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1 IntroductionThe capability to handle arbitrary faults and startup states is a desirablefeature in any real system. A self-stabilizing system is a system which isguaranteed to converge to a legitimate state in a �nite number of transitionsand thenceforth allow only legal transitions [6, 4, 1]. This capability can beused to overcome transient faults and continue processing while retaining apreviously speci�ed legal behavior. The approach taken in this work is toconsider the entire behavior of a system and not to restrict our attention sothat only the su�xes of the behaviors are legal. Earlier work concentratedof the characterization that the su�x of a behavior would be legal aftersome �nite pre�x [6, 4, 1].The approach taken here is also related to the standard approach tostability in control theory and the stability of discrete event systems. Incontrol theory, time invariant systems are used extensively to describe sys-tem behavior. The time invariance provides a type of shift invariance withrespect to time [5]; as described in Section 4, self-stabilizing systems areinvariant with respect to shifts of the events, which can be related to a shiftin the time origin. For discrete event systems, often stability is describedin terms of a state trajectory visiting a set of states [3, 12]; the proceduresgiven in Section 4 can use the state machine representation of a system tocalculate the self-stabilizing supersets and subsets of a given behavior.Self-stabilizing systems demonstrate the interaction between computerscience, mathematics, and control theory. The computer science communityhas investigated self-stabilizing systems as a means of building systemswhich are tolerant of transient faults [6, 4, 1]. Communication protocolsare a primary example of such systems which must withstand transientfaults. The mathematics community has investigated so�c systems, whichare essentially the same as self-stabilizing systems, as the closure underhomomorphisms of subshifts of �nite type, or Markov chains [13, 15, 8].Aspects of topological dynamics concerns the study of such systems. Thecontrol systems community has investigated the stability of various systemsand is interested in designing systems which are inherently stable. Thetechniques which are used to calculate the self-stabilizing behavior for asystem are very useful for the stability analysis and design of discrete eventsystems [14, 11, 3, 12]. Such techniques determine whether a system isstable or not and can be used in the design of stable systems to provide2



the behaviors which must be removed to leave the largest subset of thebehavior which is self-stabilizing or the behaviors which must be added toprovide the smallest superset of the behavior which is self-stabilizing.In Section 2, the background material from formal language theory andcontrollability for discrete event systems is reviewed. In Section 3, theconcept of self-stabilization is discussed and the self-stabilizing machineis introduced. In Section 4, shift invariant languages are introduced alongwith the main results concerning the shift invariant sublanguage and super-language of a given language. In Section 5, s-regular systems are introducedand their relation to regular languages and shift invariant systems is given.In Section 6, the e�ects which shift invariance has on controllability fordiscrete event systems are investigated. In Section 7, some applications ofthe results in the paper are given.We use calculational style of proofs for many of our theorems. A proofthat [A � C] will be rendered in our format asA� f hint why [A � B] gB� f hint why [B � C] gC.We also allow implies ()) in the leftmost column. For a thorough treatmentof this proof format we refer interested readers to [7].2 Machines, Languages and ControlLanguages and machines provide a way of representing the behavior ofsystems, such as the automaton model of a circuit. We use this modelingtechnique to describe systems and their speci�cation.
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2.1 Machines, Languages, and ShiftsA state machine, M , is represented by a �ve tuple: M = (Q;A; �; q0; Qm),where Q = a set of states,A = a �nite set of transition labels or events,� = the transition relation, � : Q �A ! 2Q;q0 = the initial state, q0 2 Q;Qm = the marked states, Qm � Q:The transition relation � is in general a partial relation; consequently, weuse �(q; �)! to denote that the transition event � is de�ned from state q. Themarked states signify a subset of the state set which is used to determineacceptance of a given sequence of events. A sequence of events is acceptedif the machine executing the sequence stops in a marked state.A language is a set of sequences of symbols. The symbol set A is as-sociated with the events which can occur in a system. The set of �nitesequences which consist of symbols from the set A, along with the emptystring, ", is denoted by A�. A sequence s 2 A� is called a string. The lengthof a string s 2 A is denoted by j s j. A subset L � A� consisting of stringsis called a language.The standard Boolean operations of union, intersection, and comple-mentation can be applied to languages in the standard manner. Someother operations are also useful for manipulating languages. The concate-nation of two strings s; t 2 A� is denoted by st, or by s:t, with the resultbeing a single string consisting of the symbols of the �rst string s followedby the symbols of the second string t. For example, if s = ab and t = cd,then st = abcd. The Kleene closure of a language L � A� is denoted byL� and consists of the set of �nite concatenations of strings from L [ f"g.For example, if L = fag, then L� = f"; a; aa; aaa; . . .g. Note that the de-scription of A� given above is consistent with this de�nition. The reverseof a language L is denoted by LR and is obtained by reversing each stringin the language. For example, if L = fabg, then LR = fbag. The (left)shift operator applied to a string shifts each symbol to the left and throwsaway the symbol in the �rst or head position and is denoted by �l(s) wheres 2 A�. For example, if s 2 A� and s = abc, then �l(s) = bc. The rightshift operator applied to a string shifts each symbol to the right and throwsaway the symbol in the last or tail position and is denoted by �r(s) where4



