Supervisory Control of Real-time Discrete
Event Systems using Lattice Theory *

Darren D. Cofer and Vijay K. Garg
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX 78712-1084
Email: vijay@pine.ece.utexas.edu
darren@pine.ece.utexas.edu

May 5, 1994

Abstract

The behavior of timed DES can be described by sequences of event
occurrence times. These sequences can be ordered to form a lattice.
Since logical (untimed) DES behaviors described by regular languages
also form a lattice, questions of controllability for timed DES may be
treated in much the same manner as they are for untimed systems. In
this paper we establish conditions for the controllability of timed DES
performance specification which are expressed as inequations on the
lattice. Thses specifications may take the form of sets of acceptable
event occurrence times, maximum or minimum occurrence times, or
limits on the separation times between events. Optimal behaviors
are found as extremal solutions to these inequations using fixed point
results for lattices.

Keywords: Discrete event systems, supervisory control, max-
algebra, lattices.

*Supported in part by NSF Grant CCR-9110605, Army Grant N00039-91-C-0082, a
TRW faculty assistantship award, General Motors Fellowship, and an IBM grant.

1 Introduction

Discrete event systems (DES) are characterized by a collection of events,
such as the completion of a job in a manufacturing process or the arrival of
a message in a communication network. The system state changes only at
time instants corresponding to the occurrence of one of the defined events.
At the logical level of abstraction, the behavior of a DES is described by
the sequences of events that it performs. The actual or desired behavior of
a logical DES is specified as a set of event sequences known as a language.
Languages may be ordered by set inclusion to form a lattice.

However, if time constraints are of explicit concern in the system dy-
namics and its performance specification, its behavior can be characterized
by sequences of occurrence times for each event. These time sequences may
be ordered to form a lattice. Thus, there is an underlying algebraic simi-
larity between logical and timed models for DES that we may be able to
exploit. In this paper we show how lattice techniques developed for the
studying the control of logical DES behaviors can also be applied to timed
DES.

Some aspects of a DES, such as processing times or machine failures,
will normally be fixed and beyond control. Others, such as starting a
manufacturing process or broadcasting a message, may be controllable by
a human operator or an automated controller. The problem in controller
design is to determine when these controllable events should or should not
occur to achieve some performance goal or to ensure that certain properties
always hold for the system.

A well-developed theoretical framework has been established by Ra-
madge and Wonham for studying the control of logical DES behavior [14].
In this framework event sequences are normally assumed to be generated
by a state machine or some other automaton. Certain events are desig-
nated as being controllable and may be disabled by a supervisor to restrict
the system to some specified behavior, given as a set of desirable event
sequences. For a specification to be controllable it must satisfy a particu-
lar invariance property which is expressed as a set function inequality, or
inequation, on the lattice of languages. An optimal supervisor is computed
as an extremal solution of the lattice inequation which characterizes the
invariance property [11].

One approach to supervisory control of timed DES is presented in [3].

In this model the timing features of timed transition models used in [13] are
added to the control structure of [14]. The untimed state machine which
models the system is extended by adding a clock tick event and augmenting
the state space to include a timer for each activity in the system. The status
of the timers may then influence state transitions. However, the addition
of a global clock greatly increases the number of transitions in the system
and in essence turns the original discrete—event system into a discrete—time
system.

Our work here also extends the supervisory control ideas of [14] to timed
DES but by using an entirely different model for the system. Suppose that
certain events are controllable by means of delaying their execution, rather
than simply prohibiting them. Desirable behavior is specified by a range of
acceptable execution times for events. By using a max-algebra model for
timed DES [9, 8] we demonstrate how this control problem may be viewed
from the Ramadge—Wonham perpective. The max-algebra approach allows
the dynamics of certain timed DES to be modelled by a system of linear
equations. Furthermore, controllable behavior in this framework may be
defined by an invariance condition which is quantified by a lattice inequa-
tion. This allows us to find optimal supervisors by computing extremal
solutions to the inequation using fixed point results for lattices.

In section 2 we review the max-algebra model to be used in the pa-
per and show the similarity between logical DES modelled by finite state
machines and timed DES modelled by timed event graphs. Using this sim-
ilarity, section 3 defines supervisory control for timed DES. In section 4
we present the lattice theory results for computing extremal solutions to
inequations and apply these results to the control of timed DES.

2 Timed Event Graphs

DES which are subject to time synchronization constraints can be modelled
by automata known as timed event graphs. A timed event graph is a Petri
net in which a time delay is associated with each place and with forks and
joins permitted only at its transitions (see figure 1). Each transition t; € T
in the graph corresponds to an event in the system. Tokens entering a place
are made available after incurring the specified delay. Transitions fire as
soon as tokens are available in all their predecessor places.

Figure 1: Timed event graph

In [2] and [9] these systems are modelled using a dioid algebra. Some-
times called a semi-ring, a dioid has two binary operations normally de-
noted & and @ and differs most notably from a ring in that there is no
inverse with respect to the sum (&). To describe a timed event graph, & is
usually defined to be either maximization or minimization and @ is defined
as addition.

