Optimal Sensor and Actuator Choices for
Discrete Event Systems *

Stanley D. Young |
Vijay K. Garg
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, Texas 78712

stanley@pine.ece.utexas.edu

January 6, 1994

Abstract

We present algorithms to optimally choose sensors and actuators
to control a given discrete event system so that the closed loop be-
havior satisfies a specified constraint.

The main results of this paper are algorithms which demonstrate:
the polynomial solution to the choice of actuators, the polynomial so-
lution to the choice of sensors for certain supervisory control problems,

and the solution to the general choice of sensors 1.

Keywords: Discrete Event Systems, Observability, Controllability

1 Introduction

This work addresses the question of how to choose sensors and actuators to
control a discrete event system to attain a specified behavior. Supervision

*Supported in part by NSF CCR-911065 and TRW Faculty Assistantship Award.
TSupported in part by a DuPont Fellowship.
LA preliminary version of this paper appeared as [18].



of such systems is achieved by observing events and disabling those which
are not desired or lead to undesirable behavior. A supervisor uses sensors
and actuators to observe and control the system behavior.

The motivation for an optimal choice of sensors and actuators is that
many systems do not require that all events be controllable or observable
to attain a specified behavior. For these systems, a technique which pro-
vides a method for choosing which events to control and observe is needed.
This work addresses the design question of what components a supervisor
requires to be able to control a plant to attain a specified behavior.

This work is related to other work in the optimal control of discrete event
systems. In [11], optimality is defined in terms of set inclusion of the closed
loop behavior of the plant and supervisor relative to the desired behavior.
We require that the closed loop behavior equal the desired behavior and
define optimality in terms of sensor and actuator cost. In [3], optimality is
defined in terms of a cost for the sequence of events which appear in the
closed loop system. In [13, 8], optimality is defined in terms of a cost for
the sequence of events which appear in the closed loop system and a cost
for controlling events. We assume that costs may be allocated as an initial
expense and that there is no cost during system operation. We also include
the costs incurred for observing events in addition to controlling them.

This previous work in the design of supervisors for discrete event systems
has been of the form: given a plant, desired behavior, and a set of actuators
and sensors, what is the best closed loop behavior obtainable? This work
is of the form: given a plant and a desired behavior, what is the least cost
set of sensors and actuators which allow the closed loop system to obtain
the desired behavior?

There are two aspects to this problem: choosing the events required for
control and choosing the events to observe. The specific choice of events to
control and observe specify the configuration of the supervisor. In order to
determine an optimal configuration, a cost function is introduced for each
event controlled or observed.

For the problem considered in this paper, which requires attaining the
specified behavior, the choice of which events to control is straightforward.
The algorithm is based on the idea that any event which causes a behavior
outside of the specified behavior must be controlled. The choice of which
events to observe is not as straightforward. The algorithm proposed for
the general case is exponential in the cardinality of a subset of the events



which can occur in the desired behavior and polynomial in the state space
of the plant and desired behavior. There are classes of this problem which
do admit a polynomial solution. Two cases in particular are considered:
1) the plant and desired behavior are represented by completely specified
state machines, and 2) a “minimal” set of observed events is chosen.

In this work, the state machine formalism is used to describe the plant
and constraint behaviors. The previous work relating state machines to the
control concepts needed for this work is reviewed in Section 2. Section 3.1
introduces the problem of sensor and actuator choice and some notation.
Section 3.2 describes a technique for choosing the events required for con-
trol. Section 3.3 describes a technique for choosing a potential set of events
for observation. Section 3.4 describes the special case of the problem when
the plant and desired behavior are represented by completely specified state
machines. Section 3.5 describes the special case of the problem where the
observed event set is “minimal”. This approach leads to a “greedy” style
of algorithm. Section 4 provides some examples which demonstrate some
of the concepts discussed in the paper. Section 5 summarizes the results
and indicates direction for future work.

2 Machines, Languages, Observability and
Controllability

Languages and machines provide a means for representing the behavior of
discrete event systems. We use this modeling technique to describe systems
and their specification.