s 2 A�. For example, if s 2 A� and s = abc, then �r(s) = ab. Usually, wediscuss the left shift operator and use �(s) to denote the left shift operatoracting on string s.In the following development, the concept of combining two �nite statemachines to create a single machine, the product machine, is useful. Theproduct machine is a single machine which can be used to represent thesynchronous behavior of two original machines. If M1 = fQ1; A; �1; q1;0gand M2 = fQ2; A; �2; q2;0g are two machines with the same event set, A,then the product of the two machines is denotedM1kM2 = (Z;A; �k; z0)where, Z = Q1 �Q2 and z0 = (q1;0; q2;0) 2 Q1 �Q2;�k((q1; q2); �)!, �1(q1; �)! ^ �2(q2; �)!;�k((q1; q2); �) = ( (�1(q1; �); �2(q2; �)) if de�nedunde�ned otherwise.Note that this is not the most general type of product composition since werequire that the event sets be the same; however, this de�nition is adequatefor our purposes. The language generated by the product machine has aspeci�c relation to the languages of the machines from which it is composed.If Mk =M1kM2 then L(Mk) = L(M1) \ L(M2):These relations follow directly from the de�nition of the transition functionof the product machine.2.2 Pre�xes, Su�xes, and SubstringsA string u 2 A� is said to be a pre�x of string s 2 A� if there is anotherstring v 2 A� such that s = uv. We denote that u is a pre�x of s by u � s.The pre�x closure of a language L � A�, denoted precl(L), is given byprecl(L) = fu 2 A� j 9v 2 A� : uv 2 Lg:5



The pre�x closed subset, or sublanguage, of a given language L, denotedby prered(L), as in pre�x reduction, is given byprered(L) = fu 2 L j 8v � u : v 2 Lg:prered(L) and precl(L) are related byprered(L) � L � precl(L):Similarly, one can de�ne su�xes, su�x closure, and the su�x closedsublanguage by considering the reverse of the original language. Hence,u is a su�x of string s if uR � sR. The su�x closure of L, denoted bysufcl(L), is de�ned bysufcl(L) = fu 2 A� j 9v 2 A� : uRvR 2 LRg:And the su�x closed sublanguage of L, denoted by sufred(L), is given bysufred(L) = fu 2 L j 8vR � uR : vR 2 LRg:sufred(L) and sufcl(L) are related by,sufred(L) � L � sufcl(L):The set of substrings of a given string s 2 A� is speci�ed by sub(s) andde�ned by sub(s) = ft 2 A� j 9u; v 2 A� : s = utvg:Lemma 2.1 demonstrates a monotonicity property for sub().Lemma 2.1Let s; t 2 A�. s 2 sub(t) ) sub(s) � sub(t):Proof:The proof of this is obvious and follows from the de�nition of sub(t).Q.E.D.Lemma 2.2 demonstrates that the sub() function can be constructed byconsidering the pre�x and su�x closures in a recursive manner.6



Lemma 2.2Let s 2 A�, and a 2 A.1. sub(sa) = sub(s) [ sufcl(s):a,2. sub(as) = sub(s) [ a:precl(s).Proof:The proof of this lemma is obvious and follows from the fact that all thesubstrings of sa, or as, consist of the substrings of s and the su�xes followedby a, or a followed by the pre�xes of s.Q.E.D.A more complete description of machines and languages can be foundin [9].2.3 Controllability for LanguagesIn many systems, the event set, A, can be partitioned into two sets: Acand Au representing controllable and uncontrollable events, respectively. Alanguage K is said to be controllable with respect to language L ifprecl(K)Au \ L � precl(K):With the concept of controllable and uncontrollable events, one de�nes asupervisor for a plant which a�ects the controllable events which a plantexecutes based on some speci�ed constraints. A supervisor for a plant Pwhere L = L(P ) is a map f : L! 2Awhich speci�es a set of enabled inputs which can be applied as a function ofthe string of previously generated events in L. The closed loop system con-sisting of a supervisor, f , and plant, P , has the �nite closed loop behaviordenoted by Lf , and de�ned as follows:1. " 2 Lf ;2. w� 2 Lf if and only if w 2 Lf ; � 2 f(w); and w� 2 precl(L):7



Note that the de�nition of Lf implies that Lf � precl(L) and thatprecl(Lf ) = Lf [14].Often, one obtains that a language K is not controllable with respect tolanguage L, and the question arises as to what is the largest sublanguage ofK which is controllable with respect to L. As shown in [2], the formula forthe supremal controllable sublanguage of K, denoted by K", with respectto L is given by K" = K � ((L �K)=Au)A�:As indicated by the formula, the controllable sublanguage is constructedfrom the original desired behavior, K, by subtracting those strings whichlead to behaviors which cannot be controlled to remain in K.A more complete introduction to the control of discrete event systemscan be found in [14].3 Self-StabilizationA self-stabilizing machine (ssm) is one which can execute only legal stringsregardless of the initial or current state of the system.De�nition 3.1 G is a self-stabilizing state machine if G = (Q;A; �) whereQ is a set of states, A is a �nite set of events, and � : Q� (A [ f"g) ! 2Q.The transition relation � can be extended in the standard manner tohandle strings, i.e. � can be extended to � : Q � A� ! 2Q by �(q; s�) =Sq02�(q;s) �(q0; �) where s 2 A� and � 2 A.A string s 2 A� is in the behavior of a ssm G = (Q;A; �) if and onlyif there exists a q 2 Q such that �(q; s)!. Hence, the language of a ssm G,denoted by L(G), is de�ned asL(G) = [q2Qfs 2 A� j �(q; s)!g:The primary characteristic of a self-stabilizing system is that the stringsof events which are generated by the system remain legal, or valid, regard-less of the initial state of the system.Example 3.1 Suppose we need a controller for determining the loadingorder of cargo onto a pallet subject to the constraint that all packages of8



