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1 IntroductionDiscrete event systems (DES) are characterized by a collection of events,such as the completion of a job in a manufacturing process or the arrival ofa message in a communication network. The system state changes only attime instants corresponding to the occurrence of one of the de�ned events.At the logical level of abstraction, the behavior of a DES is described bythe sequences of events that it performs. The actual or desired behavior ofa logical DES is speci�ed as a set of event sequences known as a language.Languages may be ordered by set inclusion to form a lattice.However, if time constraints are of explicit concern in the system dy-namics and its performance speci�cation, its behavior can be characterizedby sequences of occurrence times for each event. These time sequences maybe ordered to form a lattice. Thus, there is an underlying algebraic simi-larity between logical and timed models for DES that we may be able toexploit. In this paper we show how lattice techniques developed for thestudying the control of logical DES behaviors can also be applied to timedDES.Some aspects of a DES, such as processing times or machine failures,will normally be �xed and beyond control. Others, such as starting amanufacturing process or broadcasting a message, may be controllable bya human operator or an automated controller. The problem in controllerdesign is to determine when these controllable events should or should notoccur to achieve some performance goal or to ensure that certain propertiesalways hold for the system.A well-developed theoretical framework has been established by Ra-madge and Wonham for studying the control of logical DES behavior [14].In this framework event sequences are normally assumed to be generatedby a state machine or some other automaton. Certain events are desig-nated as being controllable and may be disabled by a supervisor to restrictthe system to some speci�ed behavior, given as a set of desirable eventsequences. For a speci�cation to be controllable it must satisfy a particu-lar invariance property which is expressed as a set function inequality, orinequation, on the lattice of languages. An optimal supervisor is computedas an extremal solution of the lattice inequation which characterizes theinvariance property [11].One approach to supervisory control of timed DES is presented in [3].2



In this model the timing features of timed transition models used in [13] areadded to the control structure of [14]. The untimed state machine whichmodels the system is extended by adding a clock tick event and augmentingthe state space to include a timer for each activity in the system. The statusof the timers may then in
uence state transitions. However, the additionof a global clock greatly increases the number of transitions in the systemand in essence turns the original discrete{event system into a discrete{timesystem.Our work here also extends the supervisory control ideas of [14] to timedDES but by using an entirely di�erent model for the system. Suppose thatcertain events are controllable by means of delaying their execution, ratherthan simply prohibiting them. Desirable behavior is speci�ed by a range ofacceptable execution times for events. By using a max-algebra model fortimed DES [9, 8] we demonstrate how this control problem may be viewedfrom the Ramadge{Wonham perpective. The max-algebra approach allowsthe dynamics of certain timed DES to be modelled by a system of linearequations. Furthermore, controllable behavior in this framework may bede�ned by an invariance condition which is quanti�ed by a lattice inequa-tion. This allows us to �nd optimal supervisors by computing extremalsolutions to the inequation using �xed point results for lattices.In section 2 we review the max-algebra model to be used in the pa-per and show the similarity between logical DES modelled by �nite statemachines and timed DES modelled by timed event graphs. Using this sim-ilarity, section 3 de�nes supervisory control for timed DES. In section 4we present the lattice theory results for computing extremal solutions toinequations and apply these results to the control of timed DES.2 Timed Event GraphsDES which are subject to time synchronization constraints can be modelledby automata known as timed event graphs. A timed event graph is a Petrinet in which a time delay is associated with each place and with forks andjoins permitted only at its transitions (see �gure 1). Each transition ti 2 Tin the graph corresponds to an event in the system. Tokens entering a placeare made available after incurring the speci�ed delay. Transitions �re assoon as tokens are available in all their predecessor places.3



Figure 1: Timed event graphIn [2] and [9] these systems are modelled using a dioid algebra. Some-times called a semi-ring, a dioid has two binary operations normally de-noted � and 
 and di�ers most notably from a ring in that there is noinverse with respect to the sum (�). To describe a timed event graph, � isusually de�ned to be either maximization or minimization and 
 is de�nedas addition.The dynamic behavior of such systems can also be studied using a max-algebra structure called a moduloid or semi-module. While a module isa ring acting on a commutative group, a moduloid is essentially a dioidacting on a monoid. More speci�cally, a moduloid over a dioid D is acommutative idempotent monoidX together with an operation called scalarmultiplication mapping D�X ! X . Scalar multiplication distributes overthe sum operation � in both D and X , is associative with the product inD,and has as its identity the identity element of D. We let " denote the nullelement for � in X . X is complete if it is closed for arbitrary � operations.A partial order is induced in both D and X by the relationx � y , x� y = y: (1)Properties of moduloids are discussed in [16] and [2].De�nition 1 A function f : X ! X is called lower-semicontinuous (l.s.c.)[2] if for any collection of elements X � Xf(Mx2X x) = Mx2X f(x):Note that the identity function (0(x) = x) and the null function ("(x) = ")are both l.s.c. Also note that any l.s.c. function maps " to itself (simplytake the index set X in the de�nition to be empty).4