2.1 Machines and Languages

A state machine is represented by a four tuple. Specifically, if M is a state
machine, then one writes M = (Q, A, 9, ¢o) where

QQ = a set of states,

A = a finite set of transition labels or events,

6 = the transition function, 6 : Q x A — @, and
go = the initial state, ¢o € Q.



The transition function ¢ is in general a partial function; consequently,
6(¢q,0)! denotes that the transition event o is defined from state ¢. This
definition of the transition function, 6 : Q x A — @, specifies a deterministic
system.

A state machine, P = (Q, A, 6, ¢o), can also be represented as a directed
graph M = (Q,T) where @ and T are the sets of nodes and arcs, respec-
tively, or states and transitions in this instance. @ is the set of states in
the machine and T C Q x A x Q) is the set of transitions. If ¢, g, € Q and
6(¢q1,0) = ¢z, then one denotes the transition by the three tuple (¢1,0,¢2).
With a machine represented by a directed graph, all the standard directed
graph theoretic concepts and results can be used [1, 5].

A formal language is a set of strings which are sequences of symbols.
The symbols are chosen from a finite set, or alphabet, A. A* is used to
denote the set of all finite sequences of symbols from the alphabet A. If
u € A*, then pr(u) denotes the set of all strings which are prefixes of u, i.e.
for u € A*

priu)={s € A%s =u(l)...u(k),0 < k < |u|}.

The notation s < u is used to denote that s is a prefix of u. Note that the
empty string, £, is the prefix of all strings. The prefiz closure of a language
L is defined by

L ={w e pr(u)lue L}.

For this work, we restrict our attention to the class of regular languages.
A basic result relates regular languages and finite state machines: a lan-
guage L C A* is regular if and only if it is generated by a finite state
machine [6]. A language B is the language generated by machine M when

w € B & 6(qo,w)!.

L(M) denotes the language generated by machine M. It can be shown that
regular languages are closed under the set operations of finite union and
intersection [6].

In the following development, the concept of combining two finite state
machines to create a single machine, the product machine, is useful. If
My = (Q1, A, 61,q10) and My = (Q2, A, 09, ¢20) are two machines with the

same event set, A, then the product of the two machines is denoted

M1HM2 = (Z7A76||7ZO)

4



where,

Z =Q1 xQyand z5 = (91,0792,0) € Q1 x Qq,
oN((q1,q2),0)t & 01(q1,0)! A da(qa, ),

01((0142),0) = { (81(a1,0), 8¢z, 0))  if defined

undefined otherwise.

The language generated by the product machine has a specific relation to
the languages of the machines from which it is composed. If M) = M, || M,
then

L(My) = L(M;) N L(My).

These relations follow directly from the definition of the transition function
of the product machine.

A more complete description of machines and languages can be found
in [6].

2.2 Controllability and Observability for Languages

The event set, A, can often be partitioned into two sets: A. and A,. repre-
senting controllable and uncontrollable events, respectively. With the con-
cept of controllable and uncontrollable events, one defines a supervisor for
a plant which affects the controllable events which a plant executes based
on some specified constraints. A supervisor for a plant P where L = L(P)
18 a map

f:L—24

which specifies a set of enabled inputs. These enabled inputs are those
which the supervisor allows based on the string of previously generated
events in L. Note that it is equivalent to specify which events are to be
disabled as function of the string of previously generated events. This
specification of events to be enabled and disabled is called a control pattern.
Given an ordering of the events, this control pattern can be thought of as
a bit string with a 1 in the place of an event which is enabled by the
supervisor and a 0 in the place of an event which is disabled. The closed
loop system consisting of a supervisor, f, and plant, P, has the finite closed
loop behavior denoted by Ly, and defined as follows:

1. €€Lf,



2. wo € Ly if and only if w € Ly, 0 € f(w), and wo € L.

Note that the definition of L; implies that L; C L and that L; = L;
[12].

A language K is said to be controllable with respect to a language L if
the following condition holds:

Vise K)N(o € Ay :
(s e K)N(so € L)) = (so € K).

Le. the desired behavior K is controllable with respect to the plant behavior
L if any string s in /', which has a legal suffix ¢ such that so isin L and o
is uncontrollable, is such that the string with the suffix, so, is an element of
K. A procedure given in [2] gives a polynomial algorithm for determining
the controllability of a language with respect to another language.