The dynamic behavior of such systems can also be studied using a max-
algebra structure called a moduloid or semi-module. While a module is
a ring acting on a commutative group, a moduloid is essentially a dioid
acting on a monoid. More specifically, a moduloid over a dioid D is a
commutative idempotent monoid X together with an operation called scalar
multiplication mapping D x X — AX. Scalar multiplication distributes over
the sum operation ¢ in both D and X', is associative with the product in D,
and has as its identity the identity element of D. We let ¢ denote the null
element for @& in X'. X is complete if it is closed for arbitrary @ operations.
A partial order is induced in both D and X by the relation

r<ysSrdy=y. (1)
Properties of moduloids are discussed in [16] and [2].

Definition 1 A function f: X' — X is called lower-semicontinuous (L.s.c.)
[2] if for any collection of elements X C X

f(@l‘) = G?(f(l‘)-

Note that the identity function (0(x) = x) and the null function (e(x) = ¢)
are both Ls.c. Also note that any l.s.c. function maps e to itself (simply
take the index set X in the definition to be empty).

4

Theorem 1 Let F' be the set of l.s.c. functions on X with the operations
@ and © given by

(fog)z) = flz)Dg(a)
(fog)z) = flg(zx)).

Then F 1s a dioid. If X 1s complete, so is F. Furthermore, if scalar
multiplication is defined to be the action of functions in F on X, then X 1s
a moduloid over F [6].

Consider a timed event graph such as Figure 1. Using the moduloid struc-
ture the behavior of a timed event graph with n events is governed by the
equation

r=Ax Do (2)

where x is the sequence of firing time vectors for events, v is a sequence
of earliest allowable firing time vectors, and A is an n X n matrix of delay
functions at places. The least solution of (2) is @+ = A*v where

A =P A"

i>0

The set of vector sequences in {R U +oo}” forms an idempotent commuta-
tive monoid under pointwise maximization which we denote by §". Note
that this monoid is complete. For systems with constant delay times, the
delay functions are of the form av™, where a represents unary addition of
some constant and v is the index backshift function (ya(k) = x(k — 1)).
Functions of this form are easily shown to be l.s.c. This structure can also
be used to model systems more general than timed event graphs with con-
stant delays, including some untimed DES and time-varying systems [6].

Example 1 To illustrate this approach, consider the timed event graph of
Figure 2 which represents a manufacturing process. Upon arrival, a part
is set up (s) in a machine queue and then worked (w) in order of arrival.
Each of the subprocesses s and w takes essentially constant time. However,
the part interarrival times a may vary due to the workfloor schedule. The
machine reset time r is normally constant except for periodic replacement

Figure 2: Timed event graph for manufacturing process

of the cutting head. Letting z; denote the occurrence times of event ¢;, the
process is described by

T ay € € T 0
Ty | = s e Ty o | B O
T3 e w & T3 0

If we are interested in the part completion times given by x3 this is com-
puted using © = A*v. Since

(av)* € €
A" = | (ryw)s(ay) (ryw) (ryw)ry
(wry)yws(ay)” (wry)w (wry)

and v = vy = v3 = 0 we have

xy = (wry)(ws(ay)” &w S 0)(0)
= (wry) ws(ay)"(0). (3)

Once the delay functions are specified, the part completion times are com-
puted from (3). In particular, let s(z) =2 + 1, w(z) = 2 + 4, and

| x(k)+5 kodd _J x(k)+4 kmod5=0
a(x(k)) = { x(x)+7 keven r(z(k)) = { z(k)+1 otherwise

In this case we find

x5 = {5,10,17,22,29,37,42,47,58 .. .}.

Figure 3: Finite state machine with same structure as Figure 2

Timed event graphs are structurally very similar to finite state machines
which are often used to model logical DES. Both are directed graphs with
labelled edges. While in a timed event graph the nodes correspond to events
and the edges to process delays, the nodes in a finite state machine represent
the system states and the edges correspond to events. This is illustrated by
comparing Figures 2 and 3. The structures are dual in the sense that a finite
state machine models nondeterministic choice but not concurrency while a
timed event graph models concurrency but not nondeterministic choice.
(We note that timed event graphs which include deterministic choices are
discussed in [2] and [5].)

Because of the structural similarities between these automata there is
an algebraic similarity as well. If we consider sets of event sequences with
the operation of set union, the sequences accepted by a finite state machine
can be described in the moduloid framework used for timed event graphs.
The functions which are assigned to the edges in this case are right concate-
nations of event labels. The system is therefore governed by an equation of
the form © = Az @ v as before. For the system of figure 3, the solution for
the marked state is g3 = a*sw(rw)* which is a regular expression over the
event set of the system. Furthermore, except for omission of the v func-
tions and the reversed order (due to the convention of composing functions
from the left) it is the same as the solution (3) for the timed event graph
of figure 2.