Theorem 1 Let F be the set of l.s.c. functions on X with the operations� and 
 given by (f � g)(x) = f(x) � g(x)(f 
 g)(x) = f(g(x)):Then F is a dioid. If X is complete, so is F . Furthermore, if scalarmultiplication is de�ned to be the action of functions in F on X , then X isa moduloid over F [6].Consider a timed event graph such as Figure 1. Using the moduloid struc-ture the behavior of a timed event graph with n events is governed by theequation x = Ax� v (2)where x is the sequence of �ring time vectors for events, v is a sequenceof earliest allowable �ring time vectors, and A is an n� n matrix of delayfunctions at places. The least solution of (2) is x = A�v whereA� =Mi�0Ai:The set of vector sequences in fR [�1gn forms an idempotent commuta-tive monoid under pointwise maximization which we denote by Sn. Notethat this monoid is complete. For systems with constant delay times, thedelay functions are of the form a
m, where a represents unary addition ofsome constant and 
 is the index backshift function (
x(k) = x(k � 1)).Functions of this form are easily shown to be l.s.c. This structure can alsobe used to model systems more general than timed event graphs with con-stant delays, including some untimed DES and time-varying systems [6].Example 1 To illustrate this approach, consider the timed event graph ofFigure 2 which represents a manufacturing process. Upon arrival, a partis set up (s) in a machine queue and then worked (w) in order of arrival.Each of the subprocesses s and w takes essentially constant time. However,the part interarrival times a may vary due to the work
oor schedule. Themachine reset time r is normally constant except for periodic replacement5



Figure 2: Timed event graph for manufacturing processof the cutting head. Letting xi denote the occurrence times of event ti, theprocess is described by264 x1x2x3 375 = 264 a
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)�(0): (3)Once the delay functions are speci�ed, the part completion times are com-puted from (3). In particular, let s(x) = x + 1, w(x) = x+ 4, anda(x(k)) = ( x(k) + 5 k oddx(x) + 7 k even r(x(k)) = ( x(k) + 4 k mod 5 = 0x(k) + 1 otherwise :In this case we �ndx3 = f5; 10; 17; 22; 29; 37; 42; 47; 58 . . .g: ut6



Figure 3: Finite state machine with same structure as Figure 2Timed event graphs are structurally very similar to �nite state machineswhich are often used to model logical DES. Both are directed graphs withlabelled edges. While in a timed event graph the nodes correspond to eventsand the edges to process delays, the nodes in a �nite state machine representthe system states and the edges correspond to events. This is illustrated bycomparing Figures 2 and 3. The structures are dual in the sense that a �nitestate machine models nondeterministic choice but not concurrency while atimed event graph models concurrency but not nondeterministic choice.(We note that timed event graphs which include deterministic choices arediscussed in [2] and [5].)Because of the structural similarities between these automata there isan algebraic similarity as well. If we consider sets of event sequences withthe operation of set union, the sequences accepted by a �nite state machinecan be described in the moduloid framework used for timed event graphs.The functions which are assigned to the edges in this case are right concate-nations of event labels. The system is therefore governed by an equation ofthe form x = Ax� v as before. For the system of �gure 3, the solution forthe marked state is q3 = a�sw(rw)� which is a regular expression over theevent set of the system. Furthermore, except for omission of the 
 func-tions and the reversed order (due to the convention of composing functionsfrom the left) it is the same as the solution (3) for the timed event graphof �gure 2.It is this algebraic similarity which suggests that control of timed eventgraphs may be studied using techniques developed for untimed DES.7