The event set, A, can also often be partitioned into another two sets:
A, and A,, representing observable and unobservable events, respectively.
In general, an observer detects events occurring in the system through a
mask; this mask affects how an observer interprets events. Let M : A — A,
denote a mask 2. This mask can be considered as a projection from the
event set of the system to the observed event set.

In this work, an observed event o is not affected by the mask M, M(o) =
o; whereas, an unobserved event is projected onto the empty string by the
mask, M(o) = e. This observation mask can be considered to be the
natural projection of the event space onto the observation event space.

A language K is said to be observable with respect to a language L and
mask M if the following condition holds:

V(s,ss e K)N(o € A):
(M(s)=M(s")N(soc e K)N(s'c € L)) = (s'0 € K).

Le. the desired behavior K is observable with respect to the plant behavior
L and mask M if any string s in K, which has a string s in I to which
it 1s equivalent under the mask and both these strings have a suffix ¢ in
the plant language L and the first has the suffix in K also, is such that the
second string, with the suffix, s'o, is an element of K. A procedure given

?Note that in the general case a mask might have memory,ie. M : A* x A — A, in a
manner similar to the block codes of symbolic dynamics [15].



in [14] gives a polynomial algorithm for determining the observability of a
language with respect to another language and a mask.

The main result which relates observability, controllability, and supervi-
sors is contained in Theorem 2.1, which is a restatement of previous results
[4, 9].

Theorem 2.1 Let K C L be closed and nonempty, and M a mask. Then
there exists a supervisor f such that Ly = K if and only if K is controllable
with respect to L and observable with respect to L and mask M.

A more complete review of the observability and controllability of dis-
crete event systems modeled with machines can be found in [12].

3 Choosing Sensors and Actuators

3.1 Notation, Assumptions, and an Initial Solution

We assume that a plant and the constraint behavior are given by the lan-
guages L and K, respectively. As described in Section 2.1, with each lan-
guage L and K, we associate a machine, Mj and M, specified by

My =(Qr,A, 01, qr0) and Mg = (Qk, 4, 0k, gr0)-

The machine which results from the product of M and M is used exten-
sively. We denote this machine by M) = (Qy, 4,9, ¢)0)-

We assume that the primary cost associated with a sensor or an actuator
is the initial capital investment and that the cost of operation is negligible
compared to the initial cost. Hence, the cost functions used for evaluating
optimality concern only the event to be observed, or controlled and not the
number of times an event is observed or controlled . The actuator and
sensor cost functions are denoted by

e A— R and e, : A — RT.

In order to specify that a specific event has been chosen for observation
or control, “choice” functions are used. The “choice” functions used in this
work are denoted by

i.:A— {0,1} and i, : A — {0,1}

3Note that in the general case a state dependence for the costs may be required.



for the control and observation “choice” functions respectively. For these
functions, i.(c) = 0 (i,(0) = 0) means that event o has not been chosen
for control (observation), and i.(c) =1 (i,(c) = 1) means that event o has
been chosen for control (observation).

Now the optimization problem can be specified.

Problem 3.1 Given a plant behavior specified by the language L, a con-
straint behavior specified by the language K, with K C L, and cost func-
tions ¢. and ¢,, choose ¢, and ¢, to minimize the cost C' such that L; = K,

where
C=3 (clo) ic(o) +co(o) - 1o(a)).
oEA

In general, functions ¢, and :. can always be found such that L; = K.
The solution in which everything is chosen to be controlled and observed
ie. Yo € A :i.o) =i,(0) =1, provides that Ly = K. However, this
solution is most likely not the minimum cost solution.

An obvious choice to determine the optimal ¢. and 7, functions is to
determine the cost for each possibility and pick one which has the minimal
cost and satisfies Ly = K. It is clear that the procedure of trying each
possible function for ¢, and 7, can be used to find the minimum. By [14],
this procedure has a complexity of O(2Ml . 21l . Q- |Al), where Q =
max(Qr, Q).

3.2 A Calculation for the Control “Choice” Function

The problem with the approach given above is the many exponentials which
appear in the complexity measure. We now consider ways to reduce some
of this complexity.

