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of such systems is achieved by observing events and disabling those whichare not desired or lead to undesirable behavior. A supervisor uses sensorsand actuators to observe and control the system behavior.The motivation for an optimal choice of sensors and actuators is thatmany systems do not require that all events be controllable or observableto attain a speci�ed behavior. For these systems, a technique which pro-vides a method for choosing which events to control and observe is needed.This work addresses the design question of what components a supervisorrequires to be able to control a plant to attain a speci�ed behavior.This work is related to other work in the optimal control of discrete eventsystems. In [11], optimality is de�ned in terms of set inclusion of the closedloop behavior of the plant and supervisor relative to the desired behavior.We require that the closed loop behavior equal the desired behavior andde�ne optimality in terms of sensor and actuator cost. In [3], optimality isde�ned in terms of a cost for the sequence of events which appear in theclosed loop system. In [13, 8], optimality is de�ned in terms of a cost forthe sequence of events which appear in the closed loop system and a costfor controlling events. We assume that costs may be allocated as an initialexpense and that there is no cost during system operation. We also includethe costs incurred for observing events in addition to controlling them.This previous work in the design of supervisors for discrete event systemshas been of the form: given a plant, desired behavior, and a set of actuatorsand sensors, what is the best closed loop behavior obtainable? This workis of the form: given a plant and a desired behavior, what is the least costset of sensors and actuators which allow the closed loop system to obtainthe desired behavior?There are two aspects to this problem: choosing the events required forcontrol and choosing the events to observe. The speci�c choice of events tocontrol and observe specify the con�guration of the supervisor. In order todetermine an optimal con�guration, a cost function is introduced for eachevent controlled or observed.For the problem considered in this paper, which requires attaining thespeci�ed behavior, the choice of which events to control is straightforward.The algorithm is based on the idea that any event which causes a behavioroutside of the speci�ed behavior must be controlled. The choice of whichevents to observe is not as straightforward. The algorithm proposed forthe general case is exponential in the cardinality of a subset of the events2



which can occur in the desired behavior and polynomial in the state spaceof the plant and desired behavior. There are classes of this problem whichdo admit a polynomial solution. Two cases in particular are considered:1) the plant and desired behavior are represented by completely speci�edstate machines, and 2) a \minimal" set of observed events is chosen.In this work, the state machine formalism is used to describe the plantand constraint behaviors. The previous work relating state machines to thecontrol concepts needed for this work is reviewed in Section 2. Section 3.1introduces the problem of sensor and actuator choice and some notation.Section 3.2 describes a technique for choosing the events required for con-trol. Section 3.3 describes a technique for choosing a potential set of eventsfor observation. Section 3.4 describes the special case of the problem whenthe plant and desired behavior are represented by completely speci�ed statemachines. Section 3.5 describes the special case of the problem where theobserved event set is \minimal". This approach leads to a \greedy" styleof algorithm. Section 4 provides some examples which demonstrate someof the concepts discussed in the paper. Section 5 summarizes the resultsand indicates direction for future work.2 Machines, Languages, Observability andControllabilityLanguages and machines provide a means for representing the behavior ofdiscrete event systems. We use this modeling technique to describe systemsand their speci�cation.2.1 Machines and LanguagesA state machine is represented by a four tuple. Speci�cally, if M is a statemachine, then one writes M = (Q;A; �; q0) whereQ = a set of states,A = a �nite set of transition labels or events,� = the transition function, � : Q�A! Q; andq0 = the initial state, q0 2 Q:3