3 Supervisory Control of Timed DESTo motivate our approach to controlling timed DES, we brie
y recall theframework for controlling logical or untimed DES behaviors. In a logicalDES model with event set �, the language L � �� of the system is theset of all event sequences it can generate. Events are classi�ed as eithercontrollable, meaning that their occurrence may be prevented, or uncon-trollable. Control is accomplished by dynamically disabling certain of thecontrollable events to avoid undesirable behaviors (event sequences not inthe speci�ed language). Observe that such a controller or supervisor mayrestrict system behavior, but not introduce any new behaviors.Since uncontrollable events may not be disabled, not all behaviors arerealizable. Language K is said to be controllable with respect to L and theuncontrollable events �u ifpr(K):�u \ L � pr(K) (4)where pr(k) is the pre�x closure of K.For a supervisor to be able to restrict the system to a desired language,uncontrollable actions must not result in sequences which lie outside of thatlanguage. Furthermore, we must permit the system to execute those be-haviors in pr(k) which lead to the acceptable region, even though they maynot lie in that region themselves. Therefore, these potentially acceptablebehaviors as well as the region of acceptable behavior should be invariantor closed under uncontrollable actions. Since uncontrollable events in thesystem act by concatenation this invariance property yields the de�nitionof controllability stated in (4). If the desired behavior does not satisfy thecontrollability condition, a supervisor may be constructed to achieve thesupremal sublanguage which is controllable.Now return to the max-algebra model of a timed event graph governedby (2). Suppose that some events Tc � T are designated as controllable,meaning that their transitions may be delayed from �ring until some arbi-trary later time. This is similar in its mechanics to the controlled Petri netconcept introduced in [10] for untimed DES. The delayed enabling timesui(k) for the controllable events are to be provided by a supervisor. Let urepresent the sequence of transition enabling times provided by the super-visor, with ui(k) = " for ti uncontrollable. Then the supervised system isdescribed by x = Ax � v � u. 8



To compute the e�ect of uncontrollable events, let Ic denote the ma-trix having the identity function on diagonal elements i for which ti 2 Tcand " elsewhere. Then for any desired sequence y 2 Y the supervisor pro-vides �ring times u = Icy which results in x = A�(Icy � v). Since thedesired behavior must be invariant under uncontrollable actions, we havethe following de�nition of controllability.De�nition 2 A set of sequences Y � S is controllable with respect to A,v, and Tc if A�(IcY � v) � Y: (5)Intuitively, this means that enabling controllable events at any time allowedby the speci�cation set Y must result in behavior within Y for all events.Notice that, as in the untimed model, no new behavior is introduced by thesupervisor. System operation can never be accelerated | events can onlybe delayed.As an example suppose then that we wish to slow the system downas much as possible without causing any event to occur later than somesequence of execution times y. Such a speci�cation could be used to pre-vent bu�er over
ows, ensure the availability of su�cient processing time toaccomplish a task, or to synchronize events in independent systems. Thistype of speci�cation is described byY = fx 2 Sjx � yg (6)where y 2 S is a �xed sequence. For the remainder of this section we willconsider acceptable behaviors of this form.Proposition 1 If Y speci�es sequences no later than y as in (6) then Yis controllable if and only if A�(Icy � v) � y: (7)Proof: If Y is controllable then (5) holds. Thusy 2 Y ) A�(Icy � v) 2 Y) A�(Icy � v) � y:9



Conversely, suppose A�(Icy � v) � y. Then for any x 2 Yx � y ) A�(Icx� v) � A�(Icy � v)) A�(Icx� v) � y) A�(IcY � v) � Y: utExample 2 For the system in Figure 2 with t2 controllable, suppose weare given as a speci�cation the set Y of sequences less than or equal toy = 264 (7
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)�(0) = f5; 12; 19; 26; 33; 41; 47; . . .g> y3 = f5; 12; 19; 26; 33; 40; 47; . . .gso Y is not controllable. utWhen a speci�cation is found to be uncontrollable, a less restrictive con-trollable speci�cation can always be generated from it.Proposition 2 If y � v then A�y is a controllable sequence.10



Proof: By the construction of Ic we have IcA�y � A�y and) A�IcA�y � A�y) A�IcA�y �A�v � A�y �A�v) A�(Ic(A�y) � v) � A�y utExample 3 Consider y from Example 2. The relaxed speci�cation isA�y = 264 (a
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)�(0) 375so A�y is controllable. utIt is more likely that a given speci�cation cannot be relaxed. In this casewe must �nd the least restrictive set of controllable behaviors which meetsthe speci�cation. Depending on the situation this may mean �nding thelargest set which is contained in the speci�ed behavior or the smallest setwhich contains the speci�ed behavior. Determining these extremal optimalbehaviors is the subject of the next section.4 Extremal Behaviors of Timed DESThe controllability of a set of behaviors for a timed DES is speci�ed by aninequation (5) on the lattice of time sequences. In algebraic terms this isthe same situation we �nd for specifying the controllability of logical DESbehaviors. We demonstrate next that for timed DES where the desired be-havior is not controllable the extremal controllable behaviors can be foundusing �xed point results for lattices.11