It is this algebraic similarity which suggests that control of timed event
graphs may be studied using techniques developed for untimed DES.

3 Supervisory Control of Timed DES

To motivate our approach to controlling timed DES, we briefly recall the
framework for controlling logical or untimed DES behaviors. In a logical
DES model with event set X, the language L C ¥* of the system is the
set of all event sequences it can generate. Events are classified as either
controllable, meaning that their occurrence may be prevented, or uncon-
trollable. Control is accomplished by dynamically disabling certain of the
controllable events to avoid undesirable behaviors (event sequences not in
the specified language). Observe that such a controller or supervisor may
restrict system behavior, but not introduce any new behaviors.

Since uncontrollable events may not be disabled, not all behaviors are
realizable. Language K is said to be controllable with respect to L and the
uncontrollable events X, if

pr(K).S, NLCpr(kK) (4)

where pr(k) is the prefiz closure of K.

For a supervisor to be able to restrict the system to a desired language,
uncontrollable actions must not result in sequences which lie outside of that
language. Furthermore, we must permit the system to execute those be-
haviors in pr(k) which lead to the acceptable region, even though they may
not lie in that region themselves. Therefore, these potentially acceptable
behaviors as well as the region of acceptable behavior should be invariant
or closed under uncontrollable actions. Since uncontrollable events in the
system act by concatenation this invariance property yields the definition
of controllability stated in (4). If the desired behavior does not satisfy the
controllability condition, a supervisor may be constructed to achieve the
supremal sublanguage which is controllable.

Now return to the max-algebra model of a timed event graph governed
by (2). Suppose that some events T. C T are designated as controllable,
meaning that their transitions may be delayed from firing until some arbi-
trary later time. This is similar in its mechanics to the controlled Petri net
concept introduced in [10] for untimed DES. The delayed enabling times
u;(k) for the controllable events are to be provided by a supervisor. Let u
represent the sequence of transition enabling times provided by the super-
visor, with u;(k) = e for ¢; uncontrollable. Then the supervised system is

described by * = Ax ® v D u.

To compute the effect of uncontrollable events, let I. denote the ma-
trix having the identity function on diagonal elements : for which ¢; € T,
and ¢ elsewhere. Then for any desired sequence y € Y the supervisor pro-
vides firing times u = [y which results in © = A*(I.y & v). Since the
desired behavior must be invariant under uncontrollable actions, we have
the following definition of controllability.

Definition 2 A set of sequences Y C S is controllable with respect to A,
v, and T, if
AY(LY ©v) CY. (5)

Intuitively, this means that enabling controllable events at any time allowed
by the specification set ¥ must result in behavior within YV for all events.
Notice that, as in the untimed model, no new behavior is introduced by the
supervisor. System operation can never be accelerated — events can only
be delayed.

As an example suppose then that we wish to slow the system down
as much as possible without causing any event to occur later than some
sequence of execution times y. Such a specification could be used to pre-
vent buffer overflows, ensure the availability of sufficient processing time to
accomplish a task, or to synchronize events in independent systems. This
type of specification is described by

Y = {z eS|z <y} (6)

where y € S is a fixed sequence. For the remainder of this section we will
consider acceptable behaviors of this form.

Proposition 1 If Y specifies sequences no later than y as in (6) then Y
18 controllable if and only if

A (Ly®v) <y. (7)
Proof: If YV is controllable then (5) holds. Thus

yeY = A(Lydv)eY
= A" (Lydv)<y.

Conversely, suppose A*(L.y G v) < y. Then for any € Y

r<y = A (Laxdv)< A (Lydv)
= A" (Laxdv)<y
—~ A(LY30)CY.

g

Example 2 For the system in Figure 2 with t; controllable, suppose we
are given as a specification the set Y of sequences less than or equal to

(7Tv)*(0) 0 7 14
y= 1| s(79)50) | = T, 8 |,|15{,...
ws(7v)*(0) 5 12 19

This specification seeks to remove variations due to the interarrival delays
a. To determine if Y is controllable, we compute

€ (av)*(0)
ALyoAv = (ryw)*s(77)*(0) | @ | (ryw) s(ay)(0)
| (wry) ws(77)7(0) | (wry) ws(ay)"(0)
(av)*(0)
= (ryw)*s(7y)*(0) |,
| (wry) ws(7Ty)*(0) |

(
making use of the fact that (7y)* > (ay)*. Examining the third component
we find that

(wry)*ws(7y)*(0) = {5,12,19,26,33,41,47,...}
>ys = {5,12,19,26,33,40,47,...)

so Y is not controllable. O

When a specification is found to be uncontrollable, a less restrictive con-
trollable specification can always be generated from it.

Proposition 2 If y > v then A*y is a controllable sequence.