The transition function � is in general a partial function; consequently,�(q; �)! denotes that the transition event � is de�ned from state q. Thisde�nition of the transition function, � : Q�A! Q, speci�es a deterministicsystem.A state machine, P = (Q;A; �; q0), can also be represented as a directedgraph M = (Q;T ) where Q and T are the sets of nodes and arcs, respec-tively, or states and transitions in this instance. Q is the set of states inthe machine and T � Q�A�Q is the set of transitions. If q1; q2 2 Q and�(q1; �) = q2, then one denotes the transition by the three tuple (q1; �; q2).With a machine represented by a directed graph, all the standard directedgraph theoretic concepts and results can be used [1, 5].A formal language is a set of strings which are sequences of symbols.The symbols are chosen from a �nite set, or alphabet, A. A� is used todenote the set of all �nite sequences of symbols from the alphabet A. Ifu 2 A�, then pr(u) denotes the set of all strings which are pre�xes of u, i.e.for u 2 A� pr(u) = fs 2 A�js = u(1) . . . u(k); 0 < k � jujg:The notation s � u is used to denote that s is a pre�x of u. Note that theempty string, ", is the pre�x of all strings. The pre�x closure of a languageL is de�ned by L = fw 2 pr(u)ju 2 Lg:For this work, we restrict our attention to the class of regular languages.A basic result relates regular languages and �nite state machines: a lan-guage L � A� is regular if and only if it is generated by a �nite statemachine [6]. A language B is the language generated by machine M whenw 2 B , �(q0; w)!:L(M) denotes the language generated by machineM . It can be shown thatregular languages are closed under the set operations of �nite union andintersection [6].In the following development, the concept of combining two �nite statemachines to create a single machine, the product machine, is useful. IfM1 = (Q1; A; �1; q1;0) and M2 = (Q2; A; �2; q2;0) are two machines with thesame event set, A, then the product of the two machines is denotedM1kM2 = (Z;A; �k; z0)4



where, Z = Q1 �Q2 and z0 = (q1;0; q2;0) 2 Q1 �Q2;�k((q1; q2); �)!, �1(q1; �)! ^ �2(q2; �)!;�k((q1; q2); �) = ( (�1(q1; �); �2(q2; �)) if de�nedunde�ned otherwise.The language generated by the product machine has a speci�c relation tothe languages of the machines from which it is composed. If Mk =M1kM2then L(Mk) = L(M1) \ L(M2):These relations follow directly from the de�nition of the transition functionof the product machine.A more complete description of machines and languages can be foundin [6].2.2 Controllability and Observability for LanguagesThe event set, A, can often be partitioned into two sets: Ac and Auc repre-senting controllable and uncontrollable events, respectively. With the con-cept of controllable and uncontrollable events, one de�nes a supervisor fora plant which a�ects the controllable events which a plant executes basedon some speci�ed constraints. A supervisor for a plant P where L = L(P )is a map f : L! 2Awhich speci�es a set of enabled inputs. These enabled inputs are thosewhich the supervisor allows based on the string of previously generatedevents in L. Note that it is equivalent to specify which events are to bedisabled as function of the string of previously generated events. Thisspeci�cation of events to be enabled and disabled is called a control pattern.Given an ordering of the events, this control pattern can be thought of asa bit string with a 1 in the place of an event which is enabled by thesupervisor and a 0 in the place of an event which is disabled. The closedloop system consisting of a supervisor, f , and plant, P , has the �nite closedloop behavior denoted by Lf , and de�ned as follows:1. " 2 Lf ; 5



2. w� 2 Lf if and only if w 2 Lf ; � 2 f(w); and w� 2 L:Note that the de�nition of Lf implies that Lf � L and that Lf = Lf[12].A language K is said to be controllable with respect to a language L ifthe following condition holds:8(s 2 K) ^ (� 2 Auc) :((s 2 K) ^ (s� 2 L))) (s� 2 K):I.e. the desired behaviorK is controllable with respect to the plant behaviorL if any string s in K, which has a legal su�x � such that s� is in L and �is uncontrollable, is such that the string with the su�x, s�, is an element ofK. A procedure given in [2] gives a polynomial algorithm for determiningthe controllability of a language with respect to another language.The event set, A, can also often be partitioned into another two sets:Ao and Auo representing observable and unobservable events, respectively.In general, an observer detects events occurring in the system through amask; this mask a�ects how an observer interprets events. LetM : A! Aodenote a mask 2. This mask can be considered as a projection from theevent set of the system to the observed event set.In this work, an observed event � is not a�ected by the maskM ,M(�) =�; whereas, an unobserved event is projected onto the empty string by themask, M(�) = ". This observation mask can be considered to be thenatural projection of the event space onto the observation event space.A language K is said to be observable with respect to a language L andmask M if the following condition holds:8(s; s0 2 K) ^ (� 2 A) :((M(s) =M(s0)) ^ (s� 2 K) ^ (s0� 2 L))) (s0� 2 K):I.e. the desired behaviorK is observable with respect to the plant behaviorL and mask M if any string s in K, which has a string s0 in K to whichit is equivalent under the mask and both these strings have a su�x � inthe plant language L and the �rst has the su�x in K also, is such that thesecond string, with the su�x, s0�, is an element of K. A procedure given2Note that in the general case a mask might have memory, i.e. M : A� �A! Ao in amanner similar to the block codes of symbolic dynamics [15].6



