Distributed Resource Management Using Active Supervisory
Predicate Control *

Alex I. Tomlinson and Greg M. Hoagland and Vijay K. Garg
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78712

Abstract

We model the problem of Distributed Re-
source Management using supervisory pred-
icate control, and develop a supervisor to
manage the resources according to a de-
sirable predicate. The desirable predicate
states that resource requests (uncontrol-
lable event) must be serviced according to
some cost constraint. Traditional meth-
ods for developing the supervisor fail be-
cause an unconstrained sequence of uncon-
trollable events will always lead to a state in
which the desired predicate does not hold,
hence the controllable predicate would be
false. We place a limit on the number of
consecutive uncontrollable events for which
cost-effective service is guaranteed, and de-
fine a dynamic controllable predicate. The
dynamic controllable predicate enables the
plant to utilize more of its state space than a
static controllable predicate would allow. A
dynamic controllable predicate requires the
supervisor to actively manipulate the state
of the plant using forced events in addition
to the usual task of resticting controllable
events.

1 Introduction

Considerably more research effort has focused on su-
pervisory control theory [?, ?, ?], than on the ap-
plicaiton of this theory[?, ?]. In this paper we
present the problem of Distributed Resource Manage-
ment (DRM) and apply supervisory control theory to
model DRM. A distributed resource is one in which
the pool of available resources is not centralized, but
dispersed throughout a distributed system. Resource
requests are also distributed; they originate from var-
ious points in the distributed system. A client’s re-
source request is satisfied either through remote in-
teraction between the client and the resource, or by

This research was partially funded by the National
Science Foundation through grant NSF-CCR-9110605 and
by Microelectronics Computer Development Fellowships

relocating the resource to the client’s location. There
is a cost associated with both methods, which cre-
ates new management challenges. The manager must
decide where to keep available resources and which re-
sources to allocate when a resource is requested. We
apply supervisory control theory to design a supervi-
sor which meets these management challenges.

Supervisory control can be loosely defined as the
control of a discrete event system in order to restrict
the system to some desired predicate. The discrete
event system being controlled is referred to as the
plant. The plant is driven by ewvents and produces
some form of output that the supervisor monitors.
The supervisor disables certain events at the appro-
priate time to maintain the desired predicate. The
event set is partioned into controllable, uncontrollable
and forced events. A supervisor can prevent the oc-
curence of a controllable event by disabling it; an un-
controllable event cannot be disabled. A forced event
[?] is one which the supervisor commands. In essence,
the supervisor creates a feedback loop to control the
plant.

The desired predicate of the DRM plant is to guar-
antee service within a specified cost. The resources
in the DRM problem are located at various nodes
within the distributed system. A controllable event
in DRM is a request to relocate a resource. The su-
pervisor manages the locations of the resources by
disabling or forcing the movement of resources. The
resources must be managed in such a way that cost-
effective service can be guaranteed. Traditional meth-
ods of developing a supervisor[?] determine a static
controllable predicate and then restrict the plant to
states where the controllable predicate holds. This
approach fails with the DRM plant because the con-
trollable predicate would be false. These problems
can be supervised by placing a limit on the number
of number of consecutive resource requests and using
a dynamic controllable predicate. The dynamic con-
trollable predicate allows the DRM plant to utilize a
larger portion of its state space.

In section ?? we review the state machine model,
predicate transformers, preconditions and controlla-
bility. In section ?? we present the supervisory pred-

icate control problem as introduced in [?]. We de-
scribe the DRM problem in section ??, and model it
as a supervisory control problem in section ??7. In sec-
tion ?? we specify the control invariant and develop
a supervisor, and in section 7?7 we outline a proof of
the correctness of our supervisor.

2 Background

The choice of a plant model depends on the charac-
teristics of the system being modeled. We will use
a variant of the state machine model known as the
predicate transformer model[?] because it concisely
represents systems with large state spaces.