type A precede all packages of type B, which in turn precede all packagesof type C. Figure 1 gives the self-stabilizing machine which enforces thepacking constraint.
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Figure 1: Pallet Packing Controller. (A means load type A, similarly forB and C.)The system in Example 3.1 is clearly a self-stabilizing machine by in-spection of the machine in Figure 1.Example 3.2 A system which insures that there only an even number of1's occur between any pair of 0's is given in Figure 2.
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Under the interpretation that a new string is started any time the systemstarts operating, either at startup or after a fault, the system in Example 3.2is also clearly self-stabilizing. (See Section 4.1 for further discussion of thisapproach to fault tolerance.)One technique of describing the desired system behavior is to give a listof behaviors which are not to occur.Example 3.3 Consider a system which is not to allow either three con-secutive zero's or one's. Figure 3 gives a machine which generates such asystem.
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10Figure 3: System which disallows three zero's or one's.4 Shift InvarianceEach application of the shift operator on a string can be viewed as theoccurrence of the event which is represented by the symbol at the start, orhead of the string. This symbol can also be viewed as the occurrence of theevent at the current time. The motivation for studying shift invariant setsis that it would be nice to have a description of the system behavior whichdoes not depend on the de�nition of the start symbol or time.10



4.1 Relation of Shift Invariance to Transient FaultsA transient fault is a fault which changes the state of the system but doesnot change the structure of the system. There are at least two approachesto specifying a fault tolerant system. In both approaches the system isassumed to be operating normally when a fault occurs.In one approach, the concatenation of the behavior before and after thefault must remain within the speci�cation. It is easy to show that in theworst case this approach requires the speci�cation to include (AK)� whereAK is the set of events which appear in strings in the speci�cation K.In the second approach, which is the one taken in this paper, \time" isassume to start over after each fault. Hence, the strings for considerationas to whether they meet the speci�cation are those which can occur aftera fault, i.e. starting from any state in the system. Note that the concate-nation of the strings on both \sides" of a fault are not considered as towhether they satisfy the speci�cation or not, only those occurring after thefault are considered.4.2 Shift Invariant TheoryDe�nition 4.1 A language K � A� is said to be shift invariant if8a; s : (a 2 A) ^ (s 2 A�) : ((as 2 K) _ (sa 2 K))) (s 2 K):The predicate invariant() is used to denote that a set is shift invariant.Hence, invariant(K) denotes that a language K is shift invariant.Theorem 4.1 demonstrates that shift invariance is preserved under somestandard operations such as union, intersection, reversal, concatenation,and Kleene closure. Since shift invariant characteristics are preserved underthese operations, large shift invariant systems may be built by combiningsmaller ones in order to get the desired behavior.Theorem 4.1Let J;K;L � A�.1. (8i 2 � : invariant(Ki)) ) (invariant(Si(Ki))); where � is anynonempty index set. 11



2. (8i 2 � : invariant(Ki)) ) (invariant(Ti(Ki))); where � is anynonempty index set.3. (invariant(J) ^ invariant(K)) ) invariant(J:K):4. (invariant(J)) ) (invariant(JR)):5. (invariant(J)) ) (invariant(J�)):Proof:It is clear that the empty string " is an element of all shift invariant lan-guages. Hence, it is also clear that " is in the union, intersection, con-catenation, reversal, and Kleene closure of those languages. Hence, we willconsider only nonempty strings in the following proofs of the di�erent partsof the theorem.In the following proof, s denotes a string, s 2 A�, and a denotes asymbol, a 2 A.1. To prove: (8i 2 � : invariant(Ki)) ) (invariant(Si(Ki))); where �is any nonempty index set.as 2 (SiKi)� fproperty of uniong9j : (as 2 Kj)) f8i : invariant(Ki)g9j : (s 2 Kj)� fproperty of uniongs 2 SiKi:The proof for (sa 2 SiKi) ) (s 2 SiKi) follows similarly. Fromthese two facts, it follows that SiKi is invariant.2. To prove: (8i 2 � : invariant(Ki)) ) (invariant(Ti(Ki))); where �is any nonempty index set.This proof is similar to that given for union and is left as an exercise.3. To prove: (invariant(J) ^ invariant(K)) ) invariant(J:K):12



If as 2 J or as 2 K, then, by the invariance of J and K, one hasimmediately that s 2 JK. Now, consider the case in which as 62 Jand as 62 K: as 2 JK� fs = uvg9u; v 2 A� : (au 2 J) ^ (v 2 K) ^ (as = auv)) finvariant(J)g(u 2 J) ^ (v 2 K)� fs = uvgs 2 JK:The proof for (sa 2 JK) ) (s 2 JK) follows similarly. The shiftinvariance of JK follows from these two facts.4. To prove: (invariant(J)) ) (invariant(JR)):as 2 JR� fde�nition of (R)gsRa 2 J) finvariant(L)gsR 2 J� fde�nition of (R)gs 2 JR:The proof for (sa 2 JR) ) (s 2 JR) follows similarly. The shiftinvariance of JR follows from these two facts.5. To prove: (invariant(J)) ) (invariant(J�)):This fact follows directly from items (1) and (3) by observing thatJ� = Si=1;1 J i where J i = J . . .J| {z }i terms.Q.E.D.As Example 4.1 illustrates, shift invariance is not preserved under com-plementation.Example 4.1 Let A = fag and K = f"; ag. The complement of K in A�contains aa but not a; hence, the complement is not shift invariant.13