in [14] gives a polynomial algorithm for determining the observability of alanguage with respect to another language and a mask.The main result which relates observability, controllability, and supervi-sors is contained in Theorem 2.1, which is a restatement of previous results[4, 9].Theorem 2.1 Let K � L be closed and nonempty, and M a mask. Thenthere exists a supervisor f such that Lf = K if and only if K is controllablewith respect to L and observable with respect to L and mask M .A more complete review of the observability and controllability of dis-crete event systems modeled with machines can be found in [12].3 Choosing Sensors and Actuators3.1 Notation, Assumptions, and an Initial SolutionWe assume that a plant and the constraint behavior are given by the lan-guages L and K, respectively. As described in Section 2.1, with each lan-guage L and K, we associate a machine, ML and MK, speci�ed byML = (QL; A; �L; qL;0) and MK = (QK ; A; �K ; qK;0):The machine which results from the product of ML and MK is used exten-sively. We denote this machine by Mk = (Qk; A; �k; qk;0).We assume that the primary cost associated with a sensor or an actuatoris the initial capital investment and that the cost of operation is negligiblecompared to the initial cost. Hence, the cost functions used for evaluatingoptimality concern only the event to be observed, or controlled and not thenumber of times an event is observed or controlled 3. The actuator andsensor cost functions are denoted bycc : A! <+ and co : A! <+:In order to specify that a speci�c event has been chosen for observationor control, \choice" functions are used. The \choice" functions used in thiswork are denoted byic : A! f0; 1g and io : A! f0; 1g3Note that in the general case a state dependence for the costs may be required.7



for the control and observation \choice" functions respectively. For thesefunctions, ic(�) = 0 (io(�) = 0) means that event � has not been chosenfor control (observation), and ic(�) = 1 (io(�) = 1) means that event � hasbeen chosen for control (observation).Now the optimization problem can be speci�ed.Problem 3.1 Given a plant behavior speci�ed by the language L, a con-straint behavior speci�ed by the language K, with K � L, and cost func-tions cc and co, choose ic and io to minimize the cost C such that Lf = K,where C = X�2A(cc(�) � ic(�) + co(�) � io(�)):In general, functions io and ic can always be found such that Lf = K.The solution in which everything is chosen to be controlled and observedi.e. 8� 2 A : ic(�) = io(�) = 1, provides that Lf = K. However, thissolution is most likely not the minimum cost solution.An obvious choice to determine the optimal ic and io functions is todetermine the cost for each possibility and pick one which has the minimalcost and satis�es Lf = K. It is clear that the procedure of trying eachpossible function for io and ic can be used to �nd the minimum. By [14],this procedure has a complexity of O(2jAj � 2jAj � j ~Qj3 � jAj), where ~Q =max(QL; QK).3.2 A Calculation for the Control \Choice" FunctionThe problem with the approach given above is the many exponentials whichappear in the complexity measure. We now consider ways to reduce someof this complexity.First, we consider ways to calculate ic, the control \choice" function.In order to calculate the required function, consider the product Mk of MLand MK . Each state qk 2 Qk in this product machine has correspondingstates qL 2 QL and qK 2 QK .De�nition 3.1 Ec : Qk ! 2A is the function which gives the set of events� 2 A which are de�ned in ML at state qL and not de�ned in MK at qK,i.e. Ec(q) = f� 2 A : �L(qL; �)! ^ :�K(qK; �)!g;where q = (qL; qK). 8