First, we consider ways to calculate ¢., the control “choice” function.
In order to calculate the required function, consider the product M) of M,
and M. Each state ¢ € @) in this product machine has corresponding

states ¢r, € Q1 and ¢k € Qk.

Definition 3.1 E. : Q) — 24 is the function which gives the set of events
o € A which are defined in M}, at state g7, and not defined in My at g,
le.

E.(q)={0€ A:6r(qr,0)' N =0k (qK,0)'},
where ¢ = (qr, qx )



Next we extend this definition to the entire state set.
Definition 3.2

E. = U E.(q),
{aeR(g),0)}

where Rj(q0) = {¢ € Q) : (Jw € A* : §(¢)0,w) = ¢)}. In other words,
the controllable events are those which must be disabled at states which
are reachable from the initial state.

Proposition 3.1 E, is the smallest set of controllable events such that
L;=K.

Proof:

By the definition of the product machine, any string which reaches a state
in the product machine from the initial state is a string in both of the
languages of the machines which were used to form the product. Conse-
quently, for Ly = K to hold, we require that all states reachable from the
initial state in the product machine be reachable in the closed loop behav-
ior. Hence, if o € Ec, then i.(0) =1, and if 0 ¢ Ec, then i.(0) = 0. If 5.
were defined some other way, there would be strings which either could not
be generated but are in K or strings not in K which could be generated.

O

We can drop the distinction between EC and A. and let A, denote this
minimal Ec.

Since calculating the product machine has complexity O(|Qp|-|Qx|-|A]),
we can replace one of the exponential factors in the complexity of the
procedure specified in Section 3.1 by |Q|? - |A|. This reduction results from
replacing the tests for ¢, with the calculation of the product machine and
construction of E.(¢) for each ¢. Also, note that this calculation must be
done only once. Hence, it is an additive term and is not counted as part
of the observation function calculation. The resulting complexity with this
modification is O(2M - |Q[? - |A|).

An illustration of the controlled event set calculation is given in Exam-
ple 3.1.

Example 3.1 Consider the plant and constraint behaviors as given in Fig-
ure 1. For these machines, the part of the product machine which is reach-



A) B)

Figure 1: A) Plant and B) Specified Behavior.

able from the initial state is isomorphic to the constraint behavior. By
comparing the states in these machines, it is clear that only at states 4 and
2 in the constraint machine are there any events which are defined in the
plant and not in the constraint behavior. Hence, we have that E.(4) = {b},
E.(2) = {d}, and for all other states E.(¢) = (). For this system, the events
which must be controllable are b and d, i.e. E. = {b,d}.

The final result in Proposition 3.2 shows that the method prescribed
has optimal computational complexity.

Proposition 3.2 The complexity of calculating the events which must be
controlled to obtain the specified behavior is O(|Q]* - | A]).

The proof of this proposition is obvious by considering that calculating
the controllability of a language with respect to another one is a special case
of the problem considered here. This controllability calculation is known

to be O(QJ? - |4]) [14].

10



3.3 Calculation of the Observation “Choice” Func-
tion

Now we consider ways to calculate i, the observation “choice” function.

To obtain the correct closed loop behavior, Ly = K, a supervisor needs
to identify which control pattern to use for the current state. Thus, any
event o labeling a transition between states * ¢; and ¢, which require
sufficiently different control patterns, needs to be observed. Now we must
investigate what conditions constitute a sufficient difference.

Let ~, be the control pattern for state ¢ and E.(q) be the events which
must be disabled at state ¢. Let the function E; : Q@ — 24 give the
transitions which are defined from state ¢, i.e.

Ei(q)={c € A:¢)(¢,0)!}.

There are certain types of transitions which require a change in control
patterns and hence must be observed. Consider a transition from state ¢; to
q2 by event o, i.e. §(q1,0) = ¢o. The transition for which E.(¢1)NEq(q2) #
0 must be identified. In this case, an event which must be disabled at ¢; is
defined for ¢;. Also, the transition for which E;(¢;) N E.(q2) # § must also
be identified. In this case, an event which is defined at ¢; must be disabled
at ¢.

Definition 3.3 A Type O transition is defined by

(Ec(q1) N Ea(g2) # 0)V (Ealg1) N Ec(g2) # 0).

