2. The
second follows from Proposition 6.1.

(Uim1.n L) = Uiy (L) C Uiy W K = K.
Q.ED.

Problem 6.3 Given a plant and desired behaviors, described by languages
L and K; respectively, where ¢ = 1...n, find a supervisor f such that
(L)1 C Mimy K

Proposition 6.3 The closed loop behavior which results from the inter-
section of the separate supervisors f; created as a result of Proposition 6.1
controlling concurrently and the closed loop behavior which results from
the monolithic intersection of these supervisors provide solutions to Prob-
lem 6.3.

Proof:

The concurrent operation of the supervisors gives the supervisor the behav-
ior Ni=1..n(Ly,)SI and the intersection provides a supervisor with the behav-
ior (Ni=1..nLy,)SI. The first inequality below follows from Theorem 4.2. The
second follows from Proposition 6.1.

(Niz1. L) C iy (L) C iy W K = K.

Q.E.D.

Since the string based controllers are relatively static, as demonstrated
by Example 6.1, we might consider those supervisors which are more state
based in the sense that they have access to the current state identity in the
ssm which represents the plant.

A state based supervisor for a plant P is a map

fQ:Q—>2A

which specifies a set of enabled inputs which can be applied as a function
of the current state of the plant P.

Let M; and Mg be the machines which give the plant and desired
behavior, respectively. Consider the product of these two machines M) =
My, x My . Note that if the machine is considered as a graph, then there

28

are probably many disconnected components. (Each component may or
may not have any defined legal behaviors possible, i.e. the component
may consist of a single state; hence, in an actual implementation some
reset capability is needed to return the system to a component where legal
behavior is possible or some limits are needed on the specification of post-
fault states.)

A supervisor for this system must try to inhibit any behaviors which
are not allowed in M. Towards this end, consider the events which are
defined at each state in the plant component of the product machine and
are not defined at the desired state component. This set of events must
be disabled at that state. For example, let ¢ = (¢r,qx) be a state in the
product machine and ¢j, be the plant state component and ¢y be the desired
state component. Let v, denote the set of events defined at ¢;, and not at
qK, 1.e.

v, ={0 € A:dr(qn, o) A —=dk(qK, o)}

Any state for which v, N A, # 0} is a bad state. Let G denote the set of bad
states in the product machine. The supervisor should control the system
away from such states. In order to do this the supervisor should disable
all transitions which lead to a bad state or those transitions which lead
to states which have uncontrollable transitions defined which lead to a bad
state. The region to be avoided can be determined by calculating the region
of uncontrollable attraction for the bad states.

The region of uncontrollable attraction is related to the region of weak
attraction, as discussed in [3, 11]. This region is essentially the same as the
Zy region described in [10]. The region of uncontrollable attraction for a
specified set of states can be informally described as the set of states from
which the system will enter the set of specified states in a finite number
of transitions using uncontrolled transitions. The algorithm given below
is essentially the same one given in [3] for determining the region of weak
attraction modified to calculate the region of uncontrollable attraction.

The region of uncontrollable attraction, Y (G), for a given machine,
M ={Q, A, q}, and a specified subset of states, G C @, can be deter-
mined by the following algorithm [3]:

Algorithm 6.1

Initial Step:

29

Set Po =G and 1 = 1.
Tteration Step:
P=P_U{qeQ: Jo€ A, 8(q.0)=q € Py }.
Termination Step:

If P, =P_,,
stop and set Yp(G) = P,_q,
else
¢ =1+ 1 and goto iteration step.

This algorithm builds the region of uncontrollable attraction starting
from G. Each iteration of the algorithm adds states to the region defined
in the previous iteration. A state is added to the region of uncontrollable
attraction only if there is an uncontrollable event ¢ which describes a tran-
sition into the region defined in the previous iteration. The states in Y (G)
are well defined, as discussed in [3]. The algorithm is guaranteed to termi-
nate for finite state machines. An efficient algorithm in [11] computes the
region of uncontrollable attraction in O(|Q)[) time.