2.1 The State Machine Model

The plant is modeled with a state machine denoted
by the tuple G = (X, ¥, 9, z); where X denotes the
state set; ¥ denotes the finite event set; § : X x ¥ —
X denotes the partial state transition function and
xo € X denotes the initial state. The event set X is
partitioned into controllable events ¥, uncontrollable
events ¥, and forced events X ;. The supervisor for
the plant G is specified by a control map m : X — 2%,
An event ¢ € ¥ is enabled in state z if and only if
o € m(x), otherwise o is disabled. The supervised
plant induced by the control map m is described by
the state machine G, = (X, X, d,z0), where

_J d(=z,0)
0s(z,0) = { undefined

In the predicate transform variant, the state space
is modeled by plant variables; states are modeled by
predicates on the plant variables; and events are mod-
eled by predicate transformers.

if o€ m(x)
otherwise

2.2 Predicates and Predicate Transformers
We use P to denote the collection of predicates de-
fined on the state set X. A predicate P € P is a
boolean map P : X — {t¢rue, false}. There is a one
to one mapping between subsets of the state space and
predicates in the collection of predicates. Thus for
notational convenience, we write x € X4 < Pa(x),
where X4 C X and P4 € P. For example, if we de-
fine X, = {xo}, then P,, corresponds to {zo}, the
initial state of the plant.

Often we will write “an event leaves R” to refer
to an event that takes the plant from a state where R
holds to a state where =R holds. Likewise, “an event
enters R” refers to an event that takes the plant from
a state where =R holds to state where R holds.

The set of predicates in P is partially ordered by
the relation <, defined as: P, < P, & Ve € X
Pi(z) = Py(z). If P, X P», we say that P is stronger
than Pg.

Let F denote the collection of all predicates trans-
formers, i.e. if f € F, then f : P — P. Since pred-
icate transformers provide mappings from one set of
states to another, they are used to model event oc-
currences, which take the plant from one state to an-
other.

2.3 Preconditions and Postconditions
Consider an an event ¢ € X, and an intitial set of
states X4 C X (where predicate P4 holds). This
event will take the plant to a final state depending
on the initial state. Let Xp be smallest set of states
containing all possible final states (where predicate
Pg holds). In this scenario, Pg is said to be the
strongest postcondition of Py, and o. Dijkstra and
Scholten define the strongest postcondition Pp in [?]:
Pg holds precisely in those final states for which there
exist a computaion ¢ that starts in an initial state
satisfying P4. Formally, sp: P x ¥ — P, where:

sp(Pa, o) = Pg, where
Xp={reX|yeXa:d(y,0)=2}

The dual of the strongest postcondition is the
weakest liberal precondition[?]. wip(Pg, o) holds pre-
cisely in those states for which each computation of
o results in a state that satisfies Pg, or for which o
is undefined.

wlp(Pp,o) = P4, where
Xa={zeX|d(z,0) e Xp V -d(z,0)!}

The weakest liberal precondition includes all
states for which ¢ is undefined, while the weakest pre-
condition includes none of the states for which o is
undefined.

wp(Pp,0) = Pa, where Xgq ={z € X | d(z,0) € Xp

The above definitions of sp, wlp and wp are based on
the state transition function . We use sps, wlps and
wps to denote the respective functions induced by the
supervised state transition function ;.

2.4 Controllability

A plant is controllable with respect to an initial state
P,, and a desired predicate R € P if and only if
uncontrollable events will not leave R and all states in
R are reachable from P,,.[?] Desired predicates that
are not controllable must be strengthened so that the
plant can be controlled. This strengtened predicate
is called the controllable predicate.

3 Supervisory Predicate Control

The Supervisor Predicate Control Problem (SPCP)
can be stated as follows[?]: Given a plant G =

(X,%,0,29) and a desirable predicate R, create
a static supervisor m X — 2% such that
Voex sPi(o, Pr,) = R, where spj denotes the dis-
junctive closure of sps, which is the strongest post-
condition transformer induced by J;.

It is assumed that P,, < R (the initial state sat-
isfies the desirable predicate), otherwise SPCP is not
solvable. If G is controllable with respect to R, then
no uncontrollable events will leave R. In this case the
solution is simple: disable all controllable events that
leave R.