Other transitions might or might not require observation, depending on
what control patterns the supervisor chooses for the states associated with
the transition, as shown in Example 3.2.

Example 3.2 If none of the sets describing the controlled events and the
defined events intersect, then the supervisor can assign the control pattern
for each of the states to be the same. Le. if E.(¢1) N E(q2) = 0, E.(q1) N
Ei(q2) =0, Es(¢1)NE:(q2) = 0, and Ey(q1)NE4(q2) = 0, then the supervisor
can set v, = ¥4, = Eo(q1) U E.(¢2) and need not identify this transition for

*Notice that in the remaining discussion most of the references to states and machines
concern the product machine.

11



local control purposes. A specific illustration of these circumstances can
be seen in states (1,1) and (2,2) of the product of the machines given in
Figure 1.

However, the supervisor might need to observe some non-Type O tran-
sitions to correctly identify some Type O transitions, as shown in Exam-
ple 3.3.

Example 3.3 Figure 2 gives the plant and desired behavior in which the
supervisor must consider possible future behavior to decide which events to
observe. Specifically, event b must be observed to determine which branch of
the desired behavior is occurring, even though no change in control pattern
is required after the first transition.

Proposition 3.3 Given machines My and M}, to obtain Ly = K, we have
the following condition on the observed events:

if
341,42 € Q) = (1 € Ry(g)0)),
o 1s Type O, and
O)(q1,0) = g2,
then
ocEA,,

where Rj|(¢)0) is as defined in Section 3.2.

The proof of this proposition is obvious and follows from the requirement
that Ly = K and that ¢; 1s reachable from the initial state.

Let the events which satisfy the conditions in Proposition 3.3 form a set
denoted by A,., (for the required events), i.e.

@ € Rylg0)
A
Apeg=10 €A |dq, 2 € Q- o 1s Type O
A
o(q,0) = ¢

12



Figure 2: A) Plant and B) Specified Behavior.

13



The procedure for choosing sensors and actuators which results from
the above considerations consists of the following steps: calculation of the
events which must be controlled, Ec, calculation of the events which must
be observed, A,.,, and then trying all choices for the observation “choice”
function which are consistent with A,.,. The reduction in complexity arises
from the reduction in the average number of potential cases which must
be considered for A,. Since calculating M), A., and A,., have complexity
O(|Q|?-|A|), and by [14] checking controllability and observability is O(|Q|*-
|A|), we obtain a complexity of O(214\Areal . |Q[? - | A|) for this approach.

3.4 Fully Specified Behaviors

We consider some special cases as a means of further reducing the com-
plexity of choosing the required sensors and actuators. The special case
considered in this section is based on the polynomial complexity of finding
the reduced machine for a fully specified Moore machine. The approach is
to form the product of the plant and desired behavior and then to finish
specifying the machine such that it is a fully specified Moore machine [7, 6],
where the output at a state represents a bit pattern corresponding to the
control pattern at the state. In general, most machines used to represent
discrete event systems are not fully specified, i.e. there is usually not a
transition specified for every event from every state. This characteristic
arises from the fact that in the actual system it may not make any sense
to define a given event from every state. In addition to an output control
pattern for each state, a fully specified machine has a transition specified
for every event from every state.

By [7], calculating the minimal equivalent state machine is polynomial
in the number of states, i.e. O(|Q|?-|A|). Hence, if we can reduce the gen-
eral problem of observed event set selection to the problem of determining
the minimal equivalent machine, then we will have a polynomial technique
for choosing the controlled and observed events. Recall that for an incom-
pletely specified Moore machine determining the minimal equivalent ma-
chine has nondeterministic polynomial time complexity and is complete in
this class [10]; consequently, we consider this approach only for completely
specified machines. Note that in general this approach will not provide
an optimal choice for the observed event set, due to possible suboptimal
completions of the machine specification.

14



There are two aspects to completing the specification of the product
machine: specifying the transitions and the output patterns.

The transitions may be specified in any manner consistent with the
original product machine such that the resulting machine is deterministic.