Next we extend this de�nition to the entire state set.De�nition 3.2 Êc = [fq2Rk(qk;0)gEc(q);where Rk(qk;0) = fq 2 Qk : (9w 2 A� : �k(qk;0; w) = q)g. In other words,the controllable events are those which must be disabled at states whichare reachable from the initial state.Proposition 3.1 Êc is the smallest set of controllable events such thatLf = K.Proof:By the de�nition of the product machine, any string which reaches a statein the product machine from the initial state is a string in both of thelanguages of the machines which were used to form the product. Conse-quently, for Lf = K to hold, we require that all states reachable from theinitial state in the product machine be reachable in the closed loop behav-ior. Hence, if � 2 Êc, then ic(�) = 1, and if � 62 Êc, then ic(�) = 0. If icwere de�ned some other way, there would be strings which either could notbe generated but are in K or strings not in K which could be generated.2We can drop the distinction between Êc and Ac and let Ac denote thisminimal Êc.Since calculating the product machine has complexityO(jQLj�jQKj�jAj),we can replace one of the exponential factors in the complexity of theprocedure speci�ed in Section 3.1 by j ~Qj2 � jAj. This reduction results fromreplacing the tests for ic with the calculation of the product machine andconstruction of Ec(q) for each q. Also, note that this calculation must bedone only once. Hence, it is an additive term and is not counted as partof the observation function calculation. The resulting complexity with thismodi�cation is O(2jAj � j ~Qj3 � jAj).An illustration of the controlled event set calculation is given in Exam-ple 3.1.Example 3.1 Consider the plant and constraint behaviors as given in Fig-ure 1. For these machines, the part of the product machine which is reach-9
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Figure 1: A) Plant and B) Speci�ed Behavior.able from the initial state is isomorphic to the constraint behavior. Bycomparing the states in these machines, it is clear that only at states 4 and2 in the constraint machine are there any events which are de�ned in theplant and not in the constraint behavior. Hence, we have that Ec(4) = fbg,Ec(2) = fdg, and for all other states Ec(q) = ;. For this system, the eventswhich must be controllable are b and d, i.e. Ec = fb; dg.The �nal result in Proposition 3.2 shows that the method prescribedhas optimal computational complexity.Proposition 3.2 The complexity of calculating the events which must becontrolled to obtain the speci�ed behavior is �(j ~Qj2 � jAj).The proof of this proposition is obvious by considering that calculatingthe controllability of a language with respect to another one is a special caseof the problem considered here. This controllability calculation is knownto be �(j ~Qj2 � jAj) [14]. 10



3.3 Calculation of the Observation \Choice" Func-tionNow we consider ways to calculate io, the observation \choice" function.To obtain the correct closed loop behavior, Lf = K, a supervisor needsto identify which control pattern to use for the current state. Thus, anyevent � labeling a transition between states 4 q1 and q2, which requiresu�ciently di�erent control patterns, needs to be observed. Now we mustinvestigate what conditions constitute a su�cient di�erence.Let 
q be the control pattern for state q and Ec(q) be the events whichmust be disabled at state q. Let the function Ed : Q ! 2A give thetransitions which are de�ned from state q, i.e.Ed(q) = f� 2 A : �k(q; �)!g:There are certain types of transitions which require a change in controlpatterns and hence must be observed. Consider a transition from state q1 toq2 by event �, i.e. �k(q1; �) = q2. The transition for which Ec(q1)\Ed(q2) 6=; must be identi�ed. In this case, an event which must be disabled at q1 isde�ned for q2. Also, the transition for which Ed(q1) \Ec(q2) 6= ; must alsobe identi�ed. In this case, an event which is de�ned at q1 must be disabledat q2.De�nition 3.3 A Type O transition is de�ned by(Ec(q1) \Ed(q2) 6= ;) _ (Ed(q1) \ Ec(q2) 6= ;):Other transitions might or might not require observation, depending onwhat control patterns the supervisor chooses for the states associated withthe transition, as shown in Example 3.2.Example 3.2 If none of the sets describing the controlled events and thede�ned events intersect, then the supervisor can assign the control patternfor each of the states to be the same. I.e. if Ec(q1) \ Ec(q2) = ;, Ec(q1) \Ed(q2) = ;, Ed(q1)\Ec(q2) = ;, andEd(q1)\Ed(q2) = ;, then the supervisorcan set 
q1 = 
q2 = Ec(q1)[Ec(q2) and need not identify this transition for4Notice that in the remaining discussion most of the references to states and machinesconcern the product machine. 11