4.1 Lattice Theory for Logical DESLet X be an idempotent commutative monoid X such as was considered insection 2. The operation � induces a partial order on X de�ned by (1). Forany pair in X the least upper bound with respect to this order or supfx; ygis given by x � y. Since X is complete,supX = Mx2X xwhich is an element of X for any X � X , not just pairs.We can also induce a greatest lower bound ^ from � by takinginfX = supfz 2 Xjz � x8x 2 Xg:Since " � x for all x 2 X , infX is well de�ned for arbitrary X � X .The partially ordered set X is a complete lattice if supX and infXare in X for any X � X . Therefore a complete idempotent commutativemonoid X is also a complete lattice. We will use the operators t and u todenote sup and inf respectively in a general lattice. Some complete latticeswhich will be of interest are:� (S;�), the lattice of sequences with the order induced by� (pointwisemaximization).� (2S ;�), the power set of sequences with the order of set containment.In this lattice t and u are [ and \, respectively.� (2��;�), the set of all languages over the event set � with the orderof set containment.We next recall some useful properties of functions over lattices. A func-tion f : X ! X is idempotent if8x 2 X : f(x) = f(f(x)):It is monotone if 8x; y 2 X : x � y ) f(x) � f(y):12



For X a complete lattice, a function is disjunctive if8X � X : f(supX) = supx2Xff(x)g:Note that for the lattice (S;�) this is equivalent to the l.s.c. property. Afunction is conjunctive if8X � X : f(inf X) = infx2Xff(x)g:Disjunctive and conjunctive functions can both be shown to be monotoneas well.Example 4 As an example of a disjuctive function consider any functionf : S ! S on the lattice of sequences. The function may be extended tothe power set lattice (2S ;�) by takingf̂ (X) = [x2X f(x):Clearly any function f̂ : 2S ! 2S de�ned in this way is disjunctive. utDe�nition 3 Consider a complete lattice (X ;�) and a function f : X !X . The disjunctive closure of f , denoted ft, is de�ned byft(x) = Gi�0 f i(x):It is easy to see that the disjunctive closure of a function is idempotentand disjunctive. For the lattice (S;�) the least upper bound operation is �so ft(x) = f�(x). For the lattice (2S ;�) the least upper bound operationis [ so ft(x) = [i�0f i(x).De�nition 4 Consider a complete lattice (X ;�) and a function f : X !X . If f is disjunctive then its dual, denoted f?, is de�ned byf?(y) = supfx 2 Xjf(x) � yg:If f is conjunctive then its co-dual, denoted f>, is de�ned byf>(y) = inffx 2 Xjy � f(x)g:13



The conditions of disjuctivity and conjunctivity are necessary in the de�-nition to guarantee the existence of the dual and co-dual [11].Remark: On the lattice of sequences (S;�) the dual is equivalent to theresidual de�ned in [2].Example 5 Consider the index backshift function 
 : S ! S de�ned by
(x(k)) = ( x(k � 1) : k � 1" : k = 0 :Let 
�1 be de�ned by 
�1(x(k)) = x(k + 1). Since 8y 2 S : 
(
�1(y)) = ywe must have 
?(y) = supfx 2 Sj
(x) � yg = 
�1.Now consider a time-varying delay as in Example 1 where a(x(k)) =x(k) + ak. In this case a?x(k) = x(k) � ak. utIt is shown in [11] that the dual of a function has the following proper-ties.1. If f1 and f2 are disjunctive functions then (f1f2)? = f?2 f?1 [11].2. If f is idempotent then f? is also idempotent (follows from 1.).3. If f and g are disjuctive then (f t g)? = f? u g? [2].As discussed the the previous section the behavior of a DES is oftenspeci�ed by a system of inequations over the underlying lattice of the formffi(x) � gi(x)gi�n: (8)It is shown in [11] that extremal solutions of (8) can be reduced to extremal�xed-point computation of certain induced functions. The relavent resultsare summarized in the following two theorems.Theorem 2 Given the system of inequations (8) over a complete lattice(X ;�), let Y = fy 2 Xj8i � n : fi(y) � gi(y)g14