After calculating the region of uncontrollable attraction, the supervisor
must disable any transitions into Y)/(G). Note that all of these transitions
are controllable, otherwise the states would have been included in Yj(G).

Proposition 6.4 The state based supervisor, f, which enforces the rule
that transitions into Y (G) are disabled and that for each state ¢, v, de-
notes the disabled events, forms the least restrictive state based supervisor

for My and M.

Proof:
Let f denote a state based supervisor for M, and M. We must show that
the closed loop behavior allowed by f denoted by My is contained in that
for f denoted by Mj;.

This assertion is equivalent to showing that the control patterns gener-
ated by f for each state ¢, v,, are such that 7, C ~,.

Let o € «,. This definition of o provides that 6(¢,0) € YTy(G). For f
to restrict behavior to K, f must also disable this o, i.e. o € v,, in order
not to have an uncontrollable sequence which leads out of K.

Q.E.D.

30

7 Applications

Many different applications may be considered using the results given in
this paper. The specific techniques used will depend on how the system is
specified and what the goal of the design is.

If the desired behavior of the system is given as the set of “good” finite
sequences, then these sequences can be used to construct a finite semigroup
and the resultant self-stabilizing machine. As shown in [15, 8], there is an
algorithm for converting from a sofic system to a subshift of finite type
such that each of the systems has the same entropy; consequently, the
information available from the transition matrix of the homomorphic SFT
can also be used to describe the sofic system.

7.1 Self-Stabilization for Fault Tolerance

A primary application of the results of this paper is the use of the (g7)
operator to compute a self-stabilizing machine which satisfies a given gen-
eral constraint language and is fault tolerant in the sense that only legal
behaviors can occur in the computed machine. As an example of this ap-
plication we consider a specification giving the strings of legal behaviors
described by the regular language K. The general procedure is to calculate
K using Procedure 4.1, generate the sfsm which will generate Kg;, and
to use standard techniques to implement the finite state machine.

As an example, consider the specification for a power manager for a
mobile robot as given in Figure 5. The desired behavior is given by the
regular expression

K=(f+uf+uuf+uvuuf+uvuuuf) (e +u+ uu).

The objective is to design a self-stabilizing system which will implement
this behavior or some subset of it. Following Procedure 4.1, we calculate
the prefix closed subset of this language to be the regular expression

prered(I) = (f +uf +uuf) (e + u + uu).
Then we calculate the suffix closed subset of this to be the regular expression
sufred(prered(K)) = (f +uf + uuf) (e + u + uu).

31

f

f

f

Figure 5: Power controller for robot. (f = fill power reserve, u = use power
reserve. Numbers indicate percentage of power reserve left.)

Hence the desired shift invariant sublanguage Kg; is given by the regular
expression

Ksi=(f +uf+uuf)(e+u+uu).

7.2 Self-Stabilization and Controllability for Fault Tol-
erance

In some situations, the system of interest has components which can be
controlled and hence might exhibit a more fault tolerant behavior in closed
loop operation than in open loop operation.

As an example, consider two flexible manufacturing systems whose input
and output streams can be modeled by languages L1, Lowa, Linz, and
Loyiq. (See Figure 6.)

Observe that for the two machines to work correctly, one might specify
that Lyu1 N Liy2 # 0. Further if the system is to work without any stops,
the extra requirement that L, 1 C Lj, 2 1s needed.

In order for FMS; to handle faults in FMS;, any potential output

32

in1

L L.
out,1 in,2

Figure 6: Flexible Manufacturing System.

behavior of F'MS; must be included in the input behavior of F'M S, 1.e.
(Lowi1)?" C Lips.
The more restrictive condition that
(Lowi1)*" € (Lina)st

is required to handle faults in F'MS; and FMS,. Hence, for the combined
system of the two machines to handle faults, a supervisor, f;, for the first
system must be provided such that

(Lown)*") sy € (Ling)si,

and a supervisor, fs, for the second system must be provided such that

(L2)p, = (L2)s1-

If such a supervisor cannot be built, or results in a trivial closed loop
behavior, the systems may be examined to determine where the problems
are which prohibit the construction of such supervisors.