local control purposes. A speci�c illustration of these circumstances canbe seen in states (1; 1) and (2; 2) of the product of the machines given inFigure 1.However, the supervisor might need to observe some non-Type O tran-sitions to correctly identify some Type O transitions, as shown in Exam-ple 3.3.Example 3.3 Figure 2 gives the plant and desired behavior in which thesupervisor must consider possible future behavior to decide which events toobserve. Speci�cally, event bmust be observed to determine which branch ofthe desired behavior is occurring, even though no change in control patternis required after the �rst transition.Proposition 3.3 Given machinesMK andML, to obtain Lf = K, we havethe following condition on the observed events:if 9q1; q2 2 Qk : (q1 2 Rk(qk;0)),� is Type O, and�k(q1; �) = q2,then � 2 Ao,where Rk(qk;0) is as de�ned in Section 3.2.The proof of this proposition is obvious and follows from the requirementthat Lf = K and that q1 is reachable from the initial state.Let the events which satisfy the conditions in Proposition 3.3 form a setdenoted by Areq (for the required events), i.e.Areq = 8>>>>>><>>>>>>:� 2 A : 0BBBBBB@9q1; q2 2 Qk : q1 2 Rk(qk;0)^ � is Type O^ �k(q1; �) = q2 1CCCCCCA9>>>>>>=>>>>>>; :12
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Figure 2: A) Plant and B) Speci�ed Behavior.13



The procedure for choosing sensors and actuators which results fromthe above considerations consists of the following steps: calculation of theevents which must be controlled, Êc, calculation of the events which mustbe observed, Areq, and then trying all choices for the observation \choice"function which are consistent with Areq. The reduction in complexity arisesfrom the reduction in the average number of potential cases which mustbe considered for Ao. Since calculating Mk, Ac, and Areq have complexityO(j ~Qj2�jAj), and by [14] checking controllability and observability is O(j ~Qj3�jAj), we obtain a complexity of O(2jAnAreq j � j ~Qj3 � jAj) for this approach.3.4 Fully Speci�ed BehaviorsWe consider some special cases as a means of further reducing the com-plexity of choosing the required sensors and actuators. The special caseconsidered in this section is based on the polynomial complexity of �ndingthe reduced machine for a fully speci�ed Moore machine. The approach isto form the product of the plant and desired behavior and then to �nishspecifying the machine such that it is a fully speci�ed Moore machine [7, 6],where the output at a state represents a bit pattern corresponding to thecontrol pattern at the state. In general, most machines used to representdiscrete event systems are not fully speci�ed, i.e. there is usually not atransition speci�ed for every event from every state. This characteristicarises from the fact that in the actual system it may not make any senseto de�ne a given event from every state. In addition to an output controlpattern for each state, a fully speci�ed machine has a transition speci�edfor every event from every state.By [7], calculating the minimal equivalent state machine is polynomialin the number of states, i.e. O(j ~Qj2 � jAj). Hence, if we can reduce the gen-eral problem of observed event set selection to the problem of determiningthe minimal equivalent machine, then we will have a polynomial techniquefor choosing the controlled and observed events. Recall that for an incom-pletely speci�ed Moore machine determining the minimal equivalent ma-chine has nondeterministic polynomial time complexity and is complete inthis class [10]; consequently, we consider this approach only for completelyspeci�ed machines. Note that in general this approach will not providean optimal choice for the observed event set, due to possible suboptimalcompletions of the machine speci�cation.14