Lemma 4.1 gives the characteristic that, for invariant languages, all thesubstrings of any string in the language are also in the language.Lemma 4.1For language L � A�:invariant(L) � (8s 2 A� : s 2 L) sub(s) � L):Proof:(=:Assume that L is not invariant.:invariant(L)) fde�nition of invariant(L)g9a 2 A ^ s 2 A� : (as 2 L _ sa 2 L) ^ s 62 L) fde�nition of sub(�)gsub(as) 6� L:This last implication provides the contrapositive needed to complete theproof.=): invariant(L)� fde�nition of invariant(L)g8a; s : a 2 A ^ s 2 A� : as 2 L) s 2 L� 8n : (8a; s : a 2 A ^ s 2 A�^ j s j= n : (as 2 L _ sa 2 L)) s 2 L)) finduction on j s jg8n : (8a; s : a 2 A ^ s 2 A�^ j s j= n : as 2 L) sub(as) � L):This last implication follows by a simple induction on the length of s andusing Lemma 2.2.Q.E.D.By adding enough of the appropriate strings, any set can be made shiftinvariant. Let the operator (SI ) denote the operation of adding enoughstrings to a set to make that set shift invariant.De�nition 4.2 For language K � A�, we de�ne KSI as the set of stringswhich are substrings of some string in K, i.e.KSI = [s2K sub(s):14



The relation between K, KSI , and other shift invariant languages con-taining K is given by Lemma 4.2.Lemma 4.2For language K � A�, KSI is the smallest shift invariant set contain-ing K.Proof:We must show that if L is any shift invariant language which contains K,then KSI � L. s 2 KSI� fde�nition of (SI )g9u; v 2 A� : usv 2 K) fK � Lg9u; v 2 A� : usv 2 L� finvariant(L)gs 2 L:Q.E.D.As a result of Lemma 4.2, KSI is called the shift invariant superlanguageof K.Theorem 4.2 gives some of the properties of the (SI ) operator, such asdistribution over union, monotonicity, and idempotency.Theorem 4.2Let K � A�.1. (SiKi)SI = Si(KSIi )2. K1 � K2 ) KSI1 � KSI23. (TiKi)SI � Ti(KSIi )4. (KSI)SI = KSIProof: 15



1. To prove: (SiKi)SI = Si(KSIi ).s 2 (SiKi)SI� fde�nition of (SI )g9u; v 2 A� : (usv 2 SiKi)� fproperty of uniong9j : 9u; v 2 A� : (usv 2 Kj)� fde�nition of (SI )g9j : s 2 KSIj� fproperty of uniongs 2 Si(KSIi )2. To prove: K1 � K2 ) KSI1 � KSI2 .K1 � K2� fproperty of union and complementgK2 = K1 [ (K2 nK1)) f(SI ) distribute over uniongKSI2 = KSI2 [ (K2 nK1)SI� fproperty of uniongKSI1 � KSI2 :3. To prove: (TiKi)SI � Ti(KSIi ).8i : TiKi � Ki) fmonotonicity of (SI )g8i : (TiKi)SI � (Ki)SI� fproperty of intersectiong(TiKi)SI � Ti(Ki)SI4. To prove: (KSI)SI = KSI .This fact follows directly from the fact that, for any language L, LSIis the smallest shift invariant language which contains L.Q.E.D.Note that the (SI) operator does not strictly distribute over intersection asseen in Example 4.2. 16



Example 4.2 Let languages K1 and K2 each have a single string, K1 =fabcg and K2 = fbacg. We have that KSI1 = fa; b; c; ab; bc; abcg and thatKSI2 = fb; a; c; ba; ac; bacg. Hence, (TiKi)SI = ; and Ti(KSIi ) = fa; b; cg.And, as shown in Example 4.3, (SI) does not distribute over concatena-tion.Example 4.3 Let languages K1 and K2 each have a single string, K1 =fabcg and K2 = fbacg. Observe that bb 2 ((K1)SI )((K2)SI ) but that bb 62(K1K2)SI . Hence, (SI ) does not distribute over concatenation.Instead of adding enough strings to a set to make it shift invariant, wecan delete strings until the remaining set is shift invariant.De�nition 4.3 For language K � A�, we de�ne KSI as the set of allstrings s 2 K such that all substrings of s are also in K, i.e.KSI = ft 2 K j sub(t) � Kg:Lemma 4.3For language K � A�, KSI is the largest shift invariant set containedin K.Proof:We must show that if L is any shift invariant language which is containedin K, then L � KSI . s 2 L� finvariant(L)gsub(s) � L) fL � Kgsub(s) � K� fde�nition of (SI )gs 2 KSI :Q.E.D.As a result of Lemma 4.3, KSI is called the shift invariant sublanguage ofK. Some properties concerning the operator (SI), which are similar to thosefor the (SI ) operator, are given in Theorem 4.3.17



Theorem 4.3Let K � A�.1. (TiKi)SI = Ti((Ki)SI )2. K1 � K2 ) (K1)SI � (K2)SI3. (SiKi)SI � Si((Ki)SI )4. (KSI)SI = KSIThe proof of these properties is very similar to the proofs of the prop-erties in Theorem 4.2 and is left as an exercise.Note that the (SI ) operator does not strictly distribute over union asseen in Example 4.4.Example 4.4 Let languagesK1 = fabc; "g andK2 = fab; bc; a; b; c; "g. Wehave that (K1)SI = f"g and that (K2)SI = K2. Hence, (SiKi)SI = K1[K2and Si((Ki)SI) = K2 6= (K1 [K2).Example 4.5 gives the smallest shift invariant language containing andthe largest shift invariant language contained in the given language K.Example 4.5 Let K = fabc; ab; a; b; "g. For this language, we have thefollowing results: KSI = fabc; ab; bc; a; b; c; "gKSI = fab; a; b; "g:The following theorem relates the concepts of a self-stabilizing machine,shift invariance, the pre�x and su�x closed sublanguages, and the (SI ) and(SI ) operators.Theorem 4.4Let K � A�. Then the following are equivalent:1. K is shift invariant.2. K = KSI .3. K = KSI . 18