10

Proof: By the construction of I, we have I.A*y < A*y and
= A'[.A"y < A%y
= A [AyD A"v < A"y @ A%
o A(L(A%) B) < Ay

Example 3 Consider y from Example 2. The relaxed specification is
(a7)*(77)*(0) (79)7(0)
Aty = | (ryw) (s(ay)” & s ryws)(Ty)(0) | = | (ryw)*s(7y)"
(wry)*(ws(ay)” @ ws)(77)*(0) (wry) ws(7y)"(0)
where we have used the fact that (ryw)*(0 & ryw) = (ryw)*. Checking
condition (7) we find

€ (av)*(0)]
A L(Ay) @ A = | (ryw)s(79)7(0) | & | (ryw)s(ay)”
L w(ryw)™s(77)7(0) | (wry) ws(ay)(0)
(77)*(0)]
= (ryw)*s(7y)*(0)
L w(ryw)s(7y)7(0) |
so A*y is controllable. O

It is more likely that a given specification cannot be relaxed. In this case
we must find the least restrictive set of controllable behaviors which meets
the specification. Depending on the situation this may mean finding the
largest set which is contained in the specified behavior or the smallest set
which contains the specified behavior. Determining these extremal optimal
behaviors is the subject of the next section.

4 Extremal Behaviors of Timed DES

The controllability of a set of behaviors for a timed DES is specified by an
inequation (5) on the lattice of time sequences. In algebraic terms this is
the same situation we find for specifying the controllability of logical DES
behaviors. We demonstrate next that for timed DES where the desired be-
havior is not controllable the extremal controllable behaviors can be found
using fixed point results for lattices.

11

4.1 Lattice Theory for Logical DES

Let X be an idempotent commutative monoid A" such as was considered in
section 2. The operation & induces a partial order on A’ defined by (1). For
any pair in X' the least upper bound with respect to this order or sup{z,y}
is given by = & y. Since X is complete,

sup X = @:1;

reX

which is an element of A" for any X C X', not just pairs.
We can also induce a greatest lower bound A from & by taking

inf X =sup{z € X|z < aVa € X},

Since ¢ < ¢ for all x € A, inf X is well defined for arbitrary X C &

The partially ordered set X' is a complete lattice if sup X and inf X
are in X for any X C &X. Therefore a complete idempotent commutative
monoid X is also a complete lattice. We will use the operators LI and M to
denote sup and inf respectively in a general lattice. Some complete lattices
which will be of interest are:

e (S, <), thelattice of sequences with the order induced by & (pointwise
maximization).

e (2% C), the power set of sequences with the order of set containment.
In this lattice U and M are U and N, respectively.

o (2%, C), the set of all languages over the event set ¥ with the order
of set containment.

We next recall some useful properties of functions over lattices. A func-
tion f: X — X is idempotent if

Ve e X : f(z) = f(f(2)).
It is monotone if

Ve,y e X ia <y= fla) < fly).

12

For X' a complete lattice, a function is disjunctive if

VX CX: f(supX) = sup{f(z)}.

rzeX

Note that for the lattice (S, <) this is equivalent to the l.s.c. property. A
function is conjunctive if

VX CA: f(inf X) = ;g)f({f(x)}

Disjunctive and conjunctive functions can both be shown to be monotone
as well.

Example 4 As an example of a disjuctive function consider any function
f 8§ — & on the lattice of sequences. The function may be extended to
the power set lattice (2%, C) by taking

fX) = U fla).

zeX
Clearly any function f : 25 — 25 defined in this way is disjunctive. O

Definition 3 Consider a complete lattice (X, <) and a function f: X —
X. The disjunctive closure of f, denoted -, is defined by

i) =1 £ ().

i>0

It is easy to see that the disjunctive closure of a function is idempotent
and disjunctive. For the lattice (S, <) the least upper bound operation is &
so fY(x) = f*(x). For the lattice (2°,C) the least upper bound operation

is U so f(z) = Uisof'(2).

Definition 4 Consider a complete lattice (X, <) and a function f: X —
X. If f is disjunctive then its dual, denoted f*, is defined by

FH(y) = sup{z € X|f(x) < y}.

If f is conjunctive then its co-dual, denoted f', is defined by
fly) = inf{z € Xy < f()}.

13

The conditions of disjuctivity and conjunctivity are necessary in the defi-
nition to guarantee the existence of the dual and co-dual [11].

Remark: On the lattice of sequences (S, <) the dual is equivalent to the
restdual defined in [2].

Example 5 Consider the index backshift function v : § — § defined by

ety = 17D E2 D

Let 7! be defined by v '(z(k)) = 2(k + 1). Since Vy € S : v(v " (y)) =y
we must have ’yL(y) = sup{x € S|y(x) <y} =~
Now consider a time-varying delay as in Example 1 where a(x(k)) =

z(k) + a. In this case atz(k) = x(k) — as. O

It is shown in [11] that the dual of a function has the following proper-
ties.

1. If f1 and f; are disjunctive functions then (fif2)* = f5-fi* [11].
2. If f is idempotent then f* is also idempotent (follows from 1.).
3. If f and ¢ are disjuctive then (f Ug)* = f- Mgt [2].