There are two aspects to completing the speci�cation of the productmachine: specifying the transitions and the output patterns.The transitions may be speci�ed in any manner consistent with theoriginal product machine such that the resulting machine is deterministic.From the incompletely speci�ed product machine, one can calculate theevents which must be controlled and those which can remain uncontrolled.This information is used to fully specify the output patterns. Recall that anuncontrollable event cannot be disabled by a supervisor. This fact providesa constraint on specifying the output patterns: any uncontrollable eventmust be enabled in every output pattern. There are two ways to spec-ify the output pattern for the controlled events. Any controllable eventwhich is not de�ned in the original product machine at a given state maybe disabled in the output pattern for that state. Alternatively, the eventmay be enabled or disabled in an attempt to provide a lower cost solu-tion. (This second alternative essentially requires the speci�er to make thechoices which place the incompletely speci�ed problem in the nondetermin-istic polynomial complete complexity class.)Observe that the �rst technique of choosing the output patterns has abene�t beyond providing a unique and deterministic technique for choosingthe observed event set. The supervisor which results from this choice maybe used with a wide collection of plants and still guarantee the correctclosed loop behavior.Example 3.4 Consider the original plant and speci�ed behavior as givenin Figure 3.The product machine is isomorphic to the machine for the desired be-havior. It is clear that Ac = fa; cg and that Auc = fbg. Let � denote theoutput function for this machine. From the �rst alternative for selecting theoutput patterns, we obtain that �(1) = 110, �(2) = 010, and �(3) = 011.This obviously is not optimal because to generate the correct output botha and b must be observed, but as shown in Section 4.2, it is su�cient toobserve only a or b but not both. The bene�t of this approach is apparentwhen one considers how many other plants, with the same state space andevent set, can be controlled with the supervisor which results from this case.There are 44 possible plants which would give the same result. Hence, thisapproach provides a supervisor which can be applied in a wide variety ofcases beyond the original plant. 15
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Figure 3: Plant and Speci�ed Behavior for a Simple System.The justi�cation for considering events which label transitions in theminimal equivalent Moore machine is given in the Proposition 3.4.Proposition 3.4 For a given completely speci�ed Moore machine repre-sentation of the product ofML andMK, an event � is in the observed eventset, i.e. � 2 Ao if and only if � labels a transition between distinct statesin the minimal equivalent Moore machine.Proof: The concept of equivalence classes of states based on control pat-terns provides the essence of the proof that determining a reduced equiv-alent machine is su�cient for controlling a discrete event system. In a re-duced machine, states remain di�erentiated only if an inconsistency arisesfrom combining them. As applied to supervisor design, two states mustremain di�erentiated if combining them would cause an incorrect controlpattern to be generated at some other state. Consequently, any transitionbetween distinct states in the reduced machine must be observed to applythe correct control pattern.23.5 \Minimal" Choice of Observed EventsThe special case considered in this section gives a minimal versus an optimalsolution. The \minimal" choice of observed events is obtained by a greedyalgorithm based on the observation cost function.16



De�nition 3.4 Let K and L denote the desired and plant behaviors, re-spectively. Let P (B) denote the mask associated with the observed eventset B. We say that B is minimal if there is no set X such that X � B andB 6= X with K observable with respect to L and P (X).In general, there will be several minimal sets of observed events.This approach calculates the minimal set of observed events based onthe order in which events are chosen to determine if an event is requiredfor observability. Note that this choice is what provides the polynomialcomplexity of this approach.The technique consists of choosing an event and determining if the de-sired behavior is observable with respect to the plant behavior and theproposed set of observed events. The proposed set of observed events is thecurrent set of observed events minus the chosen event. If the behavior isobservable, then remove this event from the set of observed events. If it isnot, then pick another event to test. Continue until all events have beentested. The complexity of this procedure is O(jAj � j ~Qj3). Note that thisprocedure cannot be used to guarantee an optimal solution for the generalproblem because the order in which events are considered does matter.This approach can be implemented as a greedy type of algorithm bychoosing the events for consideration in decreasing order of their cost. Ex-ample 3.5 demonstrates that this approach does not guarantee an optimalsolution.Example 3.5 Consider the plant and desired behaviors as speci�ed in Fig-ure 4 with the cost function de�ned as co(a) = 6, co(b) = 5, co(c) = 4,co(d) = 3, co(e) = 2, and co(f) = 1. For this cost assignment, a greedyalgorithm provides an observed event set Ao = fc; d; eg with an observa-tion cost of 9 units. An optimal observed event set is Ao = fa; eg with anobservation cost of 8 units.4 Applications4.1 An Example RevisitedFigure 1 gives the machines for the plant and desired behaviors.17
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A) B)