4. K = prered(K) and K = sufred(K).5. K = precl(K) and K = sufcl(K).6. There exists a ssm G such that K = L(G).Proof:To prove: K is shift invariant ) K = KSI .Assume K 6= KSI .KSI � K) fK 6= KSI ^ invariant(K)g9s 2 K : (s 62 KSI ^ sub(s) � K)) fde�nition of (SI )gs 2 KSI :This last implication is the desired contradiction which completes theproof of this part.To prove: K is shift invariant ) K = KSI .Assume K 6= KSI .K � KSI) fK 6= KSIg9s 2 KSI : s 62 K) fde�nition of (SI)g9u; v 2 A� : usv 2 K) finvariant(L)gsub(usv) � K) fde�nition of sub(�)gs 2 K:This last implication is the desired contradiction which completes theproof of this part.To prove: K = KSI ) K is shift invariant.This follows directly from the de�nitions of (SI ) and shift invariance.19



To prove: K = KSI ) K is shift invariant.This follows directly from the de�nitions of (SI ) and shift invariance.To prove: (K = KSI) � (K = precl(K) ^K = sufcl(K)).K = KSI� fde�nition of (SI )g8s 2 K : sub(s) � K� fde�nition of sub(�)g8s 2 K : ((8w � s : (w 2 K)) ^ (8wR � sR : (w 2 K)))� fde�nition of precl(�) and suf(�)gK = precl(K) ^K = sufcl(K):To prove: (K = KSI) � (K = prered(K) ^K = sufred(K)).This part follows from the previous part by observing that:(K = precl(K)) � (K = prered(K)) and(K = sufcl(K)) � (K = sufred(K)):Both of these equivalences follow directly from the de�nitions ofprecl(�), prered(�), sufcl(�), and sufred(�).To prove: (There exists a ssm G such that K = L(G)) ) (K is shiftinvariant).Let G = fQ;A; �g be a self-stabilizing machine such that K = L(G).For a string s 2 A�, we write s = s1s2 . . . sn, where j s j= n andsi 2 A. s = s1s2 . . . sn ^ s 2 L(G)) fde�nition of L(G)g9q; q0 2 Q : (q0 = �(q; s1) ^ �(q0; s2 . . . sn)!)) fde�nition of �(�; �)g9u 2 A� : u = s2 . . . sn) : (s1u 2 K)) (u 2 K):The proof for 9v 2 A� : v = s1 . . . sn�1 : (vsn 2 K) ) (v 2 K) issimilar. The shift invariance of K follows from these two facts.20



To prove: (K is shift invariant) ) (there exists a ssm G such that K =L(G)).We construct a self-stabilizing machine G = fQ;A; �g which satis�esK = L(G).De�ne Q = Ss2K sub(s).Hence, for each substring, a di�erent state is de�ned.De�ne the symbol set to be the same used to specify K.For the transition function, de�ne �(q; �) = q0, wherefor q = (�1 . . . �n�1) and s 2 K such that s = �1 . . . �n�1�,we have q0 = (s).Otherwise, �(q; �) is not de�ned.From the construction of the state space, which might be in�nite, andthe transitions, it is clear that K = L(G).Q.E.D.Lemma 4.4 combined with Theorem 4.4 provides a procedure for calcu-lating the language KSI for any language K. This lemma shows that thepre�x closed subset of a language, which is then further reduced so thatthe resulting set is su�x closed, is still pre�x closed.Lemma 4.4If L � A�, K = prered(L), and M = sufred(K), then M =prered(M).Proof:
21



Assume M is not pre�x closed.M 6= precl(M)� fproperty of precl(�)g9s 2M : (9t � s : t 62M)) fprered(K) = Kgt 2 K nM) fsufred(M) =Mg9t0 : ((t0)R � tR ^ t0 62 K)) fprered(K) = Kg9u; v : (s = ut0v ^ t0v 62 K)) fM � K ^ sufred(M) = Mgs 2 K nM:This last implication provides the contradiction needed to prove the result.The following diagram gives an indication of the relationship of thestrings used in the proof of the lemma. Note that s1 = t1 = u1, tjtj = t0jt0j,and sjsj = vjvj. uz }| {u1 . . . ujuj t01 . . . t0jt0j| {z }t0 62K| {z }t62M vz }| {v1 . . . vjvj| {z }s2MQ.E.D.Procedure 4.1 can be used to calculate the shift invariant sublanguage,KSI , of any language K.Procedure 4.1Given language K:Step 1. Let L = prered(K).Step 2. Let M = sufred(L).By Lemma 4.4,M = prered(M ), and hence, by Theorem 4.4,M = KSI .Lemma 4.5 combined with Theorem 4.4 provides a procedure for calcu-lating the language KSI for any language K. This lemma shows that the22