be the set of all solutions of the system of inequations. Consider the sets ofall �xed points of functions h1 and h2 de�ned byh1(y) = infff?i (gi(y))g; Y1 = fy 2 Xjh1(y) = ygh2(y) = supfg>i (fi(y))g; Y2 = fy 2 Xjh2(y) = yg:1. If fi is disjunctive and gi is monotone 8i � n, then supY 2 Y ,supY1 2 Y1, and supY = supY1.2. If fi is monotone and gi is conjunctive 8i � n, then inf Y 2 Y ,inf Y2 2 Y2, and inf Y = inf Y2.Under the stated conditions, the induced functions h1 and h2 are mono-tone. On a complete lattice, monoticity guarantees the existence of supre-mal and in�mal �xed points [15]. When f and g satisfy these conditions,extremal solutions of (8) exist and correspond to the extremal �xed-pointsof h1 and h2. The next theorem uses these functions to compute extremalsolutions to (8).Theorem 3 Consider the system of inequations (8) over a complete lattice(X ;�) and the set Y of all solutions of the system.1. Let fi be disjunctive and gi be monotone. Consider the followingiterative computation:� y0 := supX� yk+1 := h1(yk)If ym+1 = ym for some m 2 N then ym = supY .2. Let fi be monotone and gi be conjunctive. Consider the followingiterative computation:� y0 := inf X� yk+1 := h2(yk)If ym+1 = ym for some m 2 N then ym = inf Y .15



In the controllability condition for logical DES (4) on the lattice (2�� ;�)the pre�x closure function is disjunctive and monotone and the concatena-tion function is disjunctive. With some additional modi�cations Theorems2 and 3 demonstrate the existence and computation of the supremal control-lable sublanguage of any speci�cied language. Formulas for other extremalbehaviors, such as those reported in [4], can be derived in a similar manner.Details of this approach may be found in [11]. Next we show that theseresults can be applied analogously to timed DES using the controllabilityconvention presented in section 3.4.2 Timed DES Behavior Speci�ed as a SetSuppose we are given a set Y � S of acceptable sequences. We wish to�nd the least subset or the greatest superset of Y such that enabling thecontrollable events at times given by a sequence in the extremal set results inan actual behavior which lies in the extremal set. That is, we seek extremalsets of sequences which are invariant under uncontrollable actions.In this case, the underlying lattice is (2S ;�) and the de�nition of con-trollability is given by inequation (5). It is of the formf(X) � g(X) (9)where f(�) = A�(Ic(�) � v) and g(�) is the identity function. The identityfunction is monotone and since f is actually a function on S extended to2S we know by Example 4 that it is disjunctive. Furthermore, f is alsomonotone and the identity function is conjunctive. Therefore Theorem 2guarantees the existence of both extremal solutions and we make use ofTheorem 3 to �nd these solutions.Note that Theorem 3 yields the supremal and in�mal solutions to (8)over the entire lattice, which in this case are X and ; respectively. What wereally want is the supremal solution of (5) which is contained in a �xed setx̂, which is the desired behavior. To do this, consider the pair of inequationsA�(Icx� v) � xx � x̂:Since the identity function is disjunctive and the constant function x̂ ismonotone we meet the conditions of the �rst part of Theorem 3, withh1(y) = x̂ u f?(y):16



Similarly, to �nd the in�mal solution greater than x̂ let the second inequa-tion be x̂ � x. Since the constant function x̂ is monotone and the identityfunction is conjunctive we can use the second part of the theorem withh2(y) = x̂ t f(y)where we use the fact that the co-dual of the identity is itself.Therefore given a subset of acceptable sequences Y it follows from Theo-rem 2 that the supremal controllable subset of Y exists. Furthermore, sinceany disjunctive function is also monotone and the identity is conjuctive, italso follows that the in�mal controllable superset of Y must exist.Both of these solutions are computable by the iterative method of The-orm 3. For the special case where the function f is disjunctive and alsoidempotent the iterative computation reduces to a single step.Theorem 4 Consider a complete lattice (X ;�), a disjunctive and idem-potent function f on X , and a �xed x̂ 2 X .1. The supremal solution less than x̂ of f(x) � x is x̂ u f?(x̂).2. The in�mal solution greater than x̂ of f(x) � x is x̂ t f(x̂).Proof: For the �rst part, since f is disjunctive and the identity is monotoneit follows from Theorem 2 than the supremal solution less than x̂ exists.The iterative computation yieldsy1 = x̂ ^ f?(x̂)y2 = x̂ ^ f?(x̂ ^ f?(x̂))= x̂ ^ f?(x̂) ^ f?(f?(x̂))= x̂ ^ f?(x̂)= y2:The second part follows analogously. utWe have already seen that the function on the left-hand side of thecontrollability condition (5) is disjunctive. It is also idempotent, allowingus to compute solutions using Theorem 4.Proposition 3 The function f : S ! S de�ned by A�(Ic(�) � v) is idem-potent. 17