From the incompletely specified product machine, one can calculate the
events which must be controlled and those which can remain uncontrolled.
This information is used to fully specify the output patterns. Recall that an
uncontrollable event cannot be disabled by a supervisor. This fact provides
a constraint on specifying the output patterns: any uncontrollable event
must be enabled in every output pattern. There are two ways to spec-
ify the output pattern for the controlled events. Any controllable event
which is not defined in the original product machine at a given state may
be disabled in the output pattern for that state. Alternatively, the event
may be enabled or disabled in an attempt to provide a lower cost solu-
tion. (This second alternative essentially requires the specifier to make the
choices which place the incompletely specified problem in the nondetermin-
istic polynomial complete complexity class.)

Observe that the first technique of choosing the output patterns has a
benefit beyond providing a unique and deterministic technique for choosing
the observed event set. The supervisor which results from this choice may
be used with a wide collection of plants and still guarantee the correct
closed loop behavior.

Example 3.4 Consider the original plant and specified behavior as given
in Figure 3.

The product machine is isomorphic to the machine for the desired be-
havior. It is clear that A. = {a, ¢} and that A,. = {b}. Let A\ denote the
output function for this machine. From the first alternative for selecting the
output patterns, we obtain that A(1) = 110, A(2) = 010, and A(3) = 011.
This obviously is not optimal because to generate the correct output both
a and b must be observed, but as shown in Section 4.2, it is sufficient to
observe only a or b but not both. The benefit of this approach is apparent
when one considers how many other plants, with the same state space and
event set, can be controlled with the supervisor which results from this case.
There are 4* possible plants which would give the same result. Hence, this
approach provides a supervisor which can be applied in a wide variety of
cases beyond the original plant.

15



SO OO

a

A) B)
Figure 3: Plant and Specified Behavior for a Simple System.

The justification for considering events which label transitions in the
minimal equivalent Moore machine is given in the Proposition 3.4.

Proposition 3.4 For a given completely specified Moore machine repre-
sentation of the product of My, and My, an event o is in the observed event
set, l.e. 0 € A, if and only if ¢ labels a transition between distinct states
in the minimal equivalent Moore machine.

Proof: The concept of equivalence classes of states based on control pat-
terns provides the essence of the proof that determining a reduced equiv-
alent machine is sufficient for controlling a discrete event system. In a re-
duced machine, states remain differentiated only if an inconsistency arises
from combining them. As applied to supervisor design, two states must
remain differentiated if combining them would cause an incorrect control
pattern to be generated at some other state. Consequently, any transition
between distinct states in the reduced machine must be observed to apply
the correct control pattern.
O

3.5 “Minimal” Choice of Observed Events

The special case considered in this section gives a minimal versus an optimal
solution. The “minimal” choice of observed events is obtained by a greedy
algorithm based on the observation cost function.

16



Definition 3.4 Let K and L denote the desired and plant behaviors, re-
spectively. Let P(B) denote the mask associated with the observed event
set B. We say that B is minimal if there is no set X such that X C B and
B #+ X with K observable with respect to L and P(X).

In general, there will be several minimal sets of observed events.

This approach calculates the minimal set of observed events based on
the order in which events are chosen to determine if an event is required
for observability. Note that this choice is what provides the polynomial
complexity of this approach.

The technique consists of choosing an event and determining if the de-
sired behavior is observable with respect to the plant behavior and the
proposed set of observed events. The proposed set of observed events is the
current set of observed events minus the chosen event. If the behavior is
observable, then remove this event from the set of observed events. If it is
not, then pick another event to test. Continue until all events have been
tested. The complexity of this procedure is O(JA| - |Q[?). Note that this
procedure cannot be used to guarantee an optimal solution for the general
problem because the order in which events are considered does matter.

This approach can be implemented as a greedy type of algorithm by
choosing the events for consideration in decreasing order of their cost. Ex-
ample 3.5 demonstrates that this approach does not guarantee an optimal
solution.

Example 3.5 Consider the plant and desired behaviors as specified in Fig-
ure 4 with the cost function defined as ¢,(a) = 6, ¢,(b) = 5, ¢,(¢) = 4,
¢o(d) = 3, ¢,(e) = 2, and ¢,(f) = 1. For this cost assignment, a greedy
algorithm provides an observed event set A, = {¢,d, e} with an observa-
tion cost of 9 units. An optimal observed event set is A, = {a, e} with an
observation cost of 8 units.