As discussed the the previous section the behavior of a DES is often
specified by a system of inequations over the underlying lattice of the form

{filz) < gi(@) bica (8)

It is shown in [11] that extremal solutions of (8) can be reduced to extremal
fixed-point computation of certain induced functions. The relavent results
are summarized in the following two theorems.

Theorem 2 Given the system of inequations (8) over a complete lattice
(X, <), let
YV={yeX|Vi<n: fily) <gy)}

14

be the set of all solutions of the system of inequations. Consider the sets of

all fized points of functions hy and hy defined by
h(y) = inf{fi (9:(y)}. Y1 = {y € X[l(y) = y}

ha(y) = sup{g] (f:(y)}. Y2 = {y € X|hs(y) = y}.

1. If f; is disjunctive and g; 1s monotone Vi < n, then supY € Y,
supY; € Y1, and supY = sup Y.

2. If f; 1s monotone and g; s conjunctive Vi < n, then infY € Y,
infY; € Y, and inf Y = inf V5.

Under the stated conditions, the induced functions hy and hy are mono-
tone. On a complete lattice, monoticity guarantees the existence of supre-
mal and infimal fixed points [15]. When f and ¢ satisfy these conditions,
extremal solutions of (8) exist and correspond to the extremal fixed-points
of hy and hy. The next theorem uses these functions to compute extremal
solutions to (8).

Theorem 3 Consider the system of inequations (8) over a complete lattice
(X, <) and the set Y of all solutions of the system.

1. Let f; be disjunctive and ¢; be monotone. Consider the following
iterative computation:

® yo:=supX
® Ykt1 1= hl(yk)
If Ys1 = Ym for some m € N then y,, = sup Y.

2. Let f; be monotone and ¢; be conjunctive. Consider the following
iterative computation:

o yo:=inf X
® Ykt1 1= hQ(yk)

If Ys1 = Ym for some m € N then y,, = inf Y.

15

In the controllability condition for logical DES (4) on the lattice (2", C)
the prefix closure function is disjunctive and monotone and the concatena-
tion function is disjunctive. With some additional modifications Theorems
2 and 3 demonstrate the existence and computation of the supremal control-
lable sublanguage of any specificied language. Formulas for other extremal
behaviors, such as those reported in [4], can be derived in a similar manner.
Details of this approach may be found in [11]. Next we show that these
results can be applied analogously to timed DES using the controllability
convention presented in section 3.

4.2 Timed DES Behavior Specified as a Set

Suppose we are given a set ¥ C § of acceptable sequences. We wish to
find the least subset or the greatest superset of Y such that enabling the
controllable events at times given by a sequence in the extremal set results in
an actual behavior which lies in the extremal set. That is, we seek extremal
sets of sequences which are invariant under uncontrollable actions.

In this case, the underlying lattice is (2°, C) and the definition of con-
trollability is given by inequation (5). It is of the form

F(X) <g(X) (9)
where f(-) = A*(I.(-) ®v) and ¢(-) is the identity function. The identity
function is monotone and since f is actually a function on § extended to
2% we know by Example 4 that it is disjunctive. Furthermore, f is also
monotone and the identity function is conjunctive. Therefore Theorem 2
guarantees the existence of both extremal solutions and we make use of
Theorem 3 to find these solutions.

Note that Theorem 3 yields the supremal and infimal solutions to (8)
over the entire lattice, which in this case are X and) respectively. What we
really want is the supremal solution of (5) which is contained in a fixed set
2, which is the desired behavior. To do this, consider the pair of inequations

A(L.xdv) <
r < Z.

Since the identity function is disjunctive and the constant function & is
monotone we meet the conditions of the first part of Theorem 3, with

hl(y) =M fL(y)-

16

Similarly, to find the infimal solution greater than & let the second inequa-
tion be £ < x. Since the constant function & is monotone and the identity
function is conjunctive we can use the second part of the theorem with

ho(y) = 2 U f(y)

where we use the fact that the co-dual of the identity is itself.

Therefore given a subset of acceptable sequences Y it follows from Theo-
rem 2 that the supremal controllable subset of Y exists. Furthermore, since
any disjunctive function is also monotone and the identity is conjuctive, it
also follows that the infimal controllable superset of ¥ must exist.

Both of these solutions are computable by the iterative method of The-
orm 3. For the special case where the function f is disjunctive and also
idempotent the iterative computation reduces to a single step.

Theorem 4 Consider a complete lattice (X, <), a disjunctive and idem-
potent function f on X, and a fized & € X

1. The supremal solution less than 3 of f(x) < x is 211 fH(2).
2. The infimal solution greater than & of f(x) < x is & U f(&).

Proof: For the first part, since f is disjunctive and the identity is monotone
it follows from Theorem 2 than the supremal solution less than & exists.
The iterative computation yields

yio= @A fHE)
y2 = FAfHEAFHR))
= FAFHE)AFH(FR)
= FAfHE
= Y.
The second part follows analogously. O

We have already seen that the function on the left-hand side of the
controllability condition (5) is disjunctive. It is also idempotent, allowing
us to compute solutions using Theorem 4.