Proof: We �rst show that the function A�Ic is idempotent.A� � I ) A�IcA� � A�Ic) A�IcA�Ic � A�IcIc � I ) A�IcA� � A�A� = A�) A�IcA�Ic � A�IcUsing this fact we havef2(x) = A�(Ic(A�(Icx� v)) � v)= A�IcA�Icx�A�IcA�v �A�v= A�Icx � (A�IcA� �A�)v= A�Icx �A�(Ic � I)A�v= A�Icx �A�v= f(x): utIf f is disjunctive but not idempotent, it can be replaced by its disjunc-tive closure ft. We need the following lemma which is simply an applicationof [2, Theorem 4.70] to the present situation.Lemma 1 For a complete lattice (X ;�) and a disjunctive function f :X ! X f(x) � x, ft(x) � x:Since the disjunctive closure is idempotent and preserves disjunctivitythe next corollary is immediate.Corollary 1 Consider a complete lattice (X ;�), a disjunctive function fon X , and a �xed x̂ 2 X .1. The supremal solution less than x̂ of f(x) � x is x̂ u (ft)?(x̂).2. The in�mal solution greater than x̂ of f(x) � x is x̂ t ft(x̂).18



Example 6 Consider the manufacturing process of Example 2 with thespeci�cation setY = 8><>:264 (7
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)�(0) 3759>=>; = fy1; y2g:Since f(�) = A�(Ic(�) � v) is idempotent we can use Theorem 4 to �nd thesupremal controllable subset of Y . In Example 2 we saw that f(y1) 62 Y ,but f(y2) = y2. Therefore,Y \ f?(Y ) = Y \ supfX � Xjf(X) � Y g= fx 2 Y jf(x) = y1ory2g= y2:Similarly, the in�mal controllable superset of Y is given byY [ f(Y ) = fy1; y2g [ ff(y1); f(y2)g= fy1; y2; f(y1)g ut4.3 Behavior Speci�ed as an Extremal SequenceFor general Y � S computation of ft or the iterative set computations ofTheorem 3 may become unwieldy. If the desired behavior can be expressedin terms of upper and/or lower bounds in S such thatY = fx 2 Sjy1 � x � y2gthen an alternative approach based on the lattice (S;�) may be appropri-ate.For a set of the form Y = fx 2 Sjx � yg we wish to �nd the greatestsequence z less than a �xed y such that enabling the controllable eventsat times less that or equal to z results in actual behavior less than orequal to z. We have already seen from Proposition 1 that in this case thecontrollability condition is of the formf(x) = A�Icx�A�v � x:19



The function f is almost l.s.c (which is equivalent to disjunctivity on thelattice (S;�)) but not quite since f(") 6= ". However, if we require y � A�vthen supfx 2 SjA�(Ic(x) � v) � yg = supfx 2 SjA�Ic(x) � ygso we can let f(x) = A�Icx. Now we can apply Corollary 1 directly to �ndthe supremal controllable sequence less than the given y.Example 7 For the system of Example 2 we �nd the supremal controllablespeci�catio sequence x � y. Using Theorem 4, this is given byy ^ f?(y) = y ^ supfx 2 SjA�Ic(x) � yg:Since only t2 is controllable the �rst and third components of x can bemade arbitrarily large and so are set equal to 1. Using the de�nition ofA� we are left with the task of �nding ((r
w)�)?(y2). Using the propertiesof the dual and Example 5 �rst observe that(0 � r
w)?(y2) = 0?y2 ^ (r
w)?y2= y2 ^ w?
?r?y2= y2 ^ f3; 10; 17; 24; 28; 38; . . .g= f1; 8; 15; 22; 28; 36; . . .g� x2:Also note that0� r
w � (r
)� ) ((r
w)�)?(y2) � (0� r
w)?(y2):Since (0 � r
w)x2 = (r
w)�x2 we must have ((r
w)�)?(y2) = x2. Finally,the supremal controllable sequence less than y is given byy ^ 264 1x21 375 = 264 y1x2y3 375 : ut20