4 Applications

4.1 An Example Revisited

Figure 1 gives the machines for the plant and desired behaviors.

17



Figure 4: A) Plant and B) Specified Behavior.

18



Figure 5: Product of Plant and Specified Behavior.

From the reduced product machine, M) in Figure 5, we observed in
Example 3.1 that E.(4) = {b}, E.(2) = {d}, E.(1) =0, and E.(3) = 0. We
can also observe that the events which are defined at each state are given by
Eul(e,1)) = {a}, Ea((e,2)) = {c}, Eal(e,3)) = {b,d}, and Es((c,4)) = {a}.

From these observations, we can conclude which transitions are Type
0: (2,¢,3) is Type O and (3,d,4) is Type O. Hence, we obtain that A. =
{b,d} and that A,., = {c,d}. These specifications provide that E™? =
{{e,d}, {b,c,d},{a,c,d},{a,b,c,d}}.

If we choose A, = {¢,d}, then the system is not observable. If we choose
A, = {b,c,d}, then the system is observable. If we choose A, = {a,¢,d},
then the system is observable. If we choose A, = {a,b,¢,d}, then the
system is observable.

4.2 A Simple Example

Figure 6 gives a simple plant and desired behavior which demonstrate the
choices required in choosing the observed event set.

For this example, E.(1) = {c}, E.(2) = 0, and E.(3) = {a}. We observe
that Eq4((¢,1)) = {a}, Ea((c,2)) = {b}, and that E4((c,3)) = {c}.

From these observations, we conclude that no transitions are Type O.
Hence, we obtain that A, = {a,c} and that A,., = 0.

The system is observable if we choose A4, = {a} or A, = {b}, but not

19



SO OO

a
A) B)

Figure 6: Plant and Specified Behavior for a Simple System.

observable if we choose A, = {c}.

4.3 Desired Behavior Not a Subautomaton of Plant
Behavior

Figure 7 gives a plant and desired behavior which demonstrate the choices
required in choosing the observed event set when the desired behavior is
not a subautomaton of the plant behavior.

c

ab,c
d a Q d
@
e
e
A) B)

Figure 7: Plant and Specified Behavior for a Desired Behavior Not a Sub-
automaton of Plant Behavior.

For this example, E.(1,1) = {b,¢,d}, E.(1,2) = {a}, and E.(2,3) =
0. We observe that E4((1,1)) = {a}, E4((1,2)) = {b,c,d}, and that
E4((2,3)) = {e}. (The states are specified as elements of Q1 X Qx.)

20



From these observations, we conclude which transitions are Type O:
((1,1),a,(1,2)) is Type O and ((1,2),b,(1,1)) is Type O. Hence, we obtain
that A. = {a,b,¢,d} and that A,., = {a, b}.

The system is observable if we choose A, = {a,b,d} or A, = {a, b, e}.

5 Conclusions

This paper addresses the issue of how to choose sensors and actuators for a
system which may be modeled using state machines. The goal is to restrict
the system’s behavior to a specified constraint behavior. In order to insure
that the system adheres to the constraint behavior certain events in the
system must be observed and controlled with sensors and actuators.

We have provided a technique for determining which events must be
observed and controlled to achieve the specified constraint behavior. A
cost function associated with the sensors and actuators is used to provide
a metric for choosing between different controller configurations.

Using different types of equivalence classes, an algorithm is given for cal-
culating the controller and observer parts of the supervisor which restricts
the system’s behavior to the specified constraint behavior. The algorithm
for choosing the actuators has polynomial complexity in terms of the events
and the states in the product machine. The approach presented in this work
provides an algorithm for choosing sensors and actuators with exponen-
tial complexity in the number of events and polynomial complexity in the
states. The special cases considered were a completely specified machine
with its associated minimization algorithm and a minimal set of observed
events with its greedy algorithm. Both special cases provide polynomial
complexity in the number of events and states for choosing the sensors and
actuators.

There are several areas for further work associated with this paper.
One extension is to include a state dependence of the cost functions for the
sensors and actuators. Observe that for the case in which we require that
the closed loop behavior equal the specified constraint behavior the state
dependence of the actuators is irrelevant. But the state dependence of the
sensors can affect how the events to be observed are chosen.