pre�x closure of a language, which is then further increased by the su�xclosure operation, is still pre�x closed.Lemma 4.5If L � A�, K = precl(L), and M = sufcl(K), then M = precl(M).The proof of this lemma is similar to that given for Lemma 4.4.A procedure similar to Procedure 4.1 may be given which takes as inputa language K and provides KSI as output.Procedure 4.2Given language K:Step 1. Let L = precl(K).Step 2. Let M = sufcl(L).The correctness of this procedure follows from Lemma 4.5 and Theo-rem 4.4.5 S-Regular SystemsWith the goal of developing a general theory for shift invariant, or self-stabilizing systems, we parallel the general development of event basedsystems by considering the simplest �nite state systems �rst. More complexsystems will be considered in future work. A self-stabilizing machine Gwith a �nite state space Q is denoted as a sfsm. Such systems are referredto as so�c systems in the literature of topological dynamics [15, 8]. A�nite state space allows calculations concerning the system to be e�ectivelyaccomplished.A language K is a regular language if and only if it is accepted by anordinary �nite state machine (ofsm) [9]. We de�ne a related concept forself-stabilizing machines.De�nition 5.1 A language K � A� is s-regular if it is regular and shiftinvariant. 23



For regular languages, a standard result is that a language K is regularif and only if it is generated by a �nite state machine [9]. We have a similarresult relating s-regular languages and self-stabilizing machines.Theorem 5.1A language K is s-regular if and only if it is the behavior of a �nitestate self-stabilizing machine.Proof:SinceK is s-regular,K is shift invariant and regular. Since K is regular,there is a �nite state machine which generates the strings in K. Since K isshift invariant, any substring of a string in K is also in K. The inclusionof these substrings provides that strings which start from any state in themachine are also in K. This characteristic of the language being the sameas the set of strings which start from any state in the machine denotes thelanguage generated by a self-stabilizing machine. Hence, there is a self-stablizing machine which generates K. All of this reasoning also applies inthe other direction which completes the proof of this theorem.Q.E.D.Since unions, intersections, concatenations, and Kleene closures preserveregularity and shift invariance, these operations also preserve s-regularity(see Theorem 4.1 and [9]).An advantage to restricting attention to �nite state systems is that theprocedures used to calculate the shift invariant supersets and subsets canbe shown to terminate; consequently, for a language K, algorithms areavailable for calculating KSI and KSI .Proposition 5.1If K is a regular language, then Procedure 4.1 and Procedure 4.2terminate for input K.Proof:Since K is regular, there is a �nite state machine G = fQ;A; �; q0; Qmgsuch that K = L(G). Given the fsm which generates K, calculating thepre�x reduction of K takes O(j Q j � j A j) to remove all the non�nalstates and transitions to them. Since K is regular, the pre�x reduction of24



K is also regular: let M denote this language. Since M is regular thereis a �nite state machine G0 = fQ0; A; �0; q00; Q0mg such that M = L(G0).Given the fsm which generates M , calculating the su�x reduction of Mtakes O(j A j 2jQ0j) to reverse the machine. Since Q and Q0 are both �nite,Procedure 4.1 terminates.Since K is regular, there is a �nite state machine G = fQ;A; �; q0; Qmgsuch that K = L(G). Given the fsm which generates K, calculating thepre�x closure of K takes O(j Q j) to make all states �nal states and calcu-lating the su�x closure also takes O(j Q j) to add an " transition from theinitial state q0 to all states in order to include all su�xes in the languagegenerated by the machine.Q.E.D.An example application of Proposition 5.1 is given in Section 7.Example 5.1 L = a�b�c� is an example of an s-regular system. The sfsmwhich generates this behavior is given in Figure 4.
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6 Self-Stabilization and Controllability (orControl Without Reset)The standard discussion of control and languages starts with two languages,K and L, which describe the desired and plant behavior, respectively, andan indication of the controllable and uncontrollable events. As indicatedin Section 2.3, the common question concerns the controllability of K withrespect to L or the supremal controllable sublanguage of K with respect toL. The questions relevant to control and languages addressed in this paperconcern how the transient faults and a potential lack of a global reset ca-pability in the system can a�ect controllability. Speci�cally, if there is noreset capability for the plant, then the plant behavior of interest is actuallyLSI which might be larger than L. Similarly, the closed loop behavior Lfis actually represented by (Lf )SI which is a superset of Lf .We make the assumption that a supervisor has access to the state iden-tity of the plant, i.e. a supervisor can observe the current state of thesystem in order to determine the correct control action.Example 6.1 and Example 6.2 demonstrates some of the issues whicharise in connection with the control of shift invariant systems.Example 6.1 Let K = (abc)� and L = (a(b+d)c+buc)�, where Au = fug.Using the formulas given in Section 2.3, the supremal controllable sub-language can be calculated to beK" = (abc)�:The shift invariant superlanguage of this K" can be calculated to be(K")SI = (abc)�(a + ab + ") + (bca)�(b+ bc+ ") + (cab)�(c+ ca+ "):Since K = K", it follows that KSI = (K")SI . Again using the formulasgiven in Section 2.3, the supremal controllable sublanguage can be calcu-lated to be (KSI)" = (abc)�(a+ ab + ") + (cab)�(c+ ca+ "):Hence, (K")SI 6= (KSI)". 26