Remark: This formulation of the control problem is similar to the lateststart date problem considered in Section 5.6 of [2]. There, the supremalsolution to an inequation of the form A�Bx � y is sought. In our nota-tion this is given by x = (A�B)?(y), which agrees with [2]. Note that thelatest start date problem is not concerned with specifying the behavior ofthe uncontrollable events nor with invariance under uncontrollable actions,accounting for the di�erence in formulation.On the other hand, for a set of the form Y = fx 2 Xjx � y1g anargument along the same lines as Proposition 1 yieldsA�Icx �A�v � x (10)as the condition for controllability. This is an inequation of the form f(x) �g(x) with f being the identity function and g(�) = A�Ic(�) �A�v. While fis monotone, g in this case is by no means necessarily conjunctive. Thuswe cannot show the existence of the in�mal controllable sequence greaterthan the given sequence y1 using Theorem 4. In fact the following exampleshows that this sequence may not exist at all.Example 8 Consider the system of Figure 4 governed byx = 264 1
 " "" 2
 "3 3 " 375x � 264 000 375 :For t1 and t2 controllable andx̂ = 8><>:264 ""3 375 ;264 ""6 375 ;264 ""9 375 ; . . .9>=>;observe that bothx1 = 8><>:264 0"3 375 ;264 3"6 375 ;264 6"9 375 ; . . .9>=>; and x2 = 8><>:264 "03 375 ;264 "36 375 ;264 "69 375 ; . . .9>=>;are controllable sequences (in the sense of 10) greater than x̂. However,x1 ^ x2 is uncontrollable since A�Ic(x1 ^ x2) < x̂. Therefore there is noin�mal controllable sequence greater that x̂. ut21



Figure 4: Timed event graph for Example 8Remark: If there is only one controllable event in the system, this is nor-mally su�cient to guarantee that the function A�(Ic(�)� v) is conjunctive.This is because the delay functions in the dioid D are often also upper-semicontinuous, meaning that they distribute over ^ as well as �. Whenthis is the case, the in�mal controllable sequence exists and can be foundin accordance with Theorem 4.For those cases in which it is possible to �nd both the supremal con-trollable sequence z2 less than y2 and the in�mal controllable sequence z1greater than y1, then the supremal controllable subset of Y = fx 2 Sjy1 �x � y2g is given by Z = fx 2 Sjz1 � x � z2g. This is true because anysequence in Z must yield a behavior in the intersection of the two extremalcontrollable sets.If the existence of the in�mal controllable sequence cannot be guaran-teed one practical method is to �nd the supremal controllable sequence lessthan y2 and check if the resulting behavior is greater than y1. This subop-timal approach yields one controllable behavior (if any exist) which meetsthe speci�cation. This method is demonstrated in [7].4.4 Behavior Speci�ed as a Single SequenceControllability constraints on the lattice (S;�) examined thus far allow usonly to specify bounds on the occurence times of events. Thus enablingthe controllable events at times within the speci�ed range guarantees thatall events will occur at times within that range. Suppose instead we wish22



to �nd a single extremal controllable sequence as opposed to a range orset of sequences invariant under uncontrollable events. That is, we seek asequence such that enabling the controllable events at the designated timescauses all events to actually occur at their designated times, rather thatmerely occurring within the speci�ed set.Using the results of section 3 the controllability of a single sequence isspeci�ed by requiring that f(x) = A�(Icx�v) = x. If there is an upper limitx̂ on acceptable behavior, the optimal behavior is the supremal controllablesequence less that x̂. This sequence is the supremal solution to the set ofinequations A�(Icx� v) � xx � A�(Icx � v)x � x̂:As before, if we require that x̂ � A�v then the �rst inequation may bereplaced be A�Icx � x. Now all the left-hand side functions are disjunctive (l.s.c.) and all theright-hand side functios are monotone. Thus, we can apply Theorem 3 withh1(y) = x̂ ^ A�(Icy � v) ^ (A�Ic)?(y)to �nd the desired behavior. Since the function A�(Icx�v) is not necessarilyconjunctive, we will not consider here in�mal behavior.Example 9 Consider an upper limit such that x̂ = A�x̂. Theny1 = h1(supX ) = x̂y2 = h1(x̂) = x̂ ^ A�(Icx̂ � v) ^ (A�Ic)?(x̂):Our restrictions on x̂ imply thatx̂ � A�Icx̂ � x̂and therefore (A�Ic)?(x̂) � x̂23