Proposition 3 The function f : S — S defined by A*(I.(-) B v) is idem-
potent.

17

Proof: We first show that the function A*I. is idempotent.

A>T = A'TA"> AL
= A'ILAYI.> A”I.
I.<I = A JA<AA =4
= A [.A"]. < AL

Using this fact we have

Pla) = A(LALe @ o) & v)
= A'TATxz@ A I[.A%v P Av
= A'Lad (A" [.A @ A%
= A Lad A" (. 1)A™v
= A'Lx 3 A™v
= fla).

O

If f is disjunctive but not idempotent, it can be replaced by its disjunc-

tive closure f“. We need the following lemma which is simply an application
of [2, Theorem 4.70] to the present situation.

Lemma 1 For a complete lattice (X, <) and a disjunctive function f :
X -
flz) <z e fY2) <=

Since the disjunctive closure is idempotent and preserves disjunctivity
the next corollary is immediate.

Corollary 1 Consider a complete lattice (X, <), a disjunctive function f
on X, and a fired & € X.

1. The supremal solution less than 3 of f(x) < x is 2 M (f)* ().

2. The infimal solution greater than & of f(x) < x is U f7(2).

18

Example 6 Consider the manufacturing process of Example 2 with the
specification set

(77)*(0) (8v)*(0)
YV = s(T9)(0) |, | s(8v)°(0) = {y1,y2}.
ws(77)*(0) ws(87)*(0)

Since f(-) = A*(I.(-) & v) is idempotent we can use Theorem 4 to find the
supremal controllable subset of Y. In Example 2 we saw that f(y;) ¢ Y,
but f(y2) = y2. Therefore,

YNfiY) = Ynsup{X C X|f(X)CY}
= {z e Y|f(z) = yrorys}
= Y2

Similarly, the infimal controllable superset of Y is given by

YUFY) = {yn, v} U{f(n), fly2)}
= {y17y27f(y1)}

4.3 Behavior Specified as an Extremal Sequence

For general Y C § computation of f~ or the iterative set computations of
Theorem 3 may become unwieldy. If the desired behavior can be expressed
in terms of upper and/or lower bounds in S such that

Y ={z €Sy <z <y}

then an alternative approach based on the lattice (S, <) may be appropri-
ate.

For a set of the form ¥V = {z € S|a < y} we wish to find the greatest
sequence z less than a fixed y such that enabling the controllable events
at times less that or equal to z results in actual behavior less than or
equal to z. We have already seen from Proposition 1 that in this case the
controllability condition is of the form

fle)=A"Lad A < x.

19

The function f is almost l.s.c (which is equivalent to disjunctivity on the
lattice (S, <)) but not quite since f(e) # . However, if we require y > A*v
then

sup{z € S|A™(I.(z) B v) <y} =sup{z € S|A™[.(z) <y}

so we can let f(x) = A*I.x. Now we can apply Corollary 1 directly to find
the supremal controllable sequence less than the given y.

Example 7 For the system of Example 2 we find the supremal controllable
specificatio sequence r < y. Using Theorem 4, this is given by

y A fH(y) =y Asup{z € S|A"L(z) < y}.

Since only t, is controllable the first and third components of = can be
made arbitrarily large and so are set equal to co. Using the definition of
A* we are left with the task of finding ((ryw)*)*(y2). Using the properties
of the dual and Example 5 first observe that

(OB ryw)(y2) = 0Ty2 A(ryw) iy,

y2 Awrytrty,

y2 A {3,10,17,24,28,38,...}
— {1,8,15,22,28,36,...}

= 3.

Also note that
0@ ryw < (ry)" = ((ryw)) (y2) < (0@ ryw)*(y2).

Since (0 & ryw)xy = (ryw)*zy we must have ((ryw)*)*(ys) = 3. Finally,
the supremal controllable sequence less than y is given by

o0 (A1
YN | x2 | = | X2
o0 Y3

20

Remark: This formulation of the control problem is similar to the latest
start date problem considered in Section 5.6 of [2]. There, the supremal
solution to an inequation of the form A*Bz < y is sought. In our nota-
tion this is given by x = (A*B)*(y), which agrees with [2]. Note that the
latest start date problem is not concerned with specifying the behavior of
the uncontrollable events nor with invariance under uncontrollable actions,
accounting for the difference in formulation.

On the other hand, for a set of the form ¥V = {# € Xz > y;} an
argument along the same lines as Proposition 1 yields

A lx DA >z (10)

as the condition for controllability. This is an inequation of the form f(z) <
g(x) with f being the identity function and ¢(-) = A*I.(-) & A*v. While f
is monotone, ¢ in this case is by no means necessarily conjunctive. Thus
we cannot show the existence of the infimal controllable sequence greater
than the given sequence y; using Theorem 4. In fact the following example
shows that this sequence may not exist at all.