If G is not controllable with respect to R, the
problem becomes more interesting. In this case we
look for the minimally restrictive controllable predi-
cate RT < R and define a supervisor that restricts the
plant to RT. Such a supervisor is called a minimally
restrictive supervisor.

Kumar et al. [?] present a formula for determin-
ing R'. However, for many instantiations of SPCP,
R" = false. In these problems, an unconstrained
sequence of uncontrollable events will always lead to
the bad predicate space. Resource management prob-
lems fall into this category since an unlimited number
of resource requests will deplete the system of all re-
sources. In general, problems in which access to a
limited resource must be controlled have no adequate
solution when modeled in SPCP framework. We par-
tition SPCP into the following problems:

Bounded SPCP: Instantiations of SPCP for which
R" = false.

Unbounded SPCP: Instantiations of SPCP for
which RT # false.

The term “bounded” reflects that the number of
consecutive uncontrollable events must be bounded in
order to maintain the desired predicate. Distributed
resource management is one example of a Bounded
SPCP problem. In the following sections we present
a framework for controlling problems that fall into the
Bounded SPCP category, using DRM as an example.

4 Distributed Resource Management

Distributed resources can be modeled by a weighted
graph with tokens residing at the nodes. Each to-
ken represents one instance of a resource and has one
of two states: busy or awvail, corresponding to allo-
cated and free resources. The tokens are free to roam
around the graph, moving from node to node, subject
to the approval of the resource manager. The man-
ager also has the ability to forcibly relocate resources.

Resource requests occur at the nodes of the graph
and are serviced by setting the state of a free resource
to busy and relocating the resource to the requesting

node. In order for a resource located at node v; to
service a request originating at node vy, there must
exist a path from vy to vs. Servicing a request has
a cost, which we model by the the sum of the edge
weights along the path used to service the request.
When the resource is freed, its state is returned to
avail.

An incomplete request is one in which the resource
has not yet been freed. All resources are homoge-
neous, i.e, they are indistinguishable from each other
except for their location and state. The goal of the
manager is to maintain the locations of all the re-
sources so that a given number of resource requests
can be serviced within a specified cost. The DRM
problem is formally specified below:

Graph: V =A Finite Set of Vertices
ECV XV
W:E—-R

Resources: R = Finite Set of Resources
RS = {avail, busy}
L:R—>V
S:R— RS

Parameters: Mazx € N, T € R

Definitions: A path is a sequence of nodes (vy, ..., v,)
such that Vii<icn @ (Vi,vig1) € B
The length of a path p = (vy, ..., v,) is:
length(p) = i) W (vs, vit1)
The reachable set R, C R of v € V is:
R, ={reR| S(r) =avail A
3 path p = (L(r), ...,v) : length(p) < T}

DRM Goal: Maintain L: R — V such that
the following invariant holds:
N < Mazxz = Yv € V :R,|| Max — N,
N is the number of incomplete requests.

The goal is to maintain the positions of the re-
sources such that all nodes can be serviced by at least
Maz — N resources with a cost less than 7'. We write

“a request can be serviced” as a short form for “a
request can be serviced with a cost less than 7.

5 State Machine Representation

We have described DRM from the token graph point
of view; now we transform it into a plant G =
(X,X,0,x0). The plant will formally define the events
and serve as a basis for developing the supervisor.

X =VIEI x RSIEI

Y =%.US, U,

Yu= {Request, |v e V} U {Free, |r € R}
Y.={Movel |re R,veV}
Yp={FM!|reRveV}

The state space, X, consists of the locations and states
of all the resources. Request, is a resource request at
node v. Free, is the releasing of resource r. These
events are both uncontrollable. Move} is a request by
r to move to v, this is a controllable event. The forced
event F'MY is a command issued by the supervisor to
move 7 to v.

As mentioned above, we use the predicate trans-
former variant of the state machine representation. We
define the set {r.location,r.state | r € R} to be
the set of plant variables. There is a one to one
mapping from the states characterized by the val-
ues of these variables to the states in the state space
X. We describe the predicate transformers with the
guarded command program in figure ??. In the pro-
gram, the keywords indicate the event type. The
program is self-explanatory except for the following
two points: pending forced events take precedence
over other events, and Recov, is a sequence of forced
events.