Another extension is to allow the closed loop behavior to be a subset of
the specified constraint behavior. In this case, a technique for measuring

21



how much of the specified behavior is not attained is needed. This measure
would need to have an associated cost and be included in the minimization
Problem 3.1. One approach assigns a cost to states and uses the reachability
of the state in the closed loop behavior as a measure of how much of the
specified constraint behavior is attained. This approach is similar to that
specified in [8]. Another approach is to assign a measure to the strings in
the specified constraint behavior which are not possible in the closed loop
behavior and then to assign a cost to this measure and include it in the
minimization problem. In either of these cases, the state dependence of the
cost for sensors and actuators must be included in the general case analysis
of the minimization problem.

Another extension considers the effects which faults in the plant have
on controlling its behavior to achieve a specified constraint behavior. For
this case, a necessary change would be to extend Definition 3.2 to those
states which are not necessarily reachable from the initial state. Also, the
two approaches of observing events or states can be considered. See [17]
for more details concerning systems which can fail.

Another extension considers which sensors and actuators are required
to be able to properly identify the system model from some set of possible
models. See [16] for more details concerning the requirements for correctly
identifying the correct model from a set of models.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] R.D. Brandt, V.K. Garg, R. Kumar, F. Lin, S.I. Marcus, and W.M.
Wonham. “Formulas for calculating supremal controllable and normal
sublanguages”. Systems €& Control Letters, 15:111-117, 1990.

[3] Y. Brave and M. Heymann. “On Stabilization of Discrete Event Pro-
cesses”. Internation Journal Control, 51:1101-1117, 1990.

[4] R. Cieslak, C. Desclaux, A.S. Fawaz, and P. Varaiya. “Supervisory
Control of Discrete-Event Processes with Partial Observations”. IEEFE
Transactions on Automatic Control, 33(3):249-260, 1988.

22



[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

N. Deo. Graph Theory with Applications to Engineering and Computer
Sciences. Prentice—Hall, Englewood Cliffs, N.J., 1974.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, MA. 1979.

Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New
York, NY, 1978.

R. Kumar and V.K. Garg. “Optimal control of discrete event dynam-
ical systems using network flow techniques”. In Proceedings 1991 An-
nual Allerton Conference, pages 705-714, Urbana, IL, October 1991.

F. Lin and W.M. Wonham. “On Observability of Discrete-Event Sys-
tems”. Information Sciences, 44:173-198, 1988.

C.P. Pfleeger. “State Reduction in incompletely specified finite state
machines”. IEEE Transactions Computers, 22(12):1099-1102, 1973.

P.J.G. Ramadge and W.M. Wonham. “Supervisory control of a class
of discrete event processes”. SIAM Journal Control Optimization,
25:206-230, January 1987.

P.J.G. Ramadge and W.M. Wonham. “The control of discrete event
systems”. Proceedings of IEEE, 77(1):81-98, January 1989.

R. Sengupta and S. Lafortune. “Optimal control of a class of discrete
events systems”. In Proceedings 1991 IFAC symposium on distributed
intelligence systems, pages 25-30, Arlington, VA, August 1991.

J.N. Tsitsiklis. “On the control of discrete event dynamical systems”.
Math. Contr., Signals, and Syst., 2(1):95-107, 1989.

B. Weiss. “Subshifts of Finite Type and Sofic Systems”. Monatshefte
fur Mathematik, 77:462-474, 1973.

S.D. Young and V.K. Garg. “Transition Uncertainty in Discrete Event
Systems”. In Proceedings 6th IEEFE International Symposium on In-
telligent Control, pages 245-250, Arlington, VA, August 1991.

23



[17] S.D. Young and V.K. Garg. “On Self-Stabilizing Systems: An Ap-
proach to the Specification and Design of Fault Tolerant Systems”.
In 32°® IEEE Conference on Decision and Control, San Antonio, TX,
1993.

[18] S.D. Young and V.K. Garg. “Optimal Sensor and Actuator Choices
for Discrete Event Systems”. In 315" Allerton Conference on Commu-
nication, Control, and Computing, Allerton, IL, 1993.

24