Example 6.2 Let K = f"; a; ab; abc; bc; c; bg and L = K [ fbug. In thiscase, KSI = K and (KSI )" = f"; a; ab; abc; cg. Note that (KSI )" is not shiftinvariant; consequently, the (") and (SI ) operators do not commute.Considering the observations and examples above, the primary prob-lem considered with respect to control of shift invariant systems can bedescribed as follows:Problem 6.1 Given a plant and desired behavior, described by languagesL and K respectively, �nd a supervisor f such that (Lf )SI � K.By Lemma 4.3, Problem 6.1 is equivalent to �nding a supervisor f suchthat (Lf )SI � KSI .Proposition 6.1 The supervisor f such that Lf = (KSI )" is a solution toProblem 6.1.Proof:The proof is clear from the following sequence of set inequalities and thede�nition of the operators (") and (SI ):(Lf )SI = ((KSI )")SI � (KSI )SI = KSI � K:Q.E.D.Two related problems concern the problem in which the desired behavioris speci�ed using multiple languages.Problem 6.2 Given a plant and desired behaviors, described by languagesL and Ki respectively, where i = 1 . . .n, �nd a supervisor f such that(Lf )SI � [i=1...nKi.Proposition 6.2 The closed loop behavior which results from the union ofthe separate supervisors fi created as a result of Proposition 6.1 controllingconcurrently and the closed loop behavior which results from the monolithicunion of these supervisors are the same, and, additionally, provide solutionsto Problem 6.2.Proof:The concurrent operation of the supervisors gives the supervisor the be-havior [i=1...n(Lfi)SI and the union provides a supervisor with the behavior27



([i=1...nLfi)SI . The �rst inequality below follows from Theorem 4.2. Thesecond follows from Proposition 6.1.([i=1...nLfi)SI = [i=1...n(Lfi)SI � [i=1...nKi = K:Q.E.D.Problem 6.3 Given a plant and desired behaviors, described by languagesL and Ki respectively, where i = 1 . . .n, �nd a supervisor f such that(Lf )SI � \i=1...nKi.Proposition 6.3 The closed loop behavior which results from the inter-section of the separate supervisors fi created as a result of Proposition 6.1controlling concurrently and the closed loop behavior which results fromthe monolithic intersection of these supervisors provide solutions to Prob-lem 6.3.Proof:The concurrent operation of the supervisors gives the supervisor the behav-ior \i=1...n(Lfi)SI and the intersection provides a supervisor with the behav-ior (\i=1...nLfi)SI . The �rst inequality below follows from Theorem 4.2. Thesecond follows from Proposition 6.1.(\i=1...nLfi)SI � \i=1...n(Lfi)SI � \i=1...nKi = K:Q.E.D.Since the string based controllers are relatively static, as demonstratedby Example 6.1, we might consider those supervisors which are more statebased in the sense that they have access to the current state identity in thessm which represents the plant.A state based supervisor for a plant P is a mapfQ : Q! 2Awhich speci�es a set of enabled inputs which can be applied as a functionof the current state of the plant P .Let ML and MK be the machines which give the plant and desiredbehavior, respectively. Consider the product of these two machines Mk =ML �MK . Note that if the machine is considered as a graph, then there28



are probably many disconnected components. (Each component may ormay not have any de�ned legal behaviors possible, i.e. the componentmay consist of a single state; hence, in an actual implementation somereset capability is needed to return the system to a component where legalbehavior is possible or some limits are needed on the speci�cation of post-fault states.)A supervisor for this system must try to inhibit any behaviors whichare not allowed in MK. Towards this end, consider the events which arede�ned at each state in the plant component of the product machine andare not de�ned at the desired state component. This set of events mustbe disabled at that state. For example, let q = (qL; qK) be a state in theproduct machine and qL be the plant state component and qK be the desiredstate component. Let 
q denote the set of events de�ned at qL and not atqK, i.e. 
q = f� 2 A : �L(qL; �)! ^ :�K(qK; �)!g:Any state for which 
q \Au 6= ; is a bad state. Let G denote the set of badstates in the product machine. The supervisor should control the systemaway from such states. In order to do this the supervisor should disableall transitions which lead to a bad state or those transitions which leadto states which have uncontrollable transitions de�ned which lead to a badstate. The region to be avoided can be determined by calculating the regionof uncontrollable attraction for the bad states.The region of uncontrollable attraction is related to the region of weakattraction, as discussed in [3, 11]. This region is essentially the same as theZb region described in [10]. The region of uncontrollable attraction for aspeci�ed set of states can be informally described as the set of states fromwhich the system will enter the set of speci�ed states in a �nite numberof transitions using uncontrolled transitions. The algorithm given belowis essentially the same one given in [3] for determining the region of weakattraction modi�ed to calculate the region of uncontrollable attraction.The region of uncontrollable attraction, �M(G), for a given machine,M = fQ;A; �; q0g, and a speci�ed subset of states, G � Q, can be deter-mined by the following algorithm [3]:Algorithm 6.1Initial Step: 29



Set P0 = G and i = 1.Iteration Step:Pi = Pi�1 [ nq 2 Qk : 9� 2 Au : �k(q; �) = q0 2 Pi�1 o :Termination Step:If Pi = Pi�1,stop and set �M(G) = Pi�1,else i = i+ 1 and goto iteration step.This algorithm builds the region of uncontrollable attraction startingfrom G. Each iteration of the algorithm adds states to the region de�nedin the previous iteration. A state is added to the region of uncontrollableattraction only if there is an uncontrollable event � which describes a tran-sition into the region de�ned in the previous iteration. The states in �M(G)are well de�ned, as discussed in [3]. The algorithm is guaranteed to termi-nate for �nite state machines. An e�cient algorithm in [11] computes theregion of uncontrollable attraction in O(jQkj) time.After calculating the region of uncontrollable attraction, the supervisormust disable any transitions into �M (G). Note that all of these transitionsare controllable, otherwise the states would have been included in �M(G).Proposition 6.4 The state based supervisor, f̂ , which enforces the rulethat transitions into �M (G) are disabled and that for each state q, 
̂q de-notes the disabled events, forms the least restrictive state based supervisorfor ML and MK .Proof:Let f denote a state based supervisor for ML and MK. We must show thatthe closed loop behavior allowed by f denoted by Mf is contained in thatfor f̂ denoted by Mf̂ .This assertion is equivalent to showing that the control patterns gener-ated by f for each state q, 
q, are such that 
̂q � 
q.Let � 2 
̂q. This de�nition of � provides that �(q; �) 2 �M(G). For fto restrict behavior to K, f must also disable this �, i.e. � 2 
q, in ordernot to have an uncontrollable sequence which leads out of K.Q.E.D. 30