DO
UNCONTROL Request, - r:=z |z € R,
r.location := v
r.state :=busy
— r.state :=avail
Recov,
— r.location := v
— r.location := v

UNCONTROL F'ree,

CONTROL M ove;}
FORCED F M/}
oD

Figure 1: Predicate Transform Description

The task of the supervisor is to control Move]
events and to define the recovery sequence, Recov,., in
order to ensure that the desired predicate is satisfied.
Using the DRM Goal from section 7?7 we define the
desired predicate: All nodes can be serviced by at least
Maz — N resources with a cost less than T'.

6 Bounded Supervisory Predicate
Control of Distributed Resources

In the previous section we defined the plant and its
desirable predicate. This section presents the frame-
work for developing a supervisor that manages the
events in the DRM problem. For the DRM prob-
lem, an unconstrained sequence of uncontrollable re-
source requests can always take the plant into a bad
predicate because the system has a limited number
of resources. The controllable predicate is there-
fore false when using traditional supervisory control
methods[?]. Placing an upper bound on the number
of consecutive service requests that are guaranteed to

be serviced within a certain cost makes it possible to
find a controllable or desirable predicate that may not
be false. However, an effect is that the controllable
predicate becomes dynamic, dependent on the num-
ber of requests that are incomplete. Traditionally, the
supervisor’s job is to restrict controllable events that
take the plant out of a static controllable predicate.
With a dynamic controllable predicate, the supervisor
must begin to take on the additional role of actively
manipulating the state of the plant[?].

We start by defining a sequence of predicates
which classify the states based on the number of re-
quests for which service can be granted.

RPy(x) ©yev: —d(x, Request,)!

RP,(x) def \/ wp(RP,_1, Request,)
veV

By inspecting the program in figure 77, it can be
seen that 0(z, Request,) is undefined if there exists
a node v such that R, = (0. RP, holds when there
exists a request event that cannot be serviced with a
cost less than 7. Hence, RP, holds when there exists
a sequence of n + 1 requests such that at least one of
the requests cannot be serviced with a cost less than
T. Conversely, if the plant is in =RP,, then for all
sequences of n + 1 service requests, it is possible to
service each request with a cost less than T'.

From the desirable predicate defined in the previ-
ous section, we define an equivalent control invariant
that the supervisor must maintain: Given N incom-
plete requests, "R Parqs—N—_1 should hold.

Initially N = 0, thus we assume that P,, =
“RPrqs—1. This means that Maxz—1 requests can be
serviced. It is the responsibility of the supervisor to
assure that the control invariant is satisfied. The su-
pervisor accomplishes this using two methods: forcing
recovery events and restricting controllable events.

For a given n, we define a smart sequence of forced
moves, F' = (fi,..., fr), where f; € f for 1 <14 <k,
to be one that satisfies: sp(=RP,,,F) = “RP,4+1. In
figure 77, Recov, is a sequence of forced moves; it
must also be a smart sequence in order to maintain
the control invariant.

Now we define the supervisor’s role in relation to
the event types which occur in the system. A con-
trollable event will not change N, thus the control-
lable predicate will remain ~"RPujaz—n—_1. The su-
pervisor must disable all controllable events which
leave =" RPprqz—nN—-1- Using the weakest precondi-
tion defined in section 7?7, we can determine which
events enter a particular state. The predicate
wp(RPpraz—N-1,0) holds when execution of o re-
sults in a state where RPprqz—n—1 holds. Thus if
(wp(RPrrag—N—1,0))(x) = true, then o should be

Vn >0

disabled in state x. The only controllable event in
our example is Move, which transforms the state
space with r.location = v, thus we define the control
map m as follows:

m(x) LS ST

{Move} | (~wp(RPprroz—N—1,1.location = v))(z)}

Recall that m is the set of enabled events, so wp
is negated. Note that all uncontrollable events are
included, so the supervisor doesn’t try to disable un-
controllable events. Note also that the control map is
a function of N, the number of incomplete requests,
and x the current state of the plant.