& Conclusions

We have addressed the issue of self-stabilizing systems which are those
systems which can recover from transient faults.

We have given a technique for determining when a specified system
can be implemented as a self-stabilizing system and how to calculate the

33

L
out,?2
| FMS FMS —

largest system which will satisfy the specification and be self-stabilizing.
These techniques use standard automata and language theoretic concepts
in addition to some concepts from the theory of topological dynamics.

We investigated the effects of shift invariance on the controllability of a
desired specification.

Future work consists of applying the techniques in a broader variety
of cases, considering how to simplify the description of systems which are
synchronously composed, and extensions to languages which consist of infi-
nite strings and languages more general than those described by finite state
machines.

It 1s still an open question concerning the description of a maximal
supervisor f such that for all supervisors f where (L;)%! C K we have that
Ly C L;.

Also, a primary question for further work concerns how to define the
granularity of the events for fault analysis. Example 8.1 demonstrates this
issue.

Example 8.1 Consider the behavior specified by K = ((ab)(cd)*(ab))*. If
each symbol a, b, ¢, and d are considered to be events, then K¢; = 0;
however, if each pair of symbols ab and cd is considered to be an event,

then Kg; = (ab)*.

It might be necessary to consider more “coarse” events for fault anal-
ysis. This reinterpretation of events has the effect of restricting the fault
conditions and the states from which and to which the system can go on a
fault.

9 Acknowledgements
The authors would like to thank M. Gouda and M. Stafford for beneficial
discussions concerning this research.

References

[1] M.S. Abadir and M.G. Gouda. “Self-Stabilizing Digital Circuits”.
Technical Report TR-90-10, Department of Computer Sciences, Uni-
versity of Texas at Austin, Austin, TX, April 1990.

34

2]

[10]

[11]

[12]

[13]

R.D. Brandt, V.K. Garg, R. Kumar, F. Lin, S.I. Marcus, and W.M.
Wonham. “Formulas for calculating supremal controllable and normal
sublanguages”. Systems €& Control Letters, 15:111-117, 1990.

Y. Brave and M. Heymann. “On Stabilization of Discrete Event Pro-
cesses”. Internation Journal Control, 51:1101-1117, 1990.

G.M. Brown, M.G. Gouda, and C.-L. Wu. “Token Systems that Self-
Stabilize”. IEEE Transactions on Computers, 38(6):845-852, June
1989.

C.T. Chen. Introduction to Linear System Theory. Holt, Rinehart,
and Winston, New York, NY, 1984.

E.W. Dijkstra. “Self stabilizing systems in spite of distributed control”.
Communications ACM, 17:643-644, November 1974.

E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program
Semantics. Springer-Verlag, New York, NY, 1990.

R. Fischer. “Sofic Systems and Graphs”. Monatshefte fur Mathematik,
80:179-186, 1975.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, MA. 1979.

R. Kumar, V. Garg, and S.I. Marcus. “On Supervisory Control of
Sequential Behaviors”. IEFEE Transactions on Automatic Control,
37(12):1978-1985, 1992.

R. Kumar, V.K. Garg, and S.I. Marcus. Language stability and stabi-
lizability of discrete event systems. SIAM Journal Control Optimiza-
tion, 31(5):1294-1320, September 1993.

C.M. Ozveren, A.S. Willsky, and P.J. Antsaklis. “Stability and sta-
bilizability of discrete event dynamic systems”. J. Association for
Computing Machinery, 38(3), July 1991.

W. Parry. “Intrinsic Markov Chains”. Trans. AMS, 112:55-66, 1964.

35

[14] P.J.G. Ramadge and W.M. Wonham. “The control of discrete event
systems”. Proceedings of IEEE, 77(1):81-98, January 1989.

[15] B. Weiss. “Subshifts of Finite Type and Sofic Systems”. Monatshefte
fur Mathematik, 77:462-474, 1973.

[16] S.D. Young and V.K. Garg. “On Self-Stabilizing Systems: An Ap-
proach to the Specification and Design of Fault Tolerant Systems”.
In 32" IEEE Conference on Decision and Control, San Antonio, TX,
1993.

36