Example 8 Consider the system of Figure 4 governed by

1y e ¢ 0
T = e 2v e |lxzd |0
3 3 ¢ 0

For t; and #5 controllable and

€ €
T = el,lel,]e],-
| 3 6 9
observe that both
0 3 6] € € €
= el,lel,]el,. and xy = 0O,[31],]6],...
3 6 9 | 3 6 9

are controllable sequences (in the sense of 10) greater than #. However,
x1 A 22 is uncontrollable since A*I.(x1 A x3) < &. Therefore there is no
infimal controllable sequence greater that z. O

21

Figure 4: Timed event graph for Example 8

Remark: If there is only one controllable event in the system, this is nor-
mally sufficient to guarantee that the function A*(I.(-) & v) is conjunctive.
This is because the delay functions in the dioid D are often also upper-
semicontinuous, meaning that they distribute over A as well as 4. When
this is the case, the infimal controllable sequence exists and can be found
in accordance with Theorem 4.

For those cases in which it is possible to find both the supremal con-
trollable sequence z; less than y, and the infimal controllable sequence z;
greater than y;, then the supremal controllable subset of ¥ = {z € S|y; <
r < yp} is given by Z = {x € S|z < = < z3}. This is true because any
sequence in Z must yield a behavior in the intersection of the two extremal
controllable sets.

If the existence of the infimal controllable sequence cannot be guaran-
teed one practical method is to find the supremal controllable sequence less
than y, and check if the resulting behavior is greater than y;. This subop-
timal approach yields one controllable behavior (if any exist) which meets
the specification. This method is demonstrated in [7].

4.4 Behavior Specified as a Single Sequence

Controllability constraints on the lattice (S, <) examined thus far allow us
only to specify bounds on the occurence times of events. Thus enabling
the controllable events at times within the specified range guarantees that
all events will occur at times within that range. Suppose instead we wish

22

to find a single extremal controllable sequence as opposed to a range or
set of sequences invariant under uncontrollable events. That is, we seck a
sequence such that enabling the controllable events at the designated times
causes all events to actually occur at their designated times, rather that
merely occurring within the specified set.

Using the results of section 3 the controllability of a single sequence is
specified by requiring that f(x) = A*(L.a@v) = 2. If there is an upper limit
2 on acceptable behavior, the optimal behavior is the supremal controllable
sequence less that &. This sequence is the supremal solution to the set of
inequations

A(L.xdv) <
r < AY(Lx$v)
x < Z.

As before, if we require that & > A*v then the first inequation may be
replaced be
ALy < x

Now all the left-hand side functions are disjunctive (l.s.c.) and all the
right-hand side functios are monotone. Thus, we can apply Theorem 3 with

hi(y) =& AN A*(Ly @ v) A(A L) (y)

to find the desired behavior. Since the function A*(I.x$v) is not necessarily
conjunctive, we will not consider here infimal behavior.

Example 9 Consider an upper limit such that & = A*%. Then

~—

yi = hi(sup k) =2
Yo = hi(2) =& A A(L3 Do) A(AL)H(2).

Our restrictions on & imply that

&> A"l

INA
&>

and therefore

(AL)"(2) > @

23

. We also have

ALz ®v) < 2

and so Y2 = A*([.2 & v). Furthermore, because of the idempotency of the
function A*(I.(-) & v) it follows that

ys = hi(A* (L. Gv)) = A (1.2 S v)
which shows that this is the optimal behavior. O

There are many cases in which it is also important to consider the
separation times between events. In [12] bounds on event separation times
are determined for acyclic graphs while in [1] this is extended to cyclic timed
event graphs (there called process graphs). Our interest is to determine
whether a specified limit on event separation times can be achieved given
the control available in the system.

The ability to guarantee minimal separation times between certain events
could be useful for ensuring sufficient time to perform an in-process inspec-
tion in a manufacturing system or to provide sufficient time between arrivals
and departures of connecting trains or airplanes. The ability to guarantee
maximal separation times between certain events could be useful to avoid
timeouts between communicating processors.

Let D be a matrix of delay functions which specifies separation times
between events. A solution of the inequation

Dz <z (11)

guarantees separation times of at least D. If the delay functions in D are
l.s.c. then D is disjunctive and inequation (11) meets the conditions of the
first part of Theorem 2. Thus for the supremal controllable sequence less

than some & which satisfies the minimal separation time requirement of
(11) we have

h(y) = & A D (y) AN A (Ly Do) A (A"L)* (y).

Therefore this supremal behavior exists and is computed by iterating hy.
A solution of the inequation

x < Dz (12)

24

guaratees separation times of no more than D. Since D is also monotone,
inequation (12) also meets the conditions of the first part of Theorem 2. In
this case, the supremal controllable sequence less than # which satisfies the
maximal separation time requirement of (12) gives

hi(y) =& A Dy A A*(Ly @ v) A (A"L)*(y).