We must consider F'ree, events in conjunction
with forced events. When a resource has finished
servicing a request, an uncontrollable Free, event is
issued. Given N incomplete requests, Free, will de-
crease N to N —1. The controllable predicate changes
from =RPpras—nN—1 t0 " RPprq—n. To make sure the
control invariant is satisfied it is necessary to cou-
ple a Free, event with a smart sequence of forced
moves Recov,.. The supervisor chooses Recov, such
that sp(=RPpaw—N—1,Recov,) = " RPpjgz—N.

7 Outline of Supervisor Proof

Theorem 1 states that a supervisor using the con-
trol map m satisfies the control invariant given in
section 7?7. We describe four supporting lemmas
and then provide a simple proof of Theorem 1. For
brevity, we use Req, to represent the Request, event.

Lemma 1: Vn > 0: RP, < RPp1

—RP, holds when n + 1 consecutive requests can
be serviced. Lemma 1 claims the following: if the
state of the plant is such that n + 2 requests can be
serviced, then n + 1 requests can be serviced from the
same state. This is easy to see once you realized that
the statement of Lemma 1 is equivalent to =RP,, 11 <
- RP, and use the interpretation of -RP,, given in
section 77.

Lemma 2: Vn>0 YveV:sp(—=RP, 41, Req,) =—RP,

Lemma 2 claims that if a the plant is in a state
that can service n+ 2 requests, and executes a service
event, the resulting state will be able to service n + 1
requests. This is a result of lemma 1 and the definition
of the strongest postcondition function, sp().

Lemma 3: -RP,(x) =
Vseq = (Req;, ... Reqr), k<n+l: 6(x, seq)!

Lemma 3 claims that if =RP, holds in state x,
then all sequences of n+1 (or less) consecutive request
events can be serviced.

Lemma 4: N < Max = “RPpjqe N_1

Lemma 4 claims that if there are N incom-
plete transactions, and N is less than Max, then
2 RPprqe—N—1 holds. Theorem 1 proves the control
invariant by a simple application of Lemmas 3 and 4.

Theorem 1 N < Max = Max—N requests can be
serviced.

Proof: By lemma 4, we know that N < Max =
- RPpraz—n-1- And by lemma 3, we know that
= RPpay—n-1 = Max — N requests can be serviced.
Therefore, N < Max = Max — N requests can be
serviced. n

We have outlined proof that a supervisor using the
control map m satisfies the control invariant, which
states that the plant should be able to service Max —
N requests if we have IV incomplete transactions.

8 Applications of DRM

DRM is a good model for the problem police head-
quarters face when trying to manage patrol cars so
that they can respond to 911 emergency calls quickly.
The city is represented by a weighted graph in which
the vertices represent different neighborhoods in the
city, and the weighted edges represent the time it
takes to travel between neighborhoods. Emergency
calls are uncontrollable events. A patrol car moving
from one neighborhood to another is a controllable
event. Headquarters ordering a patrol car to move to
a specific neighborhood is a forced event.

DRM can also model services in distributed com-
puting system where the services must relocate to the
node making the request. In this case the weighted
graph is represented by the communication network.
The vertices are the nodes on the network. The edge
weights represent the cost of transferring the service
over the link. The resources are the distributed ser-
vices that float around the network. Although this
type of distributed service computing model is not in
widespread use today, as computer networks become
more powerful and more widespread, this model may
become more important.

9 Conclusion

We introduced the DRM problem as a useful method
for modeling distributed resources. The DRM prob-
lem states that resource requests should be satisfied
within a specified cost. Supervisory control provides
a framework for modeling DRM and for determining
a supervisor to manage the resources in such a way
that the cost constraints are met. Traditional meth-
ods for determining a supervisor for the DRM plant
failed because the controllable predicate was false.

We defined a new class of Supervisory Predicate Con-
trol Problems (SPCP) and labelled it Bounded-SPCP.
DRM is an example of a Bounded-SPCP problem.
We developed a supervisor that uses a dynamic con-
trollable predicate to control the plant, which enables
the plant to use more of its state space than a static
controllable predicate.