. We also have A�(Icx̂� v) � x̂and so y2 = A�(Icx̂ � v). Furthermore, because of the idempotency of thefunction A�(Ic(�)� v) it follows thaty3 = h1(A�(Icx̂ � v)) = A�(Icx̂ � v)which shows that this is the optimal behavior. utThere are many cases in which it is also important to consider theseparation times between events. In [12] bounds on event separation timesare determined for acyclic graphs while in [1] this is extended to cyclic timedevent graphs (there called process graphs). Our interest is to determinewhether a speci�ed limit on event separation times can be achieved giventhe control available in the system.The ability to guarantee minimal separation times between certain eventscould be useful for ensuring su�cient time to perform an in-process inspec-tion in a manufacturing system or to provide su�cient time between arrivalsand departures of connecting trains or airplanes. The ability to guaranteemaximal separation times between certain events could be useful to avoidtimeouts between communicating processors.Let D be a matrix of delay functions which speci�es separation timesbetween events. A solution of the inequationDx � x (11)guarantees separation times of at least D. If the delay functions in D arel.s.c. then D is disjunctive and inequation (11) meets the conditions of the�rst part of Theorem 2. Thus for the supremal controllable sequence lessthan some x̂ which satis�es the minimal separation time requirement of(11) we have h1(y) = x̂ ^D?(y) ^A�(Icy � v) ^ (A�Ic)?(y):Therefore this supremal behavior exists and is computed by iterating h1.A solution of the inequation x � Dx (12)24



guaratees separation times of no more than D. Since D is also monotone,inequation (12) also meets the conditions of the �rst part of Theorem 2. Inthis case, the supremal controllable sequence less than x̂ which satis�es themaximal separation time requirement of (12) givesh1(y) = x̂ ^Dy ^A�(Icy � v) ^ (A�Ic)?(y):Therefore this supremal behavior also exists and is computed by iteratingh1.Example 10 For the manufacturing process of Figure 2 suppose now thatt1 is controllable instead of t2. This means that part arrivals from the restof the factory may be inhibited. We �nd the supremal controllable sequencex � x̂ where x̂ = 264 8(8
)�(0)8(8
)�(0)8(8
)�(0) 375and such that the separation between x3(k � 1) and x1(k) does not exceed3 for all k. This requirement ensures that the process does not sit idle forlonger than 3 time units. This is speci�ed by the inequationx � Dx = 264 " " 3
" 0 "" " 0 375x � wwhere w is a constant sequence with w1(0) =1 and equal to 0 elsewhere.This modi�cation is necessary to indicate that there is no separation con-straint on x1(0), the �rst �ring of t1.Now applying the iteration scheme of Theorem 3 we �ndy0 = supXy1 = x̂y2 = 264 3(8
)�(0)8(8
)�(0)8(8
)�(0) 375y3 = 264 3(8
)�(0)4(8
)�(0)8(8
)�(0) 375y4 = y3:25



Therefore this the supremal controllable behavior satisfying the requiredconditions. ut5 ConclusionFor timed DES the objective of supervisory control is to impose delays oncontrollable events to modify system behavior to meet some speci�ed per-formance goal. Using a max-algebra representation it is possible to computethe uncontrolled behavior of a timed event graph, de�ne a speci�cation forsome new desired behavior, and determine whether the speci�cation canbe realized by any supervisor given the set of controllable events. The be-havioral constraints take the form of inequations over a complete lattice.These constraints may specify minimal or maximal separation times be-tween events as well as bounds on their absolute occurrence times. Wehave shown that extremal solutions to these inequations can be found us-ing lattice theoretic methods developed for studying logical (untimed) DESbehaviors.References[1] T. Amon, H. Hulgaard, S. M. Burns, G. Borriello, \An algorithm forexact bounds on the time separation of events in concurrent systems,"IEEE International Conference on Computer Design, October 1993.[2] F. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat, Synchronizationand Linearity: An Algebra for Discrete Event Systems, Wiley, NewYork, 1992.[3] B. A. Brandin, W. M. Wonham, \Supervisory Control of TimedDiscrete-Event Systems," IEEE Transaction on Automatic Control,39(2):329{342, 1994.[4] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, W. M. Won-ham, \Formulas for calculating supremal and normal sublanguages,"Systems and Control Letters, 15(8):111{117, 1990.26
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