Therefore this supremal behavior also exists and is computed by iterating

hy.

Example 10 For the manufacturing process of Figure 2 suppose now that
t; is controllable instead of #;. This means that part arrivals from the rest
of the factory may be inhibited. We find the supremal controllable sequence

r < 7 where

8(87)7(0)

8(87)7(0)

8(87)7(0)
and such that the separation between x3(k — 1) and x1(k) does not exceed
3 for all k. This requirement ensures that the process does not sit idle for
longer than 3 time units. This is specified by the inequation

T =

3y

< Dz = @ w

QRO RO
o O M

£
0
where w is a constant sequence with w;(0) = oo and equal to 0 elsewhere.
This modification is necessary to indicate that there is no separation con-
straint on x1(0), the first firing of #;.
Now applying the iteration scheme of Theorem 3 we find

Yo = supX
Yy = T
[3(87)7(0)]
y: = | 8(87)%(0)
| 8(87)*(0) |
[3(87)*(0) |
ys = | 4(87)7(0)
| 8(87)*(0) |

Therefore this the supremal controllable behavior satisfying the required
conditions. O

5 Conclusion

For timed DES the objective of supervisory control is to impose delays on
controllable events to modify system behavior to meet some specified per-
formance goal. Using a max-algebra representation it is possible to compute
the uncontrolled behavior of a timed event graph, define a specification for
some new desired behavior, and determine whether the specification can
be realized by any supervisor given the set of controllable events. The be-
havioral constraints take the form of inequations over a complete lattice.
These constraints may specify minimal or maximal separation times be-
tween events as well as bounds on their absolute occurrence times. We
have shown that extremal solutions to these inequations can be found us-
ing lattice theoretic methods developed for studying logical (untimed) DES
behaviors.

References

[1] T. Amon, H. Hulgaard, S. M. Burns, G. Borriello, “An algorithm for
exact bounds on the time separation of events in concurrent systems,”
IEEE International Conference on Computer Design, October 1993.

[2] F. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat, Synchronization
and Linearity: An Algebra for Discrete Event Systems, Wiley, New
York, 1992.

[3] B. A. Brandin, W. M. Wonham, “Supervisory Control of Timed
Discrete-Event Systems,” IEFEE Transaction on Automatic Control,
39(2):329-342, 1994.

[4] R.D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, W. M. Won-
ham, “Formulas for calculating supremal and normal sublanguages,”
Systems and Control Letters, 15(8):111-117, 1990.

26

[5]

[10]

[11]

[13]

[14]

D. D. Cofer, V. K. Garg, “A timed model for the control of discrete
event systems involving decisions in the max-plus algebra,” Proceedings
of the 31st Conference on Decision and Control, Tuscon, AZ, pp. 3363-
3368, 1992.

D. D. Cofer, V. K. Garg, “A Generalized Max-algebra Model for Timed
and Untimed DES,” Technical Report SCC-93-02, Dept. of ECE, Uni-
versity of Texas, Austin, 1993.

D. D. Cofer, V. K. Garg, “A Max-algebra Solution to the Supervisory
Control Problem for Real-Time Discrete Event Systems,” Proceedings
of the 11th International Conference on Analysis and Optimization of
Systems, Sophia-Antipolis, France, June 1994.

G. Cohen, D. Dubois, J. P. Quadrat, M. Viot, “A linear-system-
theoretic view of discrete-event processes and its use for performance
evaluation in manufacturing,” IEEE Transactions on Automatic Con-
trol, Vol. AC-30, No. 3, pp. 210-220, March 1985.

G. Cohen. P. Moller, J. P. Quadrat, M. Viot, “Algebraic tools for the
performance evaluation of DES,” Proceedings of the IEEE, 77(1):39—
58, 1989,

B. H. Krogh, “Controlled Petri Nets and Maximally Permissive Feed-
back Logic,” Proc. 25th Allerton Conference on Communication, Con-
trol, and Computation, Urbana, IL, 1987.

R. Kumar, V. K. Garg, “Extremal Solutions of Inequations over Lat-
tices with Applications to Supervisory Control,” 338rd Conference on
Decision and Control (submitted).

K. McMillan, D. L. Dill, “Algorithms for interface timing verification,”
1992 IEEFE International Conference on Computer Design, October
1992.

J. S. Ostroff, “Deciding properties of timed transition models,” IEEF
Transactions on Parallel and Distributed Systems, 1(2):170-183, 1990.

P. J. Ramadge, W. M. Wonham, “The control of discrete event sys-
tems,” Proceedings of the IEEE, 77(1):81-98, 1989.

27

[15] A. Tarski, “A Lattice-theoretical Fixpoint Theorem and its Applica-
tions,” Pacific Journal of Mathematics, 5:285-309, 1955.

[16] E. Wagneur, “Moduloids and pseudomodules: 1. Dimension Theory,”
Discrete Mathematics, 98:57-73, 1991.

28