7 ApplicationsMany di�erent applications may be considered using the results given inthis paper. The speci�c techniques used will depend on how the system isspeci�ed and what the goal of the design is.If the desired behavior of the system is given as the set of \good" �nitesequences, then these sequences can be used to construct a �nite semigroupand the resultant self-stabilizing machine. As shown in [15, 8], there is analgorithm for converting from a so�c system to a subshift of �nite typesuch that each of the systems has the same entropy; consequently, theinformation available from the transition matrix of the homomorphic SFTcan also be used to describe the so�c system.7.1 Self-Stabilization for Fault ToleranceA primary application of the results of this paper is the use of the (SI )operator to compute a self-stabilizing machine which satis�es a given gen-eral constraint language and is fault tolerant in the sense that only legalbehaviors can occur in the computed machine. As an example of this ap-plication we consider a speci�cation giving the strings of legal behaviorsdescribed by the regular language K. The general procedure is to calculateKSI using Procedure 4.1, generate the sfsm which will generate KSI , andto use standard techniques to implement the �nite state machine.As an example, consider the speci�cation for a power manager for amobile robot as given in Figure 5. The desired behavior is given by theregular expressionK = (f + uf + uuf + uuuf + uuuuf)�(" + u+ uu):The objective is to design a self-stabilizing system which will implementthis behavior or some subset of it. Following Procedure 4.1, we calculatethe pre�x closed subset of this language to be the regular expressionprered(K) = (f + uf + uuf)�(" + u+ uu):Then we calculate the su�x closed subset of this to be the regular expressionsufred(prered(K)) = (f + uf + uuf)�(" + u+ uu):31
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u u u uFigure 5: Power controller for robot. (f = �ll power reserve, u = use powerreserve. Numbers indicate percentage of power reserve left.)Hence the desired shift invariant sublanguage KSI is given by the regularexpression KSI = (f + uf + uuf)�(" + u+ uu):7.2 Self-Stabilization and Controllability for Fault Tol-eranceIn some situations, the system of interest has components which can becontrolled and hence might exhibit a more fault tolerant behavior in closedloop operation than in open loop operation.As an example, consider two 
exible manufacturing systems whose inputand output streams can be modeled by languages Lin;1, Lout;1, Lin;2, andLout;1. (See Figure 6.)Observe that for the two machines to work correctly, one might specifythat Lout;1 \ Lin;2 6= ;. Further if the system is to work without any stops,the extra requirement that Lout;1 � Lin;2 is needed.In order for FMS2 to handle faults in FMS1, any potential output32
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in,1 Figure 6: Flexible Manufacturing System.behavior of FMS1 must be included in the input behavior of FMS2, i.e.(Lout;1)SI � Lin;2:The more restrictive condition that(Lout;1)SI � (Lin;2)SIis required to handle faults in FMS1 and FMS2. Hence, for the combinedsystem of the two machines to handle faults, a supervisor, f1, for the �rstsystem must be provided such that((Lout;1)SI )f1 � (Lin;2)SI ;and a supervisor, f2, for the second system must be provided such that(L2)f2 = (L2)SI :If such a supervisor cannot be built, or results in a trivial closed loopbehavior, the systems may be examined to determine where the problemsare which prohibit the construction of such supervisors.8 ConclusionsWe have addressed the issue of self-stabilizing systems which are thosesystems which can recover from transient faults.We have given a technique for determining when a speci�ed systemcan be implemented as a self-stabilizing system and how to calculate the33



largest system which will satisfy the speci�cation and be self-stabilizing.These techniques use standard automata and language theoretic conceptsin addition to some concepts from the theory of topological dynamics.We investigated the e�ects of shift invariance on the controllability of adesired speci�cation.Future work consists of applying the techniques in a broader varietyof cases, considering how to simplify the description of systems which aresynchronously composed, and extensions to languages which consist of in�-nite strings and languages more general than those described by �nite statemachines.It is still an open question concerning the description of a maximalsupervisor f̂ such that for all supervisors f where (Lf )SI � K we have thatLf � Lf̂ .Also, a primary question for further work concerns how to de�ne thegranularity of the events for fault analysis. Example 8.1 demonstrates thisissue.Example 8.1 Consider the behavior speci�ed by K = ((ab)(cd)�(ab))�. Ifeach symbol a, b, c, and d are considered to be events, then KSI = ;;however, if each pair of symbols ab and cd is considered to be an event,then KSI = (ab)�.It might be necessary to consider more \coarse" events for fault anal-ysis. This reinterpretation of events has the e�ect of restricting the faultconditions and the states from which and to which the system can go on afault.9 AcknowledgementsThe authors would like to thank M. Gouda and M. Sta�ord for bene�cialdiscussions concerning this research.References[1] M.S. Abadir and M.G. Gouda. \Self-Stabilizing Digital Circuits".Technical Report TR-90-10, Department of Computer Sciences, Uni-versity of Texas at Austin, Austin, TX, April 1990.34
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