1 2 3

c

a b

c

a

1 2 3
a b

c

Figure 6: Plant and Speci�ed Behavior for a Simple System.observable if we choose Ao = fcg.4.3 Desired Behavior Not a Subautomaton of PlantBehaviorFigure 7 gives a plant and desired behavior which demonstrate the choicesrequired in choosing the observed event set when the desired behavior isnot a subautomaton of the plant behavior.
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From these observations, we conclude which transitions are Type O:((1; 1); a; (1; 2)) is Type O and ((1; 2); b; (1; 1)) is Type O. Hence, we obtainthat Ac = fa; b; c; dg and that Areq = fa; bg.The system is observable if we choose Ao = fa; b; dg or Ao = fa; b; eg.5 ConclusionsThis paper addresses the issue of how to choose sensors and actuators for asystem which may be modeled using state machines. The goal is to restrictthe system's behavior to a speci�ed constraint behavior. In order to insurethat the system adheres to the constraint behavior certain events in thesystem must be observed and controlled with sensors and actuators.We have provided a technique for determining which events must beobserved and controlled to achieve the speci�ed constraint behavior. Acost function associated with the sensors and actuators is used to providea metric for choosing between di�erent controller con�gurations.Using di�erent types of equivalence classes, an algorithm is given for cal-culating the controller and observer parts of the supervisor which restrictsthe system's behavior to the speci�ed constraint behavior. The algorithmfor choosing the actuators has polynomial complexity in terms of the eventsand the states in the product machine. The approach presented in this workprovides an algorithm for choosing sensors and actuators with exponen-tial complexity in the number of events and polynomial complexity in thestates. The special cases considered were a completely speci�ed machinewith its associated minimization algorithm and a minimal set of observedevents with its greedy algorithm. Both special cases provide polynomialcomplexity in the number of events and states for choosing the sensors andactuators.There are several areas for further work associated with this paper.One extension is to include a state dependence of the cost functions for thesensors and actuators. Observe that for the case in which we require thatthe closed loop behavior equal the speci�ed constraint behavior the statedependence of the actuators is irrelevant. But the state dependence of thesensors can a�ect how the events to be observed are chosen.Another extension is to allow the closed loop behavior to be a subset ofthe speci�ed constraint behavior. In this case, a technique for measuring21



how much of the speci�ed behavior is not attained is needed. This measurewould need to have an associated cost and be included in the minimizationProblem 3.1. One approach assigns a cost to states and uses the reachabilityof the state in the closed loop behavior as a measure of how much of thespeci�ed constraint behavior is attained. This approach is similar to thatspeci�ed in [8]. Another approach is to assign a measure to the strings inthe speci�ed constraint behavior which are not possible in the closed loopbehavior and then to assign a cost to this measure and include it in theminimization problem. In either of these cases, the state dependence of thecost for sensors and actuators must be included in the general case analysisof the minimization problem.Another extension considers the e�ects which faults in the plant haveon controlling its behavior to achieve a speci�ed constraint behavior. Forthis case, a necessary change would be to extend De�nition 3.2 to thosestates which are not necessarily reachable from the initial state. Also, thetwo approaches of observing events or states can be considered. See [17]for more details concerning systems which can fail.Another extension considers which sensors and actuators are requiredto be able to properly identify the system model from some set of possiblemodels. See [16] for more details concerning the requirements for correctlyidentifying the correct model from a set of models.References[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysisof Computer Algorithms. Addison-Wesley, Reading, MA, 1974.[2] R.D. Brandt, V.K. Garg, R. Kumar, F. Lin, S.I. Marcus, and W.M.Wonham. \Formulas for calculating supremal controllable and normalsublanguages". Systems & Control Letters, 15:111{117, 1990.[3] Y. Brave and M. Heymann. \On Stabilization of Discrete Event Pro-cesses". Internation Journal Control, 51:1101{1117, 1990.[4] R. Cieslak, C. Desclaux, A.S. Fawaz, and P. Varaiya. \SupervisoryControl of Discrete-Event Processes with Partial Observations". IEEETransactions on Automatic Control, 33(3):249{260, 1988.22